Minutes of the meeting of the Board of Studies in Computer Science and Electronics held on September 10, 2004 at 10:30 am in Room No. 209, AIM & ACT, Banasthali Vidyapith

Present

1.	Prof. Rekha Govil	Dean
2.	Mr. G. N. Purohit	Special Invitee
3.	Dr. Madhvi Sinha	Member
4.	Ms. Neeta Khare	Member
5.	Ms. Kusum Gupta	Member
6.	Ms. Yogeshwari	Member
7.	Mr. Sanjay Dwivedi	Member
8.	Ms Pratistha Mathur	Special Invitee
9.	Ms. Manisha	Special Invitee
10.	Ms. Meenu Singhal	Special Invitee
11.	Mrs. Ritu Vijay	Special Invitee

Prof. J. P. Mishra, Prof. M. Chandwani, Prof. Sandeep Sancheti (External Members) and Ms. Prerna Zutshi (Internal Member) could not attend the meeting.

- 1. The Board confirmed the minutes of the last meeting of the Board of Studies in Computer Science & Electronics held on October 13, 2003 at 10.30 am in Vidya Mandir. It was noted in records that as decided in the faculty meeting of Apaji Institute held on 4th December 2003 as approved by the Academic Council held on 26th December 2003 the following new courses have been introduced in the Institute from the current session (2004-05):
 - Bachelor of Computer Applications (BCA)
 - M. Sc. (Bio-Informatics)
 - M. Tech Integrated (Computer Science)
 - M. Tech (Software Engineering)
 - M. Tech (VLSI Design)
- 2. The Board scrutinized and updated the existing panel of examiners for B. Sc. (Electronics), B. Sc. (Computer Maintenance), B. A. (Computer Applications), PGDCA, MCA, M.Sc. (Electronics) and M. Tech. (Computer Science). The panel is updated according to the specialization of the person concerned and for each paper separately. Examiner panel is also constituted for M. Tech (Software Engineering), M. Tech. (VLSI Design) and M. Sc. (Bio Informatics) (Annexure I).
- 3. The Board considered the reports of examiners of various examinations of 2003-04 in Computer Science and Electronics and was satisfied with the overall performance of the students.

The board again emphasized to evolve a system so that examiner's report along with grievances are considered by the faculty members in the very beginning of the subsequent session so that in case of any serious suggestion on any topic/unit, it could be taken care of by the faculty while preparing the course handouts.

4.

- 5. The board considered the courses of study, curricula and scheme of examinations for all the undergraduate and postgraduate courses of the department and resolved to recommend as under:
 - I. B. Sc./B. A. /B. C. A.:
 - (i) Since the courses of B.Sc. (Computer Science)/B.A. (Computer Applications) programme were restructured in the last BOS, the board suggested no change in the scheme and syllabi of courses of B. Sc. (Computer Science) and B. A. (Computer Applications). Also there was no change proposed in scheme & courses of B. Sc. (Electronics & Computer Maintenance)
 - (ii) **BA (Computer Application)** An important resolution made by the Board is to discontinue offering B. A. (Computer Application) from 2005-06 considering the fact that BCA Programme has been introduced from current session.
 - (iii) The scheme of examination and syllabi of courses of BCA programme were scrutinized closely and it was restructured as a comprehensive, integrated programme resulting changes in both the schemes and syllabi of few courses. The revised details are given in Annexure–II in complete form.

II. M. Sc. (Computer Science/Electronics)

No major change was proposed in the curricula of M. Sc. (Computer Science) and M. Sc. (Electronics) apart from a slight revision in the syllabus of the elective course "VLSI Design" in Section C. The revised syllabus is enclosed in Annexure–III-A..

III. MCA/M. Tech (Integrated) – No change

- IV. M. Tech (Computer Science/Software Engineering/VLSI Design) No change in the scheme. Revision in the syllabus of the ciurse "Software Engineering" as given in Annexure III-B.
- V. **PGDCA** No change

VI. Ms. Sc. (Bio Informatics)

The course has been introduced from the current session and hence, the scheme was discussed and revised along with the design of syllabi of the courses with: Given in Annexure IV.

VII. Certificate/Diploma Courses

Advance Diploma in Networking – No Change Certificate Course in Computer – No Change

Programming & Application

Advance Diploma in Internet & - No Change

Web Applications

6. Keeping in view that the Institute has sufficient infrastructure and facility to run one semester 'Diploma Course in VLSI Design'. The board recommended that such a course may be offered from January to June, when there are vacant seats in the hostel.

Such courses are in market demand and they increase the employment potential of Computer Science/Electronics graduates. A suggestive scheme is given in Annexure–V.

<u>Annexure – I</u>

BCA Programme

Reading Elective for MCA/M. Sc. (Computer Science)/M. Sc. (Electronics)

M. Sc. (Bio Informatics): The course is being recently introduced needed restructuring and designing the syllabi of few courses. The suggested scheme and complete syllabi are enclosed in Annexure – II.

M.Tech (VLSI Design)

Semester I (July 2004 – Dec. 2004)

Course	Contact	Cont.Ass.	Ann. Ass.	Total	Min.	
	Hours/week	Marks	Marks	Marks	Pass Marks	
1. MOS Device Model	ling 4	20	40	60	22	
& Characterization						
2. Real Time Systems	4	20	40	60	22	
3. Elective – I	4	20	40	60	22	
4. Elective – II	4	20	40	60	22	
5. Elective – III	4	20	40	60	22	
6. Lab :	12	45	90	135	54	
- HDL I	Lab					
- Pspice	/Tanner Tool					
TOTAL	: 32	145	290	435	174	

Semester II (Jan. 2005 – April/May 2005)

Course	Contact	Cont.Ass.	Ann. Ass.	Total	Min.		
	Hours/week	Marks	Marks	Marks	Pass Marks		
1. Digital IC Des	sign 4	20	40	60	22		
2. VLSI Packagi	ng						
Technology	4	20	40	60	22		
3. CAD Tools	4	20	40	60	22		
4. ASIC Design	& Intro.	4	20	40	60	22	
to Analog VI	SI Des.						
5. Elective – I		4	20	40	60	22	
6. Seminar	2	10	20	30	12		
7. Mini Project	12	45	90	135	54		
TOT	AL :34	155	310 =	465	186		_

Semester - III & IV (July 2005 – April/May 2006)

Course/Exam	Marks	
Reading Elective – I	40	
Reading Elective – II	40	
Project /Thesis		
Part – I	100	
Part – II	100	
Part – III	100	
Part – IV 1. Dissertation & Project	100	
2. Interim Report	50	
3. Seminar	60	
4. Viva-Voce	100	
Total:	690	
Grand Total :	1500	

List of Electives:

- 1. Advanced Computer Architecture
- 2. Advanced Communication Networks
- 3. Computer Organization & Architecture
- 4. Data Communication and Networks
- 5. Digital Signal Processing
- 6. Embedded Systems

- 7. Instrumentation
- 8. Microprocessor and Microcomputer Applications
- 9. Mobile Computing
- 10. Modelling and Simulation
- 11. Pattern Recognition and Image Processing
- 12. Solid State Electronic Devices
- 13. VLSI Design

4. Reading Elective:

The students have to opt for two reading electives out of the once not opted in semester I and II. The examination for them will be held at Banasthali Vidyapith, one along with the mid term presentation of the project work/ thesis (in December), and, for another along with the final presentation of the project/thesis (in July).

Note: Depending on the choices of the students the institute deserves the rights to hold examination for few selected reading electives each time.

5. Thesis work:

The duration of M.Tech thesis is around 10 months (approx. 30 working weeks). This period is divided into four parts. The division is made according to the work and marks and weightages are allotted correspondingly.

Part – I (15%)

In this part students will decide on which area they want to do their thesis/project work. The aim of the work must be clear.

Within five weeks of starting of the thesis/project (with clear-cut goals) a report giving SRS, Guide's name, Organization's name and work plan must be reported to the institute in a standard format.

After fifteen weeks duration the student is required to personally deliver a seminar on her thesis/project. It is required that by this time the student must have completed 35% to 40% of work. The presentation should accompany a report on the work completed by then (mid term report) certified by the supervisor/guide.

After 25 weeks duration the student must submit a synopsis of her thesis/project. By this time the student must have finished 80% to 85% of the total work. The synopsis must also bear the certificate by the supervisor/guide.

At the end of the duration of ten months final report is to be submitted and a presentation and viva-voce will be held.

The viva-voce will be taken by a panel comprising of one external examiner and two internal members.

Research Area of the thesis/project:

The domain of research may range from abstract theory to down-to-earth problems of immediate interest of industry.

Financial Assistance:

M.Tech. students are eligible for financial assistance as follows:

1. TA/RA ship:

Candidates admitted to the M.Tech. program will be offered the teaching Assistantship (TA) or Research Assistantship provided they have secured at least 60 percent mark (55 percent for SC/ST candidates) in their qualifying degree examination.

A teaching assistant can be asked to conduct labs, help an instructor in grading, and other course-related tasks. In some cases, TA can also be asked to teach tutorial sessions to the undergraduate students.

A research assistant can be asked to support the department in various academic activities. It could be providing help in maintaining and upgrading department labs, downloading, installing software, etc. A RA can also be assigned to faculty members to help them in their research effort.

The assistantship amount will be approximately divided by the institute ranging from Rs. 1000/- to Rs. 5000/- per month.

2. Project Assistantship:

Several faculty members are working on sponsored projects, supported by Industry/Government funding agencies such as MCIT, DIT, DST, AICTE, etc. A M.Tech. student can be hired as a project employee to carry out research. The assistantship amount in such cases can be between Rs. 5,000 and Rs. 8,000 per month. No student can draw more than one scholarship/assistance at a time.

Detailed Syllabus

1. Advanced Computer Architecture

Section-A

Overview of modern processor architectures. Processor Design. Memory Hierarchy - Cache and Cache Coherence, Bus Architecture, Types of parallel machine. Vector Pipeline Architectures (Replicated Architectures, Shared Memory, Distributed Memory).

SECTION-B

Parallel Computer Models: The state of computing, multiprocessors and multicomputers, multivector and SIMD computers, architectural development tracks. Program and Network Properties: conditions of parallelism, program partitioning and scheduling.

Section-C

Linear Pipeline Processors, Nonlinear Pipeline processors, Instruction Pipeline Design, Arithmetic Pipeline Design, Multiprocessors System Interconnects, Vector Processing Principles, Multivector Multiprocessors and Data Flow Architecture.

Text/Reference Books:

- 1. Kai Hwang "Advanced Computer Architecture", MGH.
- 2. Advanced Computer Architecture: A Design Space Approach, by Dezso Sima, Terence Fountain, and Peter Kacsuk, Addison-Wesley 1997.
- 3. Patterson D A and Hennesy J L, *Computer Organization and Design*, Morgan Kaufmann 1993
- 4. J.P. Hayes, "Computer Architecture and Organization", MGH.
- 5. Harvey G. Cragon, "Memory Systems and Pipelined Processors", Narosa Publication.
- 6. R. K. Ghose, Rajan Moona & Phalguni Gupta, "Foundation of Parallel Processing", Narosa Publications.
- 7. Kai Hwang and Zu, "Scalable Parallel Computers Architecture", MGH.
- 8. Stalling W., "Computer Organization & Architecture", PHI.

2. Advanced Communication Networks

SECTION-A

TCP/IP protocol: - Introduction to Computer Networks, Layered protocol, Network Interface, Internet Addressing, mapping internet address to physical address, Internet Protocol, Routing algorithms, ICMP.

Transport Protocols: - UDP, TCP, TCP finite state machine implementation, SNMP. SECTION-B

 $ATM\ \ Networks: -\ ATM\ protocol\ stack,\ ATM\ switching\ , traffic\ management\ in\ ATM\ \ networks,\\ Internetworking\ with\ ATM\ networks.$

Wireless Networks: - Wireless channels, Channel Access, Network Architecture, Mobility management, WLAN. Introduction to internet telephone.

SECTION-C

Performance evalution of communication networks: Introduction to queing theory, performance evalution of circuit switched networks, datagram networks, ATM networks and wireless network

Network Economics: Network charges; theory & model, Billing & provisioning system for internet connection, pricing a single source, pricing for ATM services.

Text/Reference Books:

- 1. High performance communication networks by : I. J. Walrand & Pravin Varaiya, Morgan Kaufman, 1999.
- 2. Internetworking with TCP/IP vol 1: Principles , Protocol & Architecture by: D. E. Commer, PHI; 3/e.
- 3. 3- ATM networks by: Handel, Addision Wesseley.

3. Advanced Topics in Algorithms

SECTION-A

Analyzing algorithms, Lower and Upper bounds, Analysis of Heap sort and quick sort

Advanced Data Structures: B Trees, Bionomial heaps, Fibonacci heaps, the Union-Find data structure, Amortization, self adjusting and persistent data structures.

SECTION-B

Advanced algorithms: Approximation algorithms for NP Completeness problems (cg vertex cover, travelling salesman), Planar and plane graphs, the planar separator theorem and applications, Algorithms for Matching, flow and circulator problems, A discussion on Parallel Algorithms.

SECTION-C

Randomized Algorithms: Introduction, Las Vegas and Monte Carlo, Hashing with O(1) search time, The min-cut problem, Minimum spanning trees, Binary planar partitions, Algorithms in number theory: GCD, Chinese Remainder theorem, Polynomial roots and factors, Primality testing.

Text/Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronold L. Rivest. MIT Press, 1990
- 2. The Design & Analysis of Algorithms, Dexter C. Kozan, Springer-Verlag, 1991.
- 3. Aho, Hopcraft & Ullman, The Design and Analysis of Computer Algorithms, Addison Wesley, 1975.
- 4. M.R. Garey and D.S. Johnson, Computers & Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, 1979.
- 5. R.E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference series in Applied Mathematics 44, 1983.
- 6. Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press, 1995.

4. Artificial Intelligence

SECTION-A

Introduction to Artificial Intelligence, General problem solving, state space and graph model techniques, Heuristic designs, Aim-oriented heuristic algorithms versus solution guaranted algorithms, Game playing strategies.

Knowledge representation: Knowledge representation tools, First order predicate calculus. The language PROLOG - sementic nets, partitioned nets, Minsky's frames, case grammer theory, production rules, knowledge base, the inference system, forward and backward deduction.

SECTION-B

Understanding Natural Language, Parsing techniques, context free and transformational grammer, transition net, augumented transition nets, Fillmore's grammer, Shanks conceptual dependency. Grammer free analysers, Sentence generation, Translation.

Expert systems: Structure, development tools, uncertainty considerations, domain exploration, meta knowledge, expertize transfer, existing systems (DENDRAL, MYCIN), self explaining systems.

SECTION-C

Pattern recognition: Structured description, symbolic description; machine perception: Vision & Speech; techniques used in solving preceptual problems, analysing visual clues (edge detection); speech recognition: Problems in speech recognition, analyzing speech, Introduction to machine learning.

Text/Reference Books:

- 1. Artificial Intelligence, Elaine Rich & Kevin Knight, Mc-Graw Hill, International edition, 1991.
- 2. Principles of Artificial Intelligence, N.J. Nilsson, Narosa Publishing, 1991.
- 3. Introduction to Expert Systems, Peter Jackson, Addison Wesley.
- 4. Introduction to Artificial Intelligence, E. Charniak & D. McDermott, Addison Wesley, 1985.
- 5. The Handbook of Artificial Intelligence. Avron Barr & Edward A. Feigenbauen, Addison-Wesley Pub., 1982. Vol I, Vol II, Vol III
- 6. Natural Language Processing, James Allen
- 7. Pattern Recognition Principles, Tau & Genzales, Addison-Wesley, 1974.

5. ASIC Design & Introduction to Analog VLSI Design

SECTION-A

ASIC Design

Types of ASICs - Design flow - CMOS transistors CMOS Design rules - Combinational Logic Cell –Sequential logic cell - Data path logic cell - Transistors as Resistors - Transistor Parasitic Capacitance-Logical effort - Library cell design - Library architecture .

Anti fuse - static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC & AC inputs and outputs - Clock & Power inputs - Xilinx I/O blocks.

SECTION-B

Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX –Design systems - Logic Synthesis - Half gate ASIC -Schematic entry - Low level design language - PLA tools -EDIF- CFI design representation.

Verilog and logic synthesis - VHDL and logic synthesis - types of simulation -boundary scan test – fault simulation - automatic test pattern generation.

System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow - global routing - detailed routing - special routing - circuit extraction - DRC.

SECTION-C

Advanced Current Mirrors and Op Amps: advanced current mirrors; op amp design methodology; compensation of op amps; operational transconductance amplifiers (OTAs); folded-cascode op amps; current-mirror op amps; fully differential op amps; common-mode feedback circuits; current-feedback op amps.

CMOS Comparators: characterization of comparators; input offset voltage errors; charge injection errors; minimizing charge injection errors; speed of multi-stage comparators; latched comparators; CMOS two-stage comparators.

Continuous-Time Filters: introduction to G_m -C filters; bipolar transconductors; CMOS transconductors; BiCMOS transconductors; MOSFET-C circuits; tuning circuitry; dynamic range performance.

Switched Capacitor Circuits: basic building blocks; basic operation and analyses; switched-capacitor integrators; first-order filters; biquad filters; charge injection; switched-capacitor gain circuits; voltage-controlled oscillators.

Text:

- 1. Mohammed Ismail, Terri Fiez, "Analog VLSI signal and Information Processing", McGraw-Hill International Editons, 1994.
- 2. M.J.S .Smith, "Application Specific Integrated Circuits" Addison Wesley Longman Inc., 1997.

References:

- 1. Malcom R.Haskard, Lan C.May, "Analog VLSI Design NMOS and CMOS" Prentice Hall, 1998.
- 2. Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", Mc Graw Hill International Company, 1990.
- 3. Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal Processing", Prentice Hall, 1994.
- 4. Andrew Brown, "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991.
- 5. S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays"-Kluever Academic Publishers, 1992.
- 6. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing", Mc Graw Hill, 1994.
- 7. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.
- 8. Jose E. France, Yannis Tsividis, "Design of Analog Digital VLSI Circuits for Telecommunication and Signal Processing", Prentice Hall, 1994.

6. CAD Tools

SECTION-A

Computer Aided Design of VLSI Circuits

Introduction to VLSI Methodologies - VLSI Physical Design Automation - Design and Fabrication of VLSI Devices - Fabriction process and its impact on Physical Design.

SECTION-B

A Quick Tour of VLSI Design Automation Tools - Data structures and Basic Alogrithms - Algorithmic Graph theory and computtional complexity - Tractable and Intractable problems.

General purpose methods for combinational optimization - partitioning - floor planning and pin assignment –placement - routing.

SECTION-C

Simulation-logic synthesis - Verification-High level synthesis- Compaction.

Physical Design Automation of FPGAs,MCMS-VHDL-Verilog-Implementation of Simple circuits using VHDL and Verilog.

Text/Reference Books:

- 1. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", 1999.
- 2. S.H.Gerez, "Algorithms for VLSI Design Automation", 1998.

7. Compiler Design

SECTION-A

Analysis of source programme, Different phases of a compiler, Symbol Table. Lexical Analysis: Different approaches to design a lexical analyzer, regular expression, finite automata (Deterministic & Non-deterministic). RE to NFA and NFA to DFA. Optimization of DFA states. Implementation of lexical analyzer (introduction). Error Handling: errors in different phases of compiler. Introduction to Compiler Construction Tools.

SECTION-B

Syntax analysis: context free grammer, Parsing techniques (Top-down, Bottom-up, Operator-precedence, SLR, LALR).

Intermediate code generation: Intermediate language, syntax directed translation, assignment statement, boolean statements and backpatching, array references, procedure calls and record structure.

SECTION-C

Code optimization: Principal sources of optimization, Local & Loop optimization, loop invarient computations, induction variable elimination.

Code generation: Design of code generation, a machine model, a simple code generator, register allocation & assignment, code generation from DAG's.

Text/Reference Books:

- 1. Principles of Compiler Design by Aho, Ullman; Narosa Publishing House, 1989
- 2. Compilers: Principles, techniques and tools by Aho, Sethi, Ullman; Wesley 1988
- 3. Compiler Construction: Theory & Practice by Barrat, Eates, Cought, Galgotia 1988
- 4. Compiler Writing by Trembly, Sorenson; Mc-Graw Hill Book Co.
- Compiler Construction for Digital Computer by Gries; John Willey & Sons, New York
 1987

8. Computer Graphics

SECTION-A

Components of Graphics Systems: Display devices - Refresh CRTS, Random scan and Raster scan monitors, colour CRT monitors, DVST, Plasma-panel displays, Hard copy devices-priters, plotters. Display processors-random scan systems, DVST systems, Raster scan systems. Interactive Input devices: Keyboards, touch panels, light pens, tablets, joysticks, trackball, mouse. Logical classification - Locator, Stroke, String, Valuator, Choice, Pick devices, Interactive picture construction techniques - positioning methods, constraints, grids, gravity field, rubber band methods, sketching, dragging.

SECTION-B

Output primitives: Points and lines, DDA and Bresenham's line drawing algorithms, Antialiasing lines, Bresenham's circle drawing algorithms. Character generation.

Area filling: Scan line, Boundary-fill, Flood-fill algorithms. 2-D Transformations: Basic Transformations, General Transformation equations, Reflection, Shear. Windowing and

clipping: Windowing concepts, Line, Area, text clipping algorithms, Window to View port Transformation.

Segmentation: Concepts, Segmentfiles, segment attributes.

SECTION-C

3D Transformation : 3D co-ordinates. Basic 3D transformations. Rotation about arbitrary axis. Reflection, shear, viewing transformation.

Curved lines and Surfaces: Polygon surface, Bezier Curves and surfaces, spline curves and surfaces.

Fractals Geometry Methods: Introductions.

Hidden surface and Hidden line removed : Classification of algorithms, Back-face removal, Depth buffer methods, Scanline methods, Depth sorting method, Area subdivision method. Comparison.

Shading: Constant intensity, Gourand shading, Phong shading, Ray-tracing algorithms.

Text/Reference Books:

- 1. Hearn Donald & Baker, M. Pauline (1990). "Computer Graphics" Prentice-Hall of India Pvt. Ltd.
- 2. Newman, W.H. & Sproull, R.F. (1989). Principles of Interective Computer Graphics", Mc-Graw Hill Book Co.
- 3. Harrington, S. (1983). "Computer Graphics: A Programming Approach" Mc-Graw Hill Book Co.
- 4. Foley, J.D. & Dam, A. Van (1982), "Fundamentals of Interective Computer Graphics", Addison-Wesley.
- 5. Giloi, W.K. (1978). "Interective Computer Graphics: Data Structures, Algorithms. Languages", Prentice Hall.
- 6. Plastock, Roy A. & Kalley, Gordon (1987). "Theory and problems of Computer Graphics" Shaums Outline Series, Mc-Graw Hill Book Co.

9. Data Communication and Networks

Section - A

Data Communication model, tasks of a communication system, networking, analog and digital transmission, different transmission media.

Data encoding: digital data digital signals, digital data analog signals (ASK, PSK, FSK), analog data digital signals (PCM, Delta modulation), analog data analog signals (AM, FM, PM), modems, interfacing [RS-232C, ISDN physical interface], multiplexing (TDM, FDM).

Section - B

Principles and purpose of layered approach, OSI model, ARPANET model, protocol architecture (OSI, TCP/IP) Data link control: frame syndronization - asynchronous and synchronous; flow control- stop and wait, sliding window, go-back-N protocols; error detection- CRC, error control - ARQ schemes.

Network switching - circuit switching, packet switching; routing and congestion control; introduction to frame relay and ATM.

Section - C

Radio, satellite and local networks, high speed LANs; network management; Internetworking, the Internet Protocol, DNS and URL; transport protocols - transport services, TCP, UDP; remote procedure call; network security - encryption and data

compression, applications - virtual terminal, file transfer, email (Telnet, FTP, SMTP, HTTP); introduction to ISDN and broadbond ISDN.

References:

- 1. Computer Networks by A.S. Tannanbaum
- 2. Data and Computer Communications by W. Stailings
- 3. Computer Networks and Distributed Processing by J. Martin

10. Digital IC Design

SECTION-A

CMOS Logic, Switch Models & Simple RC Models, IC Layout & Fabrication, Device Physics, MOS Models, Device Scaling & Short-channel effects

SECTION-B

Inverters (CMOS, Pseudo NMOS), Static CMOS & Pseudo NMOS Logic Gates, Buffers, Pad-Frames, Static/Dynamic Flip-Flops, Registers

SECTION-C

Semiconductor Memory, Counters & Arithmetic Elements, CMOS Logic Families/Dynamic Logic Design Flow, Testing, Basic Economics for Full and Semi Custom Approaches

Text/Reference Books:

1. K. Martin, *Digital Integrated Circuit Design*, Oxford University Press, 2000, ISBN 0-19-512584-3

11. Digital Signal Processing

SECTION-A

Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of Digital over Analog Singnal processing, Signal Models - Continuous Time versus Discrete time signals, Periodic and Aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series- Exponential Fourier Series-Symmetry Properties of the Fourier Coefficients.

Fourier Integral, Energy Spectral Density, Fourier Transforms in the Limit, Fourier Transform Theorems and Pairs, System Analysis with Fourier Transform, Laplace Transform Theorems, Network Analysis using the Laplace Transform.

SECTION-B

Discrete Time Signals and Systems - Review of Sampled Data Systems, Time Domain Representations of Discrete Time Signals, Frequency Domain Representation of Discrete Time Signals, Discrete Time Signals obtained by sampling, Discrete Fourier Transform. Z-Transform - Definition and Examples, Inverse Z-Transform, Properties of the Z-Transform, Introduction to Realization of Digital Systems - Block Diagrams and Signal Flow Graphs. Introduction to Realization of an IIR and FIR systems, Discrete Fourier Transforms (DFT) and Fast Fourier Transform (FFT)

SECTION-C

Design of Digital Filters: Introduction to Filters, A comparision of IIR and FIR Digital Filters. Design of IIR Digital Filters-Impulse Invariant Transformation, Bilinear

Transformation, Design of Digital Butterworth and Chebyshev Filters. Design of FIR Digital Filters - Windowing and Rectangular Window, Filter Designs using Windows, Frequency Sampling Technique. DSP tools and DSP techniques in various applications.

Text/Reference Books:

- 1. Digital Signal Processing by Alan. V. Oppenheim, Ronald W. Schafer, Prentice Hall of India
- 2. Digital Signal Processing by J. Defatta, John Willey & Sons
- 3. Digital Signal Processing by prokians, PHI

12. Distributed Computing

SECTION-A

Distributed Operating System: Distributed Computing system models, Issues in design of distributed operating system, message passing, Remote Procedure Calls, synchronization, process management, resource management, distributed file systems. Introduction to distributed data-bases.

SECTION-B

Distributed Algorithms: Introduction to distributed algorithms, synchronous and partial synchronous models, Algorithms in general synchronous leader election, Breadth first search, shortest path, randomized algorithms. Distributed concensus with link and process failures. Asynchronous system model, I/O automata, operation of automata, complexity measures, randomizations.

SECTION-C

Asynchronous shared memory model, mutual exclusion, resource allocation, concensus, Asynchronous network model, basic asynchronous network algorithms, shared memory Vs Networks. Introduction to parallel distributed processing: general framework, methods of learning.

References:

- 1. PK Sinha, Distributed Operating System, PHI, 1997.
- 2. AS Tanenbaum, Modern Operating Systems, PHI.
- 3. Nancy A Lynch, Distributed Algorithms, Morgan Kaufmann Pub. Inc., 1996.
- 4. DF Rumelhart, JI Mc Clelland & PDP group, Parallel Distributed Processing vol I&II, MIT Press, 1995.
- 5. Simon Haykin, Neural Networks, IEEE Press.

13. Electronic Commerce SECTION-A

Whats and hows of Internet: Development and growth, DNS, Commercialisation of internet. Introduction to e-commerce: e-commerce-, Opportunities, Framework, Recent Developments. Planning for Network Infrastructure & Web Architecture, Recent trends.

SECTION-B

Introduction to Internet Protocols: Layers and Networking, Internet Protocol suite, Desk topTCP/IP, Mobile TCP/IP based Networking, Multicast IP.

Principles of Web Site Hosting and Promotion: Decision on Website Design, Legal issues, Domain Name Registration, Site Hosting, Web Site Registration, Offline & online web site promotion.

SECTION-C

E-commerce Business Models: Brokerage, Advertising, Infomediary, Merchant, Manufacturer, Affiliate, Community, Subscription, Utility, Tried and True models. Auctions as a price setting mechanism, Pricing Information, Versioning Information. Cyberlaws, Electronic payment systems: Digital cash.

Text/Reference Books:

- 1. Turban, E-Commerce, Pearson, New Delhi.
- 2. Kalakota and Whinston, Frontiers of E-commerce, Pearson, New Delhi. Web Sites (Bababazaar.com, yahoo.com, Indiainfoline.com, buyorbid.com, amazon.com, pitara.com, fabmart.com etc.)

14. Embedded System

SECTION- A

Introduction to Embedded Systems, Architectural issues: CISC, RISC, DSP architectures, memory, Component Interfacing: Interrupts, DMA, I/O Bus Structure, I/O devices. OS for Embedded systems, Real Time issues.

SECTION-B

Designing Embedded Systems : Design issues, Hardware-Software Co-design, specification languages, use of UML, software design – Programming Embedded System, optimization and testing.

SECTION-C

Networked Embedded Systems: Distributed embedded architectures, protocol design issues, wireless network, Introduction to embedded multimedia and telecommunication applications like Digital camera, Digital TV etc.

Text/Reference Books:

- 1. Embedded Systems Design, Arnold S. Berger
- 2. An Embedded Software Primer, david E. Sinon
- 3. Real Time Concepts for Embedded Systems, Qing Li with Caroline Yao
- 4. Designing Embedded Hardware, John Catsoles
- 5. Specification and Design of Embedded Systems, D. Gajski, F. Vahid, S. Narayan and J. Gong, Prentice Hall.
- 6. Hardware Software Co-Design: Principals and Practice, Kluwer Academic Publishers, Jorgan Syaunstrup and W. Wolf.
- 7. Embedded System Design, A unified Hardware/Software Introduction, Frank Vahid, Tony Givaris, John Wiley & Sons, Inc., 2003.

15. Emerging Programming Paradigms

SECTION -A

Visual Computing: Windows program architecture, procedural and event oriented languages, GUI components, controls, control arrays, file processing, database connectivity (ADO,DAO,RDO), Multiple Document Interface(MDI), OLE, report generation, multimedia, concept of MFC library.

(Visual programming to be done using VB).

World Wide Web (WWW) and Web Programming: Web documents, web server and browsers, HTTP protocol, HTML and its features, embedding images, audio and video, web designing and publishing, web designing tools.

SECTION -B

Java Programming: Java program architecture and its features, Java Virtual Machine (JVM) and Java Development Kit (JDK), applets and applications, variables, data types and control constructs in Java, classes and objects in Java, inheritance, interfaces and packages. Standard Java packages, string, vector, multithreading, exception handling, GUI components, GUI layout management, animation and handling images, Javaswings.

SECTION-C

Advanced Java Programming: Streams and I/O programming, network programming, concept of serialization. Introduction to RMI.

Advanced Web Based Programming: Static and dynamic web page, DHTML, scripting languages (VBscript, Java script), Server side programming and database interfacing (JDBC,ODBC), Active Server Pages (ASP), Javaservlet, Introduction to XML.

Text/Reference Books:

- 1. Mastering Java-2 by John Zukowski
- 2. Mastering Visual Basic-6 by Evangelos Petroutsos
- 3. Mastering HTML 4.0 by Deborah S. Roy, Eric J. Roy
- 4. Java How To Program by Deital & Deital
- 5. Mastering Active Server Page 3.0 by A. Russel Jones, bpb publication
- 6. Mastering XML by Ann Navarro, bpb publication
- 7. Mastering UML with Rational Rose by Wendy Boggs and Michael Boggs, bpb publication

16. Enterprise and Resource Planning

SECTION A

ERP Overview, Benefit, Business Process Reengineering (BPR), data ware housing, Data mining, OLAP, Supply chain Management (SCM), MRP, Expert system.

SECTION B

ERP-A Manufacturing Perspective, ERP Module, ERP Market, ERP implementation life cycle, options of various paradigms, identification of suitable platforms, Role of SDLC/SSAD, Object oriented architecture.

ERP implementation, Hidden costs, Vendors, Consultant, Employees, Human Resource.

SECTION - C

ERP& E-Commerce, Future Directives in ERP, ERP and Internet, Critical Factors Guiding, Selection and evaluation, Strategies for successful implementation, Impediments and initiatives to achieve success, Critical Success and factors, Integrating ERP into organizational culture.

Using ERP tool: Either SAP or ORACLE formats to case study.

Text/Reference Books:

- 1. A.Lexis Leon, "Enterprise Resource Planning", TMH
- 2. Brady, Manu, Wegner "Enterprise Resource Planning", TMH

3. Jacobs "Why ERP? A Premier on SAP Implementation, McGraw Hill.

17. Geographic Information System

SECTION-A

Introduction to GIS. Concept of space and time in Spatial Information Systems, Characteristics of spatial data, History of GIS, various elements of GIS. Data Models of spatial and non-spatial information used in GIS, Concept of Layers and Coverages in GIS. Errors in GIS. Hardware, software requirements in GIS, Applications of GIS.

SECTION-B

Overview of Data Structures (file structures, database management systems), Database models for spatial data, Role of RDBMS in GIS, Digitizing process – its type. Data quality and sources of errors in GIS, Spatial data entry, error detection & correction, types of tolerance, Topological concepts of GIS, Data compression techniques – run length codes, quad trees.

SECTION-C

Introduction to map projections, map scale, properties of map projections, projection types, Overview of coordinate system, Overview of Spatial Data Analysis, significance of spatial analysis, GIS usage in spatial analysis, tools used for spatial analysis. Buffer analysis – its features, Network analysis in GIS, network elements in GIS, network analysis tools, application context of network in GIS, Overview of Digital Elevation Models (DEM), need of DEM, various structures of DEM, uses of DEM.

Text/Reference Books:

- Heywood, I., Cornelius, S., Carver, S. (1998) An Introduction to Geographical Information Systems; Prentice Hall.
- 2. Fundamentals of Geographic Information Systems Second Edition, Michael DeMers, 2000 John Wiley and Sons.
- 3. MacEachren, A. M. & Kraak, M. (2000), Cartography and Geographic Information Science, Vol.28, No.1, 2001.
- 4. Clarke, K.C. 2003. Getting Started With Geographic Information Systems, 4th ed. New Jersey: Prentice-Hall. 352 pp. ISBN: 0130460273
- 5. Ormsby, T., et al. 2001. Getting to Know ArcGIS Desktop: Basics of ArcView, ArcEditor, and ArcInfo. Redlands, California: ESRI Press. 552 pp. ISBN: 1879102897
- 6. Processing Digital Images in GIS, by David L. Verbyla and Kang-tsung (Karl) Chang, Onword Press, 1997.
- 7. P A Burrough & R A McDonnell, Principles of Geographic Information Systems, OUP, 1998

18. Instrumentation

SECTION-A

Biomedical Instrumentation : Origin of Bioelectric signals, Biopotentials, electrodes – skin surface, needle and microelectrodes, Electrocardiography, cardiac muscle physiology, Electrocardiogram, ECG lead and wave configruation, Blood pressure measurement – Sphygmonometry method, Pacemakers – external & implantable pacemakers, keads and electrodes, Defibrillators, Sugar level measurement, Basics of X-ray machine

SECTION-B

Analytical Instrumentation: Principle of pH measurement, pH meter, electrodes of pH meter, Infrared radiation sources, types of monochromators & detectors, Infra red spectrophotometer – single & double beam, UV & visible spectrophotometers, Atomic

Absorption Spectrophotometer & its applications, NMR & it's applications, Gas Chromatography, transmission and scanning electron microscope, X-ray diffractometer & flourescence.

SECTION-C

Power Electronics : Types of rectifiers – single phase rectifier, single phase controlled rectifier, three phase rectifier, three phase controlled rectifier, SMPS, UPS, Inverter

Bio-Telemetry: Introduction components – Implantable units, Single channel telemetry systems, Multichannel wireless telemetry systems. Transmission of analog physiological signals over telephone lines.

Virtual Instrumentation: Introduction to data flow programming, graphical programming in data flow, advantages of VI Techniques. ISA, EISA and PCI Buses.

Text/Reference Books:

- 1. Handbook of Biomedical Instrumentation R. S. Khandpur
- 2. Handbook of Analytical Instrumentation R. S. Khandpur
- 3. Power Electronics Rashid
- 4. Biomedical Instrumentation Cromwell
- 5. Principles of Biomedical Instrumentation Richard Aston

19. Knowledge Management & Data mining

SECTION-A

Knowledge Management: Introduction, Evolution, From Information Management to Knowledge Management, Key Challenges Facing the Evolution of Knowledge Management, Ethics for Knowledge Management. KM Tools: Telecommunications and Networks in Knowledge Management, Internet Search Engines and Knowledge Management, Information Technology in Support of Knowledge Management, Knowledge Management and Vocabulary Control, Information Mapping in Information Retrieval, Information Coding in the Internet Environment, Repackaging Information, KM Applications

SECTION-B

Data Mining: Introduction: What is data mining, Challenges, Other issues, , Data quality, Data preprocessing, Data Reduction, Data mining functionalities, data mining primitives, data mining query language, Architectures of data mining system, Generalization, Summarization and Characterization. Association analysis: Problem definition, frequent itemset generation, Rule generation, Challenges, Interestingness measures, Generalization of association patterns (Apriori, fptree algo, etc), Classification and prediction: Problem definition, General approach, Decision tree induction, Rule based classifiers, Cluster analysis: Introduction, Similarity and distance, Characteristics of clustering algorithms (like partitioning, Hierarchical clustering), Cluster evaluation.

SECTION-C

Application & Warehousing: Mining complex type of data (E.g. spatial databases, multimedia databases, time series and sequence data, text databases, www), application of data mining, and trends in data mining, What is data warehouse, data warehouse Architecture, data warehouse implementation, data cube technology, data mart, application of data warehouse, data warehouse and competitive advantage, OLAP, ROLAP, MOLAP, OLTP.

Text/Reference Books:

- 1. Srikantaiah, T.K., Koenig, M., Knowledge Management for the Information Professional, Information Today, Inc., 2000.
- 2. Daryl Morey, Mark Maybury, Bhavani Thuraisinghan, Knowledge Management, Classic and Contemporary Works, The MIT Press.
- 3. Bellover Richard F, Knowledge Management Strategy and Technology, Artech House, Boston.
- 4. Anahory/Murray, Data Warehousing in the Real World, Addison-Wesley.
- 5. Data Warehousing in the Real World, Anahory/Murray, Addison-Wesley.
- 6. Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, 2003 (not published yet)
- 7. Data Mining: Concepts and Techniques by Jiawei Han and Micheline Kamber, 2000

20. Microprocessors & Microcomputer Applications

SECTION-A

Introduction: Microcomputers, Microprocessors, Bus structure of Microprocessor System. Microprocessor Architecture and Microcomputer systems: Microprocessor architecture & operation with example of 8085 Microprocessor, architecture, timing and sequencing, memory, I/O Memory and I/O synchronization, memory speed requirements, interfacing devices, logic levels, loading and buffering.

8085/8080 - A Based Microcomputer systems: 8085 Microprocessor, Bus timings, Demultiplexing the Bus (AD7-AD8), Generating control signals, 8080 - A Microprocessor, Instructions and timing, instructions (8 bit & 16 bit), Data transfer operations, arithmetic operations, logic operations, Branch operations, counter & timing delays, stack & subroutines.

SECTION-B

Interfacing peripherals, I/O, Memory and Applications: Interfacing output display, input keyboard, memory, memory mapped I/O, Interrupts and DMA: 8085/8080 - A interrupts structure types and masking, priority interrupt structure, real time clock and internal times, consideration for using interrupts, DMA & 8257 DMA controller. Programmable interface devices. Programmable peripheral devices. Parallel communication, 8255 Programmable Peripheral Interface, Serial Communication, RS-232-C interface, Data communication with TTY using SOD & SID lines.

SECTION-C

Software model of the 8086/8088 microprocessor, Memory address space & data organisation, Segment registers & Memory segmentation, Dedicated & general use of memory, Instruction pointer, Data registers, Status register, Generating a memory address, stack, I/O address space, Addressing modes of 8088. The 8086/8088 instruction set, Data transfer instructions, Arithmetic instructions, Logical instruction, Shift instructions, Rotate instructions, Flag control instructions, Compare instruction, Jump instructions, Subroutine & the subroutine handling instructions. Loop & loop handling instructions.

Text/Reference Books:

- 1. Microprocessor architechture, Programming & applications with the 8085/8080-A, R.S. Gaonker; Wiley Eastern Limited ISBN 085226, 2973, 1988.
- 2. Microprocessor and Programmed Logic, K.L. Short; Prentice Hall of India Pvt. Ltd. 1988. 2nd edition ISBN-0-87692-515-8.

3. Microprocessor and Interfacing, Douglas V. Hall, Mc-Graw Hill Book Company, 1987 ISBN-0-07-100462-9.

21. Mobile Computing

SECTION-A

Wireless Technologies: Land Mobile vs. Satellite vs. Inbuilding Communication Systems, Cellular Telephony, Personal Communication System/Networks, The Challenge of Mobile Computing (BPR in Mobile Computing).

SECTION-B

Wireless Architecture for mobile computing, Wireless LANs, End User Devices, MAC protocols, IEEE 802.11, Mobile IP, Wireless TCP, Wireless Hand Off, Ad-Hoc Networks: Unicast and Multicast Communication, BlueTooth

SECTION-C

Mobile Computing Software (Pervasive Computing), Communication Server and Switches, Client Server Implementation, Development Strategies and tools, Location & Data Management for Mobile Computing, Capacity Planning, power management, Failure recovery, System Availability, System Level support, security Issues.

Text Books:

- 1. Ivan Stojmenovic, *HandBook of Wireless Networks and Mobile Computing*, John Wiley & Sons
- 2. Theodore S. Rappaport, *Wireless Communications: Principles and Practice, Second Edition*, Prentice Hall, 2002.
- 3. Chander Dhawan, *Mobile Computing- A System Integrator's Approach*, McGraw-Hill

References:

- 1. Wireless Computing Primer by Veronica Williams, M&T Books (ISBN 1-55851-553-4)
- 2. G H Forman , J Zoharjan, *The Challenges of Mobile Computing*, IEEE Computers , Vol 27, No 4, April 1994 pp 38-47
- 3. Hansmann Merk, S Nichlous Stober, Pervasive Computing "HandBook", Springer
- 4. Perkins, Mobile IP
- 5. Garg and Wilkis, Wireless And Personal Communication, Prentice Hall
- 6. M Satyanarayan, fundamental Challenges of Mobile Computing
- 7. Muller and Nathan, Bluetooth Demystified, New Delhi McGraw Hill
- 8. Brary, Jennifer, and Sturmann, *Bluetooth* Delhi Pearson Publication.

22. Modelling & Simulation

SECTION-A

Modelling: Definition of a SYSTEM, System concepts, types of system, continuous & discrete systems, modelling process, verification & validation.

Simulation: Introduction, classification of simulation models, advantages and disadvantages of simulation, Discrete system simulation: Monte Carlo method, Random Number Generation.

SECTION-B

Queuing Theory: Introduction, Notation and assumption, Queuing model with poisson input, exponential service and arbitrary service times. Simulation of queuing system, Simulation of a single-server queue, Simulation of two-server queue.

Inventory Control: Elements of inventory theory, more complex inventory models, finite and infinite delivery rate model with and without back ordering. Simulation of inventory systems.

SECTION-C

Evaluation of simulation, length of simulation runs, variance reduction techniques.

Project management: PERT/CPM techniques, simulation of PERT networks. Model as components of information systems, modelling for decision support.

Virtual reality: the ultimate interactive model.

Text/Reference Books:

- 1. System Simulation: Gorden, G., Prentice Hall of India.
- 2. System Simulation: Narsing Deo. Hill.
- 3. Introduction to Simulation: Payne, J.A., Mc-Graw Hill 1982.

23. MOS Device Modelling & Characterization

SECTION-A

MOS Transistor, MOS Transistor Switches, CMOS Logic, Introduction to MOS Device Design Equations, MOS capacitance, MOS Inverter: Resistive Load, n-type MOS Load, CMOS Inverters

SECTION-B

Transmission Gate, BiCMOS (Design Rules), MOS Inverter's Switching Characteristics & Interconnect Effects: Delay Time, Interconnect Parasitics, Capacitances(Gate & routing capacitance), Resistance, RC Delay, Wire Delays, Inductances, Gate Delays, Stage Ratio, Power Disscipation, CMOS Logic Gate Design, Physical Design, Complex Gate Layout

SECTION-C

Sequential MOS Logic Circuits: Behaviour of Bistable element, CMOS Latches & Clocked Flip-flop, Clock Skew, Clocking Strategies.

CMOS Dynamic Logic Circuit: Pass Transistor, 0,1, Transfer, Charge Leakage, Voltage Bootstrapping

Semiconductor Memories: ROM, DRAM, SRAM, PLA, Cell, Leakage Circuit, Input/Output Circuit

Text/Reference Books:

- 1. N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993.
- 2. Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addision Wesley, 1998.
- 3. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 199

24. Multimedia Technology

SECTION-A

Introduction: Concept of Multimedia, Applications, Hardware Software requirements, Multimedia products & its evaluation, Components of multimedia: Text, Graphics, Audio, Video.

Design & Authoring Tools, Categories of Authority Tools, Types of products.

SECTION-B

Animation: Introduction, Basic Terminology techniques, Motion Graphics 2D & 3D animation.

Introduction to MAYA (Animating Tool): Fundamentals, Modeling: NURBS Polygon, Organic, animation, paths & boxes, deformers.

SECTION-C

Working with MEL: Basics & Programming, Rendering & Special Effects: Shading & Texturing Surfaces, Lighting, Special effects.

Text/Reference Books:

- 1. David Hillman, "Multimedia Technology & Applications", Galgotia Publications.
- 2. Rajneesh Agrawal, "Multimedia Systems", Excel Books.
- 3. Nigel Chapman & Jenny Chapman, "Digital Multimedia", Wiley Publications.
- 4. D.P. Mukherjee, "Fundamentals of Computer Graphics and Multimedia", PHI.

25. Natural Language Processing

SECTION-A

Introduction to Natural Language Understanding. Language as a knowledge base process, Basic linguistics, Computers & Natural Language Understanding.

Grammar and Parsing – Top-Down Parsing, Bottom-up Parsing, Transition Network Grammar, Grammar and Logic Programming.

SECTION-B

Semantic Interpretation: Semantic and Logical form, Linking syntax and Semantics, Ambiguity Resolution. Introduction to Semantic Grammar, Template Matching, Semantically Driven Parsing Techniques.

SECTION-C

Context and World Knowledge: Knowledge Representation and Reasoning. Local Discourse context and Reference. Discourse structure and understanding using World Knowledge, Language Learning and Concept Learning.

Text/Reference Books:

- 1. James Allen, Natural Language Understanding, Pearson Education India.
- 2. Rich & Knight, Artificial Intelligence, Tata Mc Graw Hill Pub.
- 3. Dan W. Patterson, Artificial Intelligence: A Modern approach, Pearson Education, India
- 4. Russell Norwig, Artificial Intelligence: A Modern approach, Pearson Education, India

26. Neural Networks

SECTION-A

Introduction to Neural Networks, Models of a Neuron, Network architectures, feedback, learning process – error correction, learning, Hebbian, Competitive, Boltzman, Supervised and unsupervised learning, the perceptron model, Multilayer perceptrons.

SECTION-B

Recurrent Networks, the Hopfield Network, the Boltzmann machine, its Markov Chain model, self organizing systems: Hebbian learning, Competitive learning.

SECTION-C

Moduler Networks, associative Model, Stochastic Model, Temporal processing: Back propagation learning, real time recurrent networks.

VLSI implementations of Neural Networks : Design considerations, Neurocomputing hardware.

Text/Reference Books:

- 1. Neural Networks: Simon Haykin, Prentice Hall, 1994.
- 2. Model of Neural Networks, E. Domany, J.L. Van Hemmen and K. Schutlen (Eds.), springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo, Hong Kong and Barcelona.
- 3. Neurocomputing: Algorithms, architectures and applications, Francoise Fogelam Soulie and Jeanny Herault, Springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo, Hong Kong and Barcelona.
- 4. Neural Computers, Rolf Eckmiller and christoph v.d. Malshburg(E.ds.), Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong and Barcelona.

27. Parallel Processing

SECTION - A

Introduction to parallel computing, advantages of parallel computing. Solving problems in parallel: Temporal parallelism, Data parallelism and their comparison. Intertask dependency and task graphs. Structures of parallel computers: Pipelined

paprallel computers, Array processors, Shared memory multi-processor, message passing multiprocesors, MMC systems. Integer Arithmetic: Carry look-ahead addition and carry-save addition on binary tree, integer multiplication and convolution on a linear array. Elementary sorting algorithm.

SECTION - B

Matrix Algorithms: Matrix-Vector multiplication and solving lower triangular system of equations on a linear array, matrix multiplication, LU decomposition, matrix inversion, Guassian elimination on a mesh.

Graph Algorithms: Mesh algorithm for transitive closure, connected component, shortest path, breadth first search and minimum spanning tree. Mesh of trees and its applications such as Matrix-Vector multiplication, Convolution and integer multiplication.

SECTION - C

More fancier networks: r-dimensional mesh of trees, shuffle trees, shuffle-exchange network, hypercube, De-bruijn network and butterfly. Some examples on these networks, sorting and FFT on butterfly.

Introduction to dataflow computers. Parallelism in logic programming. Programming parallel computers.

Text/Reference Books:

- 1. Elements of Parallel Processing, V. Rajaraman, Prentice-Hall of India, 1990.
- 2. Designing Efficient Algorithms on Parallel Computers, Mc-Graw Hill International, NewYork, 1987.
- 3. Parallel Algorithms, Dhall et. al., Mc-Graw Hill Int.

28. Pattern Recognition & Image Processing

SECTION-A

Image processing: introduction, linear systems, the fourior transform, matrix theory results. Image perception, image sampling, Quantisation: the optimal mean square(Lloyd-max quantiser), visual quantization. Image transforms: two dimensional orthogonal and unitory transforms, properties, one dimansional discreate fourier transform(DFT), two dimansional DFT, cosine transform, sine transform.

SECTION-B

Image enhancement: point operation, histogram modeling, spatial operations, transform operations, multispectral image enhancement, false color and pseudocolor, color image enhancement. Image filtering: image observation models, inverse and Wiener filtering, finite impulse response(FIR) wiener filtering, other Fourier domain filters.

SECTION-C

Image Analysis: Feature extraction, Edge detection, Scene segmentation and labelling. Pattern recognition: Introduction, Recognition process, Statistical decision making (Bayes' theorem), Nonparametric decision making (Nearest neighborhood classification tech), clustering.

Text/Reference Books:

- 1. Fundamentals of digital image processing A.K. Jain, PHI Publications.
- 2. Introduction to Artificial Intelligence E. Charniak, D. Mcdermott.
- 3. Image processing M.A.Sid-Ahmed Mcgrawhill International publication Lecture Schedule
- 4. Pattern Recognition and Image Analysis Earl Gose, Richard Johnsonbaugh, steve Jost, PHI Publications.

29. Real-Time Systems

SECTION - A

Introduction to Real-time computing: Characterizing Real-time system & tasks; Performance measures of real time systems, estimation of program run time, Real-time system design: Hardware requirement, system-development cycle, data transfer techniques, synchronous & asynchronous data communication, standard interfaces.

SECTION - B

Task Assignment and Scheduling: Priority scheduling, scheduling with fixed priority dynamic priority scheduling, Real-time programming languages & Tool: desired language characteristics, data typing, control structure, run time error handling, overloading & generics, run time support, Real-time databases.

SECTION - C

Real time communication algorithms, Fault tolerence techniques: Causes of failure, fault types, fault detection, redundancy, integrated failure handling Reliability Evaluation techniques: Parameter values, reliability model for hardware redundancy, software error model, Clock synchronization.

Text/Reference Books:

- 1. Real Time Systems: by C.M. Krishna & K.G. Shen Mc. Graw Hill, 1997.
- 2. Real Time Microcomputer Design: An Introduction by P.D. Lawrence & K. Mauch, Mc. Graw Hill, 1988.
- 3. Real Time systems: Specification, verification & analysis by Mathai Joseph, Prentice Hall Inc., 1996.
- 4. Real Time computer control by Stuart Bennet, Prentice Hall Inc., 1988.
- 5. Real time languages by S. J. Young, John willey & sons, 1982.

30. Soft Computing

SECTION-A

Neural Network(NN) Paradigms: Introduction, Neuron model, Neural network architectures, Learning Rules (Hebbian, Competitive, Baltzmann, Supervised, unsupervised) Types of neural networks: Perceptron, MLP, radial basis function network, recurrent network, self organizing Feature maps, Boltzamann m/c, Applications of NN.

SECTION-B

Fuzzy Logic: Introduction, Fuzzy sets, Basic operations on fuzzy sets, relations, rule based models and linguistic variables, fuzzy control, interpolation in fuzzy rule base, Applications of Fuzzy logic.

SECTION-C

Evolutionary Computations: Introduction, Genetic Algorithm(GA), Evolutionary programming, Classifier systems, genetic programming parse trees, Mathematical foundation of GA variants of GA (hybrid GA, Fuzzy GA Enhancements of genetic programming, application).

Text Books:

- 1. Fuzzy set theory and its application by Zimmermann
- 2. Neural Networks by Simon Haykins.

References:

- 1. Fuzzy logic and intelligent systems edited by Hua Li and Madan M.Gupta
- 2. Soft Computing Techniques in knowledge-based intelligent engineering systems, approaches and application edited by Lakshi C.Jain.
- 3. Fuzzy Rule-Based Export Systems and Genetic Machine Learning by Andrers Geyer-Schulz. Seconde, revised and enlarged edition.
- 4. Artificial neural networks by B. Yegnanrayana.
- 5. C++ Neural Networks and Fuzzy Logic by Valluru B.Rao Hayagriya V.Rao.
- 6. Fuzzy Systems and Soft Computing in Nuclear Engineering Edited by Da Ruan.
- 7. An introduction to Neural Network by James A. Anderbon.
- 8. Neural Networks and Fuzzy Systems, A Dynamically Systems approaches to machine intelligence by Bart Kosko.

31. Software Architecture and Project Management

SECTION-A

Introduction to Software Project Management: The Nature of Software Production, Key Objectives of Effective Management, Quality, Productivity, Risk Reduction, The Role of the Software Project Manager. Planning the Project: Business Planning, Types of Plans, Plan documentation methods, Determining Objectives, Forecasting demand for the Product, Proposal Writing, Requirements analysis.

SECTION-B

Technical Planning: Work breakdown structures, PERT and CPM, Gantt Charts, Standards, Planning for Risk Management and Control, Entry and Exit criteria, Intermediate checkpoints, Performance prediction and analysis People, Capacity Planning, Estimating – what it takes to do the job, Cost (direct and indirect), Resources, Time, Size and complexity of the product, Managing the Project, Feedback and Reporting Mechanisms.

SECTION-C

Financial planning – budgeting, Resource Allocation, Managing Product Support and adaptive maintenance, restructuring code, flexibility, reusability, reliability, efficiency, quality assurance, Managing Change, Readjusting Goals and Milestones, Introduction to Software Architectures, Origin and design process of software architectures, Quality attributes, scope of software architecture, architectural styles, software architectural design.

Text Books:

- 1. Tom Gilb, Finzi Susannah, "Principles of Software Engineering Management', Addision-Wisley, England, 1988.
- 2. Paul Clements, et al., 'Documenting Software architectures : Views and beyond', addision-Wisley, 2002.

Reference Books:

- 1. Mark Norris, Pter Rigby, Malcolm Payne, 'The healthy Software Project—A Guide to Successful Development & Management', John Wiley & Sons, 1993
- 2. 'Software Architecture: System Design, Development and maintenance', Edited by Jan Bosch, Morven Gentleman, Christine Hofmeister, Juha Kusela, Kluwer academic publishers, 1992.
- 3. Barbee Mynatt, 'Software Engineering with Student Project Guidance', Prentice Hall, New Jersey, 1990.
- 4. Mary Shaw and David Garlan, 'Software Architecture: Perspectives on an Emerging Discipline', Prentice-Hall, 1996.
- 5. Neal Whitten, 'Managing Software Development projects', John Wiley, 1995.

32. Software Engineering

SECTION-A

Software engineering concepts, historical perspective, software evaluation, program design paradigms. Software project planning: identifying software scope, resources, analysis concept, analysis modeling (behavioral model, data model, functional model), analysis tools & techniques, risk management, project scheduling, tracking. Cost estimation: project metrics, cost factors, cost estimation techniques (decomposition, empirical, automated estimation, delphi)

SECTION-B

System design: Design concepts & principles (modularization, abstraction, refinement, cohesion, coupling) design methods (structured design, object oriented design, real time system design), Implementation: modern programming language features & characteristics, language classes, coding style, efficiency

SECTION-C

Software Quality Assurance: Quality factors and criteria, SQA metrics, SQA techniques. Verification and Validation: software testing methods (WBT, BBT), software testing strategy (Unit testing, integration testing, validation system, testing), Maintenance: Maintenance characteristics, Maintainability, software reuse, re-engineering, reverse engineering, CASE.

Text /Reference Books:

- 1. Roger S. Pressman, McGraw Hill, 1992 (Third and Forth Edition),
- 2. S.Shooman, Martin L., McGraw Hill,
- 3. H. Sommervill Ian, Addition Wesley Pub. Co.
- 4. Fairley Richard, McGraw Hill, 1985.

33. Solid State Electronic Devices

SECTION-A

Intrinsic and Extrinsic Semiconductors, mobility of carriers, mobility and conductivity, Hall effect, Effective mass, Direct and Indirect semiconductors, Conductivity modulation, generation and recombination of charges, diffusion, the continuity equation, Injected minority carrier charge, the potential variation within a graded semiconductor four probe method of resistivity measurement.

P-N Junction relation, types of junctions, P-N junction diode, voltage current relationship, width of depletion region, junction capacitance, junction breakdown, switching of the diode, types of diode.

SECTION-B

Bipolar junction transistor; Types, Current Components, CB,CC,CE cofiguration, DC and AC analysis, Hybrid model, current gain, voltage gain, input and output resistances, approximation model, High frequency model (Just reference), switching of transistors, load line concept, Basic concept of thermal stability of transistor.

Junction field effect transistor and MOSFET; Types,V-I characteristics, operation methods, low and High frequency model (Just reference)

SECTION-C

Four layer diode (P-N-P-N), SCR, DIAC, Triac, light activated thyristor. SCR; principle of operation, transistor analogy, methods of Turning On and Turning Off (Just reference), Gate characteristics, Applications of SCR in the following areas: Over voltage protection, Zero voltage switch, Logic and Digital Circuits, Pulse circuits.

Text /Reference Books:

- 1. Integrated electronics by Millaman Halkias.
- 2. Electronic Devices and circuits by malvino
- 3. Solid State Electronic Devices and Integrated Circuits(PHI) by Ben. G. Sterectman.
- 4. Physics of Semiconductors Devices by S.M.Sze (Wiley Eastern Limited).
- 5. Semiconductor Devices by D.Mag Choudhary (TMH).
- 6. Fundamental of Microelectronics by I.P.Stepanenko (Mir Pub.).
- 7. Theory of Solids by Azaroff.
- 8. Microelectronics Devices by Yang, MC Graw Hill Iot.
- 9. Microwave Devices and Circuits by Samwell Y. Ciao.

34. Systems Programming

SECTION-A

Components of System Software, evolution of system Software. General Machine structure (Memory, Register, Data Instructions). Assemblers, Design of Two Pass Assembler. Macros and Macro Processors. Translators: Interpreters, Brief description of different phases of compiler.

SECTION-B

Loaders: A Two Pass Loader Scheme, Relocating loader, subroutine linkage, Direct linking loader. Binders, Overlays. Types and basic functions of operating systems. Software Tools: Text Editors, Program Generator, Debug Monitors.

SECTION-C

Acess to system services: ROM BIOS, DOS, Mouse and EMS (Expanded memory specifications) Functions, KeyBoard and Screen Management. Introduction to Terminal

Emulator. DOS Device Drivers: Types, Structure and Processing. Interrupt Types, Organisation, Interrupt Hardware, Program status register (PSR), Interrupt Processing.

Text/Reference Books:

- 1. Systems programming Donovan J.J. Roy, S. Ellzay, Bigger Staff, Mc-Graw Hill, 1972
- 2. Introduction to system software, D.M. Dhamdhere, Tata Mc-Graw Hill, 1986
- 3. An Introduction Real-Time Microcomputer System Design, by Peter D. L, Mc-Graw Hill International Co.
- 4. System Software Tools: Ted J BiggerStaf, Prentice Hall
- 5. Advance MS-DOS programming, Ray Dunkan, BPB Publication
- 6. System Programming and Operating Systems: D. M. Dhamdhere ata Mc-Graw Hill
- 7. Writing DOS Device Drivers : Daniel A. Norton, Addison Wisley
- 8. Hardware and Software of Personal Computers : Sanjay K. Bose Wiley Eastern Publications.

35. System Testing

SECTION-A

Introduction: What is software testing and why it is so hard?, Error, Fault, Failure, Incident, Test Cases, Testing Process, Limitations of Testing, No absolute proof of correctness, Overview of Graph Theory & Discrete Mathematics.

SECTION-B

Functional Testing : Boundary Value Analysis, Equivalence Class Testing, Decision Table Based Testing, and Cause Effect Graphing Technique.

Structural Testing : Path testing, DD-Paths, Cyclomatic Complexity, Graph Metrics, Data Flow Testing, Mutation testing.

SECTION-C

Reducing the number of test cases: Prioritization guidelines, Priority category, Scheme, Risk Analysis, Regression Testing, Slice based testing, **Testing Activities:** Unit Testing, Levels of Testing, Integration Testing, System Testing, Debugging, Domain Testing.

Object Oriented Testing : Issues in Object Oriented Testing, Class Testing, GUI Testing, Object Oriented Integration and System Testing.

Testing Tools: Static Testing Tools, Dynamic Testing Tools, and Characteristics of Modern Tools.

Text Books:

- 1. William Perry, "Effective Methods for Software Testing", John Wiley & Sons, New York, 1995.
- 2. Cem Kaner, Jack Falk, Nguyen Quoc, "Testing Computer Software", Second Edition, Van Nostrand Reinhold, New York, 1993.
- 3. Boris Beizer, "Software Testing Techniques", Second Volume, Second Edition, Van Nostrand Reinhold, New York, 1990.
- 4. Louise Tamres, "Software Testing", Pearson Education Asia, 2002

Reference Books:

- 1. Roger S. Pressman, "Software Engineering A Practitioner's Approach", Fifth Edition, McGraw-Hill International Edition, New Delhi, 2001.
- 2. Boris Beizer, "Black-Box Testing Techniques for Functional Testing of Software and Systems", John Wiley & Sons Inc., New York, 1995.

- 3. K.K. Aggarwal & Yogesh Singh, "Software Engineering", New Age International Publishers, New Delhi, 2003.
- 4. Marc Roper, "Software Testing", McGraw-Hill Book Co., London, 1994.
- 5. Gordon Schulmeyer, "Zero Defect Software", McGraw-Hill, New York, 1990.
- 6. Watts Humphrey, "Managing the Software Process", Addison Wesley Pub. Co. Inc., Massachusetts, 1989.
- 7. Boris Beizer, "Software System Testing and Quality Assurance", Van Nostrand Reinhold, New York, 1984.
- 8. Glenford Myers, "The Art of Software Testing", John Wiley & Sons Inc., New York, 1979

36. Theory of Computation

SECTION-A

Mathematical preliminaries, alphabets, strings, Languages, states, transitions, finite automata and regular expressions, applications e.g. Lexical analyzers and text editors, the pumping Lemma & closure property of regular sets, decision algorithms for regular sets.

SECTION-B

Context free grammars, Chomsky and Greibach normal form theorems, ambiguity, Pushdown automata and the equivalence of contex free languages to sets accepted by non-deterministic PDA, the Pumping Lemma for CFL's, closure properties of CFL's and decision algorithms for CFL's.

SECTION-C

Turing Machines: Introduction, Turing hypothesis, Turing computability, nondeterministic, multitape and other versions of Turing machine, Church's hypothesis, primitive recursive function, Godelization, recursively enumerable Languages and Turing Computability. Undecidability: Universal Turing machines and unsolvability of the halting problem, an undecidable problem, Post's Correspondence problem.

Text/Reference Books:

- 1. Hopcroft J.E. and Ullman J.D., Introduction to Automata Theory, Languages and Computation, Narosa Publishing House, 1988.
- 2 Derick wood, Theory of Computation, Harper & Row Publishers, New York, 1987.
- 3. Lewis H.R. & Papadimitriou C.H, Elements of the Theory of Computation, Prentice Hall International Inc. 1981.

37. VLSI Design

Prerequisite to the course : Digital Electronics, Digital Circuit Design, Circuit Analysis, Electronics Devices, Programming and Data Structure.

SECTION-A

BJT, NMOS, PMOS, CMOS, Fabrication principle- epitaxial growth, Oxidation, Photo-lithography, Diffusion, Ion-Implementation, Metallization.

SECTION-B

Digital CMOS circuit, MOS devices, V-I characteristics, Design and detailed analysis of MOS inverters, enhancement load, depletion load, CMOS inverter, delay and power analysis, Design layout of simple CMOS gates.

Circuit implementation of combinational circuit. Circuit implementation of sequential circuit- FFs, SRAM, DRAM.

SECTION-C

- i) VLSI sub design- Top down design flow, Gajrki Y's Chart.
- ii) System simulation using HDL, specification of VHDL, constructs, behavioral, structural, data flow, description, sequential.
- iii) Digital logic design- optimization of combinational logic, synchronous sequential logic design- Mealy & Moore machine, FSM

Text/Reference Books:

- 1. Kang S. M. and Leblebici, Y. "CMOS Digital Integrated Circuit: Analysis and Design" Mc.Graw Hill
- 2. Sarrafazadeh M. and Wong C. K. "An introduction to VLSI Physical Design" Mc Graw hill
- 3. Bhasker VHDL primer, PH India
- 4. Navabi, "Introduction to VHDL", Mc. Graw Hill
- 5. Ken Martin, Digital Integrated Circuits, Oxford press
- 6. Neil H. E. Weste and Kamran Eshraghian, "Principle of CMOS VLSI Design"

Practicals:

Circuit Simulation:

Inverter Voltage transistor characteristic

Noise analysis of CMOS Inverter

Delay analysis

Truth Table verification of CMOS circuit: NAND/NOR, FlipFlop, Half adder, Full adder, Logic design and verification of inverter.

VHDL

Combinational Function Verification

K-Map Optimization and equivalence check of optimization function

Sequence detector design and verification

An example sub system design

38. VLSI Packaging Technology

SECTION - A

Introduction: Objective, Electronic Packaging, Interconnection Implementation: Wire Bonding Interconnection, Tape-Automated Bonding, Solder Bump Bonding, Concentional Packaging Styles.

SECTION - B

MCM Packaging Technology: What is Multi-chip Module(MCM), MCM Architecture, MCM Technologies, 3D VLSI Packaging Technology, Advantages of 3D Packaging Technology over Conventional Technologies: Size & Weight, Silicon Efficiency, Interconnect Usability & Accessibility, Delay, Noise, Power Consumption, Speed, Interconnect Capacity, Interconnection Capacity between Packaging Levels

SECTION- C

Vertical Interconnections in 3D Electronics, Periphery Interconnection Between Stacked Ics: Stacked Tape Carrier, Solder Edge Conductors, Thin film Conductors on Face-of-a-Cube, An Interconnection Substrate Soldered to the Cobe Face, Folded Flex circuits, Wire

Bonded Stacked Chips, Area interconnection between Stacked Ics: Flip-chip Bonded Stacked Chips with Spacers & without Spacers, Microbridge Springs & Thermomigration Vias, Periphery interconnection between Stacked MCMs: Solder Edge Conductors, Thin Film Conductors on Face-of-a-Cube, A Flip-chip bonded to faces of the stack, Blind Castellation Interconnection, Area Interconnection between Stacked MCMs, Limitations of 3D Packaging Technology: Thermal Management, Design complexity, Cost, Time to delivery, Design Software

Text/Reference Books:

- 1. D. P. Seraphim, R. C. Lasky, and C.-Y. Li, *Principles of electronic packaging*, ch. Introduction, pp. 1-15. McGraw-Hill series in electrical engineering, McGraw-Hill series in materials science and engineering, New York: McGraw-Hill, 1989.
- 2. C. A. Neugebauer, *Electronics packaging forum*, vol. 1, ch. 1, pp. 1-7. New York: Van Nostrand Reinhold, 1991.
- 3. R. Agarwal and M. Pecht, *Physical architecture of VLSI systems*, ch. 6, pp. 386-95. New York: Wiley, 1994.
- 4. Turlik, *Physical architecture of VLSI systems*, ch. 3, pp. 120-4. New York: Wiley, 1994.
- 5. E. B. Vittoz, "Analog VLSI signal processing: Why, where and how?," *Journal of VLSI Signal Processing*, vol. 8, pp. 27-44, jul 1994.
- 6. J. Choi and B. J. Sheu, "Neural information processing i," in *Analog VLSI signal and information processing* (M. Ismail and Fiez.T., eds.), ch. 7, pp. 331-3, McGraw-Hill, 1994.

M.SC. (BIO-INFORMATICS)

Semester - I (Dec. 2005)

Paper		Contact Hour/week		Cont. Ass. Marks		Ann. Ass. Marks		Total Marks	
	T	P	T	P	T	P	T	P	
1. Structural Biology	4	0	20	0	40	0	60	0	
2. Bioinformatics-I	4	0	20	0	40	0	60	0	
3. Basic Mathematics	4	0	20	0	40	0	60	0	
4. Computer Programming	4	8*	20	30	40	60	60	90	
5. Statistical Techniques	4	4**	20	15	40	30	60	45	
6. Seminar	2	0	30	0	0	0	30	0	
Total	22	12	130	45	200	90	330	135	

^{*} Computer Programming in C

Semester - II (May 2006)

Paper			Contact Hour/week		Cont.Ass. Marks		Ann. Ass. Marks		otal arks
		T	P	T	P	T	P	T	P
1.	Data Base Management Systems	4	4*	20	15	40	30	60	45
2.	Computational Biology and Molecular Modeling	4	0	20	0	40	0	60	0
3.	Bioinformatics-II	4	0	20	0	40	0	60	0
4.	Data Structure and Object Oriented Programming	4	8**	20	30	40	60	60	90
5.	Computer Networks & Internet Programming	4	4***	20	15	40	30	60	45
6.	Communication Skills	2	0	10	0	20	0	30	0
	Total	22	16	110	60	220	90	330	180

Semester - III (Dec. 2006)

Pa	per		Contact Hour/week		Cont. Ass. Marks		Ann. Ass. Marks		Total Marks	
		T	P	T	P	T	P	T	P	
1.	Molecular structure prediction & Visualization	4	4*	20	15	40	30	60	45	
2.	Evolutionary Computing	4	0	20	0	40	0	60	0	
3.	Elective - I	4	0	20	0	40	0	60	0	
4.	Elective - II	4	0	20	0	40	0	60	0	
5.	Project	0	8**	0	30	0	60	0	90	
	Total	16	12	80	45	160	90	240	135	

Hands on Bioinformatics Package

Semester - IV (May 2007)

Max. Marks

UIL Project

(i) Reading Elective* 30

(ii) Project, Dissertation 150

(iii) Seminar

(iv) Continuous Assessment 100

^{**} Hands on Statistical Analysis tools

^{*} Hands on DBMS Package (oracle)
** Implementation of data structure in C
*** Perl and HTML Programming

Software Development/Simulation Study/Analysis based on use of software tools

(v) Viva-Voce 100

(V) VIVa-VOCC		
Total	430	
Grand Total	T	P
330 + 135		
330 + 180		
240 + 135		
30 + 400		
930 + 850 = 178	30	

Electives:

- 1. Functional and Comparative Genomic
- 2. Computer Aided Drug Designing
- 3. Mining and Warehousing of Biological Data
- 4. Parallel and Distributed Computing
- 5. Pharamacogenomics and Pharmacogenetics
- 6. Protein structure prediction and Engineering
- * Reading Elective: Any of the electives listed, which has not been opted by the student in Semester III. The examination is based on self-study.

Duration: 2 hrs.

Pattern: Any 3 questions to be answered out of a total of 5 questions in the question paper

Department of Physical Sciences Banasthali Vidyapith, Banasthali

Minutes of the meeting of Board of Studies held on 26thDecember, 2018 at 11:00 a.m. in Conference Room, Urja Mandir, Banasthali Vidyapith.

Present

1. Mr. Aavishkar Katti	:	Member
2. Dr. Ajay Singh Verma	:	Member
3. Dr. Banwarilal Chaudhari	:	Member
4. Dr. C.M.S. Negi	:	Member
5. Dr. Devendra Pratap Singh	:	Member
6. Dr. G. Savitha	:	Member
7. Mr. Hemant Kumar	:	Member
8. Mr. Kamal Kumar Jain	:	Member
9. Ms. Lajwanti Singh	:	Member
10. Dr. Madhumita Halder	:	Member
11. Dr. Manish Kumar Srivastava	:	Member
12. Mr. Nishant Singh	:	Member
13. Mr. Pardeep Lamba	:	Member
14. Dr. Parvez Ahmad Alvi	:	Member
15. Ms. Pooja Srivastava	:	Member
16. Ms. Priyanka Saxena	:	Member
17. Mr. Rajnish Kumar	:	Member
18. Dr. Ram Lal Awasthi	:	Member
19. Prof. Ritu Vijay	:	Convener
20. Dr. Sadhu Veera Bhadraiah	:	Member
21. Dr. Saral Kumar Gupta	:	Member
22. Prof. Seema Verma	:	Member
23. Ms. Shalini Jharia	:	Member
24. Mr. Shekhar Yadav	:	Member
25. Ms. Shivani Saxena	:	Member
26. Ms. Sraja	:	Member
27. Dr. Supratim Mitra	:	Member
28. Dr. Sweta Parashar	:	Member

29. Dr. Vartika Kulshreshtha : Member

30. Dr. Vishant Gahlaut : Member

31. Prof. Rajeev Gupta : External Member 32. Prof. Ameer Azam : External Member

33. Prof. Sudhish Kumar : External Member

34. Prof. Deepak Bhatnagar : External Member

Note: Prof. S.C. Bose (External), Dr. Parvendra Tyagi (Internal) could not attend the meeting.

Before proceeding to discuss the agenda of the meeting, convener accorded a cordial welcome to all members who were present in the meeting.

- 1. BOS took up the confirmation of its last meeting held on 10th March, 2012 and 24th April, 2016 and no comments were received from the members, the Board resolved that the minutes of its last meeting be confirmed.
- 2. BOS reviewed and updated the existing panel of examiners in each panel of undergraduate and postgraduate examination of Electronics in accordance to the Byelaws 15:03:2002 of the Vidyapith. The list of examiners has been sent to the secrecy.
- 3. The board reviewed the Study/Curriculum, scheme of examination and proposed revisions in various courses of study as follows:

I. B.Sc. (Mathematics) Examination

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Minor Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^a
v.	Fifth Semester Examination, December, 2021	Change a, b
vi.	Sixth Semester Examination, April/May, 2022	Change a, b

The Board reviewed the objectives, learning outcomes and existing courses of Electronics running in B.Sc. (Mathematics) programme and no modification in the syllabus was suggested in I year and II year. However board recommended the up gradation in text books and reference books. The list of upgraded text books, reference books and e-resources of the

Electronics courses running in B.Sc. (Mathematics) programme have been enclosed as **annexure I** (Page No 7 -21).

- (a) The board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V & VI with prior permission of respective heads, time table permitting.
- (b) In III year board proposed to introduce electives in place of discipline courses.

 Microprocessors, Communication systems, Introduction to photonics and Antenna
 Theory and Wave Propagation have been proposed to include in the discipline electives.

II. B. Tech. (ECE) Examination

i.	First Semester Examination, December, 2019	Minor Change ^a
ii.	Second Semester Examination, April/May, 2020	Minor Change ^a
iii.	Third Semester Examination, December, 2020	Minor Change a, b
iv.	Fourth Semester Examination, April/May, 2021	Minor Change a, b
v.	Fifth Semester Examination, December, 2021	Revised a, c
vi.	Sixth Semester Examination, April/May, 2022	Revised a, c
vii.	Seventh Semester Examination, December, 2022	Revised d, e, f
viii.	Eighth Semester Examination, April/May, 2023	Revised g, h, i, j

Restructuring of the B.Tech. (ECE) scheme has been started from session 2017-18. Scheme and syllabus of I year, II year III year and IV year were presented in front of the board which are enclosed as annexure II (Page No. 22-73).

The following modifications have been recommended for approval:

- (a) The board proposed to introduce language courses in I year and incorporate more foundation and vocational courses I year, II year, III year.
- **(b)** The board advised to change the credit from 3 to 4 in *Complex Variables course*.
- (c) Upgradation in the syllabus of Analog Communication, Analog Electronics, Microwave Engineering, Digital Communication, Control systems for the session 2021- 2022 in the curriculum. Microwave Electronics and Analog integrated circuits have been renamed as Microwave Engineering and Analog Electronics, respectively.
- (d) Inclusion of *Antenna Analysis* instead of Antenna and Radar course from the session 2022-2023.
- (e) The UIL Project is shifted from 7th semester to 8th semester. The change will be applicable from session 2019-20.

- **(f)** Inclusion of *Mechatronics* and *Robotics and Automation* course as discipline electives from the session 2022-2023 in the curriculum keeping in view of interdisciplinary approach of curriculum structure.
- (g) Board proposed some new reading electives from the session 2022- 2023 in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
- (h) Board proposed inclusion of few online courses as reading elective from the session 2022- 2023 in the curriculum as follows:
 - Electric Vehicles
 - *IoT Sensors and Devices*
 - Electromagnetic Compatibility.
- (i) 3rd year and 4th year of Session 2019 -20 and 2020-21 will be same as session 2021-22 and session 2022-23.
- (j) The board advised to introduce open elective in the VII semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V, VI, and VII with prior permission of respective heads, time table permitting.

III. M.Sc. (Electronics) Examination

i.	First Semester Examination, December, 2019	Revised a,
ii.	Second Semester Examination, April/May, 2020	Revised a, b, c
iii.	Third Semester Examination, December, 2020	Revised b,c
iv.	Fourth Semester Examination, April/May, 2021	Revised d,e

The Board reviewed the existing course of M.Sc. (Electronics) examination and recommended change in the scheme and syllabus. The board also suggested that whenever there is a change or modification in the B.Tech. (ECE) courses, which are common with the M.Sc. (Electronics) Programme, will be affected in the M.Sc. (Electronics) Programme simultaneously. The changed scheme and syllabus are enclosed as annexure III (Page No. 74-132).

The following modifications have been recommended for approval:

(a) Inclusion of Signals, Systems and Networks, Semiconductor Devices and Circuits courses in the curriculum.

- (b) Addition of elective course in II semester. Inclusion of Electives in the curriculum as follows:
 - Basics of Nanoelectronics
 - Mechatronics
 - Audio and Video Systems
 - Geoinformatics
 - Robotics and Automation
 - Biomedical Instrumentation
 - Fiber Optics and Communication
 - Analytical Instrumentation

- Digital Signal Processing
- Communication Networks
- Optical Network
- Satellite Communication
- Mobile Communication
- Radar Navigation
- Power Electronics
- Antenna Analysis
- (c) Addition of open elective course in III semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, and III with prior permission of respective heads, time table permitting.
 - (d) Addition of new reading electives in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
 - (e) Board proposed inclusion of few online courses as reading elective for the session 2020- 2021 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility

IV. M.Tech. (VLSI Design)

i.	First Semester Examination, December, 2019	Revised ^a
ii.	Second Semester Examination, April/May, 2020	Revised ^a
iii.	Third Semester Examination, December, 2020	Revised b, c
iv.	Fourth Semester Examination, April/May, 2021	Revised b, c

The Board reviewed the existing course of M.Tech. (VLSI Design) and recommended few changes in the list of electives and reading electives. The Board also reviewed the text books and reference books of existing courses of M.Tech. (VLSI Design) and recommended upgradation in text books and reference books. E-resources also have been included for referencing. The board also suggested some of the online courses as reading elective for the programme. The updated syllabus, list of electives and reading electives are enclosed as **annexure IV** (Page No. 133-169).

The following modifications have been recommended for approval:

- (a) The board advised to incorporate open elective course in the II semester and include of *Photonics Integrated Circuits* in the list of discipline electives. In addition, board proposed to choose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, and II with prior permission of respective heads, time table permitting. The board also suggested to amend the list of discipline electives.
- **(b)** Addition of *Advanced Electronic Packaging and Compound Semiconductor Technology* in the list of reading electives.
- (c) Inclusion of online courses namely *Digital Image Processing and Organic Electronic Devices* as reading electives in the curriculum.

V. B.Sc. (Mathematics)/ B.Sc. (Geology)/B.Sc-B.Ed. Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	Revised (b,c)
v.	Fifth Semester Examination, December, 2021	Change (d,e,f)
vi.	Sixth Semester Examination, April/May, 2022	Change ^(f)

The Board reviewed the objectives, syllabi, learning outcomes of the B.Sc. (Mathematics) / B.Sc. (Geology)/B.Sc-B.Ed. programmes.

- (a) The board has reframed the experiment list of **Electronics Lab** (**PHY 104L**) and suggested to add some more experiments relevant to existing syllabus of Physics in first semester.
- (b) The board has suggested the name of the course (course code: PHY 203) as "Thermodynamics, Statistical and Mathematical Physics" instead of "Statistical and Mathematical Physics".
- (c) The board has reviewed the experiment list of physics lab (course code: PHY 202L). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (d) The board has reviewed the experiment list of physics lab (course code: 5.2). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (e) The board has suggested the name of the course (course code: PHY 203) as "Quantum Mechanics and Spectroscopy" in place of "Quantum, Atomic and

Molecular Physics" and the name of "Atomic Physics Lab" changed to "Quantum Mechanics and Spectroscopy Lab".

(f) The board has suggested to keep discipline electives and related labs in V and VI semester of the program.

The revised syllabus, course learning outcomes, list of suggested books and e-resources of the B.Sc. (Mathematics) programme is attached and marked as **Annexure-V** (Page No. 170-190).

*The corrected name of the courses as well as name of Labs and the contents changed in the revised syllabi should be implemented for the session 2019-20.

VI. B.Sc. (Aviation Science) Examinations:

The course learning outcomes of the course: Basic Physics-I (course code: PHY 102), list of suggested books and e- resources of the B.Sc. (Aviation Science) programme is attached and marked as **Annexure-VI** (Page No. 191).

VII. M.Sc. (Physics) Examinations:

The Board discussed the recent trends in physical sciences at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, board suggested to give more weight-age to self-learning and independent research activities.

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	Revised ^(b)
iii.	Third Semester Examination, December, 2020	Revised ^(c,*)
iv.	Fourth Semester Examination, April/May, 2021	Revised ^(d,*)

- (a) Board reviewed the syllabi of M.Sc. Physics I Semester and found that the courses *Classical Mechanics* (Course Code: PHY 403) and *Mathematical Physics* (Course Code: PHY 404) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the syllabi.
- (b) Board reviewed the syllabi of M.Sc. Physics II Semester and found that the courses *Classical Electrodynamics I* (Course Code: PHY 402) and *Quantum Mechanics* (Course Code: PHY 407) must be revised. The board has suggested minor changes in the course *Classical Electrodynamics I* (Course Code: PHY 402); while in the *Quantum Mechanics* (Course Code: PHY 407) some mathematical and conceptual details and revision of perturbation theory is required to explain the need of approximation methods.

- (c) Board reviewed the syllabi of M.Sc. Physics III Semester and found that the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520), *Condensed Matter Physics-I* (Course Code: PHY 505), *Condensed Matter Physics-II* (Course Code: PHY 506) and *Physics Lab II* (Course Code: PHY 518L) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520); while the list of the experiments has been divided into two parts: part A and part B instead of three parts. In addition to these changes, the board has also proposed to include **Reading Elective** in the third semester.
- (d) Board reviewed the syllabi of M.Sc. Physics IV Semester and no changes were suggested except laboratory practices of physics lab-III (Course code- PHY 519L). The board has suggested that the list of the experiments should be divided into two parts: part A and part B instead of three parts.
- (*) Board has proposed new electives in the curricula i.e. **Bio Physics-I** and **Bio Physics-II** in M.Sc. IIIrd and IVth semester respectively.

The specific programme outcome, revised syllabus, course learning outcomes, list of suggested books and e- resources of the M.Sc. (Physics) programme is attached and marked as **Annexure-VII** (Page No. 192-230). The detailed proposed scheme of M.Sc. (Physics) programme is attached as **Annexure VII A** (Page No. 231-236).

VIII. M.Tech. (Nanotechnology) Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a,*)
ii.	Second Semester Examination, April/May, 2020	Revised ^(*)
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	No Change

- (a) The board has revised the whole syllabus of M.Tech (Nanotechnology) and found that the syllabus of **Nano-photonics and Optoelectronics** course (code: ELE506) should be revised.
- (*) Apart from the theory course, the board has also reframed the simulation lab-I and –II (code: NANO 502L & NANO 503L). The revised syllabus is enclosed as **Annexure–VIII** (Page No. 242-256). The detailed proposed scheme of M.Tech. (Nanotechnology) programme is attached as **Annexure VIII A** (Page No. 237-241).
- 4. The Board reviewed the curriculum for the courses running in the other programmes of the Vidyapith. The recommendations as follows-

^{*}The content changed in the revised syllabi should be implemented for the session 2019-20.

Bachelor of To	echnology (BT/CE/EC/EE/EI/CS/IT/MCTI	R)
ENGG 202	Basic Electronics	No Change
Bachelor of To	echnology (EI)	
VLSI 401	VLSI Design	No Change
ELE 201	Digital Electronics	No Change
ECE 302	Communication Engineering	No Change
Bachelor of To	echnology (EE/EI/MCTR)	
ELE 201	Digital Electronics	No Change
Master of Scie	ence (Physics)	
ELE 406	Principles of Digital Electronics	No Change
Bachelor of So	cience (Aviation Science)	
PHY 102	Basic Physics-I	No Change
Bachelor of To	echnology (All Branches)	
PHY 101	Applied Optics	No Change
PHY 105	Engineering Mechanics	No Change
PHY 106	Modern Physics	No Change

5. The board considered the report of examiners of different examinations. Most of the examiners found that the content of the answers were satisfactory or good. The reports are attached as **annexure IX** (Page No. 257).

The board has reviewed the reports received from the examiners of different examinations and their observations are as follows:

- reports were satisfactory
- Performance of the students in most of the papers is up to the mark.
- The numerical solving ability of the students was found less.

After observing the reports received from the examiners of different examinations the following suggestions were given:

- The numerical solving ability of the students is a major concern and therefore, it should be addressed through proper tutorial classes.
- To give equal weightage for each section (three sections course paper), the number of questions to be attempted compulsorily should be **six** instead of **five**.
- 6. BOS has thoroughly analysed the quality of the session 2017-2018 question papers keeping the following points in mind
 - Percentage of analytical based question
 - Percentage of descriptive questions
 - Percentage of numerical based questions

In most of the paper, it has been found that there has been a judicious balance of all these components in the papers.

The board has evaluated the question papers of the periodical and semester examinations and found that the quality of the question papers is maintained at UG and PG level. To improve the standard of the question paper, the board has given following suggestions:

- Include more numerical/logical problems.
- Instead of direct questions and derivations, some small conceptual questions must be put in the question paper to check the analytical ability of the student.

7. To review the degree title for the Ph.D. Scholars

Currently Ph.D. degree is awarded in various disciplines namely Electronics, Electronics Engineering, Digital Communication Engineering and many more. To remove the ambiguity it is proposed that the degree title in sciences should be Electronics or Physics and for engineering background, it should be awarded in Electronics Engineering.

The meeting ended with vote of thanks.

Name of Programme: B.Sc. (Mathematics)

Disciplinary Course-Electronics

Programme Educational Objectives:

- > To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- > Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- > Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- > Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- > Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- > Function with multidisciplinary teams.

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Electronics

		Existing Scheme	Proposed Scheme									
Course	e Code	Course Name	L	Т	P	С	Course Code	Course Name	L	T	P	С
ELE	102	Circuits and Signals	6	0	0	6	ELE 102	Circuits and Signals	6	0	0	6
ELE	102L	Circuits and Signals Lab	0	0	4	2	ELE 102L	Circuits and Signals Lab	0	0	4	2
	Total			0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Electronics

		Existing Scheme					Proposed Scheme						
Course	e Code	Course Name	L	Т	P	С	Course Code	Course Name	L	T	P	C	
ELE	103	Principles of Electronics	6	0	0	6	ELE 103	Principles of Electronics	6	0	0	6	
ELE	103L	Principles of Electronics Lab	0	0	4	2	ELE 103L	Principles of Electronics Lab	0	0	4	2	
	Total				4	8		Total	6	0	4	8	

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Electronics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	P	С	Course Code	Course Name	L	T	P	C
ELE 204	Fundamentals of Digital Electronics	6	0	0	6	ELE 204	Fundamentals of Digital Electronics	6	0	0	6
ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2	ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Electronics

	Existing Scheme				Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
ELE 203	Electronic Instrumentation and Measurements	6	0	0	6	ELE 203	Electronic Instrumentation and Measurements	6	0	0	6
ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2	ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2
	Total			4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - V (December, 2021) Disciplinary Course-Electronics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
ELE 305	Microprocessors	6	0	0	6		Discipline Elective -I	6	0	0	6
ELE 305L	Microprocessors Lab	0	0	4	2		Discipline Elective Lab-I	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022) Disciplinary Course-Electronics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	P	C	Course Code	Course Name	L	Т	P	С
ELE 302	Communication Systems	6	0	0	6		Discipline Elective -II	6	0	0	6
ELE 303L	Communication Systems Lab and Project	0	0	4	2		Discipline Elective Lab-II	0	0	4	2
	Total			4	8		Total	6	0	4	8

^{*} L - Lecture hrs/week; T - Tutorial hrs/week;

P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

Discipline Elective						
Course Code	Name of Course	L	T	Р	С	
ELE 305	Microprocessors	6	0	0	6	
ELE 305L	Microprocessors Lab	0	0	4	2	
	Introduction to Photonics	6	0	0	6	
	Introduction to Photonics Lab	0	0	4	2	
ELE 302	Communication Systems	6	0	0	6	
ELE 302L	Communication Systems Lab	0 0 4		2		
	Antenna Theory and Wave Propagation	6	0	0	6	
	Antenna Theory and Wave Propagation Lab	0	0	4	2	

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 102, Circuits and Signals	After completion of this course, students will be able to: • Predict the behaviour of any electrical and magnetic circuits. • Formulate and solve complex AC, DC circuits. • Explain response of RL, RC and RLC networks. • Realize the requirement of transformers in transmission and distribution of electric power and other applications.	Text Book: 1. B.L.Thareja, "A Text Book of Electrical Technology", Vol. I and II, 1994, ISBN-81-219-0515-X		No Change in course contents. Added

			Electrical Engineering. New Delhi: S Chand Publication. Suggested e-resources: 1. Basic Electrical Circuits by Dr Nagendra Krishnapura, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106108/ 2. Basic Electrical Technology by Prof. T. K. Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105053/ 3. Fundamentals of Electrical Engineering by Prof.Debapriya Das, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105112/	
2.	ELE 102L, Circuits and Signals Lab	After completion of this laboratory course, students will be able to: • Test Various Active and Passive components using Multimeter and CRO. • Understand frequency response of Resonance. • Verify different Network Theorems.		Learning Outcomes added. No Change in Experiment List.
3.	ELE 103, Principles of Electronics	After completion of this course, students will be able to: • Design various diodes circuits for various applications. • Differentiate various biasing	_	No Change in course contents.

		methods used in BJTs and FET's Analysed different kinds of oscillators and feedback circuits.	Text books: 1. Millman, Halkias, "Integrated Electronics," TMH Publications 2. Robert Baylsted, "Electronics Devices," PHI Publications Reference books: 1. Malvino Leach, "Principle of Electronics," Tata Mg Hills	Recommended Books: 1. Parikh, Millman & Halkias. (2017). Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 2. Boylestad, Robert L., & Nashelsky Louis. (2015). Electronic Devices& Circuit Theory. New Delhi: Pearson Publication. 3. Malvino, Albert., & Bates, David J. (2017) Electronic Principles. New Delhi: McGraw Hill Education. Suggested E-resources: 1. Basic Electronics by Dr. Pramod Agarwal, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/	
4.	ELE 103L, Principles of Electronics Lab	 After completion of this laboratory course, students will be able to: Identify and Test various electronics components. Understand I-V characteristics of various Electronic devices. Draw frequency response of amplifiers. 			Learning Outcomes added. No Change in Experiment List.
5.	ELE 204, Fundamentals of Digital Electronics	After completion of this course, students will be able to: Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation of various combinational and	Text Books:	Recommended Books:	No Change in course contents.
		sequential circuits. Differentiate various logic families. Understand the operation and application of multi-vibrators.	1.MANO M.M. "DIGITAL DESIGN", PHI, 2ND EDI. 2. SinghalRajul, "Pulse & Linear Integrated Circuits", Standard Publisher distributor, 1st Edition, 2002. 3. Bartee T.C., "Digital Computer	 Morris Mano, M., & Ciletti, Michael D. (2018). Digital Design. New Delhi: Pearson Publication. Singhal, Rajul. (2003). Pulse & Linear Integrated Circuits. New Delhi: Standard Publisher distributor. Floyd, Thomas L. (2014). Digital Fundamentals. New Delhi: Pearson 	

			Fundamental ", PHI, 3rd Edition Reference Books: 1. Floyd Thomas L., "Digital Fundamental", Pearson Education, 3rd Edition, 2002. 2. SchilingTaub, "Integrated eircuits", TMH, 2nd Edition.	Publication. Suggested E-resources: 1. Digital Circuits and Systems by Prof. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086 2. Digital System Design by Prof. D. Roy Choudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/3.	
6.	ELE 204L, Fundamentals of Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the functioning of bread board. • Implement and verify logic gates and theorems. • Design combinational and sequential circuits.			Learning Outcomes added. No Change in Experiment List.
7.	ELE 203, Electronic Instrumentation and Measurements	After completion of this course, students will be able to: • Understand and estimate various types of errors in measurements. • Explain the operating principle of various measuring instruments used to detect physical quantities. • Design op-amp circuits and understand SCR operation.	Text Books: 1. Ramamoorthy M., "An Introduction to Thyristors& their Applications", 2nd Edition, ISBN-81-85336-67-9 2. SawhenyA.K., "A Course of Electrical & Electronic Instrumentation and Measurement Techniques", 11th Edition, 1995, Pub. Dhanpat Rai, New Delhi	Recommended Books: 1. Ramamoorthy, M. (1991). An Introduction to Thyristors& their Applications. New Delhi: Affiliated East-West Press (Pvt.) Ltd. 2. Sawheny, A.K.(2015). A Course in Electrical & Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co 3. Helfrick Albert D. & Cooper W.D. (2016). Modern Electronic	No Change in course contents.

			References Book: 1. Cooper W.D., "Modern Electronic Instrumentation and Measurement Techniques", 3rd Indian Reprint, Prentice Hall of India Private Limited, 1995	Instrumentation and Measurement Techniques (1/e). New Delhi: Pearson Publication. Suggested E-resources: 1. Industrial Instrumentation by Prof. AlokBarua, Department of Electrical Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064/7 2. Analog Circuits by Prof. Pramod Agarwal, Department of Electrical Engineering Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107094/1 3. Basic Electronics by Prof. T.S. Natarajan, Department of Physics Indian Institute of Technology, Madras. https://nptel.ac.in/courses/122106025/39 4. Electrical and Electronic Measurements by Prof. V. Jagdeesh Kumar, Department of Electrical Engineering Indian Institute of Technology, Madras. https://nptel.ac.in/syllabus/108106070//	
8.	ELE 203L, Electronic Instrumentation and Measurements Lab	 After completion of this laboratory course, students will be able to: Understand principle of different transducers. Design various circuits Using Op-Amp IC. Understand and draw V-I characteristics of SCR, DIAC and TRIAC. 			Learning Outcomes added. No Change in Experiment List.

9.	ELE 305, Microprocessors	After completion of this course, students will be able to: • Describe the general architecture of microcomputer system and architecture & organization of 8085 & 8086 Microprocessor and understand the difference between 8085 and advanced microprocessor. • Distinguish the use of different instructions and apply them in assembly language programming. • Explain and realize the interfacing of memory & various I/O devices with 8085 microprocessor.	Text Books 1. GaonkerR.S., "Microprocessor Architecture, Programming & Applications with the 8085/8080", 2nd Edition, New Age International Publishers Limited, ISBN-81-224-0710-2. 2. Douglas V. Hall, "Microprocessor and Interfacing", Mc-Graw Hill Book Company, 1987, ISBN-0- 07-100462-9	Recommended Books: 1. Gaonker, R.S. (2013) Microprocessor Architecture, Programming & Applications with the 8085. Mumbai, Maharashtra: Penram International Publishing (India) Pvt. Ltd. 2. Douglas V. Hal., SSSP, Rao.(2012) Microprocessor and Interfacing. New Delhi: Mc-Graw Hill Publication 3. Ram B. (2018). Fundamentals of Microprocessors and	No Change in course contents.
			Reference Books 1. Short K.L., "Microprocessor and Programmed Logic", 2nd Edition, Prentice Hall of India Pvt. Ltd. 1988, ISBN-0-87692-515-8. 2. Ram B., "Fundamentals of Microprocessors and Microcomputer", 5th rev ed., 2001, Dhanpat Rai, New Delhi. 3. Verma Seema, "8085 Microprocessor: Programming, Interfacing and Applications", Aashirvad Publication. Jaipur, 2006	Microcomputers. New Delhi: Dhanpat Rai & Co Suggested E-resources: 1. Microprocessor by Dr. Pramod Agarwal, Department of Electrical Engineering, IITRoorkee https://nptel.ac.in/courses/108107029/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	Deleted
10.	ELE 305L, Microprocessors Lab	After completion of this laboratory course, students will be able to: • Understand the different instructions of 8085 microprocessor assembly language.			Learning Outcomes added.
		Coding in assembly language.Solve different real time problems.			No change in Experiment List.

11.	ELE 302, Communication Systems	After completion of this course, students will be able to: • Explain the working of communication system, Analog Modulation Techniques and their comparative analysis and	_	_	No Change in course contents.
		 applications suitability. To analyse various methods of baseband/band pass Analogue transmission and detection. To evaluate the performance of analogue communications in the presence of noise. Explain the working of AM, FM transmitter and receiver. 	 Kennedy George "Electronics communication system", TMH, 4th edition, 1999 TMH, New Delhi. Gulati R. R. "Monochrome &colour TV", 1986, Wiley Eastern, New Delhi. Reference Books: Shilling Taub, "Communication system", TMH, 2nd Edition Lathi BP, "Analog & Digital Communication", Oxford University Press Sharma S.P. "Basic radio & TV, TMH", 1983, TMH, New Delhi. 	 Recommended Books: Kennedy, George. (2017) Electronics communication System. New Delhi:Mc-Graw Hill Publication. Gulati, R. R. (2011) Monochrome and colour Television. New Delhi: New Age International Publication. Shilling, Taub. (2013) Principles of Communication Systems. New Delhi: Mc-Graw Hill Publication. Lathi,B.P., Ding, Zhi., & Gupta, Hari Mohan. (2017) Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press. Sharma S.P. (2012). Basic Radio & Television. New Delhi: Mc-Graw Hill Publication. Suggested E-resources: Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, IIT Kharagpur. https://nptel.ac.in/courses/117105143/ Communication Engineering by Prof. Surendra Prasad, Dept. of Electrical Engineering, IIT, Delhi. https://nptel.ac.in/courses/117102059/ 	
12.	ELE 303L, Communication Systems Lab	After completion of this laboratory course, students will be able to: • Understand modulation, demodulation waveform and measure modulation index. • Understand the operation of Pulse modulation and demodulation.	 To study the Amplitude Modulation & Demodulation and measure modulation Index. To study the Single sideband AM using Balanced Modulator. To study the PAM and its Demodulation. To study the PWM and its 	Communication Systems: 1. To study the Amplitude Modulation & Demodulation and measure modulation Index. 2. To study the Single sideband AM using Balanced Modulator. 3. To study the PAM and its Demodulation.	Learning Outcomes added. No Change in Experiment List.

		Familiarized with radio and TV receiver.	Demodulation. 5. To study the PCM and its Demodulation. 6. To study the PPM and its Demodulation. 7. Familiarization with Radio Receiver - Block Diagram. 8. Familiarization with TV Receiver - Block Diagram. Project.	 To study the PWM and its Demodulation. To study the PCM and its Demodulation. To study the PPM and its Demodulation. Familiarization with Radio Receiver - Block Diagram. Familiarization with TV Receiver - Block Diagram. 	
13.	Antenna Theory and Wave Propagation	After completion of this course, students will be able to: • Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems. • Examine the phenomena of wave propagation in different media and its interfaces and in applications of microwave engineering. • Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. • Explain dipole antennas. Establish mathematical equations for various parameters of thin linear antenna.		Review of Electromagnetic theory: Cartesian coordinate system, Circular coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Maxwell's equations in differential and integral form, Boundary Conditions for Electrostatics and magnetostatics. UNIT II Wave equation and its solution, Poynting vector, General Transmission line equation, input impedance, characteristic impedance, Reflection coefficient, standing wave ratio, Practical problems in transmission lines. UNIT II Introduction to antennas, network theorems, Antenna characteristics (Radiation pattern, Directivity, Gain, Polarization, Effective aperture, Friis transmission formula), Vector potentials for electric and magnetic current sources. UNIT IV Wire antennas: Hetzian and Marconi antenna, Half wave dipole, monopole and loop antenna, Antenna arrays: Linear array, Two element array, Uniform array,	
				UNIT V Practical antennas: Slot antenna, Horn	

			antenna, Yagi-uda antenna, folded dipole antenna, Helical antenna.
			Recommended Books:
			1. Hyat, W. H. &. Jr. John A. Buck.
			(2018). Engineering
			Electromagnetics, Student edition.
			McGraw Hill Education.
			2. Liao, S. Y. (1989). Microwave devices
			and circuits. Pearson Education India.
			3. Balanis, C. A. (2016). Antenna
			theory: analysis and design. John
			wiley & sons.
			4. Sadiku, M. N., & Kulkarni, S. V.
			(2015). Principles of
			electromagnetics. Oxford University
			Press.
			5. Kraus, J. D., Marhefka, R. J., & Khan,
			A. S. (2006). Antennas and wave
			propagation. Tata McGraw-Hill
			Education.
			6. Collin, R. E. (2007). Foundations for
			microwave engineering. John Wiley
			& Sons.
14.	Antenna Theory	After completion of this laboratory	1. To design dipole antenna in HFSS
	and Wave	course, students will be able to:	2. Design monopole antenna in HFSS
	Propagation Lab	Use HFSS tool to design and	3. Design horn antenna in HFSS
		analysis of antennas.	4. To measure radiation pattern of
		Design various type of antennas	Horn Antenna
		Measure and analyse radiation	5. To measure radiation pattern of log
		pattern of antennas.	periodic Antenna
			6. To measure radiation pattern of
			micro strip patch Antenna
			7. To measure radiation pattern of
15	Introduction to	After completion of this course students	YAGI-UDA Antenna.
15.	Introduction to Photonics	After completion of this course, students will be able to:	Unit 1 Introduction, Ray theory, Optical fibers:
	r notomes		multimode, single mode, step index,
		Explain the light propagation through optical fibers	graded index, plastic & glass fibers.
		through optical fibers.	Transmission Characteristics of Optical
		Explain the various light sources and antical detectors	Fibers: Attenuation, Material absorption
		and optical detectors.	loss, refractive index profile, Dispersion
<u> </u>			1055, Terractive fildex profile, Dispersion

Design fiber optic transmitter and	(intermodal & intramodal), Dispersion
receiver system.	Shifted Fibers, Dispersion Compensating
Tecerver system.	Fiber.
	Unit 2
	Emission and absorption of radiation,
	Einstein relation, Absorption of radiation,
	Population inversion, Optical feedback,
	Threshold condition. Population inversion
	and threshold, Basic idea of solid state,
	semiconductors, gas & liquid laser. Basic
	concept of Q-switching and mode
	locking.
	Unit 3
	Fiber Structure, Material, Characteristics,
	Power & Efficiency of Light Emitting
	Diode.
	Optical detection principles, quantum
	efficiency, Responsivity, p-n and p-i-n
	photo diode, Avalanche photo diodes.
	Unit 4
	Measurements of Fiber Attenuation,
	Dispersion, Refractive Index Profile, Cut
	off Wave Length, Numerical Aperture &
	Diameter.
	Optical Time Domain Reflectometry
	(OTDR) Field measurement through
	optical time domain reflectometry, Laser
	Unit 5 Laser based systems for measurement of
	distance, velocity, liquid level. Fibre optic
	gyroscope, Holography: basic principle
	and applications.
	Recommended Books:
	1. Senior, John.M. (2009). Optical
	Fiber Communication Principles &
	Practice. New Delhi: PHI
	Publication.
	2. Keiser, Gerd. (1991). Optical Fiber
	Communication. New Delhi:
	McGraw Hill Publication.
	3. Ghatak, A.K. & Thyagarajan, K.

				(1981). Laser Theory and Applications, 1 edition. Springer
16.	Introduction to	After completion of this laboratory	1.	To study Analog Link.
	Photonics Lab	course, students will be able to:	2.	To study Digital link.
		Understand the characteristics of an	3.	To measure Numerical aperture.
		optical fiber and LED.	4.	To study Propagation Loss.
		Understand and measure the basic	5.	To study Bending Loss.
		properties of propagation of light in	6.	To study EYE Pattern.
		dielectric Optical fibre including	7.	To calculate BER.
		losses, attenuation and coupling.	8.	To study the characteristics of
		Explain the working of optical		optical source.
		power meter and various sensors.	9.	To study the characteristics of
		•		Optical detector.

Name of Programme: Bachelor of Technology (ECE)

Programme Educational Objectives: The B.Tech. (ECE) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for those engineers who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics engineers develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics and Communications. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematical and engineering fundamentals required to solve engineering problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- To develop an ability to integrate fundamental knowledge of basic science, mathematics and engineering to work on complex problems in the field of Electronics and Communication.
- To prepare engineers to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their engineering design, problem–solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.
- To prepare competent engineers at various national and international levels.

Programme Outcomes:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and Electronics engineering to the solution of complex engineering problems.
- **PO2. Problem analysis:** Review, Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Develop solutions for complex engineering problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use scientific and engineering knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Apply appropriate techniques, resources, and modern engineering tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- **PO7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the engineering practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.
- **PO10.** Communication Skill: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

- 1. Highlighted with gray indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

B.Tech. (ECE) Semester - I (December, 2019)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
BVF 002/ BVF 003	Environment Studies/Indian Heritage	2	0	0	2		General English /सामान्य हिन्दी	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4		Core Foundation Course - I	2	0	0	2
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	3/4	1/0	0	4	CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4
ENGG 101L /ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2
						ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3
	Semester Wise Total	18/19	4/3	10	27		Semester Wise Total	21/20	3/4	10	29

B.Tech. (ECE) Semester - II (April/May, 2020)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
BVF 003/ BVF 002	Indian Heritage/ Environment Studies	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4		Core Foundation Course – II	2	0	0	2
PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4
PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	4/3	0/1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4
EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
						ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	19/18	3/4	10	27		Semester Wise Total	20/21	4/3	10	29

B.Tech. (ECE) Semester - III (December, 2020)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
BVF 007R	Selected Writings for Self-Study – I	2	0	0	2		Core Foundation Course - III	2	0	0	2
MATH 207	Complex Variables/ Differential	3/4	0	0	3/4		Elective Foundation Course - I	2	0	0	2
/MATH 208	Equations	3/4	O	U	3/4		Elective Foundation Course - 1	2	U	O	
ENGG 201/	Structure and Properties of	4	0	0	4	MATH 208/	Differential Equations / Complex	2	1	0	4
ENGG 202	Materials/ Basic Electronics	4	U	0	4	MATH 207	Variables /	3	1	U	4
MGMT 209/	Entrepreneurship/ Technical Report	3	0	0	3	ENGG 202 /	Basic Electronics/ Structure and	4	0	0	4
TSKL 203	Writing	3	U	U	3	ENGG 201	Properties of Materials	4	U	U	4
CS 209	Data Structures	4	0	0	4	CS 209	Data Structures	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	CS 209L	Data Structures Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201	Signals, Systems and Networks	4	0	0	4
ELE 201	Digital Electronics	4	0	0	4	ELE 201	Digital Electronics	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	ELE 201L	Digital Electronics Lab	0	0	2	1
	Total	24/25	0	6	27/28		Semester Wise Total	23	1	6	27

B.Tech. (ECE) Semester - IV (April/May, 2021)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
BVF 008R	Selected Writings for Self-Study – II	2	0	0	2		Core Foundation Course - IV	2	0	0	2
MATH 208/ MATH 207	Differential Equations / Complex Variables	4/3	0	0	4/3		Elective Foundation Course - II	2	0	0	2
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	MATH 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
TSKL 203/ MGMT 209	Technical Report Writing/ Entrepreneurship	3	0	0	3	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS 214	Object Oriented Programming	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4
CS 214L	Object Oriented Programming Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Seminar	0	0	2	1	ECE 201S	Seminar	0	0	2	1
ELE 202	Electrical and Electronics Measurements	3	1	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 202L	Electrical and Electronics Measurements Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1	ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Total	24/23	1	10	30/29		Semester Wise Total	23	1	10	29

B.Tech. (ECE) Semester - V (December, 2021)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	С
	Principles of Management / Economics for Engineers	3	0	0		Vocational Course - I	2	0	0	2
	Analog Communication	3	1	2		Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2
	Microprocessor and Microcontrollers	3	1	2		Principles of Management/ Economics	3	0	0	3
	Analog integrated Circuits	4	0	2	ECE 301	Analog Communication	4	0	0	4
	Communication Networks	4	0	0	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
	Microwave Electronics	4	0	2		Analog Electronics	4	0	0	4
	Seminar	0	0	2	ELE 202	Electromagnetic field Theory	4	0	0	4
	Women in Indian Society (WIS) / Parenthood and Family Relationship	3	0	0		Probability and Statistical Methods/ Numerical Methods	3	1	0	4
					ECE 301L	Analog Communication Lab	0	0	2	1
					ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1
_						Analog Electronics Lab	0	0	2	1
	Total				10 Semester Wise Total			1	6	30
	Total Credits		31			Total Credits		30)	

B.Tech. (ECE) Semester - VI (April/May, 2022)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C
	Economics for Engineers/ Principles of Management	3	0	0		Vocational Course - II	2	0	0	2
	Mathematics IV	4	0	0		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Power Electronics	3	1	2		Economics / Principles of Management	3	0	0	3
	Control Systems	3	1	2		Microwave Engineering	4	0	0	4
	Digital Communication	4	0	2	EIE 302	Control Systems	4	0	0	4
	Digital Signal Processing	4	0	2	ECE 304	Digital Communication	4	0	0	4
	Project	0	0	8		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Parenthood and Family Relationship / Women in Indian Society (WIS)	3	0	0		Microwave Engineering Lab	0	0	2	1
					EIE 302L	Control Systems Lab	0	0	2	1
					ECE 304L	Digital Communication Lab	0	0	2	1
						Project	0	0	4	2
	Total	24	2	16		Semester Wise Total	22	1	10	28
	Total Credit		34			Total Credit		28		

B.Tech. (ECE) Semester - VII (December, 2022)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C
	UIL Project	20	0	0		Antenna Analysis	4	0	0	4
	Reading Elective	0	0	4	ECE 402	Fiber Optics and Communication	4	0	0	4
					VLSI 401	VLSI Design	4	0	0	4
					ECE 303	Communication Networks	4	0	0	4
						Discipline Elective	4	0	0	4
						Open Elective	4	0	0	4
						Antenna Analysis Lab	0	0	2	1
					VLSI 401L	VLSI Design Lab	0	0	2	1
					ECE 402L	Fiber Optics and				
					ECE 402L	Communication Lab	0	0	2	1
	Total					Semester Wise Total	24	0	6	27
_	Total Credit				_	Total Credit		2	27	

B.Tech. (ECE) Semester - VIII (April/May 2023)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C
	Antenna & Radar	4	0	0	ECE 407P	UIL Project	0	0	48	24
	Fiber Optics Communication	4	0	2		Reading Elective	0	0	0	2
	VLSI Design	4	0	2						
	Elective I	4	0	0						
	Elective II	4	0	0						
	Total	20	0	2		Total	0	0	48	26
	Total Credits			22		Total Credits				26

Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Reading Electives
	Biomedical Instrumentation		Geoinformatics		Electronic Packaging
ECE 404	Optical Network		Analytical Instrumentation		Multimedia Compression and Communication
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems		Professional Ethics
ELE 403	Basics of Nano electronics		Robotics and Automation		Electromagnetic Compatibility
ECE 403	Mobile Communication	EEE 304	Power Electronics		Telecommunication Switching Systems and Networks
ECE 405	Radar Navigation		Mechatronics		Electric Vehicles
ELE 304	Digital Signal Processing				IoT Sensors and Devices

Curriculum Structure

B. Tech. –Electronics & Communication

				(l Year)						
Semester - I						Semester - II					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	т	Р	С
	General English /सामान्य हिन्दी	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
	Core Foundation Course - I	2	0	0	2		Core Foundation Course – II	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	21/20	3/4	10	29		Semester Wise Total	20/21	4/3	10	29
				(II Year)						
Semester - III						Semester - IV	1				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	P	С
	Core Foundation Course - III	2	0	0	2		Core Foundation Course - IV	2	0	0	2
	Elective Foundation Course - I	2	0	0	2		Elective Foundation Course - II	2	0	0	2
MATH 208/ Math 207	Differential Equations / Complex Variables /	3	1	0	4	Math 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS209	Data Structures	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4

CS 209L	Data Structures Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201S	Seminar	0	0	2	1
ELE 201	Digital Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
						ELE 205	Semiconductor Devices and Circuits	4	0	0	4
						ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Semester Wise Total	23	1	6	27		Semester Wise Total	23	1	10	29
				(I	II Year)						
Semester - V			1			Semester - V	<u> </u>				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	P	С
	Vocational Course - I	2	0	0	2		Vocational Course - II	2	0	0	2
	Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Principles of Management/ Economics	3	0	0	3		Economics / Principles of Management	3	0	0	3
ECE 301	Analog Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ELE 306	Microprocessors and Microcontrollers	4	0	0	4	EIE 302	Control Systems	4	0	0	4
	Analog Electronics	4	0	0	4	ECE 304	Digital Communication	4	0	0	4
ELE 202	Electromagnetic field Theory	4	0	0	4		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Probability and Statistical Methods/ Numerical Methods	3	1	0	4		Microwave Engineering Lab	0	0	2	1
ECE 301L	Analog Communication Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	2	1
ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1	ECE 304L	Digital Communication Lab	0	0	2	1
	Analog Electronics Lab	0	0	2	1		Project	0	0	4	2
											-
		26	_	-					_	40	-
	Semester Wise Total	26	1	6	30		Semester Wise Total	22	1	10	28

				(1)	V Year)							
Semester – V	11					Semester - \	/III					
Course Code	Course Name	L	т	Р	С	Course Code	Course Name	L	т	Р	С	
	Antenna Analysis	4	0	0	4	ECE 407P	UIL Project	0	0	48	24	
ECE 402	Fiber Optics and Communication	4	0	0	4		Reading Elective	0	0	0	2	
VLSI 401	VLSI Design	4	0	0	4							
ECE 303	Communication Networks	4	0	0	4							
	Discipline Elective	4	0	0	4							
	Open Elective	4	0	0	4							
	Antenna Analysis Lab	0	0	2	1							
VLSI 401L	VLSI Design Lab	0	0	2	1							
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1							
	Semester Wise Total	24	0	6	27		Semester Wise Total	0	0	48	26	
Course Code	Discipline Electives					Course Code	Reading Electives					
	Biomedical Instrumentation		Geoinf	ormatic	S		Electronic Packaging					
ECE 404	Optical Network		Analyt Instrur	ical nentatio	on		Multimedia Compression and Comr	nunicat	ion			
ECE 406	Satellite Communication	ELE 402	Audio	and Vide	eo Systems		Professional Ethics					
ELE 403	Basics of Nano electronics		Roboti	cs and A	utomation		Electromagnetic Compatibility					
ECE 403	Mobile Communication		Power	Electron	nics		Telecommunication Switching Syste	ms and	l Netw	orks		
ECE 405	Radar Navigation		Mecha	tronics			Electric Vehicles					
ELE 304	Digital Signal Processing						IoT Sensors and Devices					

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ECE 201, Signals, Systems and Networks	After the completion of course student will be able to:	_	_	No Change in course contents.
2		 Analyze linear time invariant system in time and frequency domain Apply network theorem to analyze the electrical circuit. Explain two port parameters. 	Suggested Books: 1. V. Oppenheim, A. V. Willsky, S. Hamid Nawab. Signal and Systems. Second Edition, Prentice Hall. 2. M.E. Van Valkenburg. Network Analysis. Third Edition, Prentice Hall India. 3. J. G. Proakis, D. G. Manolakis. Digital Signal Processing. Fourth Edition, Pearson. 4. F. F. Kuo. Network Analysis and Synthesis. Second Edition, John Wiley and Sons.	Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication Suggested E-resources: 1. Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering,	
	ELE 201,	After completion of this		Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ 2. Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100	No Change
	Digital Electronics	course, students will be able to:	_	_	in course contents.
		 Students will be able to describe and minimize various digital systems. Students will understand design steps for combinational and sequential circuits. Students will understand basic 	Suggested Books: 1. M. Morris Mano. Digital Design. Third Edition. Prentice Hall. 2. Charles H. Roth, Larrry N. Kiney. Fundamentals of Logic Design. Sixth Edition, Cengage Learning. 3. D.P. Leach, A. P. Malvino, G. Saha. Digital Principles and Applications. Eighth Edition, McGraw Hill. 4. John F. Wakerly. Digital Design:	Recommended Books: 1. M. M. Morris R. & C. Michael D. (2013). Digital Design (5/e). Pearson Publication 2. R. Charles H., JR. & K. Larrry N. (2010). Fundamentals of Logic Design (6/e). Stanford, USA: Cengage Learning 3. Malvino, A. P., & Leach, D. P. & S. Goutam (2014). Digital Principles and Applications (8/e). New Delhi: Tata McGraw Hill Education Private limited.	

	memory architectures and their functionality.	Principles and Practice. Fourth Edition, Pearson. 5. T. C. Bartee. Digital Computer Fundamentals. Sixth Edition. McGraw-Hill. 6. J. P. Hayes. Computer Architecture and Organization. Third Edition, McGraw Hill.	 W. John F. (2008). Digital Design: Principles and Practices (4/e). Pearson Publication B. Thomas C. (1981). Digital Computer Fundamentals (5/e).McGraw-Hill Publication Hayes, J. P. (2002). Computer architecture and organization. New York, USA: McGraw-Hill Publication Suggested E-resources: Digital Circuits by Prof.Santanu Chattopadhyay, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc18_ee 33/preview Digital Electronic Circuitsby Prof.Goutam Saha, Dept. of Electronics and Electrical Communication Engineering at IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc19_ee 09/preview Digital Circuits and Systemsby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of 	
			Technology Madras. https://nptel.ac.in/courses/117106086/	
3. ELE 201L, Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the basic digital circuits and to verify their operation. • Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).			Learning Outcomes added No change in experiment list.

4.	ENGG 202, Basic Electronics	Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers. After completion of this course, students will be able to: Understand the		Recommended Books:	No Change in course contents.
		fundamental of semiconductors and design semiconductor circuits • Understand the different type of diode/ transistors with their responses. • Analyze various types of oscillators available with their utilization.	Suggested Books: 1. J. Millman, C. Halkias. Integrated Electronics. Second Edition, McGraw Hill. 2. R. L. Boylested. Electronics Devices and Circuit Theory. Tenth Edition, Pearson. 3. A. P. Malvino. Electronic Principles. Sixth Edition, McGraw Hill. 4. N. B. Somanatha. Electronics Devices and Applications. First Edition, Prentice Hall India. 5. A. S. Sedra, K. C. Smith. Microelectronics Circuits: Theory and Applications. Seventh Edition, Oxford University Press. 6. B. G. Streetman, S. K. Banerjee. Solid State Electronic Devices. Sixth Edition, Prentice Hall India.	 Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2/e). New Delhi: TMH Publications. Boylestad.R. (2012). Electronic Devices & Circuits Theory.(6/e). New Delhi: Pearson Publications. Somanathan B. Nair. (2006). Electronics Devices and Applications. New Delhi: Prentice Hall India Learning Private Limited Smith. S.(2008). Microelectronics Circuits. (5/e). New Delhi: Oxford press, India. Streetman Ben. G. (2006). Solid State Electronic Devices (6/e). New Delhi: PHI Publications. Suggested E-resources: Basic Electronics by Prof. Pramod	Deleted

5.	Electrical and Electronics Measurements	After completion of this course, students will be able to: • Measure various electrical parameters with precision and accuracy. • Select appropriate transducers for measurement of physical parameter. • Use Signal Generator and CRO for appropriate measurement. • Test and troubleshoot electronic circuits using various	Suggested Books: 1. A. K. Sawhney. A Course in Electrical and Electronic Measurements and Instrumentation. Eleventh Dhanpat Rai Publication. 2. R.K. Jain. Mechanical and Industrial Measurements. Twelfth Edition, Khanna Publishers. 3. B.C.Nakra, K.K. Chaudhry. Instrumentation, Measurement and Analysis. Third Edition, McGraw Edition. 4. E. O. Doebelin.MeasurementSystems: Application and Design. Fourth Edition. McGraw Hill.	Instrumentation. New Delhi: Tata	No Change in course contents. Deleted
		using various measuring instruments.	and Design. Fourth Edition. McGraw Hill. 5. D. P. Eckmann, Industrial Instrumentation. First Edition, CBS Publications. 6. H.S. Kalsi. Electronic Instrumentation. Third Edition, Tata McGraw Hill. 7. S.K. Singh. Industrial Instrumentation and Control. Third Edition, Tata McGraw Hill. 8. C. S. Rangan, G. R. Sarma, V. S. V. Mani. Instrumentation: Devices and Systems. Second Edition, McGraw Hill. 9. D. V. S. Murthy. Transducers and Instrumentation. Second Edition, Prentice Hall India.	McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof. Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064	
6.	Electrical and Electronics Measurements Lab	After completion of this laboratory course, students will be able to: • Develop an	 To study behavior of Inductive Sensors and calculate its switching hysteresis. To study behavior of Capacitive Sensors and calculate its Reduction factor. 	 To study Hall Effect. To study principle of Thermocouple. To study principle of Load cell. To study principle of Thermistor. 	Learning outcomes added.
		understanding of construction and working of different measuring instruments	To study behavior of Magnetic Sensors and plot its response curve. To study behaviour of Ultrasonic Sensors and calculate its switching hysteresis.	5. To study principle of strain guage.6. To study Principle of LVDT7. To study De sauty bridge.8. To study Wein AC bridge.	Deleted Added

	Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement Select appropriate passive or active transducers for measurement ophysical phenomenon.	sensors and calculate its switching frequency. 6. To detect level with the help of Ultrasonic, Photo electric and Capacitive sensors. 7. Logic linking of Sensors: OR gate and AND gate. 8. To study Wheatstone bridge and find the unknown resistance. 9. To calculate the frequency and phase with Lissajous figure pattern using DSO.	9. To study CRO circuitry in detail.	
	conductor course, students will be able to:		_	No Change in course contents.
	bands, temperature effects, carrie transport o semiconductor devices Explain the switching times, capacitance o PN junction, bipola and unipola transistor behavio and their differences Analyze the various feedback circuits and design powe amplifiers.	Suggested Books: 1. D. A. Neamen, Semiconductor Physics and Devices, fourth edition, McGraw Hill. 2. S. M. Sze. Semiconductor Devices Physics and Technology. Second Edition, Wiley Student Edition. 3. J. Millman, C. Halkias, C. D. Parikh. Integrated electronics. Second Edition, McGraw Hill. 4. A. Sedra, K. Smith. Microelectronic Circuits Theory and Applications. Fifth International Edition, Oxford University Press.	 Recommended Books: S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi: PHI Publications. Smith. S.(2008). Microelectronics Circuits. (5th ed). New Delhi: Oxford press. Suggested E-Resources: Semiconductor Devices and Circuits by Prof.SanjivSambandan, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/108108112/ Analog Electronic Circuits byProf. S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of	Added Deleted
8. ELE	205L, After completion of this	s 1. To study the half wave and full wave	https://nptel.ac.in/courses/108102095/ 1. To study the half wave and full wave	Learning

Semiconducto Devices and	will be able to:	rectifier circuit. 2. Measurement of bipolar junction transistor	rectifier circuit. 2. Measurement of bipolar junction	outcomes added.
Circuits Lab	 Develop understanding of current voltage characteristics of various semiconductor devices. Design and analyze the various electronic circuits such as amplifiers and oscillators. Draw output waveforms of various clipper and clamper circuits. 	 (BJT) characteristics. 3. Measurement of junction field effect transistors (JFET) characteristics. 4. To measure input and output characteristics and calculate gain of CE amplifier circuit. 5. To measure input and output characteristics and calculate gain of CB amplifier circuit. 6. To study the frequency response of RC coupled amplifier. 7. To study Wien-bridge oscillator circuit. 8. To study Hartley oscillator circuit. 9. To study the effects of negative feedback on the amplifier characteristics. 10. Study of class A push-pull amplifier. 11. Study of class B push-pull amplifier. 	transistor (BJT) characteristics. 3. Measurement of junction field effect transistors (JFET) characteristics. 4. To measure input and output characteristics and calculate gain of CE amplifier circuit. 5. To measure input and output characteristics and calculate gain of CB amplifier circuit. 6. To study the frequency response of RC coupled amplifier. 7. To study Wien-bridge oscillator circuit. 8. To study Hartley oscillator circuit. 9. To study the effects of negative feedback on the amplifier characteristics. 10. Study of class A push-pull amplifier. 11. Study of class B push-pull amplifier. 12. To study clipper and clamper circuits.	Added
9. ECE 201S, Seminar	After the completion of course student will be able to: • To identify promising new directions of various cutting edge technologies. • Undertake a critical review of the literature. • Deliver well-organized technical presentations and prepare a technical report.		12. To study clipper and clamper circuits.	Learning Outcomes added.
10. Analog Communication	After completion of this course, students will be able to: • Explain different blocks in communication system and how noise affects	Section-A Introduction Communication Process, Source of Information, Channels-Noise, System Noise Source, Noise & Feed-back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals, Modulation Process Need, Bandwidth, Requirements- Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication,	Section-A Introduction to signals: Size of signals, Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison- correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals:	Added Shifted Deleted

	communication using	Continuous and Discrete Spectra, Band pass	Fourier transform of some useful signals,	
	different parameters.	System,	Some properties of Fourier Transform, Signal	
•	Distinguish between		Transmission through linear system, Ideal	
	different amplitude		and practical filters, Signal distortion over a	
	modulation schemes		communication channel, Signal energy and	
	with their advantages,		energy spectral density, Signal power and	
	disadvantages and		power spectral density.	
	applications and	Section B	Section- B	Added
	analyse generation	Modulation: Amplitude Modulation: Basic	Amplitude Modulation: Baseband and carrier	Shifted
	and detection of FM	Principles, Mathematical Relationships,	communication, Double sideband	Deleted
	signal and	Frequency Modulation and Phase Modulation	modulation, Single sideband modulation,	
	comparison between	- Basic Principles, Mathematical	Quadrature amplitude modulation, Vestigial	
	amplitude and angle	Relationships, Comparison between	sideband modulation, Carrier acquisition,	
	modulation schemes.	Amplitude Modulation and Angle	Superheterodyne receiver	
•	Identify different	Modulation, Spectral Analysis of Different	Angle Modulation: Concept of instantaneous	
	types of radio receiver	Modulation; Modulators: Amplitude	frequency, Bandwidth of angle modulated	
	circuits	Modulator, Suppressed Carrier DSB	waves, Generation of FM waves,	
	Circuits	Modulator, Balanced Modulator, SSB	Demodulation of FM, Interference in angle	
		Modulators: Filter Method, Phase-shift	modulated systems, FM receiver	
		Method & Third Method-ISB Modulators,	modulated systems, 1111 feetives	
		Vestigial sideband Modulator; Frequency		
		Modulator: Direct &Indirect Method, Narrow		
		band FM, Phase Modulator, Spectral		
		Analysis of these Modulators; Transmitters –		
		AM Transmitter, Low Level and High Level		
		SSB Transmitter, Pilot Carrier – FM		
		Transmitter – Narrow band and Wide band,		
		FM Stereo Transmitter;		
		Section C	Section-C	
		Receiver: Sensitivity, Selectivity, Signal to	Random Signal and Noise: Gaussian Noise,	Shifted
		Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector Ratio Detector	Bandpass noise and its representation, Noise	Deleted
			power, SNR ratio, PSD of white noise.	
		- Foster - Seelay Discriminator; AM	Analog Systems in The Presence of Noise:	
		Receiver — (Block Level Treatment) —	Baseband system, Double sideband	
		TRFReceiver, Super-heterodyne	modulation- Suppressed carrier, Single	
		Receiver, Double Super-heterodyne	sideband modulation- Suppressed carrier,	
		Receiver, SSBReceiver, Communication	Amplitude modulation, Angle modulated	
		Receiver, AGC Circuitry; FM Receiver FM	systems- Phase and Frequency modulation,	
		Stereo Receiver (Block Level) Carrier	Optimum preemphasis-deemphasis systems	
		Shareholding, Capture Effect.	Systems and Noise Calculations: Electrical	
			Noise, Noise Figure, Equivalent Noise	
			Temperature, Cascade Connection of Two-	
			Port Networks, Free-Space Link Calculations	

		Text Books: 1. George Kennedy: Electronic Communications Systems: McGraw Hill. 2. Taub and Schilling: Principles of communication systems: McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering.	Recommended Books: 1. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007).Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., & Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resources: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/	Added Deleted
11. Analog Communication Lab	After completion of this laboratory course, students will be able to: • Demonstrate Amplitude modulation and demodulation techniques. • Demonstrate frequency modulation and demodulation technique. • Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. • Compare different modulations and demodulations and demodulations to recognize the advantages and disadvantages of them. • Identify different radio receiver circuits and			Learning outcomes added. No change in experiment list.

		role of AGC.			
12.	ELE 306, Microprocessor s and	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Microcontroller s	 Interface memory and different peripherals with Microprocessor and microcontroller Design and develop the system for real time applications 	Test Books: 1. Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. 2. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book: 1. Ajay V. Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. 2. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. 3. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005. 4. Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design, 2nd ed., Liu & Gibson.	Recommended Books: 1) Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication 2) Hall, D.V. (2017). Micro Processor and Interfacing. New Delhi: McGraw-Hill Publication. 3) Deshmukh, Ajay V. (2005). Microcontrollers — Theory and Applications. New Delhi: McGraw Hill Publication. 4) Ray, A.K., &Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication. 5) Kenneth, J. Ayala. (2011). The 8086 Micro Processors Architecture, Programming and Applications. New Delhi: Prentice Hall India. 6) Liu, Yu Cheng., & Gibson, A. (1985). Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design. New Delhi: Prentice Hall India. Suggested E-Resources: 1. Microprocessors and Microcontrollers by Prof. Santanu Chattopadhyay, Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	contents.
13.	ELE 306L,	After completion of this			
	Microprocessor	laboratory course, students			
	s and	will be able to:			Learning
	Microcontroller	• Understand the			Outcomes
	s Lab	different instructions			added.
		of 8086			

	microprocessor assembly language. Coding in assembly language. Solve different real time problems.		No Change in Experiment List.
14. Electromagnetic Field Theory	*	Section A Elements of Vector calculus: Cartesian coordinate system, Circular-Cylindrical coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Electrostatics: Electric Flux Density, Coulomb's law, Gauss's law and their applications, Energy in electrostatic fields, capacitance of parallel plate and coaxial cable, Fields in dielectrics, Boundary conditions, dipole, Laplace's and Poisson's equations and their applications. Section B Magnetostatics: Ampere's law, Bios wart's law and their applications, Stock's theorem, Energy in magnetic field, Boundary conditions. Maxwell's Equation: - Maxwell's equations in integral & differential form (Gauss's law in electric and magnetic field, Ampere's circuital law, Faraday's law), Maxwell's equations for time varying field.	 Entire Course is shifted from 3 rd semester to 5 th semester No Change in course contents
		Section C Uniform Plane Waves: Wave equation and its solutions, Pointing vector, propagation through various media-free space, conductor & dielectric, Reflection and Refraction in conductors & Dielectrics with normal and oblique incidence, Phase & Group velocity, Skin depth. Transmission Lines: General equation, input impedance, characteristics impedance, Reflection and reflection coefficient, Standing wave ratio, resonant and resonant line impedance matching, Smith chart and its applications, practical problems in transmission lines.	

		Suggested Book: 1. William H. Hayt. Engineering Electromagnetics. Eighth Edition, McGraw Hill. 2. E. C. Jordan, K. G. Balmain. Electromagnetic Waves and Radiating Systems. Second Edition, Prentice hall India. 3. J.D. Kraus, D. A. Fleisch. Electromagnetics with Applications. Fifth Edition, McGraw Hill.	 Recommended Books: William, H. Hayt. (2017). Engineering Electromagnetics. New Delhi: McGraw-Hill Publication. Sadiku, Matthew N. O. (2009). Principles of Electromagnetics. New Delhi: Oxford University Press. Jordan, E. C., & Balmain, K. G. (2015). Electromagnetic Waves and Radiating Systems. New Delhi: Pearson Publication. Kraus, J.D., &Fleisch, D. A. (1992) Electromagnetics with Applications, New Delhi: McGraw-Hill Publication. Suggested E- Resources: Electromagnetic Fields by Prof.Harishankar Ramachandran, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/108106073/ Electromagnetic Fields by Dr RatnajitBhattacharjee, Indian Institute of Technology, Guwahati. https://nptel.ac.in/courses/117103065/ Electromagnetic Theory by Dr Pradeep Kumar K, Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104087/ 	Added
15. Analog	After completion of this	Analog Integrated Circuits	Analog Electronics	
Integrated Circuits	course, students will be able to:	Section A Feedback Amplifiers: classifications of	Section A Operational Amplifier and its applications:	Added
Circuits	Explain the operation	amplifiers, general feedback structure,	BJT differential amplifier: DC and AC	Deleted part
	and properties of Op-	properties of negative feedback, feedback	analysis, Transfer characteristics, Differential	is shifted to
	amp.	topologies, Transfer gain with feedback,	and Common mode gain, Ideal Op-amp,	IV sem.
	 Explain the design of differential 	General Characteristics of negative feedback amplifiers, input resistance, output resistance.	inverting and non-inverting amplifier, offset voltage, offset current, bias current,	Semiconduct or devices &
	amplifiers, active	Method of analysis, voltage series and current	frequency response, slew rate, CMRR,	Circuits
	filters, oscillators, and	series feedback, current shunt and voltage	summing amplifier, differential and	paper
	other linear and non-	shunt feedback. Power amplifiers: classification, operation,	instrumentation amplifier, design of integrator and differentiator, logarithmic and	Shifted
	linear circuits using	analysis and design of Class A, Class B,	anti-logarithmic amplifiers, Active filters.	Deleted
	linear integrated circuits.	Class-AB, Class C, power dissipation and		
	 Design and analysis 	efficiency calculations, amplifier distortion.	Continue D	A 11. 1
		Section B	Section B	Added

of single stage, multistage amplifiers and high frequency amplifiers.	High Frequency Amplifiers: Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers: frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP-AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Shifted Deleted
	Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits: Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance, Hybrid –pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	Added Shifted Deleted
	Text Books: 1. Millman and Halkias: Integrated electronics, TMH, 1991. 2. Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009. 3. GayakwadRamakant A., "OP-AMP & Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010. Reference Book: 1. Adel Sedra& Kenneth Smith, Microelectronic Circuits Theory and applications" FIFTH edition International version: Oxford University Press, 2009.	Recommended Books: 1. Gayakwad, Ramakant A. (2010). OP-AMP & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press. 3. Parikh, Millman&Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel.,& Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resource:	

16.	Analog Integrated Circuits Lab	After completion of this laboratory course, students will be able to: • Design, construct, and analyze the various analog circuits to compare experimental results in the laboratory with theoretical analysis. • Observe the amplitude and frequency responses of common amplification circuits • Construct the desired Electronic design to meet specific requirements.	Analog Integrated Circuits Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC 4. To design Intergrator using 741 IC 5. To design Schmitt Trigger using 741/555 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565.	 Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/	Learning Outcomes added. No Change in Experiment List
17.	Digital Communication	After completion of this course, students will be able to: • Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems • Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse Modulation and PCM • Describe and analyse	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel-Zivcoding, Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts -Code efficiency and Hamming bound, linear block codes, Cyclic	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted

mathematically the Digital Modulation	codes, Convolution codes, maximum likelihood decoding of convolution codes.	
Techniques-ASK,	Section B	Section B
FSK, PSK	Pulse Modulation Systems: Sampling	Digital Modulation Techniques: Various
,	theorem, Generation and demodulation of	techniques of phase shift, BPSK modulation,
	PAM, PPM, Quantization of Signals,	spectrum, Bandwidth efficiency, geometrical
	Quantization error, PCMCompanding and	representation of BPSK modulation,
	Multiplexing of PCM Signals, Delta and	spectrum, Bandwidth efficiency, geometrical
	adaptive delta modulation, Bit, Word and	representation of ASK, FSK& Minimum
	Frame Synchronization, Matched filter	shift keying
	detection.	Noise in digital Communication: PCM and
		CompandedPCM SNR, Matched filter,
		Calculation of error probability for ASK,
		ASK, FSK.
	Section C	Section C
	Digital Modulation Techniques: Various	Information Theory: The concept of amount
	techniques of phase shift, BPSK modulation,	of information, Entropy, Information rate,
	spectrum, Bandwidth efficiency, geometrical	Huffman coding, Channel capacity of a
	representation of BPSK modulation,	discrete memoriless channel, Shannon's
	spectrum, Bandwidth efficiency, geometrical	Theorem, Channel capacity, capacity of a
	representation of ASK, FSK& Minimum shift	Gaussian channel, Bandwidth-S/N trade –
	keying, Calculation of error probability for	off.
	PSK, ASK, FSK, Application of digital	Error control coding: Rationale of coding and
	modulation techniques.	types of codes, Discrete memory less charnel,
		some Algebraic concepts -Code efficiency
		and Hamming bound, linear block codes,
		Cyclic codes, Convolution codes, maximum
		likelihood decoding of convolution codes.
	Text Books:	Recommended Books:
	1. Simon Haykin: Digital	1. Lathi, B.P., Ding, Zhi.,& Gupta, Hari
	Communication: John Wiley and sons	Mohan. (1998). Modern Digital and
	2. Taub and Schilling: Principles Of	Analog Communication Systems. New
	Communication System: Tata McGraw Hill,	Delhi: Oxford University Press
	Second edition. 3. JhonProakis: Digital	2. Haykin, S. & Moher, M. (2007)
	e e e e e e e e e e e e e e e e e e e	Introduction to Analog and Digital Communication. New York. United
	Communications: McGraw Hill. 4. BernadShlar: Digital	, , , , , , , , , , , , , , , , , , , ,
	Communication: Pearson Education.	States: John Wiley & Sons. 3. Shilling, D.L., &Taub, H. (2008).
	5. K Sam Shanmugam: Digital and	Principles of Communication systems.
	Analog Communication Systems: Jhon	New Delhi: Mc-Graw Hill Publication.
	Wiley and Sons.	Suggested E-Resources:
	6. LathiB.P.: Modern Digital And	1. Digital Communication by Prof.Bikash
	Analog Communications Systems: PRISM	Kumar Dey, Department of Electrical

			Indian Edition.	Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101051/	
18.	Digital Communication Lab	After completion of this laboratory course, students will be able to: • Understand the			Learning Outcomes added.
		concept of Sampling and various Pulse Modulation techniques i.e. Pulse Amplitude Modulation and demodulation, Pulse Position Modulation and demodulation and Pulse Width Modulation and demodulation. • Analyze the behavior of Pulse Code Modulation and demodulation. • Explain the working of Digital Modulation Techniques ie: Amplitude Shift Keying, Phase Shift Keying and Frequency			No Change in Experiment List.
19.	Control Systems	Shift Keying. After completion of this course, students will be able to: • Formulate mathematical model for physical systems and simplify representation of complex systems using reduction techniques.	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback, servo—components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op-amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	Added Shifted Deleted

		**	C D		
		 Use standard test signals to identify performance characteristics of first and second-order systems. Apply root locus technique for stability analysis. Analyse performance characteristics of system using Frequency response methods. 	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability criterion, Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
		methous.	Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant- N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation ofLTI systems.	Added Shifted Deleted
			Text/ReferenceBooks: 1. I.J. Nagrath and M. Gopal: Control System & Engineering 2nd Ed.: Wiley Eastern Ltd.,1985. 2. Katsushiko Ogata: Modern Control Engineering 3rd Ed.: Printice Hall of India Pvt. Ltd., 2001	Recommended Books: 1. Nagrath, I. J. (2006). Control systems engineering. New Delhi: New Age International. 2. Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol. 4). India: Prentice hall. Suggested e-resource: 1. Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/	
20.	Control Systems Lab	After completion of this laboratory course, students will be able to: • Understand the	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	Learning Outcomes added.

	concept of time	find out the tachometer gain.	find out the tachometer gain.	Deleted
	response and	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	3. To determine time domain response of a	
	frequency response of		second order systems for step input and	Added
	any physical system.		obtain performance parameters.	
	 Mathematical 		4. To convert transfer function of a system	
	modeling of physical		into state space form and vice-versa.	
	system to find out of		5. To plot root locus diagram of an open	
	transfer system.		loop transfer function and determine	
	 Analyze the stability 		range of gain 'k for stability.	
	of system with the help		6. To plot a Bode diagram of an open loop	
	of system response.		transfer function.	
			7. To draw a Nyquist plot of an open loop	
			transfers function and examine the	
			stability of the system.	
21. Communication	±	Section A		Entire
Networks	course, students will be	Introduction to communication systems and		Course is
	able to:	data communications. Introduction of		shifted from
	Recognize and	network, requirement of Internet. Data		5 th semester
	describe about the	Networking, Network history, Local area		to 6 th
	working of Computer	network topologies, WAN, MAN, VPN,		semester.
	Networks.	(Virtual Private Network). Bandwidth,		
	Illustrate reference	Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network		No change in
	models with layers,	model-layer structure of network model. OSI		course
	protocols and interfaces.	Model, OSI layers. TCP/IP Model layers.		contents.
		Arpanet, Peer to Peer communication.		contents.
	 Combine and distinguish 	Communication Media and cable-structure-		
	functionalities of	through wire-copper cable-STP, UTP, co-		
	different Layers.	axial cable, optical fiber. Wireless media-		
	 Model the LAN and 	wireless LAN, organization and standards.		
	WAN configuration	Wireless devices and topologies. Wireless		
	using different media	communication, wireless security.		
	using different media	Section B		
		Network layer devices-Modem, NIC, hub,		
		bridge, switch, router, firewall, gateway.		
		Switching Networks-circuit switching, Packet		
		Switching. Networks-Circuit Switching,		
		Packet Switching. Networks addressing		
		schemes-MAC Address, Subneting,		
		Superneting. Routing Concept, Routing		
		protocol (RIP), Routed protocols.		
		Introduction to IPV6 Principles of		
		Internetworking. Ethernet (CSMA/CD)		

	Token Ring and FDDI, Fast Ethernet.		
	Section C		
	Layer protocol Structure. Data link control –		
	Flow Control, Error Detection, Error Control.		
	HDLC. Network layer-ARP, RARP, ICMP.		
	Effect of Congestion and Congestion Control		
	in Network-(Back pressure, choke packet,		
	Implicit Congestion Signaling, Explicit		
	Congestion Signaling. Traffic Management-		
	Transport layer Protocols-connection oriented		
	and connectionless services, TCP, TCP		
	Congestion Control and Flow Control. UDP.		
	Application Layer Protocols – HTTP, FTP,		
	SMTP, SNMP, Telnet. Introduction to ISDN.		
	Narrow Band and Broad Band. Introduction		
	to WAN Technologies. ATM and Frame		
	relay.		
	Text Books:	Recommended Books:	
	1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic	
	& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
	2. A.S. Tannanbaum: Computer	PHI Publication.	
	Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
	3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
	Communication: PHI New Delhi, 5th	Publication.	
	edition 1997.	3. Stailling, W. (1997). Data & Computer	
	4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
	Distributed Processing : PHI, 1998.	Publication.	
		4. Martin, J. (1998). Computer Networks	
		and Distributed Processing Software,	
		Techniques, Architecture. New Delhi:	
		PHI Publication.	
		Suggested E-Resources:	
		1. Computer Networks and Internet	
		Protocol by Prof.SoumyaKanti Ghosh	
		Department of Computer Science and	
		Engineering Indian Institute of	
		Technology, Kharagpur.	
		https://nptel.ac.in/courses/106105183/	
		2. Computer Networks by Prof. Sujoy	
		Ghosh, Department of Computer Science	
		and Technology, IIT KG.	
		https://nptel.ac.in/courses/106105081/	
		3. Computer Networks by Prof. Hema A	

			Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/2278 /data-communication	
22. Microwave Electronics	After completion of this course, students will be able to: • Understand various parameters of waveguide and use of component as per applications • Design impedance matching network for any transmission line or system • Analyse and find applications and limitations of microwave Semiconductor devices. • Find various applications of	Microwave Electronics Section A Introduction to Microwaves & its application, Transmission lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart and its applications, coaxial, twin, strip µstrip lines &baluns Section B Wave Guides: Wave propagation in rectangular & circular wave guides, wave guide modes, Q of wave guide, Wave guide coupling, Microwave passive components: S- parameter representation and analysis of microwave components such as Waveguide	Microwave Engineering Section A Introduction to Microwaves & its application, Microwave Electromagnetic spectrum, Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and antiresonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer, baluns, coaxial transmission line, Planar transmission line: Strip line, Microstrip line, Slot line etc. Section B Wave Guides: Wave propagation in rectangular wave guide: solution of TE and TM modes, Power Transmission and Attenuation, Excitation of modes in Rectangular waveguide, Circular Waveguide: Basic idea of TE and TM modes, Rectangular	Added Shifted Deleted Added Shifted Deleted
	microwave engineering in specific area	Tees, Two-hole directional coupler, attenuators, Phase shifters, Rectangular cavity resonator, Isolators, Circulators. Section C Microwave Tube Devices: Conventional Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT	and Circular cavity resonators, Rectangular cavity resonators, Q of cavity resonators, S parameters and its conversion with Z and Y parameters. Wave guide coupling, Microwave passive Components: S- parameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Microwave propagation in ferrites: Faraday rotation, Isolators, Circulators. Section C Microwave Tubes: Limitations of Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons,	Added Shifted Deleted

			Semiconductor Devices IMPATT, FRAPATT& Gunn Devices.	cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices: Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley theory, Mode of operations of Gunn diode, Avalanche Transit-Time devices: IMPATT, TRAPATT.	
			Text Books: 1. Sisodia-Raghuvanshi: Microwave Circuits & Passive Devices: (Wiley-eastern).1st edition.1987 2. S.Y. Liao: Microwave Devices & Circuits, (Prentice Hall).1st Edition 1995, 3. Collins: Foundation Of Microwave Engineering, (Mc Graw Hill) 2nd Edition 1992 4. P.A. Rizzi: Microwave: (Prentice Hall). 1st Edition 1998	Recommended Books: 1. Liao, S.Y. (1995). Microwave devices & Circuits. New Delhi: Prentice Hall Publication. 2. Rizzi, P.A. (1998). Microwave Engineering. New Delhi: Prentice Hall Publication. 3. Collins, R. E. (1992). Foundation of Microwave Engineering. New Delhi:McGraw Hill Publication. 4. Pozar, David M. (2008). Microwave Engineering. New Delhi: Wiley Publication. 5. Suggested E- Recourses: 1. Microwave Theory and Techniques by Prof. Girish Kumar, Indian Institute of Technology, Bombay.	
23.	Microwave	After completion of this	Microwave Electronics Lab	https://nptel.ac.in/courses/108101112/ 2. Basic Building Blocks of Microwave Engineering by Dr Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105130/ 3. Transmission Lines and E.M. Waves by Prof. R. K. Shivgaonkar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101056/ Microwave Engineering Lab	Learning

24. Project	laboratory course, students will be able to: • Understand the concept and working of microwave bench and different components connected on a bench. • Analyze the behaviour of various microwave components. • Verify properties/ characteristic of microwave source, tees and directional coupler. After completion of this course, students will be able to: • Demonstrate effective project execution and control techniques that result in successful projects. • Ability to identify, formulates, and solves engineering problems. • Use the techniques, skills and modern engineering tools necessary for	 Determine the operating frequency of reflex klystron. Draw the V-I characteristics of Reflex klystron Draw the characteristics of attenuator To verify the wave-guide law To study the directivity and coupling coefficient of Directional Coupler. To study the properties of magic Tea and also determine isolation and coupling coefficient. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient 	reflex klystron.	Outcomes added. No Change in Experiment List Learning Outcomes Added and this course has no prescribed syllabus
25. Antenna and	engineering practice. d After completion of this	Antenna and Radar	Antenna Analysis	
Radar	After completion of this course, students will be able to: • Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain	Section A Introduction to antennas, network theorems, directional properties of dipole antennas, travelling wave antenna& effect of point of feed on standing wave antenna, two element array, linear array, multiplication of patterns, effect of earth on vertical patterns, binomial array, antenna gain, effective area, antenna terminal impedance, antenna as	Section A Introduction to antenna, Radiation Mechanism, Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity, Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input	Added Shifted Deleted

various antenna parameters. • Explain antenna as a point source. Design antenna patterns for different cases. • Explain dipole antennas. Establish mathematical equations for various parameters of thin linear antenna. • Explain loop, slot, patch and horn antennas. Derive expressions for the parameters of loop and slot antennas.	Section B Practical antennas: Hertz and Marconi antenna, antenna losses, effect of antenna height, electrically short antennas, wave antenna, Medium and high frequency antenna, half wave dipole or dipole antenna, harmonic,rhombic, V, inverted V, traveling wave antenna, loop antennas, folded dipole, yagi-uda, horn, biconical, helical, slot, notch,frequency independent and microwave antennas, Antenna measurements.	impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Electric Current Source J, The Vector Potential F for a Magnetic Current Source M, Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources, Solution of the Inhomogeneous Vector Potential Wave Equation, Far-field radiation, Duality theorem, Reciprocity and Reaction theorem, Image Theory Linear wire antennas: Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, Half-wave dipole Loop Antennas: Small circular loop, Square loop	Added Shifted Deleted
	Section C Radio-wave propagation, phenomena and problems encountered in practice: effect of earth and atmosphere in radio waves. Physical principles & basic equations of radar, pulsed, continuous wave and pulsed Doppler radar, antenna systems, transmitters, detection theory, waveform considerations including pulse compression, principle of synthetic aperture radar, propagation clutter, and airborne radar References: 1. John D. Kraus: Electromagnetic: Mc Graw Hill. 2. William, Hayt: Electromagnetic Engineering: Mc Graw Hill. 3. Jordan & Balmain: Electromagnetic Fields & Radiation Systems: PHI. 4. Sadiku: Elements of	Section C Introduction to Arrays, two-element array, N-element linear array: uniform amplitude and spacing, directivity,N-element linear array: uniform spacing, non-uniform amplitude Traveling wave antennas: Long wire antenna, V-antenna, Rhombic antenna Broadband antennas: Helical antenna, Folded dipole, Yagi-uda array of linear elements Log-periodic antenna, Introduction to Horn antenna: E-plane sectoral horn, H-plane sectoral horn, Pyramidal horn Recommended Books: 1. Balanis, C. A. (2005). Antenna Theory Analysis and Design. New Delhi: John Wiley & Sons. 2. Eliott, Robert S. (2003). Antenna Theory and Design. New Delhi: Wiley-IEEE Press. 3. Kraus, J. D., &Marhefka, R. H. (2001). Antennas for All Applications, Singapore: McGraw-Hill Publication.	Added Shifted Deleted

			Electromagnetic: Oxford University Press. 5. Merrill. I. Skolnik: Introduction to Radar Systems, 3rd Ed., Mc-Graw-Hill. 6. Merrill. I. Skolnik: Radar Handbook: 2nd Ed., Mc-Graw-Hill, 1990. 7. K. D. Prasad: Antenna and Wave Propagation.	 Harrington, R. F. (2001). Time-Harmonic Electromagnetic Fields. New Delhi: Wiley-IEEE Press. Suggested E- resources: Advanced Antenna Theory by Dr Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/ Analysis and Design Principles of Microwave Antennas by Prof.Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/ Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/ 	
26.	Antenna Analysis Lab	 After completion of this laboratory course, students will be able to: Use HFSS tool to design and analysis of antennas. Design various type of antennas Measure and analyse radiation pattern of antennas. 		 To design dipole antenna in HFSS Design monopole antenna in HFSS Design horn antenna in HFSS To measure radiation pattern of Horn Antenna To measure radiation pattern of log periodic Antenna To measure radiation pattern of micro strip patch Antenna To measure radiation pattern of YAGI-UDA Antenna. 	Addition of new Lab.
27.	VLSI Design	After completion of this course, students will be able to: • Explain the basic theory of crystal growth, wafer fabrication and IC fabrication technology. • Explain the different VLSI design styles, overview of ICs and fabrication steps of MOS, CMOS and BJT.	Section A Recapitulation of basics, semiconductor devices, orientation effect, impurities, defects, Fabrication: Crystal growth & wafer preparation, Epitaxial growth, oxidation, photo-lithography, etching technology (wet & dry), Diffusion Fick's law, chemical vapor deposition, CVD reactors, ion implantation, metallization & patterning, photo resistive material, packaging. Section B Overview of VLSI methodologies, VLSI design flow, type of ICs (monolithic, thick film, thin film, hybrid), Fabrication steps involve in, different type of resisters,		Course is shifted from 8 th semester to 7 th semester. No change in course contents.

Design and analyse the output characteristics of different MOS inverters Design combinational and sequential circuit.		Recommended Books: 1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publications. 2. Kang, S.M., &Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. 3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. 4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. 5. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. 5. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. 7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. 8. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. Suggested E-Resources: 1. VLSI Circuits by Prof. S. Srinivasan,
---	--	---

29.	Fiber Optics and Communication	After completion of this course, students will be able to: • Explain the light propagation through optical fibers. • Explain the various light sources and optical detectors. • Design fiber optic transmitter and receiver system.	Text Books: 1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication:	 Recommended Books: 1. Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. 2. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. 3. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. 4. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw 	No change in course contents. Deleted
28.	VLSI Design Lab	After completion of this laboratory course, students will be able to: • Use VHDL for design of digital circuits • Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. • Develop and simulate register-level models of hierarchical digital systems	Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 2. VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ 1. Write a program for the implementation of half adder and Full adder. 2. Write a program for implementing half subtractor and full subtractor. 3. Write a program for implementing MUX 4x1 and DEMUX (1X4) 4. Write a program for implementing Encoder and Decoder, 5. Write a program to implement gray code to binary code converter and vice versa. 6. Write a program to implement COMPARATOR. 7. Write a program for the implementation of S-R Flip flop and D Flip flop. 8. Write a program for the implement upcounter and down-counter. 9. Write a program to design JK Flip-flop and write design summary 10. Write a program to design T Flip-flop and	Learning Outcomes added.

		PHI, 1995. 3. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. 4. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991.	Hill Publication.	
30. Fiber Optics and Communication Lab	laboratory course, students			Learning Outcomes added. No change in experiment list.
31. UIL Project	After completion of this course, students will be able to: • Undertake problem identification, formulation and solution. • Design engineering solutions to complex problems utilizing a systems approach. • Demonstrate the knowledge, skills and attitudes of a professional engineer. • Demonstrate effective organizational leadership and change			Learning Outcomes Added and this course has no prescribed syllabus

32.	Biomedical Instrumentation	skills for managing projects, project teams, and stakeholders. After completion of this course, students will be able to: Describe the principle of interfacing of Electrode-electrolyte and different types of electrodes which are used in biomedical field. Explain different types of recorders and photometers. Describe the method of measurement of BP and blood flow.	Text Book: 1. Leslie Cromwell: "Biomedical Instrumentation and measurement". Prentice hall of India, New Delhi, 1997. References: 2. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998. 3. KhandpurR.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997. 4. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment Technology" John Wiley and sons. New York, 1970.	Recommended Books: 1. Cromwell L. (2007). Biomedical Instrumentation and Measurement. New Delhi: PHI Publication 2. Webster J.G.(1998). Medical Instrumentation Application and Design. New York: John Wiley and Sons 3. KhandpurR.S. (1997). Handbook of Biomedical Instrumentation. New Delhi: Tata McGraw-Hill Publication 4. Carr J. J. & Brown J. M. (1997). Introduction to Biomedical Equipment Technology. New York: John Wiley and sons	No Change in course contents.
33.	Network	course, students will be able to: Describe the important components such as multiplexer, filters. Explain the multiplexing technique Explain the signalling and routing of WDM network elements Describe the protection technique in SONET/SDH and IP network	Text Books: 1. Ramaswami, Rajiv &Sivarajan, Kumar N.: Optical Networks a Practical perspective: Morgan Kaufmann Publishers / 2nd Ed. 2. Black, Uyless: Optical Networks Third Generation Transport Systems: Pearson Educations. Reference Books: 1. Tanenbaum. Andrew S.: Computer Networks: Prentice Hall (India) 2. Murthy, C. Siva Ram &Gurusamy, Mohan: WDM Optical Networks Concepts, Design & Algorithms: Prentice Hall (India)	Recommended Books: 1. Ramaswami, Rajiv.,&Sivarajan, Kumar. N.(2009). Optical Networks: A Practical Perspective. San Francisco, California: Morgan Kaufmann Publisher. 2. Uyless, Black. (2009). Optical Networks Third Generation Transport Systems: New Delhi: Pearson Publication. 3. Tanenbaum, Andrew. S. (2010). Computer Networks. New Delhi: Pearson Publication. 4. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: 1. Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of	No Change in course contents.

				Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminars/OptNets.pdf 2. Optical networks and Switching Systems by Prof. Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021	
34.	Satellite Communication	After completion of this course, students will be able to:	_	_	No Change in course contents.
		 Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites. Understand the systems required by a communication satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system. Understand the radio propagation channel for Earth station to satellite and satellite to satellite communications links, and the basics of designing antenna systems to accommodate the needs of a particular satellite system. Understand how analog and digital technologies are used for satellite communications 	Text Books: 1. Pratt, Bostian, Allnutt: Satellite Communications: John Wiley & Sons. 2. Dennis Roddy: Satellite Communications: McGraw-Hill 3. Tri T. Ha: Digital Satellite Communications: McGraw-Hill.	Recommended Books: 1. Bostian, Charles.,Pratt, Timothy., & Allnutt, Jeremy. (2006). Satellite Communications. New Delhi: John Wiley & Sons. 2. Maral G., Bousquet M., Sun Z. (2010) Satellite Communications Systems: Systems, techniques and technology, 5th edition, John Willy and sons. 3. Roddy, Dennis. (2017). Satellite Communications. New Delhi: McGraw-Hill Publication 4. Ha, Tri. T. (1990). Digital Satellite Communications. New Delhi: McGraw-Hill Publication Suggested e-resources: 1. Satellite Communication Systems by Prof.Kalyan Kumar Bandyopadhyay Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. http://textofvideo.nptel.ac.in/117105131/1 ec1.pdf 2. Satellite Link Design by Dr.Marwah Ahmed. https://net425site.files.wordpress.com/20 17/02/net-425-d-feb-2016-lec-5.pdf	Added
		communications networks and the topologies and			

35.	Basics of Nanoelectronics	applications of those networks, as well as the comparison to alternative communications systems. After completion of this course, students will be able to: Explain the fundamental science and quantum mechanics behind nanoelectronics. Explain the basic concepts behind the operation of nano scale MOSFET describe the various techniques and approaches for the fabrication of nano-scale devices	Text books: 1. G. W. Hanson: Fundamentals of Nanoelectronics, Pearson Education. 2. K. K. Chattopadhyay and A. N. Banerjee: Introduction to Nanoscience and Nanotechnology, PHI Learning. References: 1. Vlaadiniz U. Mitin: Introduction to Nanoelectronics, Cambridge University Press. 2. M. Dragman and D. Dragman: Nanoelectronics- Principles and devices, Artech House. 3. Karl Goser: Nanoelectronics and Nanosystems, Springer. 4. Daniel Minoli: Nanotechnology application to telecommunication and networking, Wiley Interscience. 5. John H. Davis: Physics of low dimension semiconductor, Cambridge Press. 6. Carl C. Cosh: Nanostructure materials processing property and applications, Noyes Publications	Recommended Books: 1. Hanson, G. W. (2008). Fundamentals of Nanoelectronics. New Delhi: Pearson Publication. 2. Chattopadhyay, K. K., & Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication. 3. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press. 4. Dragman, M., & Dragman, D. (2008). Nanoelectronics- Principles and Devices (2/e): Artech House Publishers 5. Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication 6. Minoli, Daniel. (2005). Nanotechnology Application to Telecommunication and Networking. Hoboken, New Jersey: Wiley Publication. 7. Davis "John. H. (1997). Physics of Low Dimension Semiconductor. New Delhi: Cambridge University Press. 8. Cosh, Carl.C. (1998). Nanostructure Materials Processing Property and Applications. Norwich, New York: Noyes Publications	No Change in course contents.
36.	Mobile Communication	After completion of this course, students will be able to:	_		No Change in course contents.
		To understand the various generations of mobile communications and	Text Book: 1. Rappaport Theodre S: Wireless Communication: Pearson Education, second	Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication.	

37.	Radar Navigation Analytical Instrumentation	architecture, logical channels, advantages and limitations After completion of this course, students will be able to: • Understand the basic concept of Radar and applications of various types. • Understand the different Radar Performance factors. • Explain the operation of CW& FM Radar. • Understand the Satellite navigation system. After completion of this course, students will be able to: • Explain majorly pH conductivity & dissolved component	Text Books: 1. Mark A Richards: Fundamentals Of Radar Signal Processing: TMH. 2. N. S. Nagraja: Elements of Electronics Navigation: TMH. 3. Peebles Jr. P. Z: Radar Principles: Wiley, NY. Text Books: 1. Jones E.B: Instrumentation technology.	Recommended Books: 1. Richards, Mark. A (2014). Fundamentals of Radar Signal Processing. New Delhi:TMH Publication. 2. Nagraja, N. S. (2009). Elements of Electronics Navigation: New Delhi:TMH Publication. 3. Peebles Jr. P. Z. (1998). Radar Principles. New Delhi: Wiley Publication. Suggested E-Resources: 1. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-spring-2007 Recommended Books: 1. Willard., Merritt.Dean,& Settle. (2004).	No Change in course contents. No Change in course contents.
		 basics of wireless communication To understand the concept of cellular communication Can test mobile communication equipment for the technical functionality Knowledge of GSM mobile communication standard, its 	edition. 2. Pandya Raj: Mobile and Personal Communication System and Services: Prentice Hall of India. Additional Reading: 1. David J. Goddman: Wireless Personal Communication System: Addision Wesley publication. 2. Joachim Tesal: GSM cellular Radio: John Wiley publication.	 Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication. Goddman, David.J. (1997). Wireless Personal Communication System: Addition Wesley Publication. Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication Suggested E-Resources: Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi. 	

		analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement. Evaluate the performance of Spectro-photometers, FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometry, and Mass Spectrophotometers with their applications.	 Measurements: Khanna Publications. R.S. Khandpur, Handbook of Analytical Instruments, TMH, New Delhi Reference Books: D. A. Skoog, Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia H. H. Willard, L.L. Merrit, J. A, Dean and F. A. Settle, Instrumental methods of Analysis, CBS Publishers, Delhi D. Patranabis, Principles of Industrial Instrumentation, TMH, New Delhi 	Delhi: CBS Publishers & Distributors. 2. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. 3. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company. 4. Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication. 5. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd. 6. Skoog. Holler.,&Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication. Suggested e-resources: 1. Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/103108100/	
39.	Geoinformatics	After completion of this course, students will be able to: Describe spatial database, Co-ordinate and projection system Analyse vector and raster based analysis in Geographical Information Sciences Describe global cover based global position systems i.e. GPS, GLONASS Describes applications of remote sensing and GIS in natural resources management	Text Books: 1. Chor Pang Lo and Albert K. W. Yeung. 2006. Concepts and Techniques-of Geographic Information Systems (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 2. Heywood, D.I. and Cornelius, S. and Carver, S. 2011. An Introduction to Geographical Information Systems. Pearson, Prentice-Hall, Inc. 3. Joseph, G. 2005. Fundamentals of remote sensing. Universities prc;s (India) Pvt Ltd., Hyderabad. 4. Jensen, John R. 2016. Introductory digital image processing: a remote sensing perspective. Upper Saddle River, N.I.: Prentice Hall. 5. Sabins, Floyd F. 1997. Remote	Recommended Books: 1. Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote Sensing: Principles and Interpretation. Long	No Change in course contents.

40.	Audio and Video Systems	After completion of this course, students will be able to:	sensing: principles and interpretation. San Francisco: W.H. Freeman	Grove, Illinois: Waveland Press Suggested e-resources: 1. Geoinformatics by University of Twente. https://www.itc.nl/ilwis/applications-guide/ 2. Geographical Information System by Dr A. K. Gosain, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/105102015/1	No Change in course contents.
		 Understand the fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards. Understand different colour television systems used worldwide and its compatibility. Principles of recording and reproduction of disc and video cassette recorders. 	Recommended Books: 1. S.P. Bail & R. Bali: Audio Video systems: Khanna Book Publishing Co. Delhi. 2. Ajay Sharma: Audio and Video Systems: Dhanpat Rai & Co. 3. R.G. Gupta: Audio and Video Systems: Tata Mc-Graw Hill.	Recommended Books: 1. Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. 2. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. 3. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata McGraw Hill Suggested e-resources: 1. Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22	
41.	Robotics and Automation	After completion of this course, students will be able to: • Develop skills of creating industrial and		SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and	Addition of as Elective

1	
mobile robot projects	control system, Dynamic stabilization of
• Implement robots like	Robotics.
KUKA, PUMA in real	POWER SOURCES AND SENSORS-
industrial world	Hydraulic, Pneumatic and electric drivers –
 Create innovative 	Determination HP of motor and gearing ratio,
robot designs using	variable speed arrangements, Path
mathematical concepts	Determination - Machinery Vision - Ranging
of kinematics	 Laser – Acoustic, Magnetic Fiber Optic and
Develop autonomous	Tactile Sensor.
mobile robots in	SECTION B
surveillance, security,	MANIPULATORS- Construction of
home and office	Manipulators, Manipulator Dynamic and
services	Force Control, Electronic and Pneumatic
	manipulators.
	ACTUATORS AND GRIPPERS-
	 Pneumatic, Hydraulic Actuators, Stepper
	 Motor Control Circuits, End Effecter,
	Various types of Grippers, Design
	consideration.
	Differential transformation and manipulators,
	Jacobians – problems .Dynamics: Lagrange –
	Euler and Newton – Euler formations –
	Problems.
	SECTION C
	KINEMATICS- Forward and Inverse
	Kinematic Problems, Solutions of Inverse
	Kinematic problems, Multiple Solution,
	Jacobian Work Envelop – Hill Climbing
	Techniques.
	PATH PLANNING- Trajectory planning
	 and avoidance of obstacles, path planning,
	Skew motion, joint integrated motion –
	straight line motion – Robot programming,
	languages and software packages.
	CASE STUDY- Multiple Robots – Machine
	Interface – Robots in Manufacturing and
	Non-Manufacturing applications – Robot
	Cell Design Selection of a Robot.
	Recommended Books:
	1. Groover, M. P., Weiss, M., Nagel, R. N.,
	Applications (2/e). McGraw-Hill
	& Odrey, N. G. (2017). Industrial Robotics: Technology, programming, and
	Applications (2/e). McGraw-Hill

42.	Power Electronics	After completion of this course, students will be able to: To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT Analyze the various rectifiers used in power circuits and DC to DC Converters	Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors.	 Education Publication Niku, S. (2010). Introduction to robotics. John Wiley & Sons. Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGraw-Hill Education. Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E. Pearson Education India. Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. 	Shifted from 6 th semester to list of electives.
		Explain the inverter operation and how harmonics are reduced and explain the basic working principle of cycloconverters	Section B Commutation Techniques: Load commutation, resonant- pulse commutation, complementary commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers. Section C Inverters: Single-phase voltage source		No change in course contents.

			inverters 180 and 120 mode operation;		
			Fourier analysis of single-phase inverter		
			output voltage. Pulse width modulated		
			inverters, Reduction of harmonics in the		
			inverter output, single-phase current source		
			inverters with ideal switch. Cyclo-converters:		
			Step-up and step-down cyclo-converter,		
			Single phase to single-phase cyclo-converters		
			three-phase half wave cyclo-converters.		
			Text Books:	Recommended Books:	
			1. Rashid Muhammad H.: Power	1. Rashid, Mohammad. H. (2017) .Power	
			Electronics Circuits, Devices And	Electronics Circuits, Devices And	
			Applications: PHI publication, 14th reprint	Applications: New Delhi: PHI	
			Edition.	Publication.	
			2. Bimbhra P.S.: Power Electronics:	2. Bimbhra, P.S. (2012). <i>Power Electronics</i> :	
			Khanna Publication, 3rd Edition.	New Delhi: Khanna Publication.	
			Reference:	3. Moorthy, Rama, (1991). An Introduction	
			1. Rama Moorthy: An Introduction	ToThyristors and Their Application: New	
			To Thyristors And Their Application: 2nd	Delhi: Affiliated East-West Press.	
			Edition, ISBN-81-85336-67-9.	Suggested E-Resources:	
				1. Power Electronics by Prof.B.G.	
				Fernandes, Department of Electrical	
				Engineering, Indian Institute of	
				Technology, Bombay.	
				https://nptel.ac.in/courses/108101038/	
				2. Power Electronics by Prof. D. Prasad,	
				Dr. D. Kastha, Prof.SabyasachiSengupta,	
				Prof. N. K. De, Dept of Electrical	
				Engineering, IIT Kharagpur.	
				https://nptel.ac.in/courses/108105066/	
43.	Digital Signal	After completion of this	Section A	indps// inprovide that courses, 100100000	
	Processing	course, students will be	Introduction of Signals, Systems and Signal		
		able to:	Processing, Classification of Signals and		Shifted from
		Students will be	Systems, Advantages of digital over analog		6 th semester
		familiar with the most	Signal processing, Signal Models -		to list of
		important methods in	Continuous Time versus		electives.
		DSP.	Discrete time signals, Periodic		7.537 33 55
		Students will be	and aperiodic Signals, Phasor		No change in
		familiar with design	Signals and Spectra, Energy and Power		course
		and functioning of	Signals, System Modeling Concepts, The		contents.
		digital filter design	superposition integral for Fixed and Linear		No Change
			Systems, Impulse Response of a Fixed and		110 Change
		• Student will be able	Linear System - Fourier Series -		
			Linear System - Fourier Series -		

to transform-domain	Trigonometric Series- Exponential Fourier	
processing.	Series-Symmetry Properties of the Fourier	
	Coefficients. Fourier Integral, Energy	
	Spectral Density, Fourier Transforms in	
	the Limit, Fourier Transform Theorems and	
	Pairs, System Analysis with Fourier	
	Transform, Lap lace Transform	
	Theorems, Network Analysis using the Lap	
	lace Transform.	
	Section B	
	Discrete Time Signals and Systems -	
	Review of Sampled Data Systems,	
	Time Domain Representations of	
	Discrete Time Signals, Frequency Domain	
	Representation of Discrete Time Signals,	
	Discrete Time Signals obtained by sampling,	
	Discrete Fourier Transform. Z-Transform -	
	Definition and Examples, Inverse Z-	
	Transform, Properties of the Z-Transform,	
	Introduction to Realization of	
	Digital Systems - Block Diagrams and Signal	
	Flow Graphs. Introduction to Realization of	
	an IIR and FIR systems, Discrete Fourier	
	Transforms (DFT) and Fast Fourier	
	Transform (FFT).	
	Section C	
	Design of Digital Filters:	
	Introduction to Filters, A	
	comparison of IIR and FIR Digital Filters.	
	Design of IIR Digital Filters – Impulse Invariant Transformation, Bilinear	
	Transformation, Design of Digital Butter	
	worth and Chebyshev Filters. Design of FIR	
	Digital Filters - Windowing and	
	Rectangular Window, Filter Designs using	
	Windows, Frequency Sampling Technique.	
	DSP tools and DSP techniques in various	
	applications.	D 11D 1
	Text Books:	Recommended Books:
	1. Johnson Johnny R.: Introduction to	1. Johnson, Johnny. R. (1998).
	Signal Processin: Prentice-Hall of India,	Introduction to Signal Processing. New
	1998.	Delhi: phi Publication.
	2. Oppenheim V. Alan: Signal &	2. Oppenheim, V. Alan. (1995). Signal &

		T			
			Systems: Prentice-Hall of India, 1995.	Systems . New Delhi: PHI Publication.	
			3. ProakisG.John: Digital Signal		
			Processing: Prentice-Hall of India, 3rd	Processing. New Delhi: PHI Publication.	
			edition, 2002.	Suggested E-resource:	
				1. Digital Signal Processing by Prof: S. C.	
				Dutta Roy, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Delhi.	
				https://nptel.ac.in/courses/117102060/	
44.	Mechatronics	After successful		SECTION A	Addition of
		completion of the course,		Mechatronics and its scope: Basic Structure	new elective.
		student will be able to:		and Evolution	
		• Develop skills to		Introduction of Transducer & Sensor:	
		monitor and control real		Displacement, Pressure, Flow, Level and	
		world industrial systems		Temperature Measurements. Signal	
		• Implement projects for		conditioning: amplification, filtering	
		industrial and home		PC based Control: Smart Sensor, Data	
		automations		Acquisition System, PLC, SCADA, DCS and	
		Analyze and create own		HMI System.	
		innovative filters and		SECTION B	
		signal conditioning		Pneumatic and Hydraulic actuation	
		applications		systems: Directional control valves, Pressure	
		Perform computer based		control valves and Process control valves and	
		controlling of industries		cylinders.	
		using PLC, SCADA and		Mechanical actuation system- Kinematic	
		HMI		chains, cams, gear-trains, Ratchet & Pawl,	
		TIIVII		dampers, Bearings.	
				Electrical actuation system: Mechanical	
				switches- solenoid operated solid state	
				switches, DC, AC & stepper motors.	
				Electrical Drives: Conventional and	
				Modern electrical drives, Classifications and	
				Applications	
				Closed loop Controllers: Performance	
				Specifications, Delayed First and Second	
				order system, PID Controller, ZN Tuning.	
				SECTION C	
				Case Studies of Mechatronics Systems:	
				Industrial Robot, Automobile Engine	
				Control, Vehicle Suspension Control,	
				MEMS, CNC Machine, Gyro system, 3-D	
				Printer.	
				Recommended Books:	

45. Professiona	•	 Isermann, Rolf (2005). Mechatronics Systems. Springer Publication Bolton, W. (2003). Mechatronics: electronic control systems in mechanical and electrical engineering. Pearson Education. Sawhney A.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. Dhanpat Rai & Co Publication Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. Tata McGraw Hill Publication The course is intended to provide participants 	New reading
Ethics		with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: 1. Professional Ethics by Rochester Institute of Technology, http://www.openculture.com/professional ethics-a-free-online-course. 2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. LeighHafrey, MIT, USA, https://ocw.mit.edu/courses/sloan-school-of-management/15-270-ethical-practice-	elective added

	leading-through-professionalism-social-	
	responsibility-and-system-design-spring-	
46. IoT Sensors and Devices	This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: 1. IoT Sensors and Devices by Curtin University https://www.edx.org/course/sensors-and-devices-in-the-iot. 2. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-	New reading elective added
	of-things-sensing-actuation.	
47. Electromagnetic Compatibility	This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to	New reading elective added

		other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden https://onlinecourses.nptel.ac.in/noc19_ee 17/preview.	
48.	Electric Vehicles	Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure Suggested e-resources: 1. Electric Vehicles Part 1 by IIT Delhi, https://onlinecourses.nptel.ac.in/noc19_ee 18/preview. 2. Electric Cars: Introduction by Delft University of Technology (TU Delft), https://www.edx.org/course/electric-cars-introduction-0.	
49.	Electronic Packaging	This course is designed to provide a basic knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with	New reading elective added

		potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18_m e54.	
50.	Multimedia Compression and Communication	The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication. The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur, https://nptel.ac.in/syllabus/117105083/.	New reading elective added
51.	Telecommunica tion switching systems and networks	 The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching	New reading elective added

Annexure II B.Tech. (ECE) Page 72

systems, traffic management, time division
switching systems, data communication
Networks, routing, ISDN, voice data
integration and importance of telephone
traffic analysis and telephone networks.
Suggested e-resources:
1. Computer Networks by Department of
CSE, IIT Kharagpur
https://nptel.ac.in/courses/Webcoursecont
ents/IIT%20Kharagpur/Communication%
20network/New_index1.html.
2. Data Communication by IIT Kharagpur.
https://nptel.ac.in/courses/106105082/19.

Annexure II B.Tech. (ECE) Page 73

Name of Programme: Master of Science (Electronics)

Programme Educational Objectives: The M.Sc. (Electronics) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for the technically skilled personnel who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics professionals develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematics and electronics fundamentals required to solve subject related problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- To prepare professionals to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their problem–solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- **PO1. Knowledge**: Apply the knowledge of mathematics, science and electronics fundamentals to the solution of related complex problems.
- PO2. Problem analysis: Interpret, compare and analyze following rules of scientific methodology to arrive at a defensible conclusion of a problem.
- **PO3. Design/development of solutions:** Develop solutions for complex electronics problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use scientific knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5. Modern tool usage:** Apply appropriate techniques, resources, and modern electronics tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex electronics activities with an understanding of the limitations.
- **PO6.** The electronics professional and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional electronics practice.
- **PO7. Environment and sustainability:** Understand the impact of the professional electronics solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the professional practice.
- **PO9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.

- **PO10.** Communication Skill: Communicate effectively on complex electronics activities with the electronics professional community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the professional and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12. Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Sc. (Electronics) I Sem (December 2019)

- 1. Highlighted with gray shade indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	P	С	Course Code	Course Name	L	T	P	С
CS 416	Computer Programming	4	0	0	4	CS 415	Computer Programming	4	0	0	4
CS 416L	Course Name L T P C Code Computer Programming L Computer Programming Lab O O S 4 CS 415 Computer Programming Lab O O S 4 CS 415 Computer Programming Lab O O Analog Integrated Circuits O O O O O O O O O O O O O O O O O O O		0	0	8	4					
ELE 301	Analog Integrated Circuits	4	0	0	4		Analog Electronics	4	0	0	4
ELE 301L	0 0	0	0	2	1		Analog Electronics Lab	0	0	4	2
ELE 404	Electronics Devices	4	0	0	4	ELE 406	Principles of Digital Electronics	4	0	0	4
ELE 405	Network Theory	4	0	0	4	ELE 406L		0	0	4	2
ELE 405L	Network Theory Lab	0	0	2	1	ECE 201	Signals, systems and Networks	4	0	0	4
ELE 406	1	4	0	0	4	ELE 205		4	0	0	4
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2						
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	0	16	28

M.Sc.(Electronics) II Sem (April/May 2020)

Existing Sch	eme					Proposed S	cheme				
Course Code	Course Name	L	Т	P	C *	Course Code	Course Name	L	T	P	C *
ECE 402	Fiber Optics and Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1		Microwave Engineering Lab	0	0	2	1
EIE 201	Electronics Measurement and Instrumentation	3	1	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4
EIE 201L	Electronics Measurement and Instrumentation Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2
EIE 302	Control Systems	3	1	0	4	EIE 302	Control Systems	4	0	0	4
EIE 302L	Control Systems Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	4	2
ELE 304	Digital Signal Processing	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3
ELE 304L	Digital Signal Processing Lab	0	0	2	1	TSKL 403	Communication Skills	2	0	0	2
TSKL 403	Communication Skills	2	0	0	2	ELE 508S	Seminar	0	0	2	1
VLSI 401	VLSI Design	4	0	0	4		Discipline Elective	4	0	0	4
VLSI 401L	VLSI Design Lab	0	0	4	2						
	Semester Wise Total	20	2	12	28		Semester Wise Total	20	1	12	27

M.Sc. (Electronics) III Sem (December 2020)

Existing Sci	heme					Proposed Sch	eme				
Course Code	Course Name	L	Т	P	C *	Course Code	Course Name	L	T	P	C
ELE 307	Microwave Electronics	4	0	0	4	VLSI 401	VLSI Design	4	0	0	4
ELE 307L	Microwave Electronics Lab	0	0	2	1	VLSI 401L	VLSI Design Lab	0	0	2	1
ELE 306	Microprocessors and Microcontrollers	3	1	0	4	CS 209	Data Structures	4	0	0	4
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	2	1	CS 209L	Data Structures Lab	0	0	4	2
ECE 301	Analog Communication	4	0	0	4	ECE 301	Analog Communication	4	0	0	4
ECE 301L	Analog Communication Lab	0	0	2	1	ECE 301L	Analog Communication Lab	0	0	2	1
CS 209	Data Structures	4	0	0	4	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2
ECE 303	Communication Networks	4	0	0	4		Open Elective	4	0	0	4
ELE 308P	Project			8	4		Project	0	0	4	2
ELE 508S	Seminar			2	1						
	Semester Wise Total	19	1	20	30		Semester Wise Total	20	0	16	28

M.Sc.(Electronics) IV Sem (April/ May 2021)

	Existing Scheme						Proposed Scheme						
Course Code	Course Name	L	Т	P	C	Course Code	Course Name	L	Т	P	C		
	Reading Elective	0	0	4	2	ELE 507P	UIL Project	0	0	48	24		
ELE 507P	Project	0	0	40	20		Reading Elective	0	0	0	2		
	Semester Wise Total 44 22				22		Semester V	Vise T	otal	48	26		

Reading Electives:

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	P	C	Course Code	Course Name	L	Т	P	С
IT-403R	Enterprise Resource planning	0	0	4	2		Professional Ethics	0	0	0	2
CS 509R	Client-Server Computing and Applications	0	0	4	2		Telecommunication switching systems and networks	0	0	0	2
IT 402R	Electronic commerce	0	0	4	2		Multimedia Compression and Communication	0	0	0	2
CS-427R	Parallel Computing	4	0	0	4		Electronic Packaging	0	0	0	2
							Electric Vehicles	0	0	0	2
							Electromagnetic Compatibility	0	0	0	2
							IoT Sensors and Devices	0	0	0	2

Discipline Elective	s				
Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Discipline Electives
ELE 403	Basics of Nanoelectronics		Biomedical Instrumentation	ECE 404	Optical Network
	Mechatronics	ECE 402	Fiber Optics and Communication	ECE 406	Satellite Communication
ELE 402	Audio and Video Systems		Analytical Instrumentation	ECE 403	Mobile Communication
	Geoinformatics	ELE 304	Digital Signal Processing	ECE 405	Radar Navigation
	Robotics and Automation	ECE 303	Communication Networks		
	Antenna Analysis	EEE 304	Power Electronics		

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

M.Sc. Electronics

						Ist Year
Semester-I						
Course	Course Name	L	т	Р	С	
Code	Course Name	_	'			
CS 415	Computer Programming	4	0	0	4	
CS 415L	Computer Programming Lab	0	0	8	4	
	Analog Electronics	4	0	0	4	
	Analog Electronics Lab	0	0	4	2	
ELE 406	Principles of Digital Electronics	4	0	0	4	
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2	
ECE 201	Signals, systems and Networks	4	0	0	4	
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	
	Semester Wise Total	20	0	16	28	

Semester-II					
Course Code	Course Name	L	Т	Р	С
	Microwave Engineering	4	0	0	4
	Microwave Engineering Lab	0	0	2	1
EIE 202	Electrical and Electronics	3	1	0	4
EIE 202	Measurements				
EIE 202L	Electrical and Electronics	0	0	4	2
EIE ZUZL	Measurements Lab				
EIE 302	Control Systems	4	0	0	4
EIE 302L	Control Systems Lab	0	0	4	2
MGMT 209	Entrepreneurship	3	0	0	3
TSKL 403	Communication Skills	2	0	0	2
ELE 508S	Seminar	0	0	2	1
	Discipline Elective	4	0	0	4
	Semester Wise Total	20	1	12	27

Semester-II	l				
Course Code	Course Name	L	T	Р	С
VLSI 401	VLSI Design	4	0	0	4
VLSI 401L	VLSI Design Lab	0	0	2	1
CS 209	Data Structures	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
ECE 301	Analog Communication	4	0	0	4
ECE 301L	Analog Communication Lab	0	0	2	1
ELE 306	Microprocessors and Microcontrollers	4	0	0	4
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2
	Open Elective	4	0	0	4
	Project	0	0	4	2
	Semester Wise Total	20	0	16	28

nd Y	ear					
	Semester-IV					
	Course Code	Course Name	L	Т	Р	С
	ELE 507P	UIL Project	0	0	48	24
		Reading Elective	0	0	0	2
		Semester Wise Total	0	0	48	26

Discipline Electives				
Basics of Nanoelectronics	Biomedical Instrumentation	Optical Network		
Mechatronics	Fiber Optics and Communication	Satellite Communication		
Audio and Video Systems	Analytical Instrumentation	Mobile Communication		
Geoinformatics	Digital Signal Processing	Radar Navigation		
Robotics and Automation	Communication Networks			
Antenna Analysis	Power Electronics			

Reading Electives		
Professional Ethics	Telecommunication switching systems and networks	Electric Vehicles
Electromagnetic Compatibility	Multimedia Compression and Communication	
IoT Sensors and Devices	Electronic Packaging	

Student can opt for at most 2 additional Open (Generic) audit/ credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	CS 416, Computer Programming			CS 415, Computer Programming	Please refer from Department of Computer Science
2	Analog Integrated Circuits	After the completion of course student will be able to: • Explain the operation and properties of Opamp. • Explain the design of differential amplifiers, active filters, oscillators, and other linear and nonlinear circuits using linear integrated circuits. • Design and analysis of single stage, multistage amplifiers and high	Analog Integrated Circuits Section A Feedback Amplifiers: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback. Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class-AB, Class C, power dissipation and efficiency calculations, amplifier distortion.	Analog Electronics Section A Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, design of integrator and differentiator, logarithmic and anti-logarithmic amplifiers, Active filters.	Added Shifted Deleted
		frequency amplifiers.	Section B High Frequency Amplifiers: Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers: frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Section B Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP-AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Added Shifted Deleted
			Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance,	Added Shifted Deleted

3.	Analog Integrated	After completion of this	and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits: Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer. Text Books: 1. Millman and Halkias: Integrated electronics, TMH, 1991. 2. Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009. 3. Gayakwad Ramakant A., "OP-AMP & Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010. Reference Book: 1. Adel Sedra& Kenneth Smith, Microelectronic Circuits Theory and applications'' FIFTH edition International version: Oxford University Press, 2009.	current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor. Recommended Books: 1. Gayakwad, Ramakant A. (2010). OP-AMP & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press. 3. Parikh, Millman & Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel. & Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resources: 1. Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/Analog Electronics Lab	Deleted
J.	Circuits Lab	laboratory course, students will be able to:	1. To design the Astable Multivibrator using 555	1. To design the Astable Multivibrator using 555	Outcomes added.
		 Design, construct, and analyze the various analog circuits to compare experimental results in the 	 To design the Monostable Multivibrator using 555 To design summer using 741 IC To design Intergrator using 741 IC To design Schmitt Trigger using 741/555 	 To design the Monostable Multivibrator using 555 To design summer using 741 IC To design Intergrator using 741 IC To design Schmitt Trigger using 	No Change in Experiment List.

4	ELE 406, Principles of	laboratory with theoretical analysis. Observe the amplitude and frequency responses of common amplification circuits Construct the desired Electronic design to meet specific requirements. After the completion of course student will be able	IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565.	 741/555 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF, 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. 12. To study frequency shift keying using PLL 565. 	No change in course contents
	Digital Electronics	to: Describe and minimize various digital systems. Design steps for combinational and sequential circuits. Understand basic memory architectures and their functionality.	 Text/Reference Books: Digital Principles and Applications by Malvino C.P., Leach D.P.; Tata Mc-Graw Hill, 1985. Digital Computer Fundamentals:Bartee, T.C. Computer System Architecture: Mano, M.M., Prentice Hall, 1988 Digital Electronics: K M Bakwad , Vardhan Publication, 2010 Computer Architecture and Organization: Hayes John P., McGraw Hill 1988 (International Edition) Introduction to Computer Architecture Stone s., Galgotia Publications 1986. Microprocessors, Architecture, 	Recommended Books: 1. Malvino C.P., Leach D.P. & SahaGoutam (2014). Digital Principles and Applications. New Delhi: Tata McGraw Hill Publication 2. Bartee T.C. (1979). Digital Computer Fundamentals. New York: McGraw-Hill Publication 3. Hayes John P. (1988). Computer Architecture and Organization. International edition: McGraw-Hill Publication 4. Stone, Harold S. (1976). Introduction to Computer Architecture. Paris: SRA Publication 5. Gaonkar, R.S. (1987). Microprocessors Architecture, Programming &	Deleted
5.	ELE 406L, Principles of Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the basic digital circuits and to verify their operation.	Programming & Applications R. Gaonkar, Wiley Eastern - 1987. ——	Applications with 8085/8080A, Wiley Eastern Publication ——	Learning Outcomes added No change in

	 Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs). Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers. 		experiment list.
6 ECE 201, Signals, Systems and Networks	After the completion of course student will be able to: • Analyze linear time invariant system in time and frequency domain • Apply network theorem to analyze the electrical circuit. • Explain two port parameters.	 Section-A Introduction: Continuous and discrete time signals, Transformation of independent variables, Exponential and sinusoidal signals, Unit impulse and unit step functions, Continuous and discrete time systems, Basic system properties Linear Time-Invariant System: Convolution for continuous and discrete time LTI system, Properties of LTI system, Causal LTI systems described by differential and difference equations, Singularity functions Fourier Series: Fourier series representation of continuous time periodic signals, Convergence of Fourier series, Properties of continuous time Fourier series, Fourier series representation of discrete time periodic signals, Properties of discrete time Fourier series Section-B Continuous Time Fourier Transform:	Introduced New Course

D	
Representation of a periodic signals,	
Fourier transform for periodic signals,	
Properties of continuous time Fourier	
Transform, Systems characterized by	
constant coefficient differential equations	
Laplace Transform: Laplace transform,	
Region of convergence for Laplace	
transform, Inverse Laplace transform,	
Geometrical evaluation of Fourier	
Transform from pole-zero plot, Properties	
of Laplace transform, Analysis and	
characterization of LTI systems using	
Laplace transform	
Initial Conditions in Networks: First order	
differential equations- General and	
Particular solutions, Time constants, Initial	
conditions in elements, geometrical	
interpretation of derivatives, A procedure	
to evaluate initial conditions	
Section- C	
Differential equation in circuits: Second	
order equations-Internal excitations,	
Networks excited by external energy	
sources, Response as related to the s-plane	
location of roots, General solutions in	
Terms of S, Q, n	
Impedance Functions and Networks	
Theorems: The concept of complex	
frequency, Transform impedance and	
transform circuits, Series and parallel	
combinations of elements, Superposition	
and Reciprocity, Thevenin's Theorem and	
Norton's Theorem	
Two port Parameters: Relationship of two	
port variables, Short circuit admittance	
parameters, Open circuit impedance	
parameters, Transmission parameters,	
Hybrid parameters, Relation between	
parameter sets, Parallel connection of two	
port networks	

				Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication Suggested E-resources:	
				1. Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ 2. Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100	
7	Microwave Electronics	After the completion of course student will be able to: • Understand various parameters of waveguide and use of component as per applications • Design impedance matching network for any transmission line or system	Microwave Electronics Section A Introduction to Microwaves & its application, Transmission lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart and its applications, coaxial, twin, strip µstrip lines &baluns	Microwave Engineering Section A Introduction to Microwaves & its application, Microwave Electromagnetic spectrum, Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti-resonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer, baluns, coaxial transmission line, Planar transmission line:	Added Shifted —Deleted

 Analyse and find 		Strip line, Microstrip line, Slot line etc.	
applications and	Section B	Section B	Added
limitations of	Wave Guides: Wave propagation in		
microwave tube	rectangular & circular wave guides, wave	rectangular wave guide: solution of TE and	Shifted
Generators and	guide modes, Q of wave guide, Wave guide	TM modes, Power Transmission and	Deleted
Amplifiers	coupling, Microwave passive components: S-	Attenuation, Excitation of modes in	
_	parameter representation and analysis of	Rectangular waveguide, Circular	
	microwave components such as Waveguide	Waveguide: Basic idea of TE and TM	
	Tees, Two-hole directional coupler,	modes, Rectangular and Circular cavity	
	attenuators, Phase shifters, Rectangular cavity	resonators, Rectangular cavity resonators,	
	resonator, Isolators, Circulators.	Q of cavity resonators, S parameters and	
		its conversion with Z and Y parameters,	
		Wave guide coupling, Microwave passive	
		Components: S- parameter representation	
		and analysis of microwave components	
		such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase	
		shifters, Microwave propagation in	
		ferrites: Faraday rotation, Isolators,	
		Circulators.	
	Section C	Section C	Added
	Microwave Tube Devices: Conventional	Microwave Tubes: Limitations of	
	Vacuum tubes at microwave, O type device -	Conventional vacuum tubes at microwave,	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type	Conventional vacuum tubes at microwave, Klystron: Construction and operation of	
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons,	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT):	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT,	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices: Tunnel diodes,	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices. Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley	Shifted
	Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave Semiconductor Devices IMPATT,	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two cavity klystron, Construction and working of Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices: Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron	Shifted

				IMPATT, TRAPATT.	
			Text Books:	Recommended Books:	
			1. Sisodia-Raghuvanshi: Microwave	1. Liao, S.Y. (1995). Microwave devices	
			Circuits & Passive Devices: (Wiley-	& Circuits. New Delhi: Prentice Hall	
			eastern).1st edition.1987	Publication.	
			2. S.Y. Liao: Microwave Devices &	2. Rizzi, P.A. (1998). <i>Microwave</i>	
			Circuits, (Prentice Hall).1st Edition 1995,	Engineering. New Delhi: Prentice Hall	
			3. Collins: Foundation Of Microwave	Publication.	
			Engineering, (Mc Graw Hill) 2nd Edition	3. Collins, R. E. (1992). Foundation of	
			1992	Microwave Engineering. New Delhi:	
			4. P.A. Rizzi: Microwave: (Prentice	McGraw Hill Publication.	
			Hall). 1st Edition 1998	4. Pozar, David M. (2008). <i>Microwave</i>	
			Trail). 1st Edition 1996	Engineering. New Delhi: Wiley	
				Publication.	
				Suggested E- Recourses:	
				1. Microwave Theory and Techniques	
				by Prof. Girish Kumar, Indian Institute	
				of Technology, Bombay.	
				https://nptel.ac.in/courses/108101112/	
				2. Basic Building Blocks of Microwave	
				Engineering by Dr Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/117105130	
				3. Transmission Lines and E.M. Waves	
				by Prof. R. K. Shivgaonkar, Indian	
				Institute of Technology, Bombay.	
0	Mionorrorro	After completion of this	Microwave Electronics Lab	https://nptel.ac.in/courses/117101056/	Lagunina
8	Microwave Electronics Lab	After completion of this laboratory course, students		Microwave Engineering Lab 1. Determine the operating frequency of	Learning Outcomes
	Electronics Lab	will be able to:	Determine the operating frequency of reflex klystron.	reflex klystron.	added.
			2. Draw the V-I characteristics of Reflex	2. Draw the V-I characteristics of Reflex	auueu.
		• Understand the	klystron	klystron	No Change in
		concept and working	3. Draw the characteristics of attenuator	3. Draw the characteristics of attenuator	
		of microwave bench			Experiment List.
		and different	4. To verify the wave-guide law5. To study the directivity and coupling	4. To verify the wave-guide law5. To study the directivity and coupling	LISt.
		components connected		coefficient of Directional Coupler.	
		on a bench.	coefficient of Directional Coupler.		
		• Analyze the behaviour	6. To study the properties of magic Tea and also determine isolation and coupling	6. To study the properties of magic Tea and also determine isolation and	
		of various microwave	coefficient.		
		components.	coefficient.	coupling coefficient.	

		Verify properties/ characteristic of microwave source, tees and directional coupler.	 To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv)	 To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient 	
9	EIE 201, Electronics Measurement and Instrumentation	After the completion of course student will be able to: • Measure various electrical parameters with precision and accuracy. • Select appropriate transducers for measurement of physical parameter. • Use suitable AC Bridge for relevant parameter measurement.	EIE 201, Electronics Measurement and Instrumentation Section A Measurements, Elements of Measurements, Mathematical Models of Measurements system, Performance Characteristics, Error in Measurement, True value, static error, static correction, scale range, scale spam, Reproducibility & drift, Repeatability, Noise-Signal to noise ratio, source of noise, Johnson noise, noise factor & noise figure. Accuracy & precision, Indication of precision, Significant figures, Range of doubt, static sensitivity, linearity, Hysteresis, Threshold, dead time, dead zone, resolution & discrimination, measurement error type & analysis, standard & calibration, curve fitting.	Electrical and Electronics Measurements Section A Measurements: Elements of Measurements, Performance characteristics, Error in measurements, True value, Static error, Static correction, Scale range, Scale span, Reproducibility, Drift, Repeatability, Accuracy and Precision, Indication of Precision, Significant figures, Range of doubt, Static sensitivity, Linearity, Hysteresis, Threshold, Dead Time, Dead zone, Resolution and Discrimination. Measurement error: Types and analysis, Loading error due to series and shunt connected instruments. Standards and Calibration, Curve fitting, Dynamic characteristics of measurement systems, Mathematical models of measurement systems, Mathematical models of measurement system (Mechanical and Electrical System). Transducers: Classification and characteristics, Resistive, Capacitive, Inductive, Hall Effect. Measurement of Displacement: LVDT and RVDT, Strain Gauges and its types. Measurement of Temperature: RTD, Thermistor and Thermocouples.	Added Shifted Deleted
			SECTION B	Section B	Added
			Transducers: Classification, resistive, capacitive, inductive, Piezoelectric,	d'Arsonval Galvanometer- Construction, Torque Equation and Dynamic behavior of	Shifted

optical, Platinum Resistand Measurement of flow Ele ultrasonic type. Measurem Gamma rays, ultrasonic type. Humidity—Hydrometer, Mea PH—electrode, Measurem &Frequency- Lissouge Patter	Construction, Torque equation, Ammeter shunts, Voltmeter multipliers, Ohmmeter-Series and Shunt type, Moving Iron Instruments, Electrodynamometer Instrument. AC Bridges- Measurement of self-inductance (Maxwell's Bridge, Hay's Bridge, Owen's Bridge, Anderson's Bridge), capacitance (De Sauty's and Schering Bridge) and frequency (Wien's Bridge).
SECTION	
AC Bridges- Measurement o capacitance & Frequen Instruments: Construction Galvanometer, PMMC Construction & Torque ed Iron- Construction & Torque AC voltmeters, DC & ohmeters-series & Shunt to Digital & Analog, Cathode & CRT, Electron Gun, Focu Time base Generator, To Function generator, Q- meter	Measurement of low, medium and high resistance. Multimeter- Analog and Digital, Function generator, Wave Analyzer, Spectrum Analyzer, Q-meter and its applications, CRO- CRT, Time base generator, Measurement of Phase and Frequency (Lissajous Patterns), types of CRO (Dual Trace, Dual Beam, Sampling type and Storage CRO).
Text Books: 1. Sawhney, A.K.: A	Recommended Books: Added
Electrical and measurements Instrumentation:Dhanp 4 th edition 1968. Reprin 2. Doeblin, Ernest O: Meas Application and Design	Electronics and Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication 2004. Publication 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi:

10	Electrical and Electronics Measurements Lab	After completion of this laboratory course, students will be able to: • Develop an understanding of construction and working of different measuring instruments • Develop an ability to use measuring	Reference Books: 1. Jones, Barney E: Instrumentation measurement and Feedback:TMH, edition 1978, reprint 2004. 2. Cooper, W.D: Modern Electronics instrumentation and Measurements: PHI. 3. R.K Jain: Mechanical industrial Measurements: Khanna Publishers.	Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof.Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064 1. To study Hall Effect. 2. To study principle of Thermocouple. 3. To study principle of Thermocouple. 4. To study principle of Thermistor. 5. To study Principle of Strain guage. 6. To study De sauty bridge. 8. To study Wein AC bridge. 9. To study CRO circuitry in detail.	Learning outcomes added.
		<u> </u>		9. To study CRO circuitry in detail.	
11	EIE 302,	After the completion of	Section A	Section A	Added
	Control Systems	course student will be able	Open loop and closed loop systems,	Open loop and closed loop systems,	Added
		to: • Formulate	servomechanism, mathematical model of systems, differential equations and transfer	servomechanism, mathematical model of systems, differential equations and transfer	Shifted
		mathematical model	functions, Block diagram algebra, signal flow	functions, Block diagram algebra, signal	
			graphs; +ve and -ve feedback effects of	flow graphs; +ve and -ve feedback effects	Deleted

representation complex sy- using redu techniques.	plify of stepper motor, op-amp, potentiometer as an terms error detector; comparison of AC and DC stepper motor, op-amp, potentiometer as an terms error detector; comparison of AC and DC states that the states of	of feedback. Standard test signals, time response of irst and second order systems, steady state errors and error constants, Design specifications of second order systems.	
 Use standard signals to ideperformance characteristics of and second-systems. Apply root technique for standardsis. 	and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability in terms of Pouth Hurwitz criterion; Poot locus	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in orief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
	response specifications; Frequency domain plots, polar plots,Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation of LTI systems.	Added Shifted Deleted

12	Control Systems Lab	After completion of this laboratory course, students will be able to: • Understand the concept of time response and frequency response of any physical system. • Mathematical modeling of physical system to find out of transfer system. • Analyze the stability of system with the help of system response.	Ed.: Printice Hall of India Pvt. Ltd., 2001 1. To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. 2. To study the DC position controller and find out the tachometer gain.	Prentice hall. Suggested e-resource: 1. Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/ 1. To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. 2. To study the DC position controller and find out the tachometer gain. 3. To determine time domain response of a second order systems for step input and obtain performance parameters. 4. To convert transfer function of a system into state space form and viceversa. 5. To plot root locus diagram of an open loop transfer function and determine range of gain 'k for stability. 6. To plot a Bode diagram of an open loop transfer function. 7. To draw a Nyquist plot of an open loop transfers function and examine the stability of the system.	Learning Outcomes added. Deleted Added
13	MGMT 209, Entrepreneurship		_		Please refer from Department of Management
14	TSKL 403, Communication Skills				Please refer from Department of English
15	Seminar	After the completion of course student will be able to: • To identify promising new directions of various cutting edge			Learning Outcomes added.

16 VLSI 401,	technologies. • Undertake a critical review of the literature. • Deliver well-organized technical presentations and prepare a technical report. After the completion of			
VLSI Design	course student will be able to: Explain the basic theory of crystal growth, wafer fabrication and IC fabrication technology. Explain the different VLSI design styles, overview of ICs and fabrication steps of MOS, CMOS and BJT. Design and analyse the output characteristics of different MOS inverters	Text Books: 1. Sze S.M.: VLSI Technology:TMH. 2. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design: Mc. Graw Hill. Reference Books: 1. Botker B.R: Microelectronics. 2. Gandhi S.K.: VLSI Fabrication Principle. 3. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. 4. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. 5. Martin Ken: Digital Integrated Circuits: Oxford press. 6. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design.	Recommended Books: 1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publication. 2. Kang, S.M., & Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. 3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. 4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. 5. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. 6. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. 7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. 8. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication.	No change in course contents

				Suggested E-Resources:	
				 VLSI Circuits by Prof. S. Srinivasan, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ 	
17	VLSI Design Lab	After completion of this laboratory course, students will be able to: • Use VHDL for design of digital circuits • Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. • Develop and simulate register-level models of hierarchical digital systems	1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	 Write a program for the implementation of half adder and Full adder. Write a program for implementing half subtractor and full subtractor. Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program for implementing Encoder and Decoder. Write a program to implement gray code to binary code converter and vice versa. Write a program to implement COMPARATOR. Write a program for the implementation of S-R Flip flop and D Flip flop. Write a program for the implement upcounter and down-counter. Write a program to design JK Flip-flop and write design summary Write a program to design T Flip-flop and write design summary 	Learning Outcomes added. Added
18	CS 209, Data			and write design summary	Please refer
	Structures				from Department of Computer Science
19	Analog	After the completion of	Section-A	Section-A	Added
	Communication	course student will be able	Introduction - Communication Process,	Introduction to signals: Size of signals,	

to: • Explain different blocks in communication system and how noise affects communication using different parameters. • Distinguish between different amplitude modulation schemes with their advantages, disadvantages and applications and analyse generation and detection	Source of Information, Channels-Noise, System Noise Source, Noise & Feed-back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals, Modulation Process – Need, Bandwidth, Requirements-Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication, Continuous and Discrete Spectra, Band pass System,	Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison-correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals: Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density, Signal power and power spectral density.	Shifted Deleted
of FM signal and	Section B	Section- B	Added
comparison between amplitude and angle modulation schemes. • Identify different types of radio receiver circuits	Modulation: Amplitude Modulation: Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulation and Angle Modulation, Spectral Analysis of Different Modulation; Modulators: Amplitude Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulators: Filter Method, Phase-shift Method & Third Method-ISB Modulators, Vestigial sideband Modulator; Frequency Modulator: Direct &Indirect Method, Narrow band FM, Phase Modulator, Spectral Analysis of these Modulators; Transmitters – AM Transmitter, Low Level and High Level SSB Transmitter, Pilot Carrier – FM Transmitter – Narrow band and Wide band, FM Stereo Transmitter;	Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Quadrature amplitude modulation, Vestigial sideband modulation, Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulation of FM, Interference in angle modulated systems, FM receiver	Shifted Deleted
	Section C Receiver: Sensitivity, Selectivity, Signal to Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector – Ratio Detector — Foster — Seelay Discriminator; AM	Random Signal and Noise: Gaussian Noise, Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise.	Added Shifted Deleted

		Receiver (Block Level Treatment) — TRFReceiver,Super-heterodyne Receiver,Double Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver — FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum pre-emphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two-Port Networks, Free-Space Link Calculations	
		Text Books: 1. George Kennedy: Electronic Communications Systems: McGraw Hill. 2. Taub and Schilling: Principles of communication systems: McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering.	Recommended Books: 1. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007). Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., & Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resource: 1. Analog Communication by Prof. Goutam Das, G S Sanyal School of Telecommunications, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/	Added Deleted
Analog Communication Lab	After completion of this laboratory course, students will be able to: • Demonstrate Amplitude modulation and demodulation techniques. • Demonstrate frequency modulation			Learning outcomes added. No change in experiment list.

21	ELE 306, Microprocessors and	and demodulation technique. • Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. • Compare different modulations and demodulations to recognize the advantages and disadvantages of them. • Identify different radio receiver circuits and role of AGC. After the completion of course student will be able to:	Test Books :	Recommended Books:	No change in course contents
	Microcontrollers	 Interface memory and different peripherals with Microprocessor and microcontroller Design and develop the system for real time applications 	1. Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. 2. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book: 1. Ajay V. Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. 2. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. 3. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005. 4. Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design, 2nd ed., Liu & Gibson.	1. Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication	

			8086/8086 Family: Architecture, Programming and Design. New Delhi: Prentice Hall India. Suggested E-Resources: 1. Microprocessors and Microcontrollers by Prof.SantanuChattopadhyay, Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	
22	ELE 306L, Microprocessors and Microcontrollers Lab	After completion of this laboratory course, students will be able to: • Understand the different instructions of 8086 microprocessor assembly language. • Coding in assembly language. • Solve different real time problems.	 	Learning Outcomes added. No Change in Experiment List.
23	Project	After completion of this course, students will be able to: • Demonstrate effective project execution and control techniques that result in successful projects. • Ability to identify, formulates, and solves engineering problems. • Use the techniques,	 	Learning Outcomes Added and this course has no prescribed syllabus

		1.11		'
		skills and modern		
		engineering tools		
		necessary for		
		engineering practice		
24	UIL Project	After completion of this	 	Learning
		course, students will be		Outcomes
		able to:		Added and this
		• Undertake problem		course has no
		identification,		prescribed
		formulation and		syllabus
		solution.		
		• Design engineering		
		solutions to complex		
		problems utilizing a		
		systems approach.		
		• Demonstrate the		
		knowledge, skills and		
		attitudes of a		
		professional engineer.		
		Demonstrate effective		
		organizational		
		leadership and change		
		skills for managing		
		projects, project teams,		
		and stakeholders.		
25	Biomedical	After the completion of	Section A	Addition of
	Instrumentation	course student will be able		New Course as
		to:	Electrode electrolyte interface, half-cell	Elective
		• Describe the principle	potential, polarization and non- polarisable	
		of interfacing of	electrode, calomel electrode, needle and	
		Electrode-electrolyte	wire electrode, microelectrode-metal	
		and different types of	 micropipette. Ag/AgCl electrodes	
		electrodes which are	Microelectrodes, skin surface electrode,	
		used in biomedical	and lead for EG, ECG, EMG. Transducer	
		field.	for biomedical applications, factors	
		• Explain different	governing the selection of transducer,	
		types of recorders and	pressure, temperature, flow, biomedical	
		photometers.	ultrasonic transducer.	
		Describe the method	 Section B	
		of measurement of BP	 Low-Noise preamplifier, main amplifier	
		of measurement of Dr	Low-Noise preampliner, main ampliner	

		and blood fla		and duivon amplifier inlaint and also	
		and blood flow.		and driver amplifier, inkjet recorder,	
				thermal array recorder, photographic	
				recorder, magnetic tape recorder, X-Y	
				recorder, medical oscilloscope. pH, PO2,	
				PCO2, pHCO3, Electrophoresis,	
				colorimeter, spectro photometer, flame	
				photometer, auto analyzer.	
				Section C	
				Respiration, heart rate, temperature, pulse	
				blood pressure, cardiac output, O2, CO2	
				measurements. Measurement of blood	
				pressure, blood flow, and heart sound,	
				cardiograph: Phonocardiography, vector	
				cardiograph, Echocardiography	
				pacemaker, defibrillators, Ventilator,	
				Computer patient monitoring system.	
				Recommended Books:	
				1. Cromwell L. (2007). Biomedical	
				Instrumentation and Measurement.	
				New Delhi: PHI Publication	
				2. Webster J.G.(1998). Medical	
				Instrumentation Application and	
				Design. New York: John Wiley and	
				Sons	
				3. KhandpurR.S. (1997). Handbook of	
				Biomedical Instrumentation. New	
				Delhi: Tata McGraw-Hill Publication	
				4. Carr J. J. & Brown J. M. (1997).	
				Introduction to Biomedical Equipment	
				Technology. New York: John Wiley	
				and Sons	
26	Optical Network	After the completion of		Section A	Addition of
		course student will be able		Introduction to Optical Networks,	New Course as
		to:		Characteristics of Optical Fiber (Emphasis	Elective
		• Describe the		on Non Linear Characteristics) Timing &	
		important components		Synchronization, Components: Couplers,	
		such as multiplexer,		Isolators & Circulators, Multiplexers &	
		filters.		Filters, Optical Amplifiers, Tunable	
		• Explain the		Lasers, Switches, Wavelength Converters,	
		- Explain the		Lasers, Switches, wavelength Conventers,	

	N. 1 GOVERNONY N. 1. 1	
multiplexing	Networks SONET/SDH, Multiplexing,	
technique	SONET/ SDH Layers, Frame, Structure,	
• Describe the	Frame Structure, Physical Layer, Elements	
protection technique	of a SONET/SDH Infrastructure	
in SONET/SDH and	Section B	
IP network	ATM: Functions of ATM, Adaptation	
	Layers, Quality of Service, Flow Control,	
	Signaling and Routing, WDM Network	
	Elements, Optical Line Terminals, Optical	
	Line Amplifiers,	
	 Optical Add/ Drop Multiplexers, Optical	
	Cross Connects, WDM Network Design,	
	Cost Trade-offs, Light path Topology	
	Design, and Routing and wavelength	
	assignment problems, Dimensioning	
	Wavelength Routing Networks,	
	Section C	
	Network Survivability Basic Concepts,	
	Protection in SONET/SDH, Protection in	
	IP networks, Optical Layer Protection,	
	Different Schemes, Interworking between	
	Layers	
	 Access Networks, Network Architecture	
	Overview, Enhanced HFC, FTTC, Optical	
	Switching, OTDM, Synchronization,	
	Header Processing, Buffering, Burst	
	Switching.	
	Deployment Considerations	
	Recommended Books:	
	1. Ramaswami, Rajiv.,&Sivarajan,	
	Kumar. N.(2009). Optical Networks: A	
	Practical Perspective. San Francisco,	
	California: Morgan Kaufmann	
	 Publisher.	
	2. Uyless, Black. (2009). Optical	
	Networks Third Generation Transport	
	Systems: New Delhi: Pearson	
	Publication.	
	3. Tanenbaum, Andrew. S. (2010).	

			Computer Networks. New Delhi:	
			Pearson Publication.	
			4. Murthy, C. Siva Ram.,&Gurusamy	
			Mohan. (2001). WDM, Optical	
			Networks Concepts, Design &	
			Algorithms. New Delhi: Pearson	
			Publication.	
			Suggested e-resources:	
			1. Introduction to Optical Networks by	
			YatindraNath Singh, Department of	
			Electrical Engineering, Indian Institute	
			of Technology, Kanpur.	
			http://home.iitk.ac.in/~ynsingh/seminar	
			s/OptNets.pdf	
			2. Optical networks and Switching	
			Systems by Prof. Yatindra N Singh,	
			Department of Electrical Engineering	
			Indian Institute of Technology,	
			Kanpur. https://nptel.ac.in/syllabus/117104021	
27	C-4-1124-	A.C		A 3 3°4° C
27	Satellite Communication	After the completion of	Section A	Addition of
27	Satellite Communication	course student will be able	Section A Elements of Satellite Communication,	New Course as
27		course student will be able to:	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit	
27		course student will be able to: • Identify the	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle,	New Course as
27		course student will be able to: • Identify the fundamentals of orbital	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit,	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies.	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N.	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems required by a	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems required by a communications satellite	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems required by a communications satellite to function and the	 Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and de-emphasis, S/N ratios for FM video	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems required by a communications satellite to function and the trade-offs and	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and de-emphasis, S/N ratios for FM video transmission, digital transmission, digital	New Course as
27		course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. • Understand the systems required by a communications satellite to function and the	Section A Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and de-emphasis, S/N ratios for FM video	New Course as

communications satellite	e and CDMA.	
system.	Section C	
• Understand different		
Networks topologies and	Enter control for digital satellite mints.	
applications of		
networks, as well as the		
comparison to		
alternative	impact on satellite-earth links: attenuation	
communications	and depolarization, atmospheric	
systems.	absorption, rain, cloud and ice effects etc.	
	Introduction of various satellite systems:	
	VSAT, low earth orbit and non-	
	geostationary, direct broadcast satellite	
	television and radio, satellite navigation	
	and the global positioning systems.	
	Recommended Books:	
	1. Bostian, Charles., Pratt, Timothy.,	
	& Allnutt, Jeremy. (2006). Satellite	
	Communications. New Delhi: John	
	Wiley & Sons.	
	2. Roddy, Dennis. (2017). Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	3. Ha, Tri. T. (1990). Digital Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	Suggested e-resources:	
	1. Satellite Communication Systems by	
	Prof.Kalyan Kumar Bandyopadhyay	
	Department of Electronics and	
	Electrical Communication Engineering	
	Indian Institute of Technology,	
	Kharagpur.	
	http://textofvideo.nptel.ac.in/11710513	
	1/lec1.pdf	
	2. Satellite Link Design by Dr. Marwah	
	Ahmed.	
	https://net425site.files.wordpress.com/	
	2017/02/net-425-d-feb-2016-lec-5.pdf	

28 Rosics of	After the completion of	Section A	Addition of
28 Basics of Nanoelectronics	After the completion of course student will be able to: • Explain the fundamental science and quantum mechanics behind nanoelectronics. • Explain the basic concepts behind the	The 'Top down' and 'Bottom up approach, Nanotechnology potential introductory quantum mechanics for Nanoscience: size effect in smaller systems, quantum behavior of nanometric world, Band structure and density of states at Nanoscale: energy bands, density of states at low dimensional structure	Elective
	operation of nano scale MOSFET	Semiconductor heterostructure quantum wells, quantum wires, and quantum dots.	
	• describe the	Section B	
	various techniques and approaches for the fabrication of nano-scale devices	MOS band structure, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertica MOSFETs, limits to scaling, Tunne junction and application of tunneling Tunneling through a potential barrier potential energy profiles of materia interfaces, Classical and semi-classica transport, ballistic transport, carbon nanotubes, Single electron transistor Coulomb Blockade, Resonant Tunneling diodes and transistors.	
		Section C	
		Buck minsterfullerence, Nanodiomond Molecular Machine, Nanobiometrics Fabrication technology: Top-down vs bottom-up technology. Lithographic process: Lithography, Nanolithography split gate technology, self-assembly limitation of lithographic process. Non-lithographic techniques: Plasma are discharge, sputtering, evaporation chemical vapour deposition, pulsed lases deposition, molecular beam epitaxy, solgel technique, electro deposition and other process.	
		Recommended Books: 1. Hanson, G. W. (2008). Fundamental.	,

			of Nanoelectronics. New Delhi:	
			9	
			Pearson Publication.	
			2. Chattopadhyay ,K. K.,& Banerjee, A.	
			N. (2009). Introduction to Nanoscience	
			and Nanotechnology. New Delhi: PHI	
			Publication.	
			3. Mitin, Vlaadiniz.U. (2009).	
			Introduction to Nanoelectronics. New	
			Delhi: Cambridge University Press.	
			4. Dragman, M., & Dragman, D. (2008).	
			Nanoelectronics- Principles and	
			Devices (2/e): Artech House Publishers	
			5. Goser, Karl. (2004). Nanoelectronics	
			and Nanosystems. Berlin: Springer	
			Publication	
			6. Minoli, Daniel. (2005).	
			Nanotechnology Application to	
			Telecommunication and Networking.	
			Hoboken, New Jersey: Wiley	
			Publication.	
			7. Davis "John. H. (1997). <i>Physics of Low</i>	
			Dimension Semiconductor. New Delhi:	
			Cambridge University Press.	
			8. Cosh, Carl.C. (1998). <i>Nanostructure</i>	
			Materials Processing Property and	
			Applications. Norwich, New York:	
			Noyes Publications	
29	Mobile	After the completion of	Section A	Addition of
29	Communication	course student will be able		New Course as
	Communication	to:	Introduction to Wireless Communication	Elective
			System: Evolution of mobile radio	Elective
		• To understand the	communication, Mobile radiotelephony in	
		various generations of	U.S Mobile radio system around the world,	
		mobile communications	second generation (2G) cellular network,	
		and basics of wireless	 evolution to 2 5G wireless network	
		communication	evolution for 2.5G TDMA standards, third	
		• To understand the	generation (3G) wireless network. The	
		concept of cellular	Cellular concept- System design	
		communication	fundamentals, frequency reuse channel,	
		• Can conduct field	assignment strategies. Hand off strategies	
			Interference and system capacity,	

experiments and measurements	improving coverage and capacity in cellular system.
	Section B
	 Propagation model and Spread Spectrum Modulation Techniques: Longley rice model, kumara model hata model pcs extension to hata model, wolfish and betony model, Pseudo Noise (PN) sequence,. Direct sequence spread spectrum (DSSS), frequency hopped spread spectrum (FHSS). Multiple Access Techniques for Wireless Communication, Introduction to multiple access. Frequency division multiple access (FDMA) Time division Multiple access (TDMA).
	 Section C Spread spectrum multiple access. Packet Radio. Global System for Mobile Communication, channel types, Example of a GSM cell. Frame structure of GSM, Data over low power wireless Re-cordless Network.
	 Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication. 2. Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication. 3. Goddman, David.J. (1997). Wireless Personal Communication System: Addition Wesley Publication. 4. Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication Suggested E-Resources: 1. Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi.

		https://nptel.ac.in/courses/117102062/	
30 Radar Navigation	After the completion of course student will be able to: • Understand the basic concept of Radar and applications of various types. • Understand the different Radar Performance factors. • Explain the operation of CW& FM Radar.	Section A RADAR SIGNAL MODELS: Amplitude models, distributed target forms of range equation, radar cross section, statistical description of radar cross section, Swerling model, Clutter, signal to clutter ratio, temporal and spatial correlation of clutter, noise model and signal to noise ratio, frequency models, Doppler shift, simplifies approach to Doppler shift, simplifies approach to Doppler shift, stop and hop assumption, spatial model, variation with angle, variation with range, projections, multipath, spectral models. RADAR WAVE FORMS: Waveform matched filter of moving targets, ambiguity function, ambiguity function of the simple matched pulse filter for the pulse burst, pulse by pulse processing, range ambiguity, Doppler response and ambiguity function of the pulse burst.	Addition of New Course as Elective
		Section B DETECTION FUNDAMENTALS: Radar detection as hypothesis testing, Neyman-Pearson detection rule, likelihood ratio test, threshold detection of radar signals, non-coherent integration of nonfluctuating targets, Albersheim and Shnidaman equations, Binary integration. RADIO DIRECTION FINDING: loop direction finder, goniometer, errors in direction finding, adcock and automatic direction finders, commutated aerial direction finder. RADIO RANGES: LF/MF four course radio range, VOR, ground equipment & receiver, VOR errors. HYBERBOLIC SYSTEM OF NAVIGATION: LORAN Decca & Omega system.DME&TECAN.	

			 Section C AIDS TO APPROACH AND LANDING: ILS, GCA& MLS DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar, frequency trackers, doppler range equation. SATALLITE NAVIGATION SYSTEM: transit system, NAVSTAR, GPS, basic principles of operation, signal structure of NAVSTAR broadcasts, data message, velocity determination, accuracy of GPS & differential navigation, NAVSTAR receiver.	
			Recommended Books: 1. Richards, Mark. A (2014). Fundamentals of Radar Signal Processing. New Delhi:TMH Publication. 2. Nagraja, N. S. (2009). Elements of Electronics Navigation: New Delhi:TMH Publication.	
			 3. Peebles Jr. P. Z. (1998). Radar Principles. New Delhi: Wiley Publication. Suggested E-Resources:	
			1. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-spring-2007	
31	Mechatronics	After successful completion of the course, student will be able to:	SECTION A Mechatronics and its scope: Basic Structure and Evolution	Addition of new elective.

• Develop skills to	Introduction of Transducer & Sensor:	
monitor and control real	Displacement, Pressure, Flow, Level and	
world industrial systems	Temperature Measurements. Signal	
•	conditioning: amplification, filtering	
• Implement projects for	PC based Control: Smart Sensor, Data	
industrial and home		
automations	Acquisition System, PLC, SCADA, DCS	
Analyze and create own	and HMI System.	
innovative filters and	SECTION B	
signal conditioning	Pneumatic and Hydraulic actuation	
applications	systems: Directional control valves,	
Perform computer based	Pressure control valves and Process control	
controlling of industries	valves and cylinders.	
using PLC, SCADA and	Mechanical actuation system- Kinematic	
HMI	chains, cams, gear-trains, Ratchet & Pawl,	
	dampers, Bearings.	
	Electrical actuation system: Mechanical	
	switches- solenoid operated solid state	
	switches, DC, AC & stepper motors.	
	Electrical Drives: Conventional and	
	Modern electrical drives, Classifications	
	and Applications	
	Closed loop Controllers: Performance	
	Specifications, Delayed First and Second	
	order system, PID Controller, ZN Tuning.	
	SECTION C	
	Case Studies of Mechatronics Systems:	
	Industrial Robot, Automobile Engine	
	Control, Vehicle Suspension Control,	
	MEMS, CNC Machine, Gyro system, 3-D	
	Printer.	
	Recommended Books:	
	1. Isermann, Rolf (2005). <i>Mechatronics</i>	
	Systems. Springer Publication	
	2. Bolton, W. (2003). Mechatronics: electronic control systems in	
	mechanical and electrical engineering.	
	Pearson Education.	
	3. Sawhney A.K. (2015). A Course in	
	Electrical and Electronic	

32	Fiber Optics and Communication	After the completion of course student will be able to: • Explain the light propagation through optical fibers. • Explain the various light sources and optical detectors. • Design fiber optic transmitter and receiver system.	Section A Fiber optics: Introduction, optical fibers - geometrical Optics description, wave propagation, fiber modes, step index, graded index single and multimode fibers, dispersion, limitation on bit rate, fiber bandwidth, fiber loss, fiber manufacturing: design issue, fabrication methods, cables and connectors, fiber splicing and fiber couplers. Section B Optical Sources and detectors: Light- Emitting diodes: LED characteristics, modulation response, LED structures. Semiconductor Lasers: structures, Laser characteristics, single longitude mode operation, DFB and VCSEL laser, Receivers: photo detector design: P-N, PIN, Schottky barrier and Avalanche photodiode, Phototransistor, receiver noise: noise mechanisms in PIN and APD receivers, Receiver structures.	Measurements and Instrumentation. Dhanpat Rai & Co Publication 4. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. Tata McGraw Hill Publication	Move this course from 2 nd semester to list of Elective No change in course contents.
			Section C Optical Fiber Systems: optical transmitter circuit: source limitations, LED and Laser drive circuits, Optical receiver circuit, system design considerations, Digital systems, Digital optical receiver, BER, Optical power budgeting, rise time budget, line coding, analog systems: Direct intensity modulation, subcarrier intensity modulation, coherent systems, computer, sensor and military applications.		

			Text Books:	Recommended Books:	
			1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication: PHI, 1995. 3. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. 4. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd	 Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw Hill Publication. 	
			ed., 1991.		
33	Analytical Instrumentation	After the completion of course student will be able to: • Explain majorly pH conductivity & dissolved component analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement.		Section A PH conductivity & dissolved component analyzer Sampling systems – ion selective electrodes – conductivity meters – pH meters - dissolved oxygen analyzer – sodium analyzer – silica analyzer – moisture measurement. GAS ANALYSER Oxygen analyzer – CO monitor, CO2, O2, dust and smoke measurement, thermal conductivity type—thermal analyzer—industrial analyzers.	Addition of New Course as Elective
		 Evaluate the performance of Spectrophotometers, FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometry, and Mass 		Section B Spectrophotometers: Spectral methods of analysis – Beer's law UV – visible spectrophotometers – single beam and double beam instruments – source and detectors – IR spectrophotometers – sources and detectors – FTIR spectrometers – atomic absorption spectrophotometer – flame emission	

Spectrophotometers with	spectrophotometers - sources of flame
their applications.	photometry – applications.
	Section C
	Nuclear magnetic resolance and radiation
	techniques
	NMR – basic principle – NMR
	spectrometers – applications – introduction
	to mass spectrophotometers – nuclear
	radiation detectors – GM counter –
	proportional counter – solid state detectors,
	X-ray spectrometry: Instrumentation for
	X-ray spectrometry, X-ray diffractometer.
	Recommended Books:
	1. Willard., Merritt., Dean., & Settle.
	(2004). Instrumental Methods of
	Analysis. New Delhi: CBS Publishers
	& Distributors. 2. Ewing, Galen.W. (1985). <i>Instrumental</i>
	Methods of Chemical Analysis. New
	Delhi: McGraw-Hill Publication.
	3. Liptak, B.G. (1995). <i>Process</i>
	Measurement and Analysis.
	Philadelphia: Chilton Book Company.
	4. Settle,Frank.A. (1997). Handbook of
	Instrumental Techniques for Analytical
-	Chemistry. New Delhi: PHI
	Publication.
	5. Braun, Robert.D. (2012). Introduction
	to Instrumental Analysis. Hyderabad,
	Karnataka:BSP Books Pvt.Ltd.
	6. Skoog., Holler., & Crouch. (2017).
	Principles of Instrumental Analysis.
	New Delhi: Cengage Learning Publication.
	Suggested e-resources: 1. Modern Instrumental Methods of
	Analysisby Prof. J. R. Mudakavi,
	Department of Chemical Engineering,
	Indian Institute of Science, Bangalore.

		1			
			https://nptel.ac.in/courses/103108100/		
_	Audio and Video	After the completion of	Section A	Addition of	
	Systems	to: • Understand the fundamental concepts of	Audio Systems: Types of microphones and speakers, Monophonic, stereophonic and quadraphonic audio systems.	New Course as Elective	
		television transmitter, receiver systems and the transmission of video signals and importance of television standards. • Understand different colour television systems used worldwide and its compatibility.	Disc and Magnetic Recording and Reproduction: Monophonic and stereophonic disc recording and reproducing systems, Magnetic recording, playback, Biasing & equalization, Recording medium, Magnetic heads-replay & eraser heads, Audio cassettes, Tape speed, Maximum usable frequency, Tape transport mechanism, Distortion & noise aspects, Hi-Fi stereo system.		
		• Principles of recording	Section B		
		and reproduction of disc and video cassete recorders.		Video Cassette Recorders: Video recording requirements, Video tape formats. Modulation-up conversion and down conversion of video signal, Servo systems, Functional Block diagram of	
			Compact Disc Recording and Reproduction: advantages of Compact disc, & its Specifications, CD player, optical recording, CD technology & manufacturing, CDROM, CD video.		
			Section C		
			Video Cameras: Image conversion principle, Plumbicon, Sidicon camera tubes, three tubes colored camera, Block diagram of color camera tube. TV Engineering: Scanning process, Interlaced scanning, Composite video signals, Principle of black & white TV, color TV, Primary colours, Chrominance		
			& luminance signals.		
			Recommended Books:		

				 Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc-Graw Hill 	
				Suggested e-resources:	
				1. Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22	
35	Digital Signal	After the completion of	Section A		Move this
	Processing	course student will be able to: • Students will be familiar with the most important methods in DSP. • Students will be familiar with design and functioning of digital filter design • Student will be able to transform-domain processing.	Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Periodic and aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series-Exponential Fourier Series-Symmetry Properties of the Fourier Coefficients. Fourier Integral, Energy Spectral Density, Fourier Transforms in		course from 2 nd semester to list of Elective No change in course contents.

the Limit, Fourier Transform Theorems and Pairs, System Analysis with Fourier Transform, Lap lace Transform Theorems, Network Analysis using the Lap lace Transform.	
Section B Discrete Time Signals and Systems Review of Sampled Data Systems, Time Domain Representations of Discrete Time Signals, Frequency Domain Representation of Discrete Time Signals, Discrete Time Signals obtained by sampling, Discrete Fourier Transform. Z-Transform - Definition and Examples, Inverse Z- Transform, Properties of the Z-Transform, Introduction to Realization of Digital Systems - Block Diagrams and Signal Flow Graphs. Introduction to Realization of an IIR and FIR systems, Discrete Fourier Transforms (DFT) and Fast Fourier Transform (FFT).	
Section C Design of Digital Filters: Introduction to Filters, A comparison of IIR and FIR Digital Filters. Design of IIR Digital Filters – Impulse Invariant Transformation, Bilinear Transformation, Design of Digital Butter worth and Chebyshev Filters. Design of FIR Digital Filters – Windowing and Rectangular Window, Filter Designs using Windows, Frequency Sampling Technique. DSP tools and DSP techniques in various applications.	
Text Books: 1. Johnson Johnny R.: Introduction to Signal Processin: Prentice-Hall of India, 1998. 2. Oppenheim V. Alan: Signal & Systems: Prentice-Hall of India, 1995.	Recommended Books: 1. Johnson, Johnny. R. (1998). Introduction to Signal Processing. New Delhi: phi Publication. 2. Oppenheim, V. Alan. (1995). Signal & Systems. New Delhi: PHI Publication.

		3. ProakisG.John: Digital Signal Processing: Prentice-Hall of India, 3rd edition, 2002.	 Proakis, G.John. (2002). Digital Signal Processing. New Delhi: PHI Publication. Suggested E-resource: Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/ 	
36 Geoinformatics	After the completion of course student will be able to: • Describe spatial database, Co-ordinate and projection system • Analyse vector and raster based analysis in Geographical Information Sciences • Describe different types of satellite system and digital image processing		Section A Geographical Information System: Definition, Components of GIS, Hardware and software requirements for GIS, Coordinate system and projections, Database structure and formats, Spatial data models - raster and vector. Data inputting, Data base design - editing and topology creation. Linkage between spatial and Non spatial data, Query (Attribute/Spatial), Vector based analysis. Raster based analysis. Errors, Digital Elevation Model, Network analysis, Open source and WebGIS.	Addition of New Course as Elective
			Section B Remote Sensing: Definition - components of remote sensing - energy sensor, interacting body; Type - active and passive remote sensing. Satellite System - meteorological, communication and remote sensing. Platforms - aerial and space, synoptivity and repeativity. Electromagnetic Radiation (EMR) - EMR spectrum- visible, infrared [IR) middle IR, thermal IR and microwave. EMR interaction with earth surface material, radiance, irradiance, incident, reflected, absorbed and transmitted energy, spectral	

response pattern - spectral signature curves
(water, soil and vegetation].
Digital Image Processing: Digital Image,
Satellite Image - characteristics and
formats. Resolution - spatial, spectral,
radiometric and temporal; Introduction to
rectification, enhancement; Classification -
Unsupervised and Supervised
classification.
Section C
Global Positioning System: Global
Navigation Satellite System (GNSS), GPS,
GLONASS, GALILEO, Segments - space,
control, user, GPS Satellite signals,
sources of errors and corrections.
Applications of Remote Sensing and GIS:
Applications of GIS and Remote Sensing
in resource management (forestry,
agriculture, urban telecommunication,
transportation, water resources and
environment).
Recommended Books:
1. Chor, Pang. Lo.,&Albert, K. W. Yeung
(2006). Concepts and Techniques-of
Geographic Information Systems. New
Delhi: PHI Publication.
2. Heywood, D.I., Cornelius, S. & Carver,
S. (2009). An Introduction to
Geographical Information Systems.
New Delhi: Pearson Publication.
3. Joseph, G. (2005). Fundamentals of
remote sensing. Jaipur, Rajasthan:
Universities Press.
4. Jensen, John. R. (2015). Introductory
Digital Image Processing: A Remote
Sensing Perspective. New Delhi:
Pearson Publication.
5. Sabins, Floyd F. (2007). Remote
Sensing: Principles and Interpretation.

			Long Grove, Illinois: Waveland Press Suggested e-resources: 1. Geoinformatics by University of Twente. https://www.itc.nl/ilwis/applications- guide/ 2. Geographical Information System by Dr A. K. Gosain, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/105102015/1	
37	Power Electronics	After the completion of course student will be able to: • To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT • Analyze the various rectifiers used in power circuits and DC to DC Converters • Explain the inverter	 Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors.	Addition of New Course as Elective
		operation and how harmonics are reduced and explain the basic working principle of cyclo-converters	 Section B Commutation Techniques: Load commutation, resonant- pulse commutation, complementary commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers.	
			 Section C Inverters: Single-phase voltage source inverters 180 and 120 mode operation; Fourier analysis of single-phase inverter	

			output voltage. Pulse width modulated	
			inverters, Reduction of harmonics in the	
			*	
			inverter output, single-phase current source	
			inverters with ideal switch. Cyclo-	
			converters: Step-up and step-down cyclo-	
			converter, Single phase to single-phase	
			cyclo-converters three-phase half wave	
			cyclo-converters.	
			Recommended Books:	
			1. Rashid, Mohammad. H. (2017). Power	
			Electronics Circuits, Devices and	
			Applications: New Delhi: PHI	
			Publication.	
			2. Bimbhra, P.S. (2012). <i>Power</i>	
			Electronics: New Delhi: Khanna	
			Publication.	
			3. Moorthy, Rama, (1991). <i>An</i>	
			Introduction ToThyristors and Their	
			Application: New Delhi: Affiliated	
			 East-West Press.	
			 Suggested E-Resources:	
			1. Power Electronics by Prof.B.G.	
			Fernandes, Department of Electrical	
			Engineering, Indian Institute of	
			Technology, Bombay.	
			https://nptel.ac.in/courses/108101038/	
			2. Power Electronics by Prof. D. Prasad,	
			Dr. D. Kastha, Prof.Sabyasachi	
			Sengupta, Prof. N. K. De, Dept of	
			Electrical Engineering, IIT Kharagpur.	
-			https://nptel.ac.in/courses/108105066/	
38	Robotics and	After completion of this	SECTION A	Addition of
	Automation	course, students will be	BASIC CONCEPTS- Automation and	New Course as
		able to:	Robotics – An over view of Robotics –	Elective
		 Develop skills of 	present and future applications –	
		creating industrial and	 classification by coordinate system and	
		mobile robot projects	control system, Dynamic stabilization of	
		 Implement robots like 	Robotics.	
		KUKA, PUMA in real	POWER SOURCES AND SENSORS-	
		industrial world	Hydraulic, Pneumatic and electric drivers	
		maastrar world	nyuraunc, rheumanc and electric drivers	

Create innovative robot designs using mathematical concepts of kinematics Develop autonomous mobile robots in surveillance, security, home and office services	 - Determination HP of motor and gearing ratio, variable speed arrangements, Path Determination - Machinery Vision - Ranging - Laser - Acoustic, Magnetic Fiber Optic and Tactile Sensor. SECTION B MANIPULATORS- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators. ACTUATORS AND GRIPPERS-Pneumatic, Hydraulic Actuators, Stepper Motor Control Circuits, End Effecter, Various types of Grippers, Design consideration. Differential transformation and manipulators, Jacobians - problems .Dynamics: Lagrange - Euler and Newton - Euler formations - Problems.	
	 SECTION C KINEMATICS- Forward and Inverse Kinematic Problems, Solutions of Inverse Kinematic problems, Multiple Solution, Jacobian Work Envelop – Hill Climbing Techniques. PATH PLANNING- Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages. CASE STUDY- Multiple Robots – Machine Interface – Robots in Manufacturing and Non-Manufacturing applications – Robot Cell Design Selection of a Robot.	
	 Recommended Books: 1. Groover, M. P., Weiss, M., Nagel, R. N., & Odrey, N. G. (2017). Industrial Robotics: Technology, programming,	

		and Applications (2/e). McGraw-Hill	
		Education Publication	
		2. Niku, S. (2010). <i>Introduction to</i>	
		robotics. John Wiley & Sons.	
		3. Fu, K. S., Gonzalez, R., & Lee, C. G.	
		(1987). Robotics: Control Sensing. Vis.	
		Tata McGraw-Hill Education.	
		4. Mittal, R. K., & Nagrath, I. J. (2003).	
		Robotics and control. Tata McGraw-	
		Hill.	
		5. Craig, J. J. (2009). Introduction to	
		robotics: mechanics and control, 3/E.	
		Pearson Education India.	
		6. Spong, M. W., & Vidyasagar, M.	
		(2008). Robot dynamics and control.	
		John Wiley & Sons.	
		7. Siciliano, B., Sciavicco, L., Villani, L.,	
		& Oriolo, G. (2010). Robotics:	
		modelling, planning and control.	
		Springer Science & Business Media.	
39	Antenna Analysis After the completion of	Section A	Addition of
	course student will be able	Introduction to antenna, Radiation	New Course as
	to:	Mechanism, Current Distribution on a Thin	Elective
	• Recall electromagnetic	Wire Antenna	
	plane waves. Apply	Fundamental parameters of antenna:	
	principles of	Radiation pattern, Radiation power	
	electromagnetic to	density, Radiation intensity, Beamwidth,	
	explain antenna	 Directivity, Antenna efficiency, Gain,	
	radiation. Explain	Beam efficiency, Bandwidth, Polarization,	
	various antenna	Input impedance, Antenna radiation	
	parameters.	efficiency, Antenna vector effective	
	• Explain antenna as a	length, Maximum directivity and	
	•	Maximum effective area, Friss	
	point source. Design		Į.
	point source. Design antenna patterns for	·	
	antenna patterns for	transmission equation and radar range	
	antenna patterns for different cases.	transmission equation and radar range equation	
	antenna patterns for different cases. • Explain dipole antennas.	transmission equation and radar range equation Section B	
	antenna patterns for different cases. • Explain dipole antennas. Establish mathematical	 transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential	
	antenna patterns for different cases. • Explain dipole antennas. Establish mathematical equations for various	 transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an	
	antenna patterns for different cases. • Explain dipole antennas. Establish mathematical	 transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential	

antanna	M, Electric and Magnetic Fields for
antenna.	Electric (J) and Magnetic (M) Current
	Sources, Solution of the Inhomogeneous
	Vector Potential Wave Equation, Far-field
	radiation, Duality theorem, Reciprocity
	and Reaction theorem, Image Theory Linear wire antennas: Infinitesimal dipole,
	Small dipole, Region separation, Finite
	length dipole, Half-wave dipole
	Loop Antennas: Small circular loop,
	Square loop
	Section C
	Introduction to Arrays, two-element array,
	N-element linear array: uniform amplitude
	and spacing, directivity,N-element linear
	array: uniform spacing, non-uniform
	amplitude
	Traveling wave antennas: Long wire
	antenna, V-antenna, Rhombic antenna
	Broadband antennas: Helical antenna,
	Folded dipole, Yagi-uda array of linear
	elements
	Log-periodic antenna, Introduction to Horn
	antenna: E-plane sectoral horn, H-plane
	sectoral horn, Pyramidal horn
	Recommended Books:
	1. Balanis, C. A. (2005). Antenna Theory
	Analysis and Design. New Delhi: John
	Wiley & Sons.
	2. Eliott, Robert S. (2003). Antenna
	Theory and Design. New Delhi: Wiley-
	IEEE Press.
	3. Kraus, J. D., &Marhefka, R. H. (2001).
	Antennas for All Applications,
	Singapore: McGraw-Hill Publication.
	4. Harrington, R. F. (2001). <i>Time-</i>
	Harmonic Electromagnetic Fields.
	New Delhi: Wiley-IEEE Press.
	Suggested E- resources:
	1. Advanced Antenna Theory by Dr

40	Communication Networks	After the completion of course student will be able to: • Recognize and describe about the working of Computer Networks. • Illustrate reference models with layers, protocols and interfaces. • Summarize functionalities of different Layers.	Section A Introduction to communication systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model. OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure-through wire-copper cable-STP, UTP, co-axial cable, optical fiber. Wireless media-wireless LAN, organization and standards. Wireless devices and topologies. Wireless	Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/ Analysis and Design Principles of Microwave Antennas by Prof.Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/ Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/	Move this course from 3 rd semester to list of Elective No change in course contents.
			communication, wireless security. Section B		
			Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway. Switching Networks-circuit switching, Packet Switching. Networks-Circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting. Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of		

Internetworking. Ethernet (CSMA/CD)		
Token Ring and FDDI, Fast Ethernet.		
Section C		
Layer protocol Structure. Data link control –		
Flow Control, Error Detection, Error Control.		
HDLC. Network layer-ARP, RARP, ICMP.		
Effect of Congestion and Congestion Control		
in Network-(Back pressure, choke packet,		
Implicit Congestion Signaling, Explicit		
Congestion Signaling. Traffic Management-		
Transport layer Protocols-connection oriented		
and connectionless services, TCP, TCP		
Congestion Control and Flow Control. UDP.		
Application Layer Protocols – HTTP, FTP, SMTP, SNMP, Telnet. Introduction to ISDN.		
Narrow Band and Broad Band. Introduction		
to WAN Technologies. ATM and Frame		
relay.		
Text Books:	Recommended Books:	
1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic	
& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
2. A.S. Tannanbaum: Computer	PHI Publication.	
Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
Communication: PHI New Delhi, 5th	Publication.	
edition 1997.	4. Stailling, W. (1997). Data & Computer	
4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
Distributed Processing : PHI, 1998.	Publication. 5. Martin, J. (1998). <i>Computer Networks</i>	
	and Distributed Processing Software,	
	Techniques, Architecture. New Delhi:	
	PHI Publication.	
	Suggested E-Resources:	
	1. Computer Networks and Internet	
	Protocol by Prof.SoumyaKanti Ghosh	
	Department of Computer Science and	
	Engineering Indian Institute of	
	Technology, Kharagpur.	
	https://nptel.ac.in/courses/106105183/	
	2. Computer Networks by Prof. Sujoy	

			Ghosh, Department of Computer Science and Technology, IIT KG. https://nptel.ac.in/courses/106105081/ 3. Computer Networks by Prof. Hema A Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/22 78/data-communication	
41	Professional Ethics		The course is intended to provide participants with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: 1. Professional Ethics by Rochester Institute of Technology, http://www.openculture.com/professional-ethics-a-free-online-course. 2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. Leigh Hafrey, MIT, USA. https://ocw.mit.edu/courses/sloan-	Addition of New Course as Reading Elective

g .		school-of-management/15-270-ethical-practice-leading-through-professionalism-social-responsibility-and-system-design-spring-2016.	
Sensors and Devices		This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: 1. IoT Sensors and Devices by Curtin University. https://www.edx.org/course/sensors-and-devices-in-the-iot. 2. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-of-things-sensing-actuation.	Addition of New Course as Reading Elective
ctromagnetic ompatibility	 	This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist	Addition of New Course as Reading Elective

		harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden https://onlinecourses.nptel.ac.in/noc19_ee17/preview.	
44	Electric Vehicles	 Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure Suggested e-resources: 1. Electric Vehicles Part 1 by IIT Delhi. https://onlinecourses.nptel.ac.in/noc19_	Addition of New Course as Reading Elective

45	Electronic Packaging		ee18/preview. 2. Electric Cars: Introduction by Delft University of Technology (TU Delft). https://www.edx.org/course/electric-cars-introduction-0. This course is designed to provide a basic knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18_me54.	Addition of New Course as Reading Elective
46	Multimedia Compression and Communication	 	The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication.	Addition of New Course as Reading Elective

			The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur. https://nptel.ac.in/syllabus/117105083/.	
47	Telecommunicatio n switching systems and networks		The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks. Suggested e-resources: 1. Computer Networks by Department of CSE, IIT Kharagpur https://nptel.ac.in/courses/Webcoursec ontents/IIT% 20Kharagpur/Communication% 20network/New_index1.html. 2. Data Communication by IIT Kharagpur, https://nptel.ac.in/courses/106105082/19.	Addition of New Course as Reading Elective
48	ELE 205,	After completion of this	Section A	
	Semiconductor Devices and	course, students will be able to:	P-N junction: thermal equilibrium condition, under forward and reverse bias,	
	Circuits	• Explain the energy	space charge region, junction capacitance,	
		bands, temperature	p-n junction current, small signal model,	
		effects, carrier transport of	diode current equation, junction	
		semiconductor devices	breakdown, charge storage and transient behavior, metal semiconductor junction:	

- Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences
- Analyze the various feedback circuits and design power amplifiers.

Schottky Barriers and Ohmic Contacts, heterojuntion: energy band diagrams

Section B

Bipolar Junction Transistor: the transistor action, minority carrier distribution, low frequency common-base current gain, MOSFET: The MOS diode, Energy band diagrams, MOSFET fundamentals, MOS Transistor current, Threshold Voltage. FET biasing: fixed-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.

Section C

Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.

Recommended Books:

- S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication
- 2. Millman. J, Halkias. C, Parikh. C. (2017). *Integrated Electronics.* (2nd ed). New Delhi: TMH Publications.
- 3. Streetman Ben. G. (2006). *Solid State Electronic Devices (6th ed)* New Delhi: PHI Publications.

4. Smith. S.(2008). Microelectronics
Circuits. (5th ed). New Delhi: Oxford
press.
Suggested E-Resources:
1. Semiconductor Devices and Circuits
by Prof.SanjivSambandan, Department
of Instrumentation and Applied
Physics, Indian Institute of Science,
Bangalore.
https://nptel.ac.in/courses/108108112/
2. Analog Electronic Circuits byProf. S.
C. Dutta Roy, Department of Electrical
Engineering Indian Institute of
Technology Delhi.
https://nptel.ac.in/courses/108102095/

Name of Programme: Master of Technology (VLSI Design)

Programme Educational Objectives: The M.Tech. (VLSI Design) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. State-of-the-art VLSI technology requires research in physical devices as well as novel design and development of integrated circuits. The M. Tech. (VLSI Design) programme at Department of Electronics aims to impart knowledge of VLSI system design covering algorithms, hardware description languages, system architectures, physical designs, verification techniques, simulation & synthesis, low power design techniques and etc. The programme offersfoundational subjects like semiconductor devices, digital, analog and RFIC design, embedded system, electronic system packaging etc. Many courses have prominent lab component, offering hands-on training and exercises on numerous practical aspects of crucial importance. The students also get an opportunity to participate in projects related to design and optimization of VLSI circuits and systems.

The main objectives of M.Tech. (VLSI Design) programme are:

- To provide in-depth knowledge of device fundamentals and modern circuits design to gain an ability to analyze, design, and implement VLSI Systems circuits and systems.
- To enrich students to excel in research leading to cutting edge technology in VLSI design to create competent, innovative and productive professionals.
- To train them to understand the various recent issues and find the solutions with good scientific and engineering knowledge, so as to comprehend, analyze, design, and create novel products and develop the capability to prepare the scientist report in lucid and articulate form.
- To provide students with an academic environment to develop scientific awareness, leadership, ethical conduct, positive attitude, societal responsibilities and the lifelong learning needed for a successful professional career.
- To develop entrepreneurial skills in starting industries using VLSI technology.
- Practice the ethics of their profession and inculcate a lifelong learning culture.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- **PO1. Scholarship of Knowledge:** Acquire in-depth knowledge of VLSI technology in wider and global perspective, with an ability to discriminate, evaluate, analyze, synthesize and integrate for enhancement of knowledge. Graduates will be able to apply the knowledge of computing, mathematics, science and electronic engineering for designing VLSI circuits.
- **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using basic principles of mathematics, science and engineering.
- **PO3. Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Graduates will have an ability to design and conduct experiments, perform analysis and interpret the problems of VLSI design.

- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5**. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern VLSI tools including modeling to complex engineering activities with an understanding of the limitations.
- **PO6**. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8.** Engineering Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9.** Leadership Skills: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Tech. (VLSI Design) Semester - I (December, 2019)

		Existing Scheme					Proposed Scheme						
Course	Code	Course Name	L	T	P	C	Course	Code	Course Name	L	T	P	C
VLSI	507	Digital CMOS IC design	4	0	0	4	VLSI	507	Digital CMOS IC design	4	0	0	4
VLSI	507L	Digital CMOS IC design Lab	0	0	2	1	VLSI	507L	Digital CMOS IC design Lab	0	0	2	1
VLSI	512	HDL Based System Design	4	0	0	4	VLSI	512	HDL Based System Design	4	0	0	4
VLSI	512L	HDL Based System Design Lab	0	0	6	3	VLSI	512L	HDL Based System Design Lab	0	0	6	3
VLSI	516	IC Fabrication Technology	4	0	0	4	VLSI	516	IC Fabrication Technology	4	0	0	4
VLSI	516L	IC Fabrication Technology Lab	0	0	2	1	VLSI	516L	IC Fabrication Technology Lab	0	0	2	1
VLSI	521P	Minor Project (Part - I)	0	0	2	1	VLSI	521P	Minor Project (Part - I)	0	0	2	1
VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4	VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4
		Elective-I	4	0	0	4			Discipline Elective	4	0	0	4
	Semester wise total			0	12	26			Semester wise total	20	0	12	26

M.Tech. (VLSI Design) Semester - II (April/May, 2020)

		Existing Scheme					Proposed Scheme						
Course	Code	Course Name	L	T	P	C	Course	Code	Course Name	L	T	P	C
VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4	VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4
VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2	VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2
VLSI	504	ASIC Design	4	0	0	4	VLSI	504	ASIC Design	4	0	0	4
VLSI	505	CAD for IC Design	4	0	0	4	VLSI	505	CAD for IC Design	4	0	0	4
VLSI	505L	CAD for IC Design Lab	0	0	4	2	VLSI	505L	CAD for IC Design Lab	0	0	4	2
VLSI	522P	Minor Project (Part - II)	0	0	4	2	VLSI	522P	Minor Project (Part - II)	0	0	4	2
VLSI	524	RF IC Design	4	0	0	4	VLSI	524	RF IC Design	4	0	0	4
		Elective - II	4	0	0	4			Open Elective	4	0	0	4
	Semester wise total				12	26			Semester wise total	20	0	12	26

List of Discipline Electives:

Course	Code	Course Name	L	T	P	C
CS	429	Pattern Recognition and Image Processing	4	0	0	4
CS	431	Real Time Systems	4	0	0	4
ELE	502	Discrete Time Signal Processing	4	0	0	4
VLSI	501	Advanced Digital Signal Processing	4	0	0	4
VLSI	502	Advanced Digital System Design	4	0	0	4
VLSI	506	Design of Semiconductor Memory	4	0	0	4
VLSI	510	Embedded System Design	4	0	0	4
VLSI	511	Fault Tolerance in VLSI	4	0	0	4
VLSI	513	High Level System Design and Modeling	4	0	0	4
VLSI	514	High Power Semiconductor Devices	4	0	0	4
VLSI	515	High Speed VLSI Design	4	0	0	4
VLSI	517	Integrated Electronic System Design	4	0	0	4
VLSI	518	Introduction to MEMS	4	0	0	4
VLSI	519	Low Power VLSI Design	4	0	0	4
VLSI	520	Nanoelectronics	4	0	0	4
VLSI	523	Representation and Analysis of Random Signals	4	0	0	4
VLSI	526	Speech Signal Processing	4	0	0	4
		Photonics Integrated Circuits	4	0	0	4

M.Tech. (VLSI Design) Semester - III (December, 2020)

	Existing Scheme							Proposed Scheme				
Course	Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
		Reading Elective - I	0	0	4	2		Reading Elective - I	0	0	0	2
VLSI	602P	Project (Part - I)	0	0	48	24	VLSI 602P	Project (Part - I)	0	0	48	24
	Semester wise Total				52	26		Semester wise Total	0	0	48	26

M.Tech. (VLSI Design) Semester - IV (April/May, 2021)

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	С
	Reading Elective - II	0	0	4	2		Reading Elective - II	0	0	0	2
VLSI 603P	Project (Part - II)	0	0	48	24	VLSI 603P	Project (Part - II)	0	0	48	24
Semester wise total			0	52	26		Semester wise total	0	0	48	26

^{*} L - Lecture hrs/week; T - Tutorial hrs/week;

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, & II with prior permission of respective heads, time table permitting.

List of Reading Electives:

S. No.	Course Code	Reading Elective	
1.	VLSI 601R	High Level Synthesis	
2.		Advanced Electronics Packaging	
3.		Digital Image Processing	
4.	VLSI 604R	VLSI Testing and Design for Testability	
5.		Compound Semiconductor Technology	
6.		Organic Electronic Devices	

P - Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C - Credit Points of the Course

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	VLSI 507, Digital CMOS IC	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Design	Gain in-depth understanding of designing and analysis of CMOS inverters Explain the fabrication process and layout design of CMOS digital IC To describe the operation of semiconductor memories and low power circuits.	 N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993. Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addision Wesley,1998. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 1999 Sung-Mo Kang, Yusuf Leblebici,, "CMOS Digital Integrated Circuits" - Analysis and design, Tata McGraw-Hill - third edition. Douglas a. Pucknell and K.Eshragian., "Basic VLSI Design" 3rd Edition. PHI, 2000. 	 (1998). Principles of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. Backer, Jacob., Harry, W. Li., & Boyce, David. E. (1999). CMOS Circuit Design, Layout and Simulation. New Delhi: PHI Publication. Kang, Sung-Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and design. New Delhi: Tata McGraw-Hill Publication. 	

2. VLSI 507L, Digital CMOS IC Design Lab	After completion of this laboratory course, students will be able to: • Understand of Cadence circuit design tool • Understand procedure to analyse DC and Transient behaviour of circuits • Understand procedure to analyse effects of device dimension variation on circuit performance			Learning Outcomes added. No change in Experiment List
3. VLSI 512, HDL Based System	After completion of this course, students will be able to:	_	_	No Change in course contents.
Design	 Analysis and Design of Synchronous and Asynchronous sequential machines Draw a FSM chart for digital designs and describe it using HDL. Detect and diagnosis different errors in digital circuit descriptions. Design the digital systems through VHDL and Verilog HDL. 	 Text and Reference Books: Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, McGraw Hill. J. Bhaskar, A VHDL Primer, Prentice Hall. R. Lipsett, C. Schaefer and C. Ussery, VHDL: Hardware Description and Design, Kluwer. J. Pick, VHDL: Techniques, Experiments and Coveats, McGraw Hill. D. E. Ott and J. J. Wilderotter, Designer's Guide to VHDL Synthesis, Kluwer. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall NJ, USA), 1996. J. Bhaskar, "Verilog HDL Synthesis - A Practical Primer", Star Galaxy 	 Recommended Books: Navabi, Z. (1997) VHDL: Analysis and Modelling of Digital Systems. New Delhi: McGraw Hill Publication. Bhaskar, J. (2015). A VHDL Primer. New Delhi: Pearson Publication. Lipsett, R., Schaefer, C.,&Ussery, C. (1993) VHDL Hardware Description and Design. Menlo Park, California: Kluwer Academic Publishers. Pick, J. (1996) VHDL: Techniques, Experiments and Caveats. New Delhi: McGraw Hill Publication. Ott, Douglas E., & Wilderotter, J. (1994). A Designer's Guide to VHDL Synthesis. Berlin: Springer. Palnitkar, S. (2003). Verilog HDL: A Guide to Digital Design and Synthesis. New Delhi: PHI Publication. Smith, M.J.S. (1997). Application- 	Deleted

			Publishing,(Allentown, PA) 1998.	Specific Integrated Circuits.Boston, New York: Addison Wesley	
			8. M.J.S .Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley	Publication.	
			Longman Inc., 1997	Suggested E-resource:	
				by Prof. Indranil Sengupta, Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur https://nptel.ac.in/courses/106105165/	
4.	VLSI	After completion of this	This lab targets to develop an understanding	1. Design all gates using VHDL, and verify	Learning
	512L, HDL Based	laboratory course, students will be able to:	of VLSI design using HDL languages among the students. Different objectives are given to	functionality through simulation outcomes	Outcomes added
	System	• describe the IEEE	the different group of students to develop a	2. Write VHDL program for Half adder	auueu
	Design Lab	Standard 1076 Hardware	design using Hardware description languages	circuit, and verify functionality through	
		Description Language	and simulate it using EDA tools.	simulation outcomes	Deleted
		(VHDL)		3. Write VHDL program for Full adder	
		Model complex digital		circuit, and verify functionality through	Added
		systems at several levels		simulation outcomes 4. Write VHDL program for Multiplexer	
		of abstractions; behavioral and structural,		circuit, and verify functionality through	
		synthesis and rapid		simulation outcomes	
		system prototyping.		5. Write VHDL program for Demultiplexer	
		• Develop and simulate		circuit, and verify functionality through	
		register-level models of		simulation outcomes	
		hierarchical digital		6. Write VHDL program for encoder circuit,	
		systems		and verify functionality through simulation outcomes	
		Develop a formal test		7. Write VHDL program for decoder circuit,	
		bench from informal		and verify functionality through	
		system requirements		simulation outcomes	
				8. Write VHDL program for D Flip Flop,	
				and verify functionality through	
				simulation outcomes	
				9. Write VHDL program for T Flip Flop,	
				and verify functionality through simulation outcomes	
L				Simulation outcomes	

5. VLSI 516, IC	After completion of this course, students will be able	_	No Change in course
5. VLSI 516, IC	After completion of this course, students will be able	Asynchronous counter circuit, and verify functionality through simulation outcomes 14. Write VHDL program for modulo 8 up synchronous counter circuit, and verify functionality through simulation outcomes 15. Write VHDL program for modulo 8 down synchronous counter circuit, and verify functionality through simulation outcomes 16. Write VHDL program for shift and add multiplier circuit, and verify functionality through simulation outcomes 17. Write VHDL program for 4 bit ALU, and verify functionality through simulation outcomes 18. Write VHDL program for parallel adder circuit, and verify functionality through simulation outcomes 19. Write VHDL program for sequence detector circuit, and verify functionality through simulation outcomes 20. Write VHDL program for serial adder circuit, and verify functionality through simulation outcomes	No Change in course
		10. Write VHDL program for SR Flip Flop, and verify functionality through simulation outcomes 11. Write VHDL program for JK Flip Flop, and verify functionality through simulation outcomes 12. Write VHDL program for modulo 8 up Asynchronous counter circuit, and verify functionality through simulation outcomes 13. Write VHDL program for modulo 8 down Asynchronous counter circuit, and verify functionality through simulation outcomes	

	Fabrication	to:			contents.
	Technology	 Understand thin film deposition and vacuum evaporation process. Differentiate dry and wet oxidation process and printing methods. Perform measurement techniques for extracting electrical properties of devices. Understand diffusion and ion implantation process. 	 S. M. Sze, VLSI Technology, McGraw Hill. Reference Books: S. K. Gandhi, The Theory and Practice of Microelectronics, John Wiley. D. Nagchoudhuri. Microelectronics technology, Pearson. C. Y. Yang and S. M. Sze, VLSI Technology, Tata McGraw Hill. S. M. Sze, Semiconductor Technology. 	Recommended Books: 1. Sze, Simon. (2017). VLSI Technology. New Delhi: McGraw Hill Publication 2. Gandhi, S. K. (1994). The Theory and Practice of Microelectronics. New Delhi: John Wiley Publication. 3. Nagchoudhuri, D. (2002). Microelectronics technology. New Delhi: Pearson Publication. 4. Chang, C. Y.,& Sze, Simon. (1996). ULSI Technology. Singapore, Tata McGraw Hill Publication. Suggested E-resources: 1. Introduction to IC fabricationby Prof. Hardik J Pandya S, Department of Electronic Systems Engineering, IISC, Bangalore. https://nptel.ac.in/courses/108108111/3. 2. MOSFET Fabrication for IC by Dr. Nandita Dasgupta Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106093/3.	Deleted
6.	VLSI 516L, IC Fabrication Technology Lab	After completion of this laboratory course, students will be able to: • Understand fabrication process flow • Understand Silvaco TCAD tool. • understand the procedure to modeling devises and analysing their characteristics	 Model the fabrication process flow of NMOS with I/V characteristics curve Model the fabrication process flow of PMOS with I/V characteristics curve Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of pn junction diode. 	 All experiments will be performed on Silvaco TCAD Tool. Model the fabrication process flow of NMOS with I/V characteristics curve Model the fabrication process flow of PMOS with I/V characteristics curve Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of PN junction diode. 	Added
7.	Minor Project (Part-I)	After completion of this course, students will be able to:			Learning Outcomes Added and

	 Formulate the project objectives and deliverables. Estimate the physical resources required, and make plans to obtain the necessary resources. Develop plans with relevant people to achieve the project's goals. 			this course has no prescribed syllabus.
8. VLSI 525, Solid State Device Modeling	After completion of this course, students will be able to: • Explain the carrier	_	_	No Change in course contents.
and Simulation	densities, charge transport, band diagrams and their relations to the device characteristics. Describe the SPICE device models and apply the basic governing model equations to analyze BJT and MOSFET. Explain and analyze the operation of optical, microwave and quantum effect devices.	 S. M. SZE "Semiconductor Devices Physics and Technology" 2nd Edition WILEY student edition Ben G. Streetman and Sanjay Kumar Banerjee "Solid State Electronics devices" Pearson Education Sung - MO kang, Yusuf Leblebice "CMOS Digital Integrated Circuits Analysis & Design, Tata McGrawhill Sedra/Smith" Microelectronics Circuits" forth edition OXFORD PSpice Manuals 	 Recommended Books: Sze, S. M. (1985). Semiconductor Devices Physics and Technology. New York: Wiley Publication. Streetman, Ben. G.,&Banerjee, Sanjay.Kumar.(2019). Solid State Electronics Devices. New Delhi: Pearson Publication. Kang, Sung-Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and Design. New Delhi: Tata McGraw-Hill Publication. Smith, Sedra. (2013). Microelectronics Circuits. New Delhi: Oxford University Press. Suggested E-resources: Solid State Devicesby Dr. S. Karmalkar, Department of Electronics & Communication Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106091/ Semiconductor Devicesby Prof. Dr. G.S. Visweswaran, Department of 	Deleted

9.	VLSI 503, Analog and Mixed Signal IC Design	After completion of this course, students will be able to: Design basic cells like current sources, current mirrors and reference circuit. Explain stability issues and design compensated IC operational amplifiers. Design and analyze comparators and sample-and-hold circuits. Illustrate the operation of commonly used data conversion circuits.	Text Books: 1. Phillip E. Allen and Douglas R. Holberg, CMOS analog circuit design, oxford university press, 2nd edition. 2. D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997. 3. R.J.Baker, CMOS Mixed Signal Circuit Design, Wiley/IEEE, 2002 Reference Books: 1. R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal	Electronics & Communication Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102061/ Recommended Books: 1. Allen, Phillip.E.,& Holberg, Douglas. R. (2002). CMOS Analog Circuit Design. New York: Oxford University Press. 2. Johns, D. A., & Martin, Key (1997). Analog Integrated Circuit Design. New York: John Wiley and Sons. 3. Baker, R.J. (2008). CMOS Mixed Signal Circuit Design. New York: Wiley/IEEE Press 4. Gregorian, R.,& Temes, G. C.(1986). Analog MOS Integrated Circuits for Signal Processing. New York: John Wiley Publication. 5. Gray, Paul. B., & Meyer, Robert.G.	No Change in course contents.
		conversion chedits.	Processing, John Wiley, 1986. 2. Paul B Gray and Robert G Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley. 3. R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, MGraw	 (2001). Analysis and Design of Analog Integrated Circuits. New York: John Wiley Publication. 6. Geiger, R. L., Allen, P. E., & Strader, N. R.(1990). VLSI Design Techniques for Analog & Digital Circuits. New Delhi: MGraw Hill Publication. 	
			Hill, 1990	Suggested E-resource: 1. Analog Integrated Circuit Design by Prof. Nagendra Krishnapura, Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106030/	
10.	VLSI 503L, Analog and	After completion of this laboratory course, students will be able to:	Simulate simple current mirror and determine small signal output resistance. Simulate CASCODE current mirror and	1. Design NMOS simple current mirror for channel length of 1 μm and 180 nm and study DC analysis. Compare the results at	

	Mixed Signal IC Design Lab	 Analyse and interpret the waveform, comparison of simulation results with the theoretical analysis. Ability to use the simulation software for performing the experiments. Ability to design and test various amplifier circuits, which meets the desired specifications. 	determine small signal output resistance. 3. Design differential amplifier and study its DC and transient response. 4. Study of AC response and bandwidth calculation of differential amplifier. 5. Study of AC and transient response of differential amplifier. 6. Design Common Source (CS) amplifier and study its DC and Transient response. 7. Study of frequency response of CS amplifier. 8. Design source follower and study its DC and Transient and AC response. 9. Design two stage Op-Amp and study of its DC and Transient characteristics and determine Slew rate. 10. AC characteristics, UGB and Phase Margin estimation of two stage Op-Amp

two different channel lengths. and study its 2. Analyze AC characteristics of the simple current mirror and determine small signal Learning output resistance. Comparison of small Outcomes signal resistance at different channel Added lengths. Discuss the results. 3. Draw the schematic of NMOS CASCODE current mirror for channel Added length of 1 m and analyze DC response. Do the same for 180 nm channel length. Compare and discuss the results. study its DC 4. Analyze AC characteristics of the CASCODE current mirror and determine small signal output resistance. Comparison the small signal resistance with simple current mirror. Discuss the results. 5. Design CMOS differential amplifier for a given channel length and draw the schematic cell view of differential amplifier. 6. Create the symbol for the differential amplifier and build the differential amplifier test design.

7. Set up and run simulations (AC, DC and Transient) on the Differential Amplifier

8. Calculate the gain, bandwidth and CMRR of Differential pair. Discuss the results.
9. Design of current source loaded common source amplifier. create a new cell view and build Common Source Amplifier. Create a symbol for the Common Source

10. Build cs amplifier test circuit using your

11. Determine the gain, bandwidth and

simulations(AC, DC and Transient) on

up and

Test design.

Amplifier

cs_amplifier, set

the cs_amplifier_test design.

				voltage swing of CS amplifier. Comment on the results. 12. Create a new cell view and build Common Drain (CD) Amplifier. Build CD amplifier test circuit using your CD amplifier. Set up and run simulations(AC, DC and Transient) on the CD amplifier test design.	
				 13. Determine the gain, bandwidth and voltage swing, output resistance of CS amplifier. Comment on the results. 14. Build schematic capture of two stage operational amplifier (OP-AMP) using the previously created symbols of CS amplifier and CD amplifier. Thereafter Create a symbol for the OP-AMP. 15. To build op-amp_test circuit using your op-amp. Set up and run simulations(AC, DC and Transient) of op-amp_test circuit. 16. Determine voltage gain, slew rate, UGB 	
				and Phase Margin of two stage Op-Amp and compare with the design specifications. Comments on the results	
11.	VLSI 504, ASIC Design	After completion of this course, students will be able to: • Analyze the concept of	——————————————————————————————————————	_	No Change in course contents.
		 Analyze the concept of Full Custom ASIC and Semi-Custom ASIC, Cell Libraries, Data Logic Cells, Low-level Design Entry and Low Level Design Languages Explain ASIC I/O Cell: DC Output, AC Output, DC Input, AC Input, Clock Input, Power 	 Mohammed Ismail, Terri Fiez, "Analog VLSI signal and Information processing", McGraw-Hill International Editions, 1994. M.J.S. Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Long man Inc., 1997 Wayne Wolf, FPGA based system design, Pearson education, 2005. Reference Books: 	 Text Books: Smith M. J. S. (2006). Application Specific Integrated Circuits USA:Pearson Publication Ismail, Mohammed. &Terri, Fiez. (1994). Analog VLSI signal and Information processing. New York: McGraw-Hill Publication. Wolf, Wayne. (2005). FPGA based System Design. New Delhi: PHI Publication. Brown, Andrew. (1991). VLSI Circuits 	Deleted

	Input and PLA Tools. Describe Programmable ASIC Logic Cells, FPGA Logic Cells, and Programmable Interconnects to Solve the RC delay of routing resources for each ASIC.	 2. 3. 6. 7. 	Malcom R.Haskard, Lan C.May, "Analog VLSI Design - NMOS and CMOS" Prentice Hall, 1998. Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", Mc Graw Hill International Company, 1990. Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal processing", Prentice Hall, 1994. Andrew Brown, - "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991. S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays"- Kluwer Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing", Mc Graw Hill, 1994. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.	5. 6. 7. 8. St. 1.	and Systems in Silicon. New York: McGraw-Hill Publication. Haskard, Malcom. R., & May, Lan C. (1998). Analog VLSI Design - NMOS and CMOS. New Delhi: PHI Publication. Geiger, Randall. L., Allen, Phillip E., & Strader, Noel.K. (1990). VLSI Design Techniques for Analog and Digital Circuits. New Delhi: PHI Publication. France, Jose.E.,& Tsividis, Yannis. (1994). Design of Analog-Digital VLSI Circuits for Telecommunication and Signal Processing. New Delhi: PHI Publication. Brown, S.D.,Francis, R.J., Rox, J., &Uranesic, Z.G. (1992). Field Programmable Gate Arrays. Menlo Park, California: Kluwer Academic Publishers. Inggested E-resource: Digital VLSI Systems Designby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106092/	
12. VLSI 505, CAD for IC Design	After completion of this course, students will be able to:		_		_	No Change in course contents.
	 Student will understand Basic concept of describing VLSI design problems Student will understand graph 	Text 1. 2.	Books: S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar	2.	Gerez, S.H. (2002). Algorithms for VLSI Design Automation. New York: John Wiley Publication. Sherwani, N.A. (2002). Algorithms for VLSI Physical Design Automation. Boston, New York: Kluwar Academic	Deleted

		theory and its utilization in finding solution for VLSI design problems. To understand algorithms to solve various VLSI design problem like floorplaning, scheduling, placement, routing etc.	Academic Publishers, 2002. 3. Drechsler, R., "Evolutionary Algorithms for VLSI CAD, Kluwer Academic Publishers, Boston, 1998. 4. Hill, D., D. Shugard, J. Fishburn and K. Keutzer, Algorithms and Techniques for VLSI Layout Synthesis, Kluwer Academic Publishers, Boston, 1989. 5. Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits" TMH. 6. Sadiq M. Sait and Habib Youssef, "VLSI PHYSICAL DESIGN AUTOMATION Theory and Practice" IEEE PRESS.	 Publishers. Drechsler, R. (1998). Evolutionary Algorithms for VLSI CAD. Boston, New York: Kluwer Academic Publishers. Hill, D., Shugard, D., Fishburn, J.,& Keutzer, K. (1989). Algorithms and Techniques for VLSI Layout Synthesis. Boston, New York: Kluwer Academic Publishers. Micheli, Giovanni.De.(2003). Synthesis and Optimization of Digital Circuits. New Delhi: TMH Publication. Suggested E-resource: CAD for VLSI Design I by Prof. Prof. V. Kamakoti and Prof Shankar Balachandran, Department of Computer Science and Engineering Indian Institute 	
13.	VLSI 505L, CAD for IC Design Lab	After completion of this laboratory course, students will be able to: • Understand the VLSI design automation. • Understand the process to develop and analyse synthesis outcomes. • Demonstrate knowledge of computational and optimization algorithms and tools, applicable to solving CAD related problems.	This lab targets to develop an understanding of design automation among the students. Different objectives are given to the different group of students to develop a design, simulate and synthesize it using EDA tools.	Science and Engineering, Indian Institute of Technology, Madras https://nptel.ac.in/courses/106106088/ 1. NETLIST generation and analysis of Half Adder 2. NETLIST generation and analysis of Full Adder 3. NETLIST generation and analysis of Half Subtractor 4. NETLIST generation and analysis of Full Subtractor 5. NETLIST generation and analysis of Multiplexer 6. NETLIST generation and analysis of Demultiplexer 7. NETLIST generation and analysis of D Flip Flop 8. NETLIST generation and analysis of T Flip Flop 9. NETLIST generation and analysis of JK Flip Flop 10. NETLIST generation and analysis of SR	Learning Outcomes Added Added

				Flip Flop 11. NETLIST generation and analysis of Four bit Binary Counter 12. NETLIST generation and analysis of Serial in Serial Out Shift Register 13. NETLIST generation and analysis of Parallel in Serial Out Shift Register 14. NETLIST generation and analysis of Serial in Parallel Out Shift Register 15. NETLIST generation and analysis of Ripple Carry Adder	
14.	Minor Project (Part-II)	After completion of this course, students will be able to: • Identify, formulate, and solve VLSI design problems using advanced level manufacturing and design techniques • Apply advanced level knowledge, techniques, skills and modern tools of VLSI Design. • Understand the complexities and design methodologies of current and advanced VLSI design technologies.			Learning Outcomes Added and this course has no prescribed syllabus.
15.	VLSI 524, RF IC Design	After completion of this course, students will be able to:	_	_	No Change in course contents.
		 Understand basics concepts of radio frequency integrated systems and their performance parameters. Identify design trade-off 	Texts/Reference Books: 1. B.Razavi, RF Microelectronics, Prentice-Hall PTR,1998 2. T.H.Lee, The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 1998.	 Recommended Books: Razavi, B. (2011). RF Microelectronics. New Delhi: PHI Publication. Lee,T.H. (1998). The Design of CMOS Radio-Frequency Integrated Circuits. New York: Cambridge University Press. Baker, R.Jacob., Li, H.W., & Boyce, D.E. 	

	transmitters and receivers architecture with wireless standards. • Perform VLSI implementation of oscillators, Mixers and Power amplifiers.	 R.Jacob Baker, H.W.Li, and D.E. Boyce, CMOS Circuit Design , Layout and Simulation, Prentice-Hall of India, 1998. Y.P. Tsividis Mixed Analog and Digital VLSI Devices and Technology, McGraw Hill, 1996. 	 (1998). CMOS Circuit Design, Layout and Simulation. New Delhi: PHI Publication. 4. Tsividis, Y.P. (1996). Mixed Analog and Digital VLSI Devices and Technology. New York: McGraw Hill Publication. Suggested E-resources: 1. RF System - Basic Architectures by Prof. Dr. S. Chatterjee, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102012/. 2. RF integrated Circuits by S. Aniruddhan, Department of Electrical Engineering, IIT Madras.http://www.ee.iitm.ac.in/~ani/20 11/ee6240/pdf/ee6240_lec32.pdf. 	
16. Project (Part-I)	After completion of this course, students will be able to: • Recognize the need to engage in lifelong learning through continuing education and research. • Formulate the project objectives and deliverables. • Estimate the physical resources required, and make plans to obtain the necessary resources. • Develop plans with relevant people to achieve the project's goals.			Learning Outcomes Added and this course has no prescribed syllabus.
17. Project	After completion of this			Learning

	(Part-II)	course, students will be able to: Demonstrate knowledge of contemporary issues in the area of VLSI design. Manage projects related to VLSI design in multidisciplinary environments. Understanding the Functioning with multidisciplinary teams, working cooperatively, respectfully, creatively and responsibly as a member of a team.			Outcomes Added and this course has no prescribed syllabus.
18.	CS 429, Pattern Recognition	After completion of this course, students will be able to:	_		No Change in course contents.
	and Image	• Explain the concept of	Text Books:	Recommended Books:	
	Processing	 Image Processing, Mathematical preliminary of Image Processing and various Image Representations. Analyze the methods of Image Enhancement and Image Filtering, Identify different image analysis and pattern recognition methods and apply them in problem areas also develop an abundance of Image Processing applications that can serve mankind with the available and 	 Jain A. K., Fundamentals of digital image Processing, PHI Publications. Gozalez Rafel, Woods Richard, Digital Image Processing, Pearson Education. Reference Books: Rosenfield, A and Kak A. C, Picture Processing, Academic Press N.Y. 1982 Pratt, W. K., Digital Image Processing, John Willey and sons, New York. Duda R., Hart Peter, Stork D., Pattern Classification, Willey Interscience Publication. Manahem Friedman, Abraham Kandel, Introduction to Pattern Recognition, World Scientific. 	 Jain A. K. (2015). Fundamentals of Digital Iimage Processing. New Delhi: PHI Publication. Rafel, Gozalez.,& Richard, Woods. (2016). Digital Image Processing. New Delhi: Pearson Publication. Rosenfield, A., & Kak, A. C.(1982). Picture Processing. Orlando, Florida: Academic Press. Pratt, W. K. (2007). Digital Image Processing. Hoboken, New Jersey: John Willey and sons, Publication. Friedman, Manahem.,& Kandel, Abraham.(1999). Introduction to Pattern Recognition. Singapore: World Scientific. Charniak, E.,& Mcdermott, D. (1985). Introduction to Artificial Intelligence. 	

		anticipated technology in the near future.	5. E. Charniak, D. Mcdermott, Introduction to Artificial Intelligence, Addison Wesley.	Boston, New York: Addison Wesley. Suggested E-resources: 1. Pattern Recognition and Application by Prof. P. K. Biswas, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105101/	
19	CS 431, Real Time Systems	After completion of this course, students will be able to:		_	No Change in course contents.
		 To present the mathematical model of the system Analyse multi task scheduling algorithms To explain Reliability Evaluation techniques and Real time communication algorithms 	 Krishna C.M, Shen K.G, Real Time Systems, Mc. Graw Hill, References Books: Lawrence P.D, Mauch, K, Real Time Microcomputer Design: An Introduction, Mc. Graw Hill, Joseph Mathai, Real Time systems: Specification, verification & analysis, Prentice Hall Inc. Bennet Stuart, Real Time computer control, Prentice Hall Inc., Young S. J., Real time languages, John willey & sons. 	 Recommended Books: Krishna, C.M., & Shen, K.G. (2008). Real Time Systems. New Delhi: McGraw Hill Publication. Lawrence, P.D., & Mauch, K.(1998). Real Time Microcomputer Design: An Introduction. New York: McGraw Hill Publication. Mathai, Joseph.(1996). Real Time systems: Specification, Verification & Analysis. London, PHI Publication. Stuart, Bennet.(1994). Real Time Computer Control. ,New Jersey: PHI Publication. 	Deleted
20	ELE 502, Discrete Time Signal	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Processing	 Apply discrete-time signal processing techniques analysis to perform various signal operations. Apply the principles of Fourier transform 	Text Books: 1. J.G.Proakis and D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Third Edition, PH, 1996. 2. I.J.Nagarath, S.N.Sharan, R.Ranjan	Recommended Books: 1. Proakis, J.G.& Manolakis, D.G. (2014). Digital Signal Processing: Principles, Algorithms and Applications. New Jersey: Pearson Publication. 2. Nagarath, I.J., Sharan, S.N., Ranjan, R., & Kumar, S. (2009). Signals and Systems,	Deleted

		analysis to describe the frequency, and characteristics of discrete-time signals and systems. • Understand the design techniques of various digital and analog filters.	and S.Kumar, Signals and Systems, TMH, 2001. 3. A.V.Oppenheim, R.W.Schafer and J.R.Buck, Discrete-Time Signal Processing, Second Edition, PH, 1998. 4. S.K.Mitra, Digital signal processing: A computer Based Approach, Second Edition, MH, 2000.	New Delhi: TMH Publication. 3. Oppenheim, A.V., Schafer, R.W., & Buck, J.R. (1998). Discrete-Time Signal Processing. New Jersey: PHI Publication. Suggested E-resources: 1. Discrete Time Signal Processing by Prof. Mrityunjoy Chakraborty, Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105134/. 2. Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/.	
21	VLSI 501, Advanced Digital Signals Processing	After completion of this course, students will be able to: • Modelling of random filter and identification of different parameters. • Realization of Kalman filters and concept of	Text Books: 1. S.J.Orfanids, Optimum Signal Processing: An Introduction, Second edition, MacMillian/MH, 1988. (Out of Print)	Recommended Books: 1. Orfanids, S.J. (1988). Optimum Signal Processing: An Introduction. New York: Collier Macmillan Publication. Suggested E-resource:	No Change in course contents. Deleted
		 spatial smoothing. Adaptive implementation of wiener filter and Adaptive noise cancelling. 	2. J.G.Proakis, C.M.Rader,F.Ling and C.I.Nikias, Advanced Digital Signal Processing,MacMillian,1992.(Out of Print) References Books: 1. D.G.Manolakis, V.Ingle and S.Kogon,	1. State space Models by Professor Anna Mikusheva Paul Schrimpf. https://ocw.mit.edu/courses//14/MI T14_384F13_lec21.pdf 2. Adaptive signal Processing by Prof. Mrityunjoy Chakraborty, Indian Institute of Technology, Kharagpur.	
			1. D.G.Mahoiakis, V.Ingie and S.Kogon, Statically and Adaptive Signal Processing, MH, 2000. 2. J.G.Proakis, C.M.Rader, F.Ling, M.Moonen, I.K.Proudler and C.I.Nikias, Algorithms for Statistical	https://nptel.ac.in/courses/117105075/	

22 VLSI 502, Advanced	After completion of this course, students will be able	Signal Processing, PH/Pearson, 2002. 3. J.V.Candy, Signal Processing, MH,1986.(Out of Print) 4. B.Mulgrew and C.F.Cowan, Adaptive Filters and Equalizers, Kulwer, 1998.(Out of print)		No Change in course
Digital System Design	to: Formulate and solve problems in Digital Systems design. Knowledge about the properties of symmetric networks and apply threshold logic on digital circuits. Analyze digital system design using PLD.	 Brian Holdworth & Clive Wood, "Digital logic Design" - Elsevier 2005. Nripendra N. Biswas, "Logic Design theory, "PHI, 2005. ZVI Kohavi, "Switching and Finite Automata theory", second edition, Tata Mcgraw Hill, 2001. William I. Fletcher, "An Engineering Approach to Digital Design, PHI, 2003. Randall L. Geiger, Phillip E. Allen, Noel k strader, "VLSI Design Techniques for Analog Digital circuits, "McGraw hill, 1990. John F. Warkerly, "Digital Design Principles & practices, III editions, Pearson, education, 2005. 	Recommended Books: 1. Biswas, Nripendra.N. (2001) Logic Design theory. New Delhi: PHI Publication. 2. Kohavi, ZVI. (2010) Switching and Finite Automata theory. New York: Cambridge University Press. 3. Fletcher, William. I. (1997) An Engineering Approach to Digital Design. New Delhi: PHI Publication. 4. Geiger, Randall. L., Phillip E. Allen., & Strader, Noel. R. (1989) VLSI Design Techniques for Analog and Digital Circuits. Boston, Massachusetts: McGraw Hill Publication. Suggested E-resources: 1. Programmable logic devices Prof. D. Roychoudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/26. 2. Digital Systems Design with PLDs and FPGAs Kuruvilla Varghese Department of Electronic Systems Engineering Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/117108040/.	contents. Deleted
23 VLSI 506, Design of Semiconduc	After completion of this course, students will be able to:	_	_	No Change in course contents.

	tor Memory	 Know about architecture of semiconductor memories and methodologies adopted in data storage. Analyze the difference in volatile and non-volatile memory, and their building blocks. Know memory fault tolerance and testing methodology. 		Recommended Books: 1. Betty, Prince. (1996). Semiconductor Memories: A Handbook of Design, Manufacture and Application. New York: Willey Publication. Suggested E-resources: 1. Design of memory circuits by Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/31.	Added
24	VLSI 510, Embedded System Design	After completion of this course, students will be able to: • Explain the challenges in the design of embedded system • Describe the Hardware and	Text Books: 1. W. Wolf, Computers as Components: Principles of Embedded Computer System Design, Morgan Kaufmann,	Recommended Books: 1. Wolf, M. (2012). Computers as components: principles of embedded computing system design. Elsevier.	No Change in course contents. Deleted
		Software Tools for Embedded System • Describe the Features of OS and language for Embedded System	2000. 2 F.Vahid and T.D Givargis, Embedded System Design: A unified Hardware/software Introduction, Wiley. 2002. Reference Books:	 Vahid, F., & Givargis, T.D.(2002) <i>Embedded System Design:A unified Hardware/ software Introduction</i>. New Jersey: Wiley Publication. Gannsle, J. (2008) <i>The Art of Designing Embedded System</i>. New Delhi: Newnes Publication. 	
			1. S.Health, Embedded System Design, Second Edition Butterworth- Heinemann, 2002	4. Staunstrup, J.,& Wolf,W. (1997) Hardware /software Codesign: Principles and Practice. Boston, Massachusetts: Springer Publications.	
			2. — D. Patterson and J Hennessy .Computer Organization and Design: The Hardware/software Interface, Second Edition ,Morgan Kauffman ,1997	 Gajski, D.D., Vahid, F., Narayan, S., & Gong, j. (2007). Specification design of Embedded System. New Delhi: Pearson Education India. Suggested E-resources: 	
			3. A .S.Berger, Embedded System Design : An Introduction to Processes ,Tools	1. Embedded Systems - Shape The World: Microcontroller Input/Output by The University of Texas at Austin	

		and technique. CMP Books, 2001. 4. J. Gannsle, The art of Designing Embedded System, Newnes. 1999. 5. L. Edwards, Embedded System Design on a Shestring, Newnes. 2003 6. J. Catsoulis. Designing embedded Hardware, ORA, 2002 7. J. J. Labrosse, Embedded System Building Blocks. CMP Books, 1999. 8. J. Staunstrup and W.Wolf, Hardware /software Codesign: Peinciples and Practice, Kluwer 1997. 9. D.D.Gajski.F.Vahid ,S.Narayan and j.gong ,specification and Design of Embedded System, PH/Pearson, 1994. 10. G.de Micheli, R.Ernst and W.Wolf ,Reading in Hareware/software	(UTAustinX), https://www.edx.org/course/embedded- systems-shape-the-world-microcontroller- inputoutput 2. Embedded Systems by Georgia Tech as CS, 8803 https://in.udacity.com/course/embedded- systemsud169 3. Embedded System Design with ARM by Dr. Kamalika Datta Indian Institute of Technology, Kharagpur, https://onlinecourses.nptel.ac.in/noc19_cs 22/preview	
25 VLSI 511, Fault Tolerance in VLSI	After completion of this course, students will be able to: • Diagnose and measure different type of Faults. • Explain the detection, correction techniques and fault-tolerant networks • Analyze fault tolerance strategies and enhance capabilities about applications of fault tolerant designs in arithmetic units and systems.	Reference Books: 1. Victor P. Nelson and Bill D. Carroll, Tutorial: Fault-Tolerant Computing, IEEE Computer Society Press, 1987, ISBN: 0-8186-06770 2. D.K. Pradhan (ed.), Fault Tolerant Computer System Design, Prentice-Hall, 1996. 3. D.P. Siewiorek and R.S. Swarz, A.K. Peters, Reliable Computer Systems: Design and Evaluation, 1998.	Recommended Books: 1. Nelson, Victor. P.,&Carroll, Bill. D. (1987). Tutorial: Fault-Tolerant Computing, Maryland: IEEE Computer Society Press. 2. Pradhan, D.K. (1996). Fault Tolerant Computer System Design. New Jersey: PHI Publication. 3. Johnson, B.W. (1989) Design and Analysis of Fault-Tolerant Digital Systems. Boston, Massachusetts: Addison-Wesley.	No Change in course contents. Deleted

		Explain the basic mechanisms of fault-tolerance methods and fault tolerant computer systems.	4. B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley, 1989	Suggested E-resources: 1. VLSI Design Verification and Test by Prof. Jatindra Kumar Deka and Dr. Santosh Biswas, Department of CSE, IIT Guwahati.https://nptel.ac.in/courses/106 103016/	
26	VLSI 513, High Level System Design and Modeling	After completion of this course, students will be able to: • Understand describing a system • Understand about information system and models • Understand system analysis and system design	Books:- 1. Embedded System Design- Modeling, Synthesis, Verification by Dainel D.Gajaski, Samer Abdi Springer. 2. Specification and Design of Embedded Systems by Daniel D. Gajski, PTR Prentice Hall Englewood New Jersey	Recommended Books: 1. Dainel D.Gajaski., & Abdi, Samer. (2009). Embedded System Design-Modeling, Synthesis. New York: Springer Publication. 2. Daniel D. Gajski. (1994). Specification and Design of Embedded Systems. New Jersey: PHI Publication.	No Change in course contents.
27	VLSI 514, High Power Semiconduc tor Devices	After completion of this course, students will be able to: • Get knowledge of power semiconductor devices under extreme operation conditions like high voltage, high current and high temperature which are encountered under typical power electronic environment. • Understand knowledge developed from this, will help in designing power devices with desired specifications. • Get knowledge of VMOS, CMOS, DMOS Devices.	Texts/References Book: • S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 1981	Recommended Books: 1. Sze, S.M. (1981). Physics of Semiconductor Devices. New York: Wiley Publication. Suggested E-resources: 1. Basic Device models by Prof. Roshan Bhosh Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105084/. 2. Semiconductor Device Modeling by Prof. Shreepad Karmalkar Department of Electrical Engineering Indian Institute of Technology- Madras, https://nptel.ac.in/courses/117106033/.	No Change in course contents.

28	VLSI 515, High Speed VLSI Design	After completion of this course, students will be able to: • Design Clocked logic styles non clocked logic styles. • Understand knowledge of circuit designing margining. • Get knowledge of Clock generation and distribution.	Reference Books: 1. Kerry Bernstein & et. al., High Speed CMOS Design Styles, Kluwer, 1999. 2. Evan Sutherland, Bob stroll, David Harris, Logical Efforts, Designing Fast CMOS Circuits, Kluwer, 1999. 3. David Harris, Skew Tolerant Domino Design.	Recommended Books: 1. Bernstein, Kerry. (1999). High Speed CMOS Design Styles. New Jersey: Kluwer Academic Publishers. 2. Sutherland, Evan., Stroll,Bob.,& Harris, David.(1999) Logical Efforts, Designing Fast CMOS Circuits. Boston, Massachusetts: Kluwer Academic Publishers. 3. Harris, David.(2000). Skew Tolerant Domino Design. New Delhi: Elsevier. Suggested E-resources: 1. High Speed Devices and Circuits by Prof. K. N. Bhat Department of Electrical Engineering Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106089/ 2. CMOS VLSI Circuit by Prof. A. N. Chandorkar Department of Electrical Engineering Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101004/	No Change in course contents.
29	VLSI 517, Integrated Electronic System Design	After completion of this course, students will be able to: • Understanding, gathering and processing of electronics system through basic Motherboard, PCB and IC technologies. • Design their own circuits based on the knowledge	Text Books: 1. W.J.Dally and J.W.Poulton, Digital System Engineering, CUP, 1998. 2. N.Storey, Electronics: A System Approach, AW/Pearson, 1998/2000. 3. S.D.Burd, System Architectures,	Text Books: 1. Burd, S.D. (2001). System Architectures. New Delhi: Thomson learning Publication. 2. Cady, F.M. (2009) Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering. New York:	No Change in course contents. Deleted
		learnt from class. • Get the opportunity to become proficient in using	Thomson, 2001. Reference Books:	Oxford University Press. 3. Predko, M. (1998) <i>Handbook of Microcontrollers</i> . New York: McGraw-	

20 VII SI 510	the 8051 microcontroller for circuit modeling and analysis.	 G.Lipovski, Introduction to Micro-Controllers (MC 68HC12), AP, 1999. G.Lipovski, Single and Multi-Chip Micro-Controller Interfacing (MC 68HC12), AP, 1999. F.M.Cady, Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering, OUP, 1997. M.Predko, Handbook of Microcontrollers, MH, 1998. 	Hill. Suggested E-resources: 1. Microprocessors and Microcontrollers by Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105102/23 2. Principles of Communication Systems - Part II by Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104098/7	No Change
30 VLSI 518, Introductio n to MEMS	After completion of this course, students will be able to: • Be familiar with the important concepts applicable to MEMS, their fabrication. • Be fluent with the design, analysis and testing of MEMS. • Get knowledge of micro fabrication, micro actuators and surface micromachining and applications.	Text & References Books: 1. Stephen D. Senturia, "Microsystem Design" by, Kluwer Academic Publishers, 2001. 2. Marc Madou, "Fundamentals of Microfabrication" by, CRC Press, 1997. 3. Gregory Kovacs, "Micromachined Transducers Sourcebook" WCB McGraw-Hill, Boston, 1998. 4. MH. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes" by Elsevier, New York, 2000.	Recommended Books: 1. Senturia, Stephen. D. (2001) Microsystem Design. Norwell, Massachusetts:Kluwer Academic Publishers. 2. Madou, Marc.(1997). Fundamentals of Microfabrication. California: CRC Press. 3. Kovacs, Gregory. (1998) Micromachined Transducers Sourcebook. Boston, Massachusetts: WCB McGraw-Hill Publication. 4. Bao, MH. (2000). Micromechanical Transducers: Pressure Sensors, Accelerometers, and Gyroscopes. New York: Elsevier Publication Suggested E-resources: 1. MEMS and Microsystems Prof. Santiram Kal Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105082/4	No Change in course contents.

31	VLSI 519, Low Power VLSI Design	After completion of this course, students will be able to: • Learn the design techniques low voltage and low power CMOS circuits for various applications. • Design and implementation of various design structures of flip flop for low power applications. • Design the different types of memory circuits and various CMOS static and dynamic logic circuits • Understand the mechanisms of power estimation and datapath width adjustment	Text and Reference Books: 1. M. Pedramand J. Rabaey (Editors), Power Aware Design Methodologies, Kluwer Academic Publishers, Boston, 2002 2. Sung - Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated circuits-Analysis and Design", TMH, 3rd Edition.	2. Microsensors by Prof. G.K. Ananthasuresh, Department of Mechanical Engineering Indian Institute of Science Bangalore. https://nptel.ac.in/courses/112108092/mo dule1/lec03.pdf Recommended Books: I. Roy, Kaushik. & Prasad, Sharat. C. (2009). Low Power CMOS VLSI Circuit Design. Dublin: Willey Publications. 2. Pal, Ajit. (2015). Low Power VLSI Circuits and Systems. New Delhi: Springer Publications. 3. Pedramand, M.,& Rabaey, J.M.(2002) Power Aware Design Methodologies. Boston, Massachusetts: Kluwer Academic Publishers. 4. Kang, Sung – Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated circuits- Analysis and Design. New Delhi: TMH Publications. Suggested E-Resources: 1. Low Power VLSI Circuits and Systems by Prof. Ajit Pal, Department of Computer Science and Engineering, IIT Kharagpur. https://nptel.ac.in/syllabus/106105034/	No Change in course contents. Added
32	VLSI 520, Nanoelectro nics	After completion of this course, students will be able to:	<u> </u>	_	No Change in course contents.
		 Get knowledge in electronics has been driven by miniaturization. Understand CMOS and MOSFET scaling, 	Reference Books: 1. Introduction to Nanotechnology, C.P. Poole Jr., F.J. Owens, Wiley (2003). 2. Nanoelectronics and Information Technology (Advanced Electronic	Recommended Books: 1. Poole , C.P., & Owens, F.J. (2003). Introduction to Nanotechnology. New York: Wiley Publications. 2. Waser, R. (Ed.). (2012). Nanoelectronics	Deleted

		Understand the electronic properties of molecules, carbon nanotubes and crystals.	Materials and Novel Devices), Waser Ranier, Wiley-VCH (2003) 3. Nanosystems, K.E. Drexler, Wiley (1992) 4. The Physics of Low-Dimensional Semiconductors, John H. Davies, Cambridge University Press, 1998 5. Research Papers	 and information technology. John Wiley & Sons. 3. Drexler, K.E. (1992). Nanosystems. New York: Wiley Publications. 4. Davies, John. H. (1998). The Physics of Low-Dimensional Semiconductors. New York: Cambridge University Press. Suggested E-resources: 1. Nanostructures and Nanomaterials: Characterization and Properties by Prof. Anandh Subramaniam and Prof. 	
				Kantesh Balani Department of Materials Science & Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/118104008/ 2. Nanoelectronics: Devices and Materials by Prof. Navakanta Bhat Centre for Nano Science and Engineering Indian Institute of Science, Bangalore. http://textofvideo.nptel.ac.in/117108047/lec1.pdf	
33	VLSI 523, Representat ion and	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Analysis of Random Signals	 understand the theory and application of probability, random variables and random processes understand to study and analyze analytical expression 	 Michel .K Ochi, Applied Probability and Stochastic Processes in Engineering and Physical Sciences, Wiley, 1992. Reference Books: A. Papoulis, Probability, Random Variables and Stochastic Processes, MH, 1985. K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Application, PH, 1982. 	 Recommended Books: Ochi, Michel .K. (1990) Applied Probability and Stochastic Processes in Engineering and Physical Sciences. New York: Wiley Publications. Papoulis, A. (2002). Probability, Random Variables and Stochastic Processes. New York: TMH Publications. Trivedi ,K.S. (2001). Probability and Statistics with Reliability, Queuing and Computer Science Application. New York: Wiley Publications. 	

34	VLSI 526, Speech Signal	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Processing	 Describe the fundamentals of digital speech processing and digital model for speech signal process. Illustrate and analyze the time domain model and Fourier representation for speech processing. Explain basic principles of LPC equations and solutions. 	 L.R.Rabiner and R.W.Schafer, Digital Processing of Speech Signals, PH, 1978. C.Plett, J.W.M.Rogers and M.A.Copeland, Radio Frequency Integrated Circuit Design, Artech, 2003 R.E.Best, Phase-Locked Loops: Design, Simulation and Application, Fifth Edition, MH, 2003 D.H.Wolaver, Phase locked Loop Circuit Design, PH, 1991. Reference Books: J.R. Deller ,J.H.L .Hansen and J.G. Proakis, Discrete-time Processing of Speech signals, Wiley/IEEE, 2000. T.F. Quatieri, Discrete-Time Speech Processing: Principles and Practices, PH, 2001. 	 Recommended Books: Rabiner, L.R., & Schafer, R.W. (1978). Digital Processing of Speech Signals. New Delhi: PHI Publications. Plett, C.,Rogers, J.W.M., &Copeland, M.A. (2003). Radio Frequency Integrated Circuit. New Jersey: Design Artech House Publishers. Best, R.E. (2003). Phase-Locked Loops: Design, Simulation and Application. New York: TMH Publication. Deller, J.R., HansenJ.H.L., & Proakis, J.G. (1999). Discrete-time processing of Speech Signals. New York: Wiley-IEEE Press. Quatieri, T.F. (2001). Discrete-Time Speech Processing: Principles and Practices. Massachusetts: PHI Publications. Suggested E-resource: Digital Speech Processing by Prof. S. K. Das Mandal Centre for Educational Technology Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105145/19 	Deleted
35	Photonics Integrated Circuits	After completion of this course, students will be able to: • Describe the optical waveguides and optical couplers with the help of coupled mode theory		Section A Optical Waveguide Modes, Planar Waveguides, Symmetric and Asymmetric, Slab and channel waveguides, Optical Couplers: Prism Couplers, Gräting Couplers, Tapered Couplers, Fiber to Waveguide Couplers, Multilayer Planar Waveguide Couplers, Dual-Channel Directional	New Course Added as elective.

Explain the basic operating	Couplers, Coupled-Mode Theory.
mechanisms of optical	Section B
switches and modulators	Section B
• Identify the performance	Electro-Optic Modulators: Basic Operating
limiting factors and	Characteristics of Switches and Modulators,
applications of integrated	The Electro-Optic Effect, Single-Waveguide
optics	Electro-Optic Modulators, Dual-Channel
opaes	Waveguide Electro-Optic Modulators.
	Acousto-Optic Modulators: Acousto-Optic
	Effect, Raman-Nath-and Bragg Type
	Modulators, Acousto-Optic Frequency
	Shifters.
	Section C
	Section C
	Distributed-Feedback Lasers: Theoretical
	Considerations and performance
	characteristics, Integrated Optical Detectors:
	Depletion Layer Photodiodes, Specialized
	Photodiode Structures, Techniques for
	Modifying Spectral Response, performance
	limiting factors. Applications of Integrated
	Optics and Current Trends: Opto-Electronic
	Integrated Circuits and future projections.
	Recommended Books:
	1. Hunsperger, Robert. G. (1995).
	Integrated Optics Theory and
	Technology. Berlin, New York: Springer.
	2. Nishihara, Hiroshi. Haruna,
	Masamitsu., & Suhara, Toshiaki. (1989).
	Optical integrated circuits. New York:
	McGraw-Hill Publication.
	3. Reed, Graham. T., & Knights, Andrew. P.
	(2004). Silicon photonics: An
	Introduction. New York: John Wiley &
	Sons.
	4. Tamir, T. (1990). Guided wave Opto-
	electronics. Berlin, Heidelberg: Springer.
	Suggested E- resource:

	VI OV COAD		1. Photonic Integrated Circuits by Dr. Srinivas Talabatulla, Department of Electronics & Communication Engineering, IISc, Bangalore. https://nptel.ac.in/courses/117108142/
36	VLSI 601R, High Level Synthesis	Section A Introduction: Level of Abstraction, Need for Design Automation on Higher Abstraction Levels, Essential issues in Synthesis. Architectural Models in Synthesis. Combinational Logic, Finite State Machines. Quality Measures: Area and Performance measures. Other Measures. Section B	This course expose students to the advanced HDL design techniques, methodology and industrial standard EDA tools in electronic design. This course also discusses the new ideas and techniques in high level synthesis, essential issues in synthesis, architectural model, and guidelines for HDL design. Students will be expected to explore design methodology for high level synthesis, chip synthesis and physical design methodology.
		Design Description Language: HDLs, Hardware Specific Features, Formats, HDLs for DSP,	
		Simulation Based HDLs, Modeling Guidelines for HDLs	
		Design Representation and Transformations: Partitioning. Scheduling. Allocation.	
		Section C	
		Design Methodology for High-Level Synthesis: Generic Synthesis, System Synthesis, Chip Synthesis, Logic and Sequential Synthesis, Physical-Design Methodology, System and component Databases, Conceptualization Environment.	
		High Level Synthesis of ASICs.	
		High-Level Synthesis for Real-Time Digital Signal Processing.	
		Text and Reference Books:	Suggested E- resources:
		 Daniel D. Gajski, Nikil D. Dutt, Alien C-H Wu, Steve Y-L Lin And High- Level Synthesis: Introduction to Chip 	 High level Synthesis by IIT Guwahati. https://nptel.ac.in/courses/117103125/4. Synthesis of Digital Systems byDr.

		and System Design, Kluwer Academic Publishers. 2. Wayne Wolf, High-Level VLSI Synthesis, Raul Camposano, Kluwer Academic Publishers. 3. David C. Ku, Giovanni de Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints, Kluwer Academic Publishers 4. Jan Vanhoof, Karl Van Rompaey, Ivo Bolsens, Gert Goossens, Hugo De Man, High-Level Synthesis for Real-	Preethi Ranjan Panda, Department of Computer Science & Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/106102181/7	
		Time Digital Signal Processing, The CATHEDRAL-11 Silicon Compiler, Kluwer Academic Publishers.		
37	VLSI 604R, VLSI Testing and Design for Testability	SECTION-A Physical defects and their modeling; stuck at faults; Bridging Faults; Fault collapsing Fault Simulation Deductive, Parallel and Concurrent; Critical Path Tracing; Test Generation for Combinational Circuits: D-Algorithm, Boolean Difference, PODEM Random, Exhaustive and Weighted Random Test Pattern Generations Aliasing and its effect on Fault coverage SECTION-B	The course attempts to expose the students to the most recent, yet fundamental, VLSI test principles in an effort to help them design better quality products that can be reliably manufactured in large quantity. The course explores the issue related to the physical defects, test generation technique for combinational and sequential circuits, controllability and obeservability and redundancy.	
		PLA Testing: cross-point Fault Model, Test		
		Generation, easily testable design, Memory testing: Permanent Intermittent and Pattern Sensitive Faults; Delay Faults and Hazards; Test Generation Techniques		

	SECTION-C	
	Test Generation for Sequential Circuits: Time Frame Expansion;	
	Controllability and Obeservability Scan Design.Scan path and LSSD, boundary Scan, BILBO, Bounday Scan For Board Level Diagnosis.	
	Concept of Redundancy, spatial redundancy. Time redundancy.	
	 References: M. Abramovici, M.A. Breuer and R.D. Friedman, Digital Systems Testing and Testable Design, Revised Edition, IEEE Press, 1995. V. Agarwal and S. C. Seth, Test Generation for VLSI Chips, IEEE CS Press, 1989. E. J. McCluskey, Logic Design Principles, Prentice Hall, 1986. 	Suggested E- resources: 1. Digital VLSI Testing by Prof. Santanu Chattopadhyay Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc17_ec 02/preview. 2. Testing and Verification of VLSI Circuits by Prof. Virendra Singh IIT Mumbai. https://www.ee.iitb.ac.in/~viren/Courses/2012/EE709.htm
Advanced Electronic Packaging		This course is designed to equip students with the required knowledge and concepts in mechanical, thermal, and reliability concern of modern electronic packaging. Emphasis is on IC packaging performance and its achievement through the proper material selection. The course will explore the multichip module, electrical autonomy IC assembly, challenges in the electronic packaging, and can recognize the various methods available and selection of appropriate packaging solution for particular applications. Suggested e-resource: 1. An Introduction to Electronics Systems

1		
		Packaging by IISC Bangalore.
		https://nptel.ac.in/courses/108108031/
39	Compound	This course provides students with the basic
	Semiconduc	understanding of Non-Silicon MOSFET
	tor	technology. The students should be able to
	Technology	use properties and trade-offs of compound
		semiconductors (GaAs, InAs, InP and InSb)
		for design of high performance MOSFETs.
		The students will be able to explain the
		challenges and power performance of
		strained III-V MOSFETs, the high k
		dielectric based MOSFETs. Students should
		also be able to discuss the Future Scaled
		CMOS and hybrid CMOS technology.
		Suggested e-resources:
		1. Nanoelectronics: Devices and
		Materials Prof. K. N. Bhat Centre for
		Nano Science and Engineering.
		https://nptel.ac.in/courses/117108047/28.
		2. Compound Semiconductor Devices by
		Prof. C. G. Fonstad, MIT, USA.
		https://ocw.mit.edu/courses/electrical-
		engineering-and-computer-science/6-772-
		compound-semiconductor-devices-
40	D: 1/ 1	spring-2003/lecture-notes/.
40	Digital	This course provides an introduction to basic
	Image Processing	concepts, methodologies and algorithms of digital image processing focusing on image
	Processing	analysis and image enhancement and
		restoration for easier interpretation of images.
		The course provides overview of digital
		image processing including visual perception,
		Image Digitization, Basic Transformations,
		Interpolation and Resampling, Image
		Interpolation, Image Transformation, Image
		Enhancement, Image Segmentation,
		Morphology, Object Representation and
		Description, object Representation and Description, object Recognition etc. The
		course focuses on to create an ability in

	students to analyze a problem in this domain
	and identify the computing requirements
	appropriate for its solution; an ability to
	design, implement and evaluate a computer-
	based system, process, component or
	program to meet desired needs.
	Suggested e-resource:
	1. Digital Image Processing by Prof .P. K.
	Biswas, IIT Kharagpur.
	https://nptel.ac.in/courses/117105079/
41 Organic	Organic electronic devices are quickly
Electronic	making their way into the commercial world,
Devices	with innovative thin mobile devices, high-
	resolution displays, and photovoltaic cells.
	Purpose of the course is to learn about this
	highly promising technology, which is based
	on small molecules and polymers, and to
	discuss how these materials can be
	implemented successfully in established
	organic electronic modules. In this course
	students will gain the ability to tie molecular
	transport phenomena with macroscopic
	device response such that you will be well-
	prepared to analyse troubleshoot, and design
	the next generation of organic electronic
	materials and devices.
	Suggested e-resources:
	1. Organic Electronic Devices by Dr.
	Bryan W. Boudouris, Purdue University.
	https://www.edx.org/course/organic-
	electronic-devices-purduex-nano515x

Annexure V

Name of Programme: B.Sc.

Disciplinary Course-Physics

Programme Educational Objectives:

- > To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- > Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- > Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- > Function with multidisciplinary teams.

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Physics

	Existing Scheme				Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 103	Electricity and Electronics	6	0	0	6	PHY 103	Electricity and Electronics	6	0	0	6
PHY 104L	Electronics Lab	0	0	4	2	PHY 104L	Electronics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Physics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	P	C	Course Code	Course Name	L	Т	P	C
PHY 107	Optics	6	0	0	6	PHY 107	Optics	6	0	0	6
PHY 107L	Optics Lab	0	0	4	2	PHY 107L	Optics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Physics

	Existing Scheme				Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 201	Mechanics	6	0	0	6	PHY 201	Mechanics	6	0	0	6
PHY 201L	Mechanics Lab	0	0	4	2	PHY 201L	Mechanics Lab	0	0	4	2
	Tota	l 6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Physics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 203	Statistical and Mathematical Physics	6	0	0	6		Thermodynamics, Statistical and Mathematical Physics	6	0	0	6
PHY 202L	Physics Lab	0	0	4	2		Physics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - V (December, 2021) Disciplinary Course-Physics

	Existing Scheme				Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	Т	P	C
5.1	Quantum Atomic Molecular Physics						*Discipline Elective-I	6	0	0	6
	Atomic Physics Lab						* Discipline Elective-I Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
6.1	Nuclear and Solid State Physics						*Discipline Elective-II	6	0	0	6
	Nuclear and Solid State Physics Lab						* Discipline Elective-II lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

Discipline Electives

S. No.	Course code	Name of Course	L	Т	P	С
1.		Quantum Mechanics and Spectroscopy	6	0	0	6
2.		Quantum Mechanics and Spectroscopy Lab	0	0	4	2
3.		Advance Quantum Mechanics	6	0	0	6
4.		Advance Quantum Mechanics Lab	0	0	4	2
5.		Nuclear and Solid State Physics	6	0	0	6
6.		Nuclear and Solid State Physics Lab	0	0	4	2
7.		Advanced Semiconductor Devices	6	0	0	6
8.		Advanced Semiconductor Devices lab	0	0	4	2

Note: Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

Course Details:

S. N. Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1. PHY103	After completion of this course, Reco	mmended Books:		No
Electricity and	the students will be able to-	Tayal D C (2005) Electricity and Magnetism	, Himalaya Publishing House.	change in the entire course
Electronics	 learn fundamentals and concepts of electricity and electronics learn about the basic concepts of electronic and electrical circuit analysis techniques apply the above motioned concept to design a range of electronic devices and circuit configurations. Suggistion 	Saxena M. P. (1997) Electricity and Magnet Bhargava N N (2000), Basic Electronic, Tata Mehta V.K.(2002), Principles of Electronics. Sences Books: Sadiku Mathew N.O.(2005) Elements of Ele Purcell, E. M. (1963). Berkeley physics cour Millman, J., & Halkias, C. C. (1972). Integ McGraw-Hill.	tism, College Book House. a McGraw Hill. , S. Chand publisher. ctromagnetics, New Delhi, Oxford Univ. Press	Update e-Resources

2.	. PHY 104L		1. Determine the energy gap using junction diode	1. Determine the energy gap using junction diode	50 % of the syllabus deals with
		the students will be able to-	2. Study the characteristics of junction diode and	2. Study the characteristics of junction diode and zener	electricity and electromagnetism so
			zener diode	diode	experiment no. 11 and 12 is removed
				3. Study the voltage regulation and ripple factor of half and	from the existing list and 4 new
		laboratory and analyze	half and full wave rectifier	full wave rectifier	experiment is introduced in proposed
		the measurements to	4. Study the bridge rectifier with filters	4. Study the bridge rectifier with filters	list.
		draw valid conclusions.	5. Study the characteristics of PNP/NPN junction	5. Study the characteristics of PNP/NPN junction transistor	
		 have oral and written 	transistor	6. Study the characteristics of FET	
		scientific communication,	6. Study the characteristics of FET	7. Study a voltage multiplier circuit to generate high voltage	
		and to think critically and	7. Study a voltage multiplier circuit to generate	DC from AC	
			high voltage DC from AC	8. Study the characteristics of optoelectronic devices (LED,	
		 to understand principles 	8. Study the characteristics of optoelectronic	Photodiode and Phototransistor)	
		of law of electricity	devices (LED, Photodiode and Phototransistor)	9. Study the OPAMP in (i) inverting mod (ii) noninverting	
		magnetism.	9. Study the OPAMP in (i) inverting mod (ii)	mod (iii) integrator (iv) differentiator	
			noninverting mod (iii) integrator (iv) differentiator	10. Study AND, OR, NOT, NOR and NAND logic gates and	\mathbf{d}
			10. Study AND, OR, NOT, NOR and NAND logic		
			gates and verify the truth tables	11. Study of electromagnetic induction by oscillation of bar	
			11. Study the voltage gain and frequency response	magnet.	
			of a double stage RC coupled transistor amplifier	12. Mutual induction by direct method.	
			12. Study the characteristics of a thermistor	13. Verification of Faraday's law and Lenz's law.	
				14. B-H Curve using Magnetometer.	
				15. To determine Self Inductance of a Coil by Anderson's	
				Bridge using AC	
				16. To determine Self Inductance of a Coil by Rayleigh's	
				Method.	
				17. Determination of mutual inductance of a pair of coils	
				using BG.	

3.	PHY 107	After completion of this course, Reco	ommended Books:	No
	Optics	the students will be able to-		change in the entire course
		 appreciate the efficacy of 1. 	Khandelwal D.P. (1973), Text book of optics and Atomic Physics, Pub. Shivlal Darwal, Agra.	
		Fourier transforms and 2. their application to	Lal B. & Subramanium (2006), Optics by Brij Lal and Subrahmanium, S. Chand Publication.	Update e-Resources
		their application to physical systems.	Ghatak, A., & Thyagarajan, K. (1998). An introduction to fiber optics. Cambridge university press.	
		• understand the role of the 4 wave equation and	Ghatak, A. K. (1971). An introduction to modern optics. An introduction to modern optics., by Ghatak, AK. New York, NY (USA): McGraw-Hill.	
		appreciate the universal Refe	erence Books:	
		nature of wave motion in a range of physical 1.	Ghatak, A. K. (2012). Contemporary optics. Springer Science & Business Media.	
		systems 2.	Hecht, J., & Long, L. (1993). Understanding fiber optics (Vol. 3). Prentice Hall.	
		• understand dispersion in 3.	Cherin, A. H., & Short, L. (1983). An introduction to optical fibers (p. 135). New York: McGraw-Hill.	
		waves and model dispersion using Fourier 4.	Hecht E (2006) Optics, Pearson Education.	
		theory. 5.	Ghatak, A. K., & Thyagarajan, K. (1989). Optical electronics. Cambridge University Press.	
		 understand diffraction and 		
		imaging in terms of Sugg		
			s://www.coursera.org/courses?query=optics	
		insight in a range of	s://swayam.gov.in/courses/4906-july-2018-modern-optics	
		physics via the spatial		
		Fourier Transform.		

4.	PHY 107 L Optics Lab	After completion of this course, the students will be able to-	No change in the entire course
	Spires Euc	• demonstrate laboratory	
		skills in physics laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		 have oral and written scientific communication, 	
		and to think critically and	
		work independently. • to understand principles	
		of Optics and wave nature	
		of light.	

5.	PHY 201	After completion of this course, Recommended Books:		No
	Mechanics	the students will be able to- 1. Saxena M. P. Rawat S S (2000) Mechanics, College Book House.		change in the entire course
		 demonstrate proficiency Saxena M. P. Rawat S S (1997) Oscillations and Waves, College Book House. 		_
		in mathematics and the 3. Mathur D. S. (2005) Mechanics, S. Chand publishing.		pdate e-Resources
		mathematical concepts needed for a proper 4. Satya Prakash (2007) Waves & Oscillations, Kedar Nath Ram Nath publishing.		
		needed for a proper understanding of physics. Reference Books:		
		• show that they have 1. Srivasatava P. K. (2006) Mechanics New Age International Publisher, Delhi.		
		learned laboratory skills, 2. Alonso, M., & Finn, E. J. (1967). Fundamental university physics (Vol. 2). Read	ling, MA: Addison-	
		enabling them to take Wesley.	ζ,	
		measurements in a physics laboratory and 3. Purcell, E. M. (1963). Berkeley physics course. <i>Electricity and magnetism</i> , <i>UC Berkele</i>	ey.	
		analyze the 4. French, A. P. (1971). Vibrations and waves. CRC press.		
		measurements to draw		
		valid conclusions. Suggested web-resources:		
		• have oral and written https://ocw.mit.edu/courses/physics/		
		scientific communication, https://academicearth.org/physics/		
		and think critically and https://www.khanacademy.org/science/physics work independently.		
		work independently.		

6.	PHY 201L	After completion of this course,	No
	Mechanics Lab		change in the entire course
		• demonstrate laboratory	
		skills in physics	
		laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		• have oral and written	
		scientific communication,	
		and to think critically and	
		work independently.	
		• to understand principles	
		of Newtonian mechanics,	
		friction, and motion of	
		bodies.	

		No change in the entire courcontents, but the title of t
Mathematical	• understand the laws of 1. Zeemansky M.W. (1968) Heat and Thermodynamics, McGraw Hill, 5th ed.	course has been changed
Physics	their physical significance. 3. Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre, Jaipur.	Update e-Resources
New Proposed Title-	• state the thermodynamic 4. Rajput B S. (2005), Mathematical Physics, Pragati Prakashan.	
Thermodynamic	potentials and recognize Reference Books: the most appropriate 1 D is F (2000) For the second sec	
s, Statistical and	potential for application 1. Reif, F. (2009). Fundamentals of statistical and thermal physics. Waveland Press.	
Mathematical	to a particular problem. 2. Holman, J. P. (1974). Thermodynamics McGraw-Hill. New York.	
Physics	• derive and state the Ballaman Family Binary 3. Lokanathan, S., & Gambhir, R. S. (1991). Statistical and Thermal Physics: an Introduction. Prentice Hall.	
	Boltzmann, Fermi-Dirac and Bose-Einstein 4. French, A. P. (2017). Special relativity. CRC Press.	
	distributions. 5. Arfken, G. B., & Weber, H. J. (1999). Mathematical methods for physicists, Elsevier.	
	• know the key links Suggested web-resources:	
	between thermodynamics https://cosmolearning.org/courses/thermal-statistical-physics/	
	and statistical physics and https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/video-apply these to problems.	
	https://programsandcourses.anu.edu.au/course/PHYS2020	

	DYYYY 0 0 0 Y			
8.	PHY 202L	After completion of this course,		
		the students will be able to-	by using Calendar and Barn's constant flow	Calendar and Barn's constant flow meter. 13 have been proposed to
		 demonstrate laboratory 	meter. 2.	To Determine the thermal conductivity of bad conductor strengthen the laboratory
		skills in physics	. To Determine the thermal conductivity of bad	(samples may be Glass or Ply Wood or Cardboard) using practices. Expt. No. 9 and 10 in
		laboratory and analyze	conductor (samples may be Glass or Ply Wood	Lee's disc method. existing course have been
		the measurements to	or Cardboard) using Lee's disc method.	Determine the melting point of given material using removed due to unmatched with
		draw valid conclusions.	. Determine the melting point of given material	platinum resistance thermometer. theory
		 have oral and written 	using platinum resistance thermometer. 4.	Plot thermo emf Vs temperature graph and find the
		scientific communication,		inversion temperature and neutral temperature
		and to think critically and	the inversion temperature and neutral5.	To determine the thermodynamic constant (C_p/C_v) using
		work independently.	temperature	Clement and Desorme's method.
		• to understand principles		To verify the Stefan's law by electrical method.
		of thermodynamic laws		To determine the value of stefan's constant.
		experimentally	5. Study of the variation of total thermal radiation.	Verify certain laws of probability.
		experimentary	with temperature and verify the stefan's law.	To determine the resistance per unit length of Carey Fosters
			To determine the value of stefan's constant.	bridge and finds the resistance of a given wire (Unknown
			. Verify certain laws of probability.	resistance).
				. Determination of the coefficient of linear thermal expansion
			0. To study the LC transmission line.	() of the given sample. Compare and verification of
			1. To determine the resistance per unit length of	(copper) < (brass) < (aluminum).
				To determine mechanical equivalent of heat (J) Joule's
			a given wire (Unknown resistance).	constant by electrical method.
				. Determine the resistance per unit length of bridge wire and
			12	then determine the temperature coefficient of Platinum
				resistance thermometer (PTR).
			13	To demonstrate Seebeck Effect with the help of
			13	Thermocouple module.
				Thermocoupic module.

9.	5.1	After completion of this course, Recommended Books:	No change in the entire course
	Atomic	the students will be able to- 1. Kakani S. L., Hemrajni C. (1995) Elementary Quantum Mechanics and Spectroscopy, College Book Centre, Jaipur.	
	Molecular Physics Quantum Mechanics and Spectroscopy	 solve the Schrödinger equation for model systems of relevance within chemistry and physics describe many-electron atoms with the independent particle model describe the structure of the periodic system and the connections between the properties of the elements and their electron configurations describe the bases behind solve the Schrödinger equation for model systems of relevance within chemistry and physics Raj Kumar (1997), Atomic and Molecular Spectera, Kedar Nath Ram Nath publisher. Rawat S. S. Singh Sardar (2000) Prarambhik Quantum Yantriki avam Spectroscopy, CBH publisher. Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre, Jaipur. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan. Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill. 	
		interaction between light and matter and account for the most common spectroscopic methods for studies of molecules in the IR and UV/Vis areas 3. White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132. Suggested web-resources: https://swayam.gov.in/course/4250-quantum-chemistry-spectroscopy-photochemistry https://www.edx.org/course/quantum-mechanics-molecular-structures-utokyox-utokyo003x-1	
10.		• analyze the measurement Study the Franck Hertz experiment and determine S. Study the hyperfine structure of spectral lines and Zeeman	have been removed from the existing experiments list due to unmatched with the theory course in the relevant semester.

			9 Determine ballistic constant using constant deflection method.	To determine the workfunction of given metal by
11.	Advanced Quantum Mechanics	After completion of this course the students will be able to- • solve the Schrödinger equation for complex systems edescribe the structure of the periodic system and the connections between the properties of the elements and their electron configurations enderstand the effect of external parameters on the quantum systems		Unit-1 Postulates of Quantum Mechanics, Planck's Quantum theory, Einstein's explanation, Compton Effect, Wave Particle Duality, de-Broglie waves, Electron Diffraction Experiment, Uncertainty Principle: Formulation and its applications, Bohr's principle of complementarity, Time dependent and time independent forms of Schrodinger's equation: need and justification Unit-2 Wave Function, its physical significance and properties, Schrodinger and Born interpretation, Probability Current Density, eigenvalues and eigenfunctions, degeneracy, parity and orthogonality of eigenfunctions, expectation values of dynamical variables-position, momentum, energy, Ehrenfest Theorem, Time independent schrodinger equation and stationary state solution, particle in one dimensional box: eigenfunctions and eigenvalues Unit-3 Discrete energy levels, generalization to three dimensions and degeneracy of levels, Potential step and rectangular potential barrier, Calculation of reflection and transmission coefficients, Alpha Decay, Square Well Potential Problem(attractive), Calculation of

transmission and reflection coefficients, Applications of Schrodinger Equation in Spherically symmetric systems: Rigid Rotator and Hydrogen Atom Unit-4 Operators in quantum mechanics: Definition, Orthogonal Sets, Completeness, Eigen values and Eigenfunction, Operator Formalism, Commutation Algebra, Linear and Hermitian Operators, Commutativity and simultaneous eigenfunctions, Hilbert Space, Operators as matrix, Matrix form of wave equation, Schrodinger, Heisenberg and Interaction matrix representation, Dirac's Bra and Ket vectors, Direct Sum and product of Hilbert space, Co-ordinate and momentum representation Unit-5 Approximation Methods: perturbation theory, motivation of approximation methods, Variational methods, WKB Approximation, Applications of Variational and WKB methods. Time dependent perturbation theory, Harmonic perturbation. **Recommended Books:** Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand. Ghatak, A. & Lokanathan S. (2001) Quantum Mechanics (McMillan India Ltd.) Sakurai J. J. (2005) Modern Quantum Mechanics (Pearson Education) 4. Griffiths D. (2006) Introduction to Quantum Mechanics (Pearson Education) 5. Bjorken J. D. and S. D. Drell (1997) Relativistic Ouantum Mechanics (McGraw Hill) 6. Greiner, W and Bromley D. A. (2003) Relativistic Quantum Mechanics (Springer)

	Reference Books:
	1. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan.
	 Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill.
	3. White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132.
	Suggested web-resources: https://swayam.gov.in/course/4250-quantum-chemistry- spectroscopy-photochemistry https://www.edx.org/course/quantum-mechanics-molecular- structures-utokyox-utokyo003x-1
5.2 Advanced After completion of this course, Quantum Mechanics Lab • demonstrate measurements skills in a physics laboratory • analyze the measurement results to draw valid conclusions. • have oral and written scientific communication, and think critically and work independently.	 Determine the specific charge (e/m) using Thomson method. Determine the specific charge (e/m) using helical method. Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method Determine the electrical charge (e/m) using Millikan's oil drop method. To study the hydrogen spectrum and determination of Rydberg's constant. Verify the inverse square law using photocell. Determine the value of Planck constant using Photo cell. Determine the value of Planck constant using solar cell. Study the absorption spectrum of Iodine Molecule. Study the Franck Hertz experiment and determine the ionization potential of inert gas. Determine the value of Planck constant using LED. To determine the workfunction of given metal by

13.	6.1	After	completion of this course, Re-	commended Books:	No
	Nuclear	and the st	udents will be able to-	1. Tayal D C (1992) Nuclear physics, Himalya Pub. House, Bombay.	change in the entire course
	Solid	State •	account for interatomic	2. Kaplan, I. (1963). Nuclear physics, Oxford & IBH Pub.	II I D
	Physics	•	forces and bonds have a basic knowledge	3. Pillai S O. (2005), Solid State Physics, New Age International.	Update e-Resources
			of crystal systems and	4. Singhal R. L. Alvi P. A. (2015) Solid State Physics, Kedarnath Ramnath, Meerut.	
				ference Books:	
		•	account for how crystalline materials are	1. Singru, R. M. (1974). Introduction to experimental nuclear physics, Wiley Eastern Pvt. Ltd.	
			studied using diffraction,	2. Ghoshal S. N. (2006) Nuclear Physics by S. N., S. Chand.	
			including concepts like	3. Kittel, C. (1976). Introduction to solid state physics (Vol. 8). New York: Wiley.	
			form factor, structure factor, and scattering	4. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics, Cornell University Saunders College	
			amplitude.	Publishing.	
		•	understand the concepts Su	ggested web-resources:	
			of nuclear physics http	ps://swayam.gov.in/course/3817-solid-state-physics	
		•	understand the elementary http	ps://nptel.ac.in/courses/115105099/	
				ps://ocw.mit.edu/courses/nuclear-engineering/	
			interactions		

14.		After completion of this course,	No
	Nuclear and	the students will be able to-	change in the entire course
	Solid State	 demonstrate 	
	Physics Lab	measurements skills in a	
		physics laboratory	
		• analyze the measurement	
		results to draw valid	
		conclusions.	
		 have oral and written 	
		scientific communication,	
		and think critically and	
		work independently.	
		• to understand the laws of	
		nuclear and solid state	
		physics	

	dvanced course, the students will be		
	emiconductor able to-	Energy Bands, direct and indirect semiconductors,	
De	evices • understand the	effective mass, Intrinsic and Extrinsic semiconductors,	
	mechanism of	Occupation Probability and carrier concentration,	
	semiconductor devices	Temperature Dependence of carrier concentration, Fermi	
	• understand the	Level, Quasi Fermi Level, mobility and conductivity, Hall	
	applications of		
	semiconductor devices in	Unit-2	
	routine life	Generation and Recombination of Charges, Diffusion,	
	• make advancement in		
	these devices	potential variation within a graded semiconductor,	
	these devices	Schottky Junction and Ohmic Contact, pn junction diode,	
		Zener diode, Zener and avalanche breakdown, Tunnel	
		diode, Semiconductor Photodiode and Light Emitting	
		Diode	
		Unit-3	
		Avalanche Photodiode: Structure, Materials,	
		Characteristics and device performance	
		Bipolar Junction Transistor: Types, Current components,	
		CB,CC,CE configuration, Ebers-Moll model of transistors.	
		Concept of Load Line and Operating Point, Thermal	
		stability of transistor, Fixed Bias, Emitter Bias, Voltage	
		Divider Bias, Collector Feedback Configuration	
		Unit-4	
		Junction Field Effect transistor, depletion and enhancement type MOSFET, V-I characteristic, operation	
		methods, FET biasing: Fixed, self and Voltage Divider	
		Bias	
		Four Layer Diode (p-n-p-n), SCR, Principle of operation,	
		transistor analogy, methods of turning on and turning off	
		(only reference), Gate characteristic, DIAC, TRIAC, light	
		activated thyristor	
		Unit-5	
		Operational Amplifier and its applications, inverting and	
		non-inverting amplifiers, adder, integrator, differentiator,	

 wave-form generator, comparator, Schmitt trigger. Recommended Books: 1. Millaman J. and Halkias C. (1972) Integrated Electronics (McGraw Hill, New York), 2. Malvino L. (1999) Electronic Devices and circuits 3. Sterectman B. G. (1995) Solid State Electronic Devices and Integrated Circuits (Prentice Hall Inc.). 4. Sze S.M. (1999) Physics of Semiconductors Devices by (John Wiley & Sons).
Suggested e-resources: 1. https://nptel.ac.in/courses/115102014/ 2. https://nptel.ac.in/courses/113106062/ 3. https://nptel.ac.in/courses/117106091/

Advanced	After completion of this	1 To study the V-I characteristics of FET using discrete
Semiconduct	for course, the students will be	components on bread board.
Devices	able to-	2 To study the V-I characteristics of UJT.
LAB		3 To study the output and transfer characteristics of FET.
	 assess the validity of 	4 To study the input and output characteristics of BJT.
	physical theories	5 To study the V-I characteristics of DIAC.
	through the design and	6 To study the V-I characteristics of TRIAC.
	execution of an	7 To study the V-I characteristics of SCR.
	experiment, the analysis	8 To study the characteristics of optocoupler and draw its
	of uncertainties	frequency response.
	associated with the	9 To study the V-I characteristics of Photodiode.
	measurement of data	10 To study the V-I characteristics of p-n junction diode
	and the interpretation of	using discrete components on bread board.
	the data to draw valid	11 To study the V-I characteristics of pnp or npn transistor
	scientific conclusions	using discrete components on bread board.
	(lab skills).	
	• connect a digital	
	oscilloscope to a	
	computer and record a	
	signal with an	
	appropriate sampling	
	rate;	
	 generate and interpret 	
	the power spectrum of	
	the recorded data, use	
	the tools,	
	methodologies,	
	language and	
	conventions of physics	
	to test and	
	communicate ideas and	
	explanations	

Name of Programme: M. Sc. (Physics)

Programme Educational Objectives

Among various science subjects, Physics is a natural science which deals with the behavior of matter, energy and the natural laws. The core theories of Physics are: Classical Mechanics, Electromagnetism, Thermodynamics and Statistical Mechanics, Quantum Mechanics and Relativity. There are many more branches of Physics like including astronomy, biophysics, atmospheric physics, nuclear physics etc. Therefore, Physics plays a key role in the future progress of humankind either in education or research in the world because of its characteristics features.

Keeping in views the entire scientific development of the student through covering almost all the courses, the M.Sc. (Physics) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in Physics through learning the designed studies with high quality and significance. However, the main objectives of the programmes are as follows:

- To provide the fundamental concepts of nature in terms of physics with their utilizations
- To produce MSc students who are very knowledgeable and theoretically sound and are able to
 apply these for the analysis and solution of problems where these leads to new or substantially
 improved insights and performances.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent physicists at national and international level
- To produce MSc students with high integrity having social values and who are ethically professional
- To produce MSc students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To produce MSc students with excellent communication skills, capable of communicating
 effectively in various context, thus sharing new knowledge with other researchers from other
 institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To produce MSc students who can adapt to changes in environment and practice lifelong learning
- To provide the ideas about pollution control and environment sustainability through exemplary education

Programme Outcomes

PO1: Physics Knowledge: Possess fundamental knowledge of various core courses of physics to solve complex scientific problems of the society. Also, the students will be able to apply theoretical knowledge of principles and concepts of Physics to practical problems

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills.

PO3: Expert of Advanced Tool: Expertise in new and advanced techniques like photo-sepectrometer, XRD, FESEM, Raman, DSC etc. through project component of the programme.

PO4: Problem analysis ability-Ability to apply physics principles alongwith other scientific conceptual attitude to analyze the problems related to society and to show the caliber for finding the solution.

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through learning of time management and team work skill.

PO6: Professional Identity- Possess ability to prove professional identity in any institution and industry at national and international level

PO9 7: Physics and society-Ability to explain the understanding of impact of physics study on the society including pollution, environment, health and ecosystem. In addition, the students will be able to propagate their knowledge to address problems of social relevance such as energy, and environment through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate the role of physics to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through project and laboratory practices

PO10: Life-long learning- Possess the knowledge of current issues and ability to engage in life-long learning

Master of Science (Physics)

${\bf Programme\ Scheme:}$

Semester (I):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C
Code						Code					
CS 416	Computer Programming	4	0	0	4	CS 416	Computer Programming	4	0	0	4
	Principle of Digital						Principle of Digital				
ELE 406	Electronics	4	0	0	4	ELE 406	Electronics	4	0	0	4
PHY 403	Classical Mechanics	4	0	0	4	-	Classical Mechanics	4	0	0	4
PHY 404	Mathematical Physics	4	0	0	4	-	Mathematical Physics	4	0	0	4
PHY 406	Quantum Mechanics-I	4	0	0	4	PHY 406	Quantum Mechanics-I	4	0	0	4
CS 416L	Computer Programming Lab	0	0	8	4	CS 416L	Computer Programming Lab	0	0	8	4
ELE	Principle of Digital				T	ELE	Principle of Digital			T	一
	Electronics Lab	0	0	4	2	406L	Electronics Lab	0	0	4	2
	Total:	20	0	12	26		Total:	20	0	12	26

Semester (II):

	Existing					Proposed					
Course	Course Name	L	T	P	C	Course	Course Name	L	Т	P	(
Code						Code					
CS 414	Computer oriented numerical and statistical methods	4	0	0	4	CS 414	Computer oriented numerical and statistical methods	4	0	0	4
PHY 401	Atomic and Molecular Physics	4	0	0	4	PHY 401	Atomic and Molecular Physics	4	0	0	4
PHY 402	Classical Electrodynamics-I	4	0	0	4		Classical Electrodynamics-I	4	0	0	4
PHY 407	Quantum Mechanics-II	4	0	0	4		Quantum Mechanics-II	4	0	0	4
PHY 408	Statistical Mechanics	4	0	0	4	PHY 408	Statistical Mechanics	4	0	0	4
TSKL 403	Communication Skills	2	0	0	2		Communication Skills	2	0	0	2
CS 414L	Computer oriented numerical and statistical methods Lab		0	4	2	CS 414L	Computer oriented numerical and statistical methods Lab		0	4	2
PHY 405L	Physics Lab-I	0	0	8	4	PHY 405I	Physics Lab-I	0	0	8	4
	Total:	22	0	12	28		Total:	22	0	12	28

Semester (III):

	Existing					_	Proposed				
Course						Semest	er - III				
Code	Course Name	L	Т	Р	С	Course	Course Name	L	т	Р	С
PHY						Code	Course Name	_	•	r	C
530	Solid State Physics	4	0	0	4	5111/					
						PHY		_			_
PHY	Classical Electrodynamics-					530	Solid State Physics	4	0	0	4
504	II	4	0	0	4	PHY	Classical				
PHY						504	Electrodynamics-II	4	0	0	4
516	Nuclear Physics-I	4	0	0	4		,				
	,					PHY					
PHY	Physics of Laser and Laser					516	Nuclear Physics-I	4	0	0	4
520	Applications	4	0	0	4						
							Physics of Laser and				
PHY							Laser Applications	4	0	0	4
518L	Physics Lab-II	0	0	8	4		Physics Lab-II	0	0	8	4
	Elective-I	4	0	0	4		PHYSICS Lab-II		U	0	4
	Elective-i	4	١	U	4						
PHY							Discipline Elective	4	0	0	4
	Seminar	0	0	2	 1		Reading Elective	0	0	0	2
							Redding Licetive			O	_
	Total:	20	0	14	27	PHY					
						527S	Seminar	0	0	2	1
							Semester Wise Total:	20	0	10	27

Semester (IV):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Semeste	er - IV				
Code						Course Code	Course Name	L	Т	P	С
PHY 529	Solid State Electronics Devices	4	0	0	4	PHY 529	Solid State Electronics Devices	4	0	0	4
ELE 307	Microwave Electronics	4	0	0	4	ELE					
PHY 517	Nuclear Physics-II	4	0	0	4	307	Microwave Electronics	4	0	0	4
PHY 519L	Physics Lab-III	0	0	8	4	PHY 517	Nuclear Physics-II	4	0	0	4
	Elective-II	4	0	0	4	PHY 525P	Project	0	0	8	4
PHY 525P	Project	0	0	8	4		Physics Lab-III	0	0	8	4
	Tota			16		-	Open Elective	4	0	0	4
	100		ľ	1		Semester	Wise Total:	16	0	16	24

Discipline Electives					Reading Electives
Fibre Optics Communication	4	0	0	4	Optical materials and Devices
Physics of Nano-structure & Nanotechnology-I	4	0	0	4	Solar Energy: photovoltaic systems
Plasma Physics-I	4	0	0	4	Introduction to photonics
High Energy Physics-I	4	0	0	4	
Nonlinear Physics-I	4	0	0	4	
Condensed Matter Physics-I	4	0	0	4	
Science and Technology of Solar Hydrogen and other Renewable Energies	4	0	0	4	
Bio Physics-I	4	0	0	4	
Analog and Digital Communication	4	0	0	4	
Physics of Nano-structure & Nanotechnology-II	4	0	0	4	
Plasma Physics-II	4	0	0	4	
High Energy Physics-II	4	0	0	4	
Nonlinear Physics-II	4	0	0	4	
Condensed Matter Physics-II	4	0	0	4	
Solar Energy: Principles of Solar Thermal Devices	4	0	0	4	
Bio Physics-II	4	0	0	4	

Name of Programme: M. Tech. (Nanotechnology)

Programme Educational Objectives

Banasthali Vidyapith has made a significant contribution in the technology education by introducing the M.Tech. (Nanotechnology) programme. Nanotechnology is not being considered simply a technology like other technologies which are confined almost in a limited area. In fact, the nanotechnology leads to a mission through which the whole country can be promoted in terms of sciences and technology. Keeping in view such a mission, The M. Tech. (Nanotechnology) programme has been designed by the department of Physics. Actually, M. Tech. (Nanotechnology) is an umbrella programme for capacity building which envisages the overall development of this field of research in the country and to tap some of its applied potential for nation's development.

Keeping in views the entire scientific and technological development of the student through covering almost all the courses, the M. Tech. (Nanotechnology) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in the direction of technology through learning the designed courses with high quality and significance. However, the main objectives of the programmes are as follows:

- To prepare the students to outshine in academics and research in different motifs of Nanoscience and Nanotechnology.
- To train the students with good theoretical and practical knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent technologists at national and international level
- To provide students with an academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career
- To produce the students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To prepare the students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To coach students in professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.
- To provide the ideas about environment sustainability and pollution control through exemplary and practical educations

Programme Outcomes

PO1: Knowledge about Technology: Able to apply knowledge and skills to solve complex technical problems which calls for insight into the latest technologies and best engineering practices including behavioral, social, and manufacturing practices.

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills

PO3: Problem analysis ability-Ability to apply scientific attitude to analyze the society problems and to apply information systematically for the solution

PO4: Modern Tool usage: Ability to handle new techniques and advanced tools like XRD, FESEM etc, which derive the nanosciences and nanotechnology

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through the management related courses.

PO6: Professional Identity- able to show professional identity as competent technologists at national and international level

PO9 7: Technology and society-Ability to show the understanding of impact of nanomaterials on the society including environment, health and ecosystem. On the other side, the Graduates will be able to propagate their knowledge to address problems of social relevance such as energy, environment and medicine through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through laboratory practices

PO10: Life-long learning- Possess the knowledge of contemporary issues and ability to engage in life-long learning

M.Tech (Nanotechnology)

Programme Scheme:

Semester (I):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	(
Code						Code					
ELE 506	Nano-Photonics & Optoelectronics	4	0	0	4		Nano-Photonics & Optoelectronics	4	0	0	4
PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4	PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4
PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4	PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4
PHY 511	Introduction to Materials Science	4	0	0	4	PHY 511	Introduction to Materials Science	4	0	0	4
PHY 531	Surface, Interface and Thin films	4	0	0	4	PHY 531	Surface, Interface and Thin films	4	0	0	4
NANO 502L	Simulation Lab-I	0	0	6	3		Simulation Lab-I	0	0	6	3
PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3	PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3
	Total:	20	0	12	26		Total:	20	0	12	26

Semester (II):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C
Code						Code					
ELE 501	Advanced Nano-electronics	4	0	0	4	ELE 501	Advanced Nano-electronics	4	0	0	4
MATH 514	Mathematical Modeling and Simulation	4	0	0	4		Mathematical Modeling and Simulation	4	0	0	4
NANO 501	Quantum Computations and Information Processing	4	0	0	4	NANO 501	Quantum Computations and Information Processing	4	0	0	4
PHY 501	Advanced Characterization Techniques	4	0	0	4	PHY 501	Advanced Characterization Techniques	4	0	0	4
NANO 503L	Simulation Lab-II	0	0	6	3		Simulation Lab-II	0	0	6	3
PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3	PHY 513L		0	0	6	3
	Elective	4	0	0	4		Discipline Elective	4	0	0	4
	Total:	20	0	12	26		Total:	20	0	12	26

Discipline Electives	L	Т	Р	С
Nano-Engineering of Biological Systems	4	0	0	4
Organic and Polymer Technology	4	0	0	4
MEMS and NEMS Technology	4	0	0	4

Semester (III):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C
Code						Code					
	Reading Elective-I	0	0	4	2	PHY 601P	Project (Part-I)	0	0	48	24
PHY 601P	Project (Part-I)	0	0	48	24		Reading Elective-I	0	0	4	2
	Total:	0	0	52	26		Total:	0	0	52	26

Semester (IV):

	Existing						Proposed				
Course	L	T	P	C	Course	Course Name					
Code						Code					
PHY 601P	Project (Part-I)	0	0	48	24	PHY 601P	Project (Part-I)	0	0	48	24
	Reading Elective-II	0	0	4	2		Reading Elective-II	0	0	4	2
	Total:	0	0	52	26		Total	0	0	52	26

Reading Electives				
Nanotechnology in Healthcare and Environment	0	0	4	2
Development of Nanotechnology: A Global Aspect	0	0	4	2
Nanotechnology and Society	0	0	4	2
Tissue Engineering	0	0	4	2
Nano-Catalysis	0	0	4	2
RF and MMIC Design Reading	0	0	4	2

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, with prior permission of respective heads, time table permiting.

Name of Programme: M.Tech. (Nanotechnology)

Course Details:

S. N.	Course List	Lea	arning Ou	tcome		Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 506	Aft	er comp	oletion	of this	SECTION-A	SECTION-A	Defining the topics to be studied
	Nano-	cou	irse, the st	udent wil	l be able	III-V semiconductor quantum wells, Quantum		in a clear form.
	Photonics &	&to-				Dots, Nonlinear Optical Properties, Quantum	III-V semiconductors;	
	Optoelectronic	•	understan	d the fun	damental	Confined Stark effect, Dielectric confinement	Absorption in Semiconductors: Indirect Intrinsic	Updating the course:
	S		operating	princi	oles of	effect, Superlattices, Core shell Quantum	transitions, Exciton absorption, Donor acceptor and	Photonic Crystals moved to
			photodevi	ices			Impurity Band Absorption;	Section-C
		•	analyse	LED	and	structures as lasing media	Effect of electric field on absorption: Franz Keldysh	
			heterojun	ction	laser	Photonic Crystals, 1D,2D,3D photonic	and Stark effect;	
			materials		on and	structures, Features of photonic crystals,	Quantum confinement; Quantum Dots; Quantum wells	
			design			Microcavity effect Methods of Fabrication,	Absorption in Quantum Wells and Quantum Confined	
		•	understan	d fundam	entals of	Photonic crystal optical circuitry Nonlinear	Stark effect; Radiation in Semiconductors: Relation	
			organic	electroni	cs and	Photonic crystals, Photonic Crystal Fibre,	between absorption and emission spectra, Near	
			liquid cry			Photonic Crystal Sensor	Bandgap radiative transitions, Deep-level transitions	
		•	get an		ew of		Auger recombination; Dielectric confinement effect	
			photonic s	systems		SECTION-B	Superlattices; Core shell Quantum Dots; Quantum	
			1	•			confined structures as lasing media	
						two level lasing medium, Lasing Condition and		
						Gain in semiconductors, Selective	SECTION-B	
						Amplification and Coherence, Threshold	Introduction to Lasers; Gain in two level lasing	
						condition for lasing, Lineshape function and		Defining the topics to be studied
						line broadening mechanisms, Lasing threshold	, <u> </u>	in a clear form
						in two level system, LED: Basics, Choice of	Coherence; Threshold condition for lasing; Lineshape	
						Materials, Light Output from LED,		Updating the course: portion on
						Semiconductor Lasers: Basic principles,		LED is deleted as not relevant.
						Heterojunction Lasers: Energy Band diagram	Broadening; Semiconductor Lasers: Basic principles	
						and Power output, Quantum Well and	Heterojunction Lasers: Energy Band diagram and	
						Quantum Dot lasers, Surface emitting lasers,	Power output; Quantum Well and Quantum Dot lasers	
						Unipolar Devices, Quantum Cascade laser:	Multiple Quantum Well laser; Quantum Cascade laser	

Structure and Principle of Operation	Structure and Principle of Operation
SECTION-C Photodiodes, Avalanche Photodiodes, Structure, Materials, Characteristics, Device performance, Infrared Quantum detectors, QWIPs, Operation Principles, design and material choices, Quantum dot Infrared Photodetectors, Extending QWIPs into shorter and longer wavelengths	SECTION-C Photonic Crystals: 1D,2D,3D Photonic crystals, Photonic Bandgap and defects in photonic crystals, Features of photonic crystals, Optical microcavites, Methods of Fabrication, Nonlinear Photonic crystals, Photonic Crystal Fibre, Photonic Crystal Sensor; 1. Photonic Crystals moved from Section A to Section C. 2. Added topic on surface plasmons.
	1. Bhattacharya P. (2002) Semiconductor Optoelectronic Devices (Prentice Hall India, IInd edition) 2. Prasad P. N. (2004) Nanophotonics (Wiley Interscience, USA). 3. Silvfast W.T. (1998) Laser Fundamentals by, (Cambridge University Press, UK) 4. Ghatak A, Thyagarajan, K (2010) Lasers, Fundamentals and applications (Springer Science+Business Media, USA) 5. Novotny L., Hecht B. (2006) Principles of Nano-Optics (Cambridge University Press, UK) Suggested e-Resources: NPTEL: Semiconductor optoelectronics https://nptel.ac.in/courses/115102103/ NPTEL: Nanophotonics

2.	PHY 502		After	completion of this		No change in entire course
	Advanced		course	, the students will be		
	Synthesis		able to)-	Recommended Books	Update e-resources
	Processes	and	1.			
	Devices		•		1. Gabor L. Hornyak, Dutta J. Tibbals H.F., Rao A .(2008) Introduction to Nanoscience (CRC Press)	
				the fundamentals and		
				application of current chemical and scientific		
				theories including those	4. Jackson, M. J. (Ed.). (2005). Microfabrication and nanomanufacturing. CRC press	
				in Analytical, Inorganic,		
				Organic and Physical synthesis processes.	6. Manasreh, O. (2011). Introduction to nanomaterials and devices. John Wiley & Sons.	
			•	have skills in problem		
					Suggested –e-resources	
				and analytical reasoning	https://nptel.ac.in/courses/117106109/1	
				* *	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall-2005/lecture-notes/cvd.pdf	
				problems.	<u>2005/iecture-notes/cva.par</u>	
			•	communicate the results		
				of scientific work in oral,		
				written and electronic		
				formats to both scientists		
				and the public at large.		
			•	explore new areas of		
				research in both		
				chemistry and allied		
				fields of science and		
				technology.		
	PHY 508		After	completion of this		No change in entire course
	Fundament	als	course	, the students will be		Update e-resources
	of N	ano	able to)-	Recommended Books	
	sciences	anc	1 •	have knowledge of the	1. Sulabha, K., & Kulkarni, K. (2007). Nanotechnology: principles and practices.	
	Nano-			general principles of	2. Guozhong, C. (2004). Nanostructures and Nanomaterials: synthesis, properties and applications	
	technology			physics, chemistry,	World scientific	•
				electronics and biology	WORD SCIENTIFE	

	that play a role on the nanometer scale	e3. Köhler, M., & Fritzsche, W. (2008). <i>Nanotechnology: an introduction to nanostructuring techniques</i> . John Wiley & Sons	
•	have insight into the materials, fabrication and other experimental techniques that can be	Royal Society of Chemistry	
	used on the nanoscale as well as their	https://ocw.mit.edu/search/ocwsearch.htm?q=quantum%20dots https://nptel.ac.in/courses/103103026/8	
•	limitations understand of the formation of complex		
	macro systems which are unique in their operations and possess		
•	new functionalities have in-depth		
	knowledge of at least one specialisation area within the field of		
	nanoscience and	_	
	completion of this		No change in entire course
Materials able to Science	co- apply knowledge of	1. Callister, W. D., & Rethwisch, D. G. (2007). <i>Materials science and engineering: an introduction</i> (Vol. 7, pp. 665-715). New York: John wiley & sons.	Update e-resources
	mathematics, science and engineering to solve problems related	and processing. Butterworth-Heinemann.	
	to materials science and engineering.	Suggested –e resources https://ocw.mit.edu/courses/materials-science-and-engineering/3-012-fundamentals-of-materials-science-fall-	
	design new nanomaterials, as well as characterize the new material.	2005/lecture-notes/lec17b.pdf https://nptel.ac.in/courses/112104039/53	

		• collaborate effectively	
		on multidisciplinary	
		teams.	
		• communicate	
		effectively in written	
		and oral formats.	
5.		ter completion of this	No change in entire course
		urse, the students will be Recommended Books	Update e-resources
	Interface and abl		
	1 IIIII 111111S	• understand and describe 1. Prutton M. (1994) Introduction to surface science, (Cambridge University Press)	
		properties of free liquid 2. Daillant, J., & Gibaud, A. (Eds.). (2008). X-ray and neutron reflectivity: principles and surfaces, such as applications (Vol. 770). Springer	<i>t</i>
		surface tension	
		capillarity, wetting and Selchar, T. A. (1993). Vacuum physics and techniques. Chapman and Hall	
		spreading.	
		Suggested –e resources	
		• understand and describe https://pntel.ac.in/courses/112101004/downloads//36-8-1)%20NPTFI %20-%20Vacuum%20Technology.ndf	
		electrical phenomena at https://ocw.mit.edu/search/ocwsearch.htm?q=stm	
		surfaces, such as	
		surface charge, surface	
		potential, the electrical	
		double layer, and basic	
		electrochemical	
		concepts.	
		 describe the phase behaviour and 	
		behaviour and aggregation of	
		amphiphiles in solution	
		and at interfaces.	
		• desribe intermolecular	
		forces, forces acting	
		between molecules and	

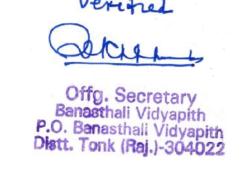
			1		1
		surfaces, and surface			
		forces.			
6.	NANO 502L			Introduction to Programming, problem analysis and	
	Simulation	course, the students will be	Virtual NanoLab (ATK-VNL) simulation package	algorithms. One programming language (C++, Python,	programming tools and programming
	Lab-I	-1-1 - 4 -	ic used ATK VNI produces very feet and reliable	Fortran Iava) Programming Software: Mathematica	language is necessary of any
	Luo I	• learn programming	simulation results for various 1,2 and 3 dimensional	MATLAB, Visualisation packages.	scientific training today.
			nano structures and nano devices which will rather		
		language,	requires a very large and expansive laboratory at	1. Use of standard library functions.	To reduce the dependency on
		• use various dynamic	the experimental level. ATK VNL helps students to	2. Problems based on do, while, for loops.	proprietary software and enhance
		and static indianes and	understand the electronic, optical, thermal,	3. Problems based on array, data type, data analysis.	conceptual understanding of
		few package or	mechanical and other properties of various nano-	4. Sorting of numbers and one dimensional array searching.	computational tools we need to learn
		simulations related to	structures and materials at the atomic level.	5. Problems based on pointer, parameter passing in	various tools. A single software can
		nano-materials		function. Recursion	not fulfil are the requirements.
		 understand various 	Simulation Lab-I	6. Problems based on object oriented programming.	
		mechanism at nano-		Classes, Modules, Subroutines.	
		scale through	1. To calculate ionisation energy and electron	7. Reading writing from/in files.	
		simulations	arrinty of belizene molecule in isolated (gas	8. Use of dynamic and static libraries.	
		Simulations	phase) and in SET environment.		
			2. To calculate binding energy of armchair	Command line arguments and shell scripting.	
			graphene nano-ribbons.		
			3. To Calculate the band structure of pristine and	Introduction to some Open source simulation tools that are	
			Cu edge terminated armchair graphene nano-	used to model nanostructure at the levels of classical and	
			ribbons	quantum mechanics.	
			4. To analyse Band structure of Cu edge doped		
			armchair graphene nano-ribbons.		
			5. To calculate binding energy of zigzag graphene		
			nano-ribbons.		
			6. To draw band structure of pristine and Cu		
			terminated zigzag graphene nano-ribbons.		
			7. To draw band structure of pristine and Cu edge		
			doped zigzag graphene nano-ribbons.		
			8. To calculate and analyse Density of states of a		
			molecule based nano device.		
			9. To study molecular projected self-consistent		
			Hamiltonian of a molecule based nano device.		
			To study HOMO, LUMO energy levels for a single		
<u> </u>			molecule junction.		
7.	PHY 512L	After completion of this	S		

	L _				
	Nano		, the students will be		
	Fabrication and)-		No change in entire course
	Characterizatio	•	synthesize the nano-		
	n Lab-I		materials		
		•	characterize the		
			synthesized materials		
			using several advanced		
			characterizing tools		
		•	seek potential of the		
			materials for several		
			industrial technological		
			applications.		
8.	ELE 501	After	completion of this		No change in entire course
	Advanced	course	, the students will be		Update e-resources
	Nano-	able to)- R	ecommended Books	
	electronics	•	cope up with certain 1.		
			nanoelectronic systems	holes in a semiconductor.	
			and building blocks 2. such as: low-	Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press.	
			dimensional 3.	Heinzel, T. (2008). Mesoscopic electronics in solid state nanostructures. John Wiley & Sons.	
				Waser, R. (Ed.). (2012). Nanoelectronics and information technology. John Wiley & Sons	
			heterostructures, carbon ₅ , nanotubes, quantum dots, nanowires etc.	Lundstrom, M., & Guo, J. (2006). <i>Nanoscale transistors: device physics, modeling and simulation</i> . Springer Science & Business Media.	
		•	set up and solve the Schrödinger equation	Hanson, G. W. (2008). Fundamentals of nanoelectronics. Upper Saddle River: Pearson/Prentice Hall.	
			for different types of R	eference Books:	
			potentials in one 1. dimension as well as in	Heikkilä, T. T. (2013). The physics of nanoelectronics: transport and fluctuation phenomena at low temperatures (Vol. 21). Oxford University Press.	
			2 or 3 dimensions for ₂ .	Park, B. G., Hwang, S. W., & Park, Y. J. (2012). Nanoelectronic devices. CRC Press.	
		•	specific cases. use matrix methods for	Mitin, V. V., Kochelap, V. A., & Stroscio, M. A. (2008). Introduction to nanoelectronics. Science, Nanotechnology, Engineering, and Applications (Cambridge Univ. press, Cambridge, 2008).	
			solving transport _{4.}	Chang, C. Y. (2000). ULSI devices. John Wiley & Sons.	
			problems such as 5.	Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge university press.	

tunneling, resonant	
tunneling and know the Suggested -e resources	
concept of quantized https://nptel.ac.in/courses/113104004/	
conductance. https://nptel.ac.in/courses/113104004/29	
• familiarize with	
searching for scientific	
information in their	
subject area, practice	
report writing and	
presenting their project	
in a seminar	
9. MATH 514 After completion of this	No change in entire course
Mathematical course, the students will be Recommended Books	g
Modeling andable to-	Update e-resources
Simulation • characterize	opanie e resources
engineering systems in 1. Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers.	Boston: McGraw-Hill
terms of their essential Higher Education,.	200000 112000 1111
elements, purpose, parameters, constraints, performance Prenkel, D., & Smit, B. (2001). Understanding molecular simulation: applications (Vol. 1). Elsevier.	from algorithms to
requirements, sub-3. Ohno, K., Esfarjani, K., & Kawazoe, Y. (2018). Computational materials scients systems, Monte Carlo methods. Springer	ence: from ab initio to
interconnections and environmental context. Suggested –e resources	
model and solve the https://nptel.ac.in/courses/103106119/	
relationship between https://ocw.mit.edu/search/ocwsearch.htm?q=ab%20initio	
theoretical,	
mathematical, and	
computational	
modelling for	
predicting and	
optimizing performance	
and objective.	
• develop solutions and	

		extract results from the		
		information generated		
		in the context of the		
		engineering domain to		
		assist engineering		
		decision making.		
		interpret the model and		
		apply the results to		
		resolve critical issues in		
		a real world		
		environment.		
10.	PHY 501 A	fter completion of this		No change in entire course
10.		ourse, the students will be	Recommended Books	To change in chart course
	Characterizatio al	,	1. Ajayan, P. M., Schadler, L. S., & Braun, P. V. (2006). Nanocomposite science and technology. John	Update e-Resources
	n Techniques		Wiley & Sons.	1
	1	• understand basic	·	
		principles of the techniques		
		presented in the course,	3. Rao, C. N. R., Müller, A., & Cheetham, A. K. (Eds.). (2006). The chemistry of nanomaterials:	
		their advantages and	synthesis, properties and applications. John Wiley & Sons.	
		limitations. Furthermore,	4. Cullity, B. D. (1978). Elements of X-ray Diffraction.	
		the student should		
		understand the		
		requirements for samples		
		suitable for each technique.perform simple and	Suggested _web resources	
		 perform simple and 	Suggested Web Tesources	
		-	https://nptel.ac.in/courses/117106109/1	
		experimental setups.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall- 2005/lecture-notes/cvd.pdf	
			2005/Tecture-Hotes/Cvd.pdr	
11.	NANO 503L A	fter completion of this	To perform various experiments Atomistix Toolkit Learning coding programs in any one of the	
			Virtual NanoLab (ATK VNL) simulation package is languages like Python, C++, Fortran, Mathematica	
	Lab-I al	ole to-	used. ATK-VNL produces very fast and reliable etc.	language is necessary of any

f	.05		cientific training today.
for scientific real proble	es simulation results for various 1,2 and 3 dimensional ms nano structures and nano devices which will rather	Write the Computer program to:	
using various numericand simulation methods. • have command over to numerical analysis	cal requires a very large and expansive laboratory at the experimental level. ATK VNL helps students to	1. Find the roots of a polynomial or transcendental vertical equation using Bisection, Iteration, Newton-Raphson, Ramanujan's, Quotient-difference	umerical methods studied in the ourse will be useless. Students will e required to write their own coded nd test all the techniques studied in
	 To study transport properties of armchair graphene nano-ribbon devices. To study transport properties of zigzag graphene nano-ribbon devices. To analyse chlorine sensing properties of zigzag boron phosphide nano-ribbons through electronic properties. To analyse chlorine sensing properties of zigzag boron phosphide nano-ribbons through transport properties. To calculate binding energy of boron nitride nano-ribbons. To calculate ionization energy and affine energy of boron doped benzene molecule in isolated (gas phase) and in SET environment. To calculate and analyse transmission spectra of a molecule based nano-device. To calculate magnetic moment of a molecular 	 Find the least square fit using Straight line and polynomial. Differentiate and integrate functions using Cubic spline, Trapezoidal, Simpson's, Gaussian integration. To calculate double integral. Simple Linear Algebra manipulations and calculating inverse and eigenvalue problems using inbuilt libraries. Solve single and couple ordinary differential equations using Euler's and Runge-Kutta method. Solving Partial differential equations. 	
	Junction. 9. To study I-V characteristic for a molecular Junction. To investigate spin-dependent I-V curve of single molecule junction.	10. Setup a metropolis algorithm based Monte Carlo simulation of 1d ferromagnetic ising model. Calculate temperature dependence of total energy, specific heat, magnetization and magnetic susceptibility.	
12. PHY 513L After completion of the Nano course, the students will Fabrication and able to-Characterizatio • understand ba			No change in entire course


	n Lab-II	principles of the techniques		
		presented in the course,		
		their advantages and		
		limitations. Furthermore,		
		the student should		
		understand the		
		requirements for samples		
		suitable for each technique.		
		• perform simple and		
		routine operations on the		
		experimental setups.		
13.	BT 518	After completion of this		No change in entire course
	Nano-	course, the students will be		
	Engineering		Recommended Books	Update e-Resources
	Biological	_	1. Enderle, J., & Bronzino, J. (2012). <i>Introduction to biomedical engineering</i> . Academic press.	
	Systems	nanotechnology and nanoscience and	2. Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals. CRC press.	
			Supplementary Reading:	
		importance of which in	1. Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals. CRC press.	
		the development of	X = X + X	and
		biomedical surface	measurements (Vol. 1). Pearson.	
		science,		
		• explain the		
		interdisciplinary nature	Suggested –web resources	
		of nanotechnology,		
		biology modicing	https://ocw.mit.edu/search/ocwsearch.htm?q=ph%20sensorss	
		biology, medicine,	https://ocw.mit.edu/search/ocwsearch.htm?q=cell%20structure	
		chemistry and physics,		
		• evaluate the different		
		technologies used in the		
		synthesis and analysis		
		of nanostructures, and		

	also the phenomena that		
	determine th		
	interactions betwee		
	nano objects an		
	biological and artificia		
	interfaces		
14.	CHEM 508 After completion of the		No change in entire course
	Organic and course, the students will be	e Recommended Books	
	Polymer able to-		
	Technology • isolate the key desig		
	features of a product which		
	relate directly to the		Update e-Resources
	material(s) used in i	3. Fried, J. R. (2014). <i>Polymer science and technology</i> . Pearson Education	
	construction		
		Suggested –web resources	
	100001 100001111115	n	
		https://nptel.ac.in/courses/113105028/	
	properties of polymers	https://ocw.mit.edu/search/ocwsearch.htm?q=metal%20containing%20polymers	
	• identify the repeat unit		
	of particular polymers an		
	specify the isomer		
	structures which can exi	St Control of the Con	
	for those repeat units		
	• estimate the number		
	and weight-average	re	
		of	
	polymer samples given the		
	degree of polymerisation		
	and mass fraction of chair		
	present.		
15.	ELE 504 After completion of the		No change in entire course
	MEMS and course, the students will be		
	NEMS able to-	1. Senturia, S. D. (2007). <i>Microsystem design</i> . Springer Science & Business Media.	
	Technology • understand th	e ₂ . Alvi, P. A. (2014). MEMS Pressure Sensors: Fabrication and Process Optimization.	Update e-Resources

		operation of micro	3. Gad-el-Hak, M. (2001). <i>The MEMS handbook</i> . CRC press.	
		devices, micro systems	4. Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.	
		1.1 ' 1'	Suggested –web resources	
			https://ocw.mit.edu/search/ocwsearch.htm?q=mems	
		basic approaches for	https://nptel.ac.in/courses/105105108/24	
		various sensor design	100 100 100 100 100 100 100 100 100 100	
		• gain a knowledge of		
		basic approaches for		
		various actuator design		
		• gain the technical		
		knowledge required for		
		computer-aided design,		
		fabrication, analysis		
		and characterization of		
		nano-structured		
		materials, micro- and		
		nano-scale devices.		
		nano seare de vices.		
	Reading Electi	ive-I*		
16.	BT 601R	After completion of this		No change in entire course
	Nanotechnolog	course, the students will be		8
	y in Healthcare		1. Rao, C. N. R., Muller, A., & Cheetham, A. K. (2004). The chemistry of nanoparticles: synthesis,	Update e-Resources
	and	• describe how the		1
	Environment	environment and		
		human health interact		
		at different levels.	3. Challa, R. K., & Kumar, R. (2007). Nanomaterials for medical diagnosis and therapy. Mass	
		• demonstrate the	Spectrometry, 1, 2,	
		knowledge and skills	Supplementary Reading:	
		needed to improve the	Supplementary Reading:	
		environmental	1. Goddard III, W. A., Brenner, D., Lyshevski, S. E., & Iafrate, G. J. (Eds.). (2007). Handbook of	
		sustainability of health	nanoscience, engineering, and technology. CRC press.	
		systems.	2 Physhap P (Ed.) (2017) Springer handbook of nanotechnology Springer	
		 discuss how the duty of 	2. Bhushan, B. (Ed.). (2017). Springer handbook of nanotechnology. Springer.	

		promote health is Suggested – web resources	
		shaped by the https://www.futurelearn.com/courses/nanotechnology-health	
		dependence, of human https://elearninguoa.org/course/health-nanotechnology-nanomedicine/nanotechnology-and-nanomedicine	
		health on the local and https://www.edx.org/learn/nanotechnology	
		global environment.	
17.	MGMT 601R	After completion of this course	No change in entire course
1,.		the student will be able to: Recommended Books	Two change in chart course
	of	• understand the 1. Maclurcan, D., & Radywyl, N. (Eds.). (2011). Nanotechnology and global sustainability. CRCU	ndate e-Resources
	Nanotechnolog	role of Press	puate e-Resources
	. ~		
	2	nanotechnology 2. Fulekar, M.H. Pathak B., R K Kale (2013) Environment and Sustainable Development, (Springer	
	Aspect	in various Press).	
		aspects globally 3. Parker, R. A., & Appelbaum, R. P. (Eds.). (2013). Can Emerging Technologies Make a	
		• cope up the Difference in Development?. Routledge.	
		advancement in Suggested – web resources	
		new	
		technologies http://www.greeknewsagenda.gr/index.php/topics/business-r-d/6583-university-of-athens-online-	
		using courses-on-nanotechnology-and-nanomedicine	
		nanotechnology https://www.coursera.org/learn/nanotechnology	
		The part of the second of the	
18.	MGMT 602R	After completion of this course Recommended Books	No change in entire course
		the student will be able to: 1. Fritz, S., & Roukes, M. L. (2002). <i>Understanding nanotechnology: from the editors of Scientific</i>	1,0 0
	y and Society		pdate e-Resources
	y and society	of nanotechnology in 2. Ratner, M. A., & Ratner, D. (2003). Nanotechnology: A gentle introduction to the next big idea.	padic o resources
		routine life Prentice Hall Professional.	
		• understand the impact ³ . Jasanoff, S., Markle, G. E., Peterson, J. C., & Pinch, T. (Eds.). (2001). <i>Handbook of science and</i>	
		university press. 5. Dielecting A. (Ed.) (1992). Science as practice and culture. University of Chicago Press.	
		5. Pickering, A. (Ed.). (1992). Science as practice and culture. University of Chicago Press.	
		Currented mel meanings	
		Suggested –web resources	
		https://www.mrs.org/docs/default-source/programs-and-outreach/strange-matter.green-earth/nanotechnology-and-society-a-practical-guide-to-engaging-museum-visitors-in-conversations.pdf?sfvrsn=bf66fa11 0	
		http://www.cns.ucsb.edu/about/nanotechnology-society.html	
		incep.//www.clis.acsb.edu/aboat/hanotechnology-society.html	

	Reading Elective-II*		
19.	BIO 604R After completion of this cour	se Recommended Books	No change in entire course
	Tissue the student will be able to- Engineering • understand the base	1. Palsson, B. O., Bhatia, S. N., & Prentice, P. (2004). Reviewed by Kam W. Leong. <i>Molecular Therapy</i> , 9(4).	Update e-Resources
	mechanism biological system using nano-science a	phoinporing (VOL 7) Tonn Wiley & Sons	
	technology.	Supplementary Readings:	
	 understand concept tissue engineering 	of 1. Joseph D., Bronzino (2006) The Biomedical Engineering –Handbook, (CRC; 3rd edition)	
		Suggested –web resources	
		https://nptel.ac.in/courses/102106036/	
		https://ocw.mit.edu/search/ocwsearch.htm?q=bio%20materials	
20.	CHEM 601R After completion of this cour		No change in entire course
	Nano-Catalysis the student will be able to- • understand the base	1. Levenspiel, O. (1999). Chemical reaction engineering. <i>Industrial & engineering chemistry</i> ic research, 38(11), 4140-4143	Update e-Resources
	mechanism of chemic	cal 2. Carberry, J. J. (2001). <i>Chemical and catalytic reaction engineering</i> . Courier Corporation.	
	reaction	3 Sotterfield C. N. (1970) Mass transfer in heterogeneous catalysis. The MIT Press	
	• understand the role	Suggested –web resources	
	nano-catalysis.	https://ocw.mit.edu/search/ocwsearch.htm?g=%20nano%20catalysis	
		https://nptel.ac.in/courses/103108097/28	
21.	ELE 601R After completion of this cour	se Recommended Books	No change in entire course
	RF and MMIC the student will be able to-	1. Robertson, I. D., & Lucyszyn, S. (Eds.). (2001). RFIC and MMIC Design and Technology (No. 13).	
		iolet.	Update e-Resources
	frequency systems	Suggested –web resources	
	• design the ne	https://ocw.mit.edu/search/ocwsearch.htm?q=mesfet	
	electronic devices.	https://nptel.ac.in/courses/117107095/20	

