Minutes of the meeting of board of studies in Mathematics & Statistics held on 20.09.08 at 10:30 a.m. in 209, Apaji Institute, Banasthali Vidyapith.

1.	Prof. G.N. Purohit	:	Member
2.	Dr. Pijus Kanti De	:	Member
3.	Dr. Deepa Sinha	:	Member
4.	Smt. Amala Olkha	:	Member
5.	Sh. Om Prkash	:	Member
6.	Dr. Shalini Chandra	:	Member
7.	Dr. Rakhee	:	Member
8.	Sh. Piyush Kant Rai	:	Member
9.	Ms. Somya Upadhyay	:	Member
10.	Sh. Praveen Kumar Garg	:	Member
11.	Sh. Jahangir S. Khan	:	Member
12.	Dr. Gauri Shankar	:	Member
13.	Dr. Kiran Gaur	:	Member
14.	Sh. Sharad Chandra Pandey	:	Member
15.	Sh. Vikas Pareek	:	Special Invitee
16.	Dr. Sarla Pareek	:	Convener

Prof. R.C. Yadav, Varanasi, and Prof. B.K. Dass, Delhi, Prof. P.K. Banerjee, Jodhpur (External members), Dr. Vibha Sharma (Internal member) could not attend the meeting.

- The board of studies in Mathematics and Statistics started with paying tribute to the sad demise of Prof.Rekha Govil who was ex-convener of the board and dean of Apaji Institute. The board owes a lot for her endless efforts in building this Institution and taking all pains to give a concrete shape to the course designs of department of Mathematics and Statistics.
- The board confirmed the minutes of its last meeting of the Board of Studies held on November 2, 2007.
- 3. The board examined the existing panel and updated the panel class wise and paper wise for each examination up to and inclusive of all Master's degree Examinations keeping in view the Bye-law 15.03.02 of the Vidyapith. Updated panel is sent to the Examination and Secrecy.

4. The board reviewed the scheme of examination, curricula and syllabi of Undergraduate Semester system.

In the courses and syllabi of Undergraduate Semester examination few revisions have been recommended as follows:

Mathematics -

In undergraduate scheme, paper 6.2 (Automata Theory and Mathematical Logic) and 6.3 (Numerical Analysis) have been interchanged. The course "Automata Theory and Mathematical Logic" has been renamed as "Automata Theory". Revised scheme is enclosed in **Annexure-I**.

I sem – In the course 1.2 of Algebra in the units II, IV, V some modifications has been made. Changes made are enclosed in **Annexure-II** (a).

The courses of III Sem (3.1,3.2,3.3,3.4), IV Sem (4.1,4.2,4.3,4.4), V Sem (5.1,5.2,5.3,5.4) and VI Sem(6.1,6.2,6.3,6.4) have been designed and enclosed in **Annexure-II (a)**.

The board discussed and agreed about the discontinuation of the honours course in Mathematics without loosing the relevant courses(papers-1.1,1.2,2.1,2.2,3.1,3.2,4.1,4.2,5.1,5.2,6.1,6.2) as given in **Annexure-I.**

Statistics –

IV Sem- In the course Statistical Inference and Quality Control in unit III (simple ideas only) will be replaced by (Normal Distribution).

Applied Statistics: No change.

I Sem	course 1.1	Mathematics I	No change
II Sem	course 2.1	Probability & Statistics	No change
III Sem	course 3.1	Mathematics II	No change
V Sem	course 5.1	Quantitative Tech.	No change
VI Sem	course 6.1	Discrete Mathematics	No change

BA (CA) -

I Sem	course 1.1	Mathematics I	No change
III Sem	course 3.1	Mathematics II	No change
IV Sem	course 4.3	Mathematics III	No change

- 5. The board revised the syllabi of the Mathematics courses of B.Tech upto VI Semester and some recommendations have been made as follows:
 - I/II sem: In Probability & Statistics course, in unit I before mathematical expectations 'concept of random variable' has been incorporated. (Revised syllabus is enclosed in **Annexure-II(b)**).
 - I/II sem Calculus (Revised syllabus is enclosed in Annexure-II(b)).
 - V sem Discrete Mathematics (syllabus is enclosed in Annexure-II(b)).
 - VI sem Optimisation Techniques (syllabus is enclosed in Annexure-II(b)).
- 6. The board reviewed the scheme of examination, curricula and syllabi of M.Sc. (Mathematical Sciences). The scheme was modified to keep the total credits of each specialization uniform in all Semesters. Also all core courses without practical components were allotted six hours per week and courses with practical component were allotted four hours per week for theory and four per week for laboratory practices. So the course of Discrete Mathematics was also given six hours per week instead of four hours per week. The edited proposed scheme along with the existing scheme is produced in the Annexure-III and the amended syllabus according to the class hours of Discrete Mathematics is proposed (Enclosed for the reference in the Annexure-IV).

The board also proposed Computer Programming (paper 5) should be separately run from MCA course, since the approach of teaching these courses to Mathematics students is different as that of Computer Science students.

In the courses and syllabi of M.Sc. (Mathematical Sciences), few revisions have been recommended as follows:

IV sem 1) The course Differential Geometry has been revised. Syllabus is enclosed in Annexure-IV. The course Operation research with the minor changes has been proposed.
 Syllabus is enclosed in Annexure-IV.

The above changes proposed are recommended to be introduced from the next session itself i.e. 2009-2010.

- 7. The board reviewed the scheme of examination, curricula and syllabi of M. Phil programme. New scheme has been proposed and enclosed in Annexure-V(a). Board also has proposed some electives in the curricula as follows:
 - a. Advanced Differential Geometry
 - b. Time Series Modeling
 - c. Advanced Graph Theory
 - d. Finite Element Methods

Proposed syllabi are enclosed in Annexure-VI(b).

- The board proposed an interdisciplinary course in Bio-Statistics at post graduate level (M.Sc. in Bio-Statistics). The scheme, course and syllabi of the proposed course is enclosed in Annexure-VI.
- 9. The board found the syllabus of the part time course run by Apaji Institute 'Certificate course in Statistical Techniques & Applications' to be up to the mark.
- 10. The board reviewed the reports received from the examiners of different examinations in conjunction with the grievances. All the reports are found to be with good remarks but two of them with the average.
- 11. The board evaluated periodical and final examination paper and found that most of them were analytic and application oriented depending on the nature of the course. In very few cases some misprint were found and also some were out of syllabus. Overall quality of question papers was up to the mark.
- 12. The board reviewed the report submitted by faculty members on the suitability of the question paper being sent as a model paper of last year Semester /Question paper for this year as enclosed in **Annexure VII.**

The Meeting ended with vote of thanks to the Chair.

Annexure I

Scheme of Examination

B.A. <i>.</i>	/ B .	Sc.	(Mathematics)
----------------------	--------------	-----	---------------

Existing (Semester Scheme) (2008-09)					Proposed (S	emester S	chem	e) (2009-10)			
Semester I Conta hours		Contact hours		Semester II	Contact hours		Semester I	Contact hours		Semester II	Contact hours
1.1	Calculus	4	2.1	Analytical Solid Geometry	4	1.1	Calculus	4	2.1	Analytical Solid Geometry	4
1.2	Abstract Algebra	4	2.2	Linear Algebra	4	1.2	Abstract Algebra	4	2.2	Linear Algebra	4
	Semester III			Semester IV			Semester III			Semester IV	
3.1 3.2	Real Analysis Differential	4	4.1 4.2	Mechanics-I Probability &	4	3.1 3.2	Real Analysis Differential	4	4.1 4.2	Mechanics-I Probability &	4
	Equations-I	4		Statistics	4		Equations-I	4		Statistics	4
3.33.4	Number Theory & Theory of Equations Vector Analysis &Tensor Calculus	4	4.3 4.4	Integral Transforms Differential	4	3.3 3.4	Number Theory & Theory of Equations Vector Analysis &Tensor Calculus	4	4.3 4.4	Integral Transforms Differential	4
	Semester V	т		Semester VI	Т		Semester V	-		Т	
5.1 5.2	Discrete Mathematics Linear Programming & its Applications	4	6.1 6.2	Complex Analysis Automata Theory & Mathematical	4	5.1 5.2	Discrete Mathematics Linear Programming & its Applications	4	6.1 6.2	Complex Analysis Numerical Analysis	4
5.3	Mechanics-II	4	6.3	Numerical Analysis Industrial	4	5.3	Mechanics-II	4	6.3	Automata Theory	4
5.4	Advanced Calculus	4	6.4	Mathematics	4	5.4	Advanced Calculus	4	6.4	Industrial Mathematics	4

Annexure II(a)

	1.2 – Abstract Algebra	Contact hours: 65
Existing Syllabus	Proposed syllabus	Remark
Unit-I	Unit-I	Srike-through portion is neglected in the
Set, relations, functions and binary	Set, relations, functions and binary operations. Binary	proposed syllabus since the topics are not
operations. Binary operations in contrast to	operations in contrast to unary and ternary operations	upto the level of first year students.
unary and ternary operations Group:	Group: Definition examples and simple properties of	
Definition examples and simple properties	groups and subgroups.	
of groups and subgroups.		
	Unit-II	
	Permutation groups, Cyclic groups, Cosets, Lagrange's	
Unit-II	theorem. Homomorphism and isomorphism of groups,	
Permutation groups, Cyclic groups, Cosets,	Cayley's theorem.	
Lagrange's theorem. Homomorphism and		
isomorphism of groups, Cayley's theorem.	Unit-III	
Automorphism group.	Normal subgroups and quotient groups, Fundamental	
	theorem of homomorphism of groups (First, second	
Unit-III	and third theorem of isomorphism)	
Normal subgroups and quotient groups,	Unit-IV	
Fundamental theorem of homomorphism of	Rings: Definition and examples of rings Residue class	
groups (First, second and third theorem of	rings, Special classes of rings, Integral domains,	

isomorphism)	Division rings (rings, Fields), Simple properties of	
	rings, Subrings and Subfields. Ring homomorphism	
Unit-IV	and ring isomorphism.	
Rings: Definition and examples of rings		
Residue class rings, Special classes of rings,	Unit-V	
Integral domains, Division rings (rings,	Ideals, Principal ideal, Principal ideal ring, Quotient	
Fields), Simple properties of rings,	ring, Prime ideal, Maximal Ideal, Euclidean ring and	
Subrings and Subfields. Ring	its properties, Polynomial rings.	
homomorphism and ring isomorphism,		
Field of quotients of an integral domain.		
Unit-V		
Ideals, Principal ideal, Principal ideal ring,		
Quotient ring, Prime ideal, Maximal Ideal,		
Euclidean ring and its properties, Unique		
Factorization theorem, Polynomial rings.		

Text / Reference Books:

- 1. V.K. Khanna and S.K. Bhambri. A Course in Abstract Algebra, , 2nd rev.ed., Vikas Pub.house 1998, New Delhi
- 2. I.N.Herstein, Topics in Algebra 2nd ed.1975, Wiley Eastern, New Delhi
- 3. A.R.Vashistha, Modern Algebra , 2nd rev.ed., Krishna Prakashan Mandir, Meerut 1971.

4. B.A./B.Sc. II Year (Semester III) 3.1 Real Analysis

Contact Hours : 65

- **Unit-I** Set, Function, Bounded and unbounded set, Spremum and Infimum of a set. Limit point, closure of a set, closed and open set, interior and boundary point. Description of the real number system as a complete ordered field, Analytic properties of real number system.
- Unit-II Real sequences and their convergence, Cauchy sequence. Convergence of series: Comparison test, Root test, Ratio test, Rabbe's test, DeMorgon and Bertrand test, Gauss test, Logarithmic and integral test, Leibnitz test.
- **Unit-III** Real valued function, limit of a function, continuous function and their properties. Heine's theorem, Uniform continuity.
- **Unit-IV** Derivability, Rolle's theorem, Lagrange's mean value theorem, Cauchy's meanvalue theorem. Taylor's and Maclaurin's theorem. Power series, expansion of $\sin x, \cos x$, $\log (1+x)$, $(1+x)^n$ and e^x .
- Unit-V Riemann integration, properties of Riemann integrals. Fundamental theorem of integral calculus. Point wise and uniform convergence, Mn-test, Weierstrass M-test, Abel's test, Dirichlet's test. Uniform convergence and continuity, term by term differentiation and integration.

Text/Reference Books :

- 1. W. Rudin, Principles of Mathematical Analysis(3rd ed.), McGraw Hill, 1976.
- 2. Royden, H.L., Real Analysis (4th ed.), Macmillan, 1993.
- 3. Apostol, T.M., Real Analysis, Narosa Publishing House, New Delhi 1985.
- 4. Malik, S.C.& Arora, S., Mathematical Analysis, Wiley Eastern Ltd., New Delhi.

B.A./B.Sc. II Year (Semester III) 3.2 Differential Equations -I

Contact Hours : 65

- Unit 1 Solution of differential equations of first order and first degree, Differential equations of first order and any degree, Application of first order differential equation
- Unit 2 Singular Solutions & extraneous loci, Trajectories of a family of curves, Orthogonal trajectories
- **Unit3** Linear differential equations with constant coefficients, Homogeneous Linear Differential Equations.
- Unit 4 Linear differential equations of second order, The complete solution in terms of known integral, Method of removal of the first derivative (or Reduction to normal form or Change of dependent variable), Transformation. of equation by changing the independent variable, Method of variation of parameters.
- **Unit 5** Simultaneous ordinary differential equations, Simultaneous equations of first order, Exact Linear Differential Equations of any order, Total Differential equations.

Text Books:

1.Bansal, J.L.& Dhami, H.S: Differential Equations Vol. II, Jaipur Pub. House, 2004

Reference Books:

1. Raisinghania, M.D.: Ordinary and Partial Differential Equations, 9th Ed, S. Chand and Company, 2005

2. Bansal, J.L.& Dhami, H.S: Differential Equations Vol. II, Jaipur Pub. House, 2004

3.Rai,Choudhary,Freedman:A Course in ordinary differential equations, Narosa Publishing House, New Delhi ,2002.

4. George F.Simmons, Differential Equations:with applications & historical notes ,Tata Mc. Grawhill,NewDelhi , 1974.

B.A/ B.Sc. – II Year Mathematics (Semester III) 3.3 Number theory and Theory of Equations

Contact Hours : 65

Unit 1: Integers, well-ordering principle, induction, Fibonacci numbers, divisibility, prime numbers, distribution of primes, conjectures about primes, Greatest Common Divisor, least common multiple, Euclidean algorithm, fundamental theorem of arithmetic and applications, **Unit 2:** Dirichlet progressions, irrational numbers, Fermat factorization, linear Diophantine equations, perfect numbers, Mersenne numbers

Unit 3: congruences, linear congruences, Euler's Theorem., computing powers (mod m) Chinese remainder theorem, Fermat's little theorem, Wilson's theorem, primality testing and Carmichael numbers, properties of the Euler Phi function

Unit 4: Public-key cryptography, RSA encryption method, Digital signatures, Diffie-Hellman key exchange

Unit 5 : Polynomials ; Definitions, Division, Synthetic Division, Application of Synthetic Division, Remainder Theorem, Method of Undetermined coefficients, Roots of equations, Relation between roots and coefficients of an equation, Transformation of equations, Vanishing of term, Descartes' Rule of Signs, Symmetric functions of roots of an equation, Equations whose roots are symmetric functions, Cubic equation ; Cardon's solution.

Text Books

1. David M. Burton	: Elementary Number Theory, CBS Publishers and
	distributors, New Delhi,
2. S.Barnard and J.M.Child	: Higher Algebra, Macmillan Co, New Delhi, 2002.

Reference Books :

- An Introduction to the Theory of Numbers I. Niven and H. Zuckerman 1980, 4th Edition, John Wiley & Sons, New York.
- Elementary Number Theory & Its Applications Kenneth Rosen
 1987, 2nd Edition, Reading Mass Addison Wesley.
- 3. William Burnside and A.W.Panton : *Theory of Equations*, Longman, London, 1909.

B.A./B.Sc. IIyr (III-Semester) 3.4 Vector Analysis & Tensor Calculus

Contact Hours. : 65

Unit 1: Vectors and scalars (Def.). Multiple product of vectors. Scalar and vector triple products and their properties, condition for three vectors to be coplanar, scalar and vector product of four vectors, Vectors differentiation, derivative of the products of a constant & a vector. Derivative of sum & products of vectors.

Unit 2: Partial differentiation of vectors, differential operator Del (V), gradient of a scalar point function, identities for gradient, level surfaces, Directional derivative, Divergence and curl of a vector, vector identities, vector integration : line integrals, surfaces and volume integrals, Gauss divergence Theorem, Greens & Stokes theorem.

Unit 3: Contravariant and covariant vectors, scalar invariant, tensors, contravariant, covariant and mixed tensors of second and higher orders. Symmetric and skew symmetric tensors. Addition and subtraction of tensors, outer or open product, contraction, inner product, quotient law, Reciprocal symmetric tensors of the second order.

Unit 4: Riemannian metric, length of a curve, magnitude of a vector, angle between two vectors, orthogonal vectors, associate tensors. The christoffel symbols, the laws of transformation of christoffel symbols.

Unit 5: Covariant derivative of a scalar, a covariant and contra variant vector. Covariant derivative of tensors of second order. Covariant derivatives of sums, and products. Derived vector in a given direction. Covariant tensor, Ricci tensor and covariant curvature tensor.

Text books /References:

- 1. De, U.C. : Tensor Calculus. Alpha Science International Ltd.2007.
- 2. Simmonds, James.G. :. A Brief On Tensor Analysis (Under graduate text in Mathematics), *Springer 2nd ed. July*, 1997.
- 3. Mathews, Paul.C.: Vector Calculus, Springer, ed. 2000.
- 4. Kay, David.C. : Schaum's Outline series of Tensor Calculus.
- 5. Spiegel, M.R.: Theory and problems of Vector analysis, Shaum's outline series, 974
- 6. Davis, H.F. Snider, A.D. : Introduction to vector Analysis, *Universal Book Stall New Delhi* 1992.

B.A./B.Sc.-II Year(Semester IV)4.1 Mechanics I

Contact Hours 65

- **Unit 1** Motion in a Plane Curve :Velocity and acceleration (radial, transverse, tangential and normal), motion of two particles connected by a string.
- Unit 2 Projectile on a horizontal plane, simple harmonic motion.
- **Unit 3** Constrained motion: Motion along a smooth vertical circle and smooth cycloid, Hooke's law, motion of a particle attached to an elastic string.
- **Unit 4** Composition and resolution of forces, equilibrium of forces acting at a point (Lami's theorem only), parallel forces, moments.
- **Unit 5** Friction-definition, statical friction, dynamical friction, limiting equilibrium-an inclined plane, common catenary.

Text Book:

- Loney, S.L.; The elements of Statics & Dynamics, Part-I Statics, Cambridge University Press, Cambridge; 5th ed.1954.
- Loney, S.L; An Elementary Treatise on the Dynamics of a Particle and of Rigid Bodies, Metric Edition, Surjeet Publication, New Delhi,1988

Reference Books

- 1. Meriam, J.L. & Kraige, L.G.; Engineering Mechanics, John Wiley, New York, 1998.
- 2. Meriam, J.L.; Dynamics, Wiley Eastern, New Delhi, 1970.
- 3. Hafiz, G.N & Gupta, K.L.; Statics, S.Chand, Delhi, 1969.
- 4. Gaur, Y.N, Mathur, A.K. & Goyal, M.C.; Dynamics, Indus Valley Publication, Jaipur, 2004
- 5. Verma, B.G., Gupta, B.D.& Varshney, C.L; Statics, Pragati Prakashan, Meerut, 1967.
- 6. Bali, N.P.; Dynamics, Laxmi Publications, New Delhi, 2000.
- 7. Ray, M.; A Text Book on Dynamics, S.Chand and Co., New Delhi, 1972.

B.Sc. IV Sem

4.2 Probability and Statistics

Contact Hours: 65

Unit-1 Theory of Probability, Law of total and compound probability, Conditional Probability, Baye's theorem, Random variable, Discrete random variable, Continuous random variable, Distribution function.

Unit-2: Measures of central tendency, Measures of dispersion, Moments, Sheppard's correction (without proof), Skewness and Kurtosis.

Unit-3 Mathematical expectation, Addition and Multiplication theorem of expectation, Moment generating functions, Cumulants and Cumulant generating functions.

Unit-4 Discrete and Continuous probability distributions: Binomial, Poisson and Normal distributions with important properties. Fitting of Binomial, Poisson and Normal distributions.

Unit-5 The principle of least squares and curve fitting , fitting of straight line and second degree parabola, fitting of the curves of type: ab^x and ax^b ; correlation (Karl Pearson) and linear regression.

Books Recommended:

- Gupta, S.C. & Kapoor, V.K.; Fundamentals of Statistics, Himalaya publications, 1992 Mumbai.
- 2. Gupta& Gupta: Business Statistics Himalaya publications, 1992 Mumbai.
- Gupta, S. C. & Kapoor, V. K.; Fundamental of Mathematical Statistics, 9th edition, Sultan Chand, 1994.
- Goon A. N, Gupta M. K. and Das Gupta, B. J.; Fundamental of Statistics 2nd edition, World Press Pvt. Limited, 1980.

B.A/B.Sc. IV Semister 4.3 Integral Transform

Contact hrs.- 65

Unit-1: Laplace transform- Definition, Laplace transform of elementary functions, shifting theorems, change of scale property, Laplace transform of derivatives, Inverse Laplace transform, translation theorems, change of scale property, Inverse Laplace transform of derivatives, Convolution theorem.

Unit-2: Application of Laplace transform to solution of ordinary differential equations: Solution of ordinary differential equations with constant coefficient, solution of ordinary differential equations with variable coefficients, solution of simultaneous ordinary differential equations.

Unit-3: Fourier transform, Sine and Cosine transforms, Relation between Fourier & Laplace transform, Inversion formula, Convolution theorem.

Unit-4: Applicatons of Fourier transforms in initial boundary value problems. Definition and elementary properties of Hankel transform.

Unit-5: Mellin transform, Properties, Mellin transform of derivatives and integrals, Mellin inversion theorem.

Text Book:

- 1. Goyal, S.P. and Goyal, A.K.: Integral Transforms, Ist edition, JPH, 2005.
- 2. Goyal, J.K. and Gupta, K.P.: Integral Transforms, Pragati Prakashan Meerut, 2005.
- Vashishtha A.R. and Gupta, R.K.: Integral Transforms, IIIrd edition, Krishna Prakashan Mandir Meerut, 1980.

Reference Book:

- 1. Sneddon Ian N.: The use of Integral Transforms, TMH, New Dehli, 1974.
- 2. Davies, B.: Integral Transforms and their applications, Springer, New York, 1978.
- 3. Goel, J.K. and Gupta, K.P.:Integral Transforms, IVth edition, Pragati Prakashan Meerut, 1982.

B.A./B.Sc. II Year

(Semester IV)

4.4 Differential Equations -II

Contact Hours : 65

- **Unit 1** Exact linear and non-linear differential equations, Riccati's equation, Non-Linear differential equations of particular forms, Existence and uniqueness of the solution of differential equations.
- Unit 2 Solution in series: Solution of the second order differential equations of the form d2y/dx2
 + P dy/dx + Qy=0, where P and Q are functions of x, Indicial equations and its roots, Legendre differential equation, Bessel's differential equation.
- Unit 3 Classification & Formulation of partial differential equation, Lagrange's Linear Equation(Pp + Qq = R)& its solution, Non-linear PDE's of first order & their Particular forms, Charpit's Method.
- Unit 4 Linear Partial Differential equations with constant coefficients. Homogeneous equations, Non homogeneous equations.
- Unit 5 Partial Differential equation of second order with variable coefficients.Monge's Methods, Separation of Variables, Cannonical Forms.

Text Books:

1.Bansal, J.L.& Dhami, H.S: Differential Equations Vol. II, Jaipur Pub. House, 2004.

Reference Books:

1.Raisinghania, M.D.: Ordinary and Partial Differential Equations, 9th Ed, S. Chand and Company, 2005

2.Piaggio, H.T.H: An elementary treatise on differential equations and their applications, CBS Publishers,New Delhi, 1985

3.Coddington, E.A.: An introduction to ordinary differential equations, Prentice Hall of India, 2002

B.Sc. V Semester 5.1 Discrete Mathematics

Contact Hours - 65

Unit 1 Sets and multisets, Relations and functions, Equivalence relations, Partial order relations, Chains and antichains. Permutations, Combinations, Selection with & without replacement, Permutation and combinations of multisets. Discrete probability, the rules of sum & product.

Unit 2 Basic concepts of graph theory, Multigraph and weighted graphs, Paths & circuits. Matrix representation of graphs, Eulerian path and circuits, Hamiltorian path and circuits. Shortest path in weighted graph, Planar graphs.

Unit 3 K-connected and K-edge-connected graphs. Chromatic number, Edge colouring of graphs, Vazing's theorem. Trees and cut sets - Trees, Rooted trees, Path lengths in rooted trees, Spanning tree and cut set, Minimum spanning tree.

Unit 4 Pigeon hole Principle, Inclusion-Exclusion principle. And discrete numeric functions - manipulation of numeric functions. Asymptotic behavior of numeric function. Generating functions, Recurrence relations, linear recurrence relation with constant coefficients and their solutions.

Unit 5 Boolean Algebra, Lattices, Uniqueness of finite Boolean Lattices, Boolean functions and Boolean expression, Propositional Calculus.

Text/Reference Books :

- 1. Elements of Discrete mathematics; C.L. Liu McGraw Hill, International editions, 1985.
- 2. Graph Theory; Narsingh Deo; Prentice Hall of India, 2002
- 3. Discrete Mathematics and it's Applications, Kenneth H. Rosen, McGraw Hill, 1999
- 4. Foundation of Discrete Mathematics; K.D. Joshi; Wiely Eastern Ltd., 1989

B.A./ B.Sc. V Sem 5.2 Linear Programming and Its Applications

Total Contact Hours: 65

- Unit 1 Linear Programming Problem: Definition, Formulation of LPP, Graphical Method
- Unit 2 Simplex Method, Big-M and Two-Phase Method, Degeneracy, Resolution of degeneracy. Limitation of LPP.
- Unit 3 Duality in LPP, Important results in Duality, Dual Simplex Method. Integer Programming: Definition, Gomory's Method.
- Unit 4 Transportation: Definition, Solution by Simplex Method. Assignment: Definition, Solution by Simplex Method.
- Unit 5 Game Theory: Definition, 2 person zero-sum Game, Game with mixed strategies Solution by using Simplex Method.

Text Books :

- 1. Kambo, N.S., Mathematical programming Techniques Affiliated East-West Press Ltd.
- 2. Dipak Chatterjee, Linear Programming and Game Theory, Prentice Hall India, 2005.

Reference Book:

- 1. Kanti Swarop, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand, 1997.
- 1. Hamdy A. Taha, Operations Research an Introduction, Prentice Hall India, 1997.
- 2. S.D. Sharma, Operations Research, Kedar Nath Ram Nath, 1994.

B.A./B.Sc.- V Semester 5.3 Mechanics II

Contact hours :65

- **Unit 1** Equilibrium of a rigid body under action of three forces, Center of gravity- of an arc, plane area, solid of revolution, surface of revolution.
- Unit 2 Virtual work: definition, measurement of work, principle of virtual work for a system of co-planer forces acting at different points of a rigid body; Introduction to bending moments with simple problems on beams and rods.

- **Unit 3** Motion in a plane: polar coordinates- radial and cross-radial components of velocity and acceleration, angular velocity and acceleration, Equation of motion in polar coordinates, vertical motion of particle in resisting medium (varying as velocity).
- Unit 4 Central Orbits: definition of central orbit, Differential equation of the central orbit, Differential equation of the central orbit in pedal form, Angular momentum.
- Unit 5 Tangential and Normal Acceleration: Tangential and normal velocities and accelerations, Tangential and Normal equation of a motion of a particle. Equation of motion of a particle along a smooth plane curve and rough plane curve.

Text Book:

1. Loney, S.L.; The elements of Statics & Dynamics, Part-I Statics, Cambridge University Press,1954

2. Gaur, Y.N, Mathur, A.K.& Goyal, M.C.; Dynamics, Indus Valley Publicaion, Jaipur, 2004. **Reference Books:**

- 1. Meriam, J.L. & Kraige, L.G.; Engineering Mechanics, John Wiley, New York, 1998.
- 2. Meriam, J.L.; Dynamics, Wiley Eastern, New Delhi, 1970.
- 3. Hafiz, G.N & Gupta, K.L.; Statics, S.Chand, Delhi, 1969.
- 4. Verma, B.G., Gupta, B.D. & Varshney, C.L; Statics, Pragati Prakashan, Meerut, 1967.
- 5. Bali, N.P.; Dynamics, Laxmi Publications, New Delhi, 2000.
- 6. Ray, M Sharma, G.C.; A Text Book on Dynamics, S.Chand and Co., New Delhi, 1972
- 7. Sharma,K.C., Gokhroo, D.C., Saini, S. R.; Elements of Statics, Jaipur Publishing House, 1996.
- 8. Gokhroo, D.C., Saini, S.R., Arora, S.R. ; Elements of Dynamics, Jaipur Publishing House, 1982

B.A./B.Sc. III Year

Mathematics Honours (Semester V)

5.4 Advanced Calculus

Contact Hours: 65

- Unit 1 Limit of functions of two variables, continuity, partial differentiation.
- **Unit 2** Partial derivatives of higher order, Schwarz's theorem, Young's theorem, Homogeneous functions of three variables.
- Unit 3 Maxima and Minima, Restricted maxima and minima, Largrange's multiplier, Jacobian.
- **Unit 4** Legendre's Polynomials $P_n(x)$, $Q_n(x)$, Rodrigue's formula, Orthogonality of Legendre's Polynomials, Recurrence formulae.
- **Unit 5** Bessel's equation, Bessel's function, Recurrence formulae, Orthogonality, Generating function, Trigonometric expansion involving Bessel's function, Bessel's integrals.

Text Books:

- Malik S. C. & Arora S.: Mathematical Analysis; 2nd edition, Wiley Eastern, New Delhi, 1991 (Chapters- 15 & 16).
- 2. Bansal J. L.& Dhami H. S.: Differential Equations Vol. II, 2004 (Chapters- 13 & 14).

References Books:

- 1. McQuarrie D. A.: Mathematical Methods for Scientists and Engineers; University Science Books, Sausalito, California, 2003.
- 2. Spiegel, Murray: Advanced Calculus, Schaum's Outline Series, McGraw-Hill, 1963.
- Apostol T. M.: Mathematical Analysis, 2nd edition, Narosa Publishing House, Delhi, 1974.
- 4. Rainville E. D.: Special Functions, Chelsea Publishing Company, New York, 1971.

B.A./B.Sc III year Mathematics (Semester – VI) 6.1 Complex Analysis

Contact Hours : 65

Unit-1 Complex Numbers, Analytic Functions, Necessary and sufficient condition for a function to be analytic, Polar form of Cauchy Riemann equations, Construction of an analytic functions.

Unit-2 Conformal Transformation and representation , Bilinear Transformation Transformations $W = Z^2$, $W = \sqrt{Z}$, $W = e^Z$ and $W = \log Z$..

Unit-3 Complex Integration – Definition, Cauchy' theorem, Cauchy's Goursat's Lemma, Cauchy's theorem, Cauchy's integral formula and its generalized form, Morera's theorem, Liouville's theorem, Taylor's and Laurent's expansion

Unit-4 Singularities: Zeros of an analytic function, singular points, Different type of singularities, Residue at a pole, Residue at infinity, Cauchy's residue theorem, computation of residue at a (i) simple pole, (ii) multiple pole.

Integration round the unit circle, Integration of f(z) when it has no pole on the real line, Integration of f(z) when it has poles on real line.

Text / Reference Books:

1. G.N.Purohit and S.P.Goyal	:	Complex Analysis, Jaipur Publishing House, Jaipur, 2005.
2. J.N. Sharma	:	Functions of a Complex Variable, Krishna Prakashan,
		Meerut, 1998.
3. L.V. Ahlfors	:	Complex Analysis, McGraw-Hill, New York, 1953.
4. Walter Rudin	:	Real and Complex Analysis, New Delhi, 2006.
5. J.B.Conway	:	Function of one complex variable, Springer, New York,
		2 ed. 1978.

B.A./B.Sc. III Year Mathematics (Semester VI) 6.2 Numerical Analysis

Contact Hours: 65

- Unit 1 Error- its sources, propagation and analysis, Numerical solution of system of linear equations, Direct methods-The matrix inversion method, Gauss elimination method, Gauss–Jordan method, Iterative methods- Gauss-Jacobi Method, Gauss Siedel method.
- Unit 2 Differences, Relation between difference and derivatives, Differences of polynomials, Newton's formula for forward and backward interpolation, Divided differences and simple differences, Newton's general interpolation formula, Lagrange's interpolation formula, Error in interpolation.
- **Unit 3** Numerical differentiation and numerical integration- Simpson's, Weddle's and Trapezoidal rules, Newton's Cotes Quadrature formula, Gauss Quadrature formula.
- Unit 4 Root finding for nonlinear equations (Transcendental and Algebraic equations), Iterative method, Bisection method, Regula-Falsi method, Newton Raphson's method, order of convergence.
- Unit 5 Numerical solution of first and second order differential equations, Euler's Method, Picard's Method, Taylor's series approximation, Runge-Kutta's Method.

Text Books:

- Sastry, S.S.: An Introductory Methods in Numerical Analysis, 4th ed, P.H.I, New Delhi, 2005..
- 2. Bansal J.L and Ojha J.P.N.: Numerical Analysis, J.P.H, Jaipur, 1991.

Reference Books :-

- Atkinson, Kendall E.: An Introduction to Numerical Analysis, 2nd ed, John Wiley, New York, 2001.
- De P.K.: Computer Based Numerical Methods and Statistical Techniques, 1st ed, CBS Publication, New Delhi, 2006.

B.A/B.Sc –III Year Mathematics (Semester-VI) 6.3 Automata Theory

Contact Hours : 65

Unit 1: Finite Automata and Regular Expressions: Alphabets, strings, Languages, states, transitions, Introduction to FA, Non-deterministic Finite Automata, Regular Expressions.

Unit 2: Properties of Regular Sets, The Pumping Lemma for Regular Sets, Closure Properties of Regular Sets, Decision Algorithms for Regular Sets.

Unit 3: Context-Free Grammars, Pushdown Automata: Derivation Trees, Simplification of Context-Free Grammars, Normal Forms, Pushdown Automata.

Unit 4: Properties of Context-Free Languages: The Pumping Lemma for CFL's, Closure Properties of CFL's, Decision Algorithms for CFL's, The Chomsky Hierarchy

Unit 5: Turing Machines: Computable Languages and Functions, Church's Hypothesis,

Undecidability, Properties of Recursive and Recursively Enumerable Languages, Universal Turing Machines, PCP

Text books:

1. M. Chandrasekaran, and K.L.P. Mishra: Theory of Computer Science: Automata, Language and Computation, Prentice Hall of India.

2. J.E. Hopcroft, J.D. Ullman, R. Motwani: Introduction to Automata, Languages, and Computation, Prentice Hall of India.

Reference Books:

1. H.R. Lewis, C.H. Papadimitriou: Elements of the Theory of Computation, Prentice Hall, 2nd Edition, 1998.

B.A./ B.Sc. VI Sem 6.4 Industrial Mathematics

Total Contact Hours: 65

- Unit 1 Decision Theory: Payoff table, decision under uncertainty, decision under risk; Bayesian decision rule; decision tree.
- **Unit 2** Queueing Theory: Markovian Queues (M/M/1, M/M/c, finite and infinite capacity and population), Application of queueing theory in Manufacturing systems including machine maintenance.
- Unit 3 Reliability Theory: Coherent structure, reliability of system of independent components (Series, Parallel, stand configuration, (k,n) systems, Bridge structure), Reliability models of non-maintained systems.
- **Unit 4** Network Scheduling : CPM (Critical Path Method) PERT (Project evaluation and review technique), Determination of the float; Resource analysis and allocation.
- Unit 5 Statistical Quality Control: Introduction to statistical quality control, Process control: Control charts (X, R, p, pn), Product Control: Single sampling inspection plan.

Text Books :

- 1. Harvey M. Wagner, Principal of Operations Research, Prentice Hall.
- 2. S.D. Sharma, Operations Research, Kedar Nath Ram Nath, 1994.
- John, G. Rau, Optimization and probability in systems engineering, Van Nostrand Reinhold Company, 1970.

Reference Book:

- 1. Hamdy A. Taha, Operations Research an Introduction, Prentice Hall India, 1997.
- 2. Kanti Swarop, P.K. Gupta and Man Mohan, Operations Research, Sultan Chand, 1997.

Annexure III(b)

B.Tech (CSE/EC/IT/BT/CE) (I Sem) CALCULUS

Contact hours: 65

Existing Syllabus	Proposed syllabus	Remarks
Section A	Section A	
		1.Matter in bold,
Differential calculus: Quick review of	Differential calculus: Functions, limit of	italic & crossed is
functions, limit of functions, evaluation of	functions, evaluation of limits of	deleted.
limits of functions, derivative of a	functions, derivative of a function.	
function. Derivative of x^n , sin x, cos x, e^x ,	Derivative of x^n , sin x, cos x, e^x , log x by	2.Proposed added
log x by abinitio method, differentiation	abinitio method, differentiation of	material is shaded
of algebraic, circular, exponential and	algebraic, circular, exponential and	in grey.
logarithmic functions, differentiation of	logarithmic functions, differentiation of	
inverse trigonometrical functions of sum,	inverse trigonometrical functions of sum,	3.Matter in contrast
difference, product & quotients of two	difference, product & quotients of two	(black background
functions	functions (Quick review)	& white letters) is
		shifted & the
Tangents and Normals : sub-tangent and	Tangents and Normals : sub-tangent and	material brought as
sub-normal (Cartesian & Polar forms),	sub-normal (Cartesian & Polar forms),	a result of shift is
Curvature, Partial differentiation with	Curvature, Partial differentiation with	also in contrast.
Euler's theorem and its applications,	Euler's theorem and its applications,	
Maxima and minima of two variables	Maxima and minima of two variables	
including method of undetermined	including method of undetermined	
multipliers, Asymptotes, Curve	multipliers, Asymptotes, Curve	
tracing(Cartesian, Parametric & Polar).	tracing(Cartesian, Parametric & Polar).	
	Section B	
Section B	Integral calculus: Integration as inverse	
	operation of differentiation, indefinite	
Integral calculus: Integration as inverse	integrals, Integration of simple functions,	
operation of differentiation, indefinite	integration by substitution, integration by	
integrals, Integration of simple functions,	parts, properties of definite integrals	

integration by substitution, integration by	(without proof).	
parts, properties of definite integrals	Multilple integrals, Change of order of	
(without proof).	integration in double integrals (constant	
Reduction formula, Multilple integrals,	limits), Change of variables.	
Change of order of integration in double	Quadrature, Rectification, Volume and	
integrals, Change of variables.	Surface of revolution.	
Quadrature, Rectification, Volume and		
Surface of revolution.		
Section C	Section C	
Differential Equations: Solutions of	Differential Equations: Solutions of	
Differential Equations of first order &	Differential Equations of first order &	
first degree, Differential equation of first	first degree, Differential equation of first	
order and any degree, Singular solutions,	order and any degree, Linear Differential	
Linear Differential equations with	equations with constant coefficients,	
constant coefficients, linear homogeneous	linear homogeneous equations of any	
equations of any order. Simultaneous	order. Simultaneous ordinary differential	
ordinary differential equations:	equations: Simultaneous equations of first	
Simultaneous equations of first order.	order. Total differential equations,	
Total differential equations, Methods of	Methods of solving total differential	
solving total differential equations.	equations.	

Books Recommended:

- 1. Advanced Engineering Mathematics: E. Kreiszyg, New Delhi, New Age International, 1997
- 2. Differential Calculus: Shanti Narayan, Delhi, Shyam Lal Charitable Trust, 1981
- 3. Integral Calculus: Shanti Narayan, Delhi: S. Chand, 1982

B.Tech I / III Sem CSE / EC / IT / BT / CE

2.1 / 1.1 Probability & Statistics

Contact	hours:	65
---------	--------	----

Existing Syllabus	Proposed syllabus	Remark
Section A	Section A	
Basic concepts of Probability, Classical,	Basic concepts of Probability,	
Empirical and Axiomatic approach to	Classical, Empirical and Axiomatic	
Probability. Addition and Multiplication	approach to Probability. Addition and	Before discussion of
theorems of Probability. Bay's theorem and	Multiplication theorems of	Expectation concept
its simple applications. Marginal, Joint and	Probability. Bay's theorem and its	of random variable is
conditional probability.	simple applications. Marginal, Joint	required
Mathematical Expectation: Expectation of	and conditional probability.	
sum & products of random variables,	Concept of Random Variable and	
variance & covariance.	Mathematical Expectation	
	Expectation of sum & products of	
	random variables, variance &	
	covariance.	
Section B	Section B	
Correlation & Regression Karl Pearson	Correlation & Regression Karl	
coefficient of Correlation. Partial and	Pearson coefficient of Correlation.	No Change
Multiple Correlation (upto three variable	Partial and Multiple Correlation (upto	
only)	three variable only)	
Probability Distributions: Binomial,	Probability Distributions: Binomial,	
Poisson, Normal, Rectangular &	Poisson, Normal, Rectangular &	
Exponential distributions with simple	Exponential distributions with simple	
applications. Fitting of Binomial, Poisson,	applications. Fitting of Binomial,	
and, Normal distributions.	Poisson, and, Normal distributions.	

Section C	Section C	
Sampling distribution, Standard Error,	Sampling distribution, Standard Error,	
Simple random sampling and stratified	Simple random sampling and stratified	
random sampling with their role.	random sampling with their role.	
Test of significance for mean, variance,	Test of significance for mean,	
Proportion and correlation coefficient. Test	variance, Proportion and correlation	No change
of goodness of fit and independence of	coefficient. Test of goodness of fit and	
attributes. Analysis of variance with one	independence of attributes. Analysis	
observation per cell.	of variance with one observation per	
	cell.	

Text books:

- Gupta, S. C. & Kapoor, V. K.; Fundamental of Mathematical Statistics, 9th edition, Sultan Chand, 1994.
- Goon A. N, Gupta M. K. and Das Gupta, B. J.; Fundamental of Statistics 2nd edition, World Press Pvt. Limited, 1980

Reference books:

1. Goon A. N, Gupta M. K. and Das Gupta, B. J.; An outline of Statistical Theory, 2nd edition, World Press Pvt. Limited, 1980

 Mood M. Alexander, Graybill, F. & Boes C. Duane, Introduction to the theory of Statistics, 3rd edition, Tata Mc – Graw Hill, New Delhi, 2001.

B.Tech.(CS) V Sem Course : Discrete Mathematics

Total lecturer - 65

Section – A

Sets and multisets, Relations and functions, Equivalence relations, Partial order relations, Chains and antichains. Permutations, Combinations, Selection with & without replacement, Permutation and combinations of multisets. Discrete probability, the rules of sum & product. Pigeon hole Principle, Inclusion-Exclusion principle.

Section – B

Basic concepts of graph theory, Multigraph and weighted graphs, Paths & circuits. Matrix representation of graphs, Eulerian path and circuits, Hamiltorian path and circuits. Shortest path in weighted graph, Planar graphs.

K-connected and K-edge-connected graphs. Chromatic number, Edge colouring of graphs, Vizing's theorem. Trees and cut sets - Trees, Rooted trees, Path lengths in rooted trees, Spanning tree and cut set, Minimum spanning tree.

Section – C

Discrete numeric functions - manipulation of numeric functions. Asymptotic behavior of numeric function. Generating functions, Recurrence relations, Linear recurrence relation with constant coefficients and their solutions. Homogeneous solution, Particular solution & total solutions. Solution by the method of generating functions.

Boolean Algebra, Lattices, Uniqueness of finite Boolean Lattices, Boolean functions and Boolean expression, Propositional Calculus.

Text/Reference Books :

- 4. Elements of Discrete mathematics; C.L. Liu McGraw Hill, International editions, 1985.
- 5. Graph Theory; Narsingh Deo; Prentice Hall of India, 2002
- 6. Discrete Mathematics and it's Applications, Kenneth H. Rosen, McGraw Hill, 1999
- 7. Foundation of Discrete Mathematics; K.D. Joshi; Wiely Eastern Ltd., 1989
- Discrete Mathematical Structures for Computer Science, Bernard Kolman & Robert C. Busby, Prentice Hall of India, 1988.
- Discrete Mathematical Structures with applications to Computer Science, J.P Tremblay & R. Manohar, Tata Mc Graw Hill Book Co. 1988.

B.Tech (CS) VI Semester Paper: Optimization Techniques

Contact Hours : 65

Section-A

Classical Optimization Techniques: Single variable, Multi variable, Optimization of multivariable with equality and inequality constraints, Linear Programming: Graphical Analysis, Principles of Simplex method, Simplex Method in tabular form, Big-M, Degeneracy & Cycling. Duality and Dual Simplex method, Transportation problems and Assignment problems.

Section – B

Nonlinear programming- Single variable optimization: Unimodal, Elimination Method, Interpolation Method; Unconstraint optimization: Direct search method, Random search method, Grid search method, Netwon's method. Constrained optimization: Characteristics of constrained problem, Random search method, Augmented Lagrange multiplier method, Khun-Tucker conditions; Quadratic programming, method due Beale's & Wolfe's; Separable programming.

Section- C

Network Analysis: Introduction of Network analysis, shortest path problem PERT & CPM. Updating of PERT charts, project planning and scheduling with CPM & PERT, Time-cost optimization. Queueing Theory: Probability description of arrivals and service times, objectives and different characteristics of a queueing system, deterministic queueing system (M/D/1, D/M/1, D/D/1), steady-state behaviour of Markovian and Earlangian Models. (M/M/1, M/M/c). Optimal Design of queueing system.

Text Books:

- 1. Ronald, L. Rardin, Optimization in Operations Research; Pearson Education.
- 2. F.S. Hiller and G.J. Lieberman; Operations Research; Pearson Education.
- 3. H.M. Taha; An Introduction Operational Research; Macmillan & Co.
- 4. S.K. Jain and D.M. Mehta; *Optimization Engineering*; Jaipur Publishing House.

Annexure III

Existing Scheme of Examination									Propose	ed Scher	me of E	xaminat	ion						
Sem	Semester I (Pure/TCS/O.R./Statistics) (2008-09)								Sem	ester I (Pure/TCS/O.R./Statistic	es) (2009-	10)							
		Contact Hour/week		Cont Ma	. Ass. arks	Ann. Ma	Ass. rks	То	tal Marks			Cor Hour	ntact /week	Cor M	ıt. Ass. larks	Ann Ma	. Ass. arks	Т	otal Marks
		Т	Р	Т	Р	Т	Р	Т	Р			Т	Р	Т	Р	Т	Р	Т	Р
1.	Abstract Algebra	6	0	30	0	60	0	90	0	1.	Abstract Algebra	6	0	30	0	60	0	90	0
2.	Real Analysis	6	0	30	0	60	0	90	0	2.	Real Analysis	6	0	30	0	60	0	90	0
3.	Discrete Mathematics	4	0	20	0	40	0	60	0	3.	Discrete Mathematics	6	0	30	0	60	0	90	0
4.	Probability and Statistics	4	4*	20	10	40	20	60	30	4.	Probability and Statistics	4	4*	20	10	40	20	60	30
5.	Computer Programming	4		20	20	40	40	60	60	5.	Computer Programming	4	4**	20	10	40	20	60	30
	Total	24	42	120	30	240	60	360	90 = 450		Total	26	8	13 0	20	260	40	390	60 = 450
	* Programming in Fortran on Statistical Techniques.						* P	rogramming in Fortran on Statisti	cal Techn	iques.									
** Programming in C					** P	rogramming in C													

Scheme of examination – M.A./M.Sc. Mathematical Sciences

Scheme of examination – M.A./M.Sc. Mathematical Sciences II, III & IV semester (Pure Maths/ TCS/ OR/ Stats): No Changes.

Annexure IV

M.Sc. I Sem.

Course : Discrete Mathematics

Contact Hours Total lecturer – 90

Section	Existing Syllabus	Proposed Syllabus	Remark
А	Sets and multisets, Relations and	Sets and multisets, partial order	Crossed
	functions-properties of binary relations,	relations, Chains and antichains.	matter is
	Equivalence relations, Partial order	Permutation and combination of	deleted and
	relations, Chains and antichains.	multisets.	shaded grey
	Permutations, Combinations, Selection	Pigeon hole Principle, Inclusion-	matter is
	with & without replacement,	Exclusion principle, Derangements.	added
	Permutation and combinations of	Discrete numeric functions, Generating	
	multisets. Discrete probability, The rules	functions, Recurrence relations, linear	
	of sum & product, Generation of	recurrence relation with constant	
	permutation and combinations. Boolean	coefficients and their solutions. Solution	
	Algebra, Lattices, Boolean functions	by the method of generating functions.	
	and Boolean expression, Propositional	Boolean Algebra, Lattices, Uniqueness	
	Calculus.	of finite Boolean Lattices, Boolean	
		functions and Boolean expression.	
		Propositional Calculus.	
В	Basic concepts of graph theory,	Basic concepts of graph theory. Directed	Shaded grey
	Multigraph and weighted graphs, Paths	graph. Euler graph. Hamiltonian graph.	matter is
	& circuits. Matrix representation of	Matrix representation of graphs.	added
	graphs, Eulerian path and circuits,	Shortest path in a weighted graph. K-	
	Hamiltorian path and circuits. Shortest	connected and K-edge-connected	
	path in weighted graph, Planar graphs,	graphs. Planar graphs. Coloring of	
	K-connected and K-edge-connected	graphs, Vertex colouring of graphs,	
	graphs. Chromatic number, Edge	Edge colouring of graphs, Vizing's	
	colouring of graphs, Vizing's theorem.	theorem.	
	Trees and cut sets - Trees, Rooted trees,	Trees: Rooted trees, Spanning tree and	
	Path lengths in rooted trees, Spanning	Cut set, Minimum-spanning tree. Flow	
	tree and cut set, Minimum spanning	network in a graph, max-flow- min cut	
	tree.	theorem.	

С	Pigeon hole Principle, Inclusion-	Types of Enumeration, Counting	Matter in
	Exclusion principle. and Discrete	Labeled Trees, Burnside's lemma,	bold & italic
	numeric functions - manipulation of	Polya's counting theorem, Graph	is shifted to
	numeric functions. Asymptotic	enumeration with Polya's theorem.	section A
	behavior of numeric function.	Graphs in Markov Process.	and shaded
	Generating functions, Recurrence	Branching and Gossip, List colorings	grey matter
	relations, Linear recurrence relation	and Choosability, Partitions using path	is added
	with constant coefficients and their	and cycles. Matchings in bipartite	
	solutions.	graphs, Hall's matching theorem, Min-	
		Max theorem, Independent sets.	

Text/Reference Books :

- 1. Elements of Discrete mathematics; C.L. Liu McGraw Hill, International editions, 1985.
- 2. Graph Theory; Narsingh Deo; Prentice Hall of India, 2002
- 3. Discrete Mathematics and it's Applications, Kenneth H. Rosen, McGraw Hill, 1999
- 4. Foundation of Discrete Mathematics; K.D. Joshi; Wiely Eastern Ltd., 1989
- 5. Introduction to Graph Theory; D.B. West, Prentice-Hall of India, 2001.

Proposed Syllabus for M.Sc. IV SEM (Mathematical Sciences)

Paper: Operations Research

To Be Implemented from Sem IV (2009-10)

Contact hours: 90

Existing Syllabus in 2007-08	Proposed Syllabus	Remarks if
		any
SECTION – A	SECTION – A	
Network Analysis: Introduction of	Network Analysis: Introduction of	
Network analysis, shortest path problem	Network analysis, shortest path problem	No Change
PERT & CPM. Updating of PERT charts,	PERT & CPM. Updating of PERT charts,	
project planning and scheduling with	project planning and scheduling with	
CPM & PERT.	CPM & PERT.	
SECTION – B	SECTION – B	
Queueing Theory; Probability description	Queueing Theory; Probability description	
of arrivals and service times, objectives	of arrivals and service times, objectives	
and different characteristics of a queueing	and different characteristics of a queueing	
system, deterministic queueing system.	system, deterministic queueing system.	No Change
Steady-state behaviour of Markovian and	Steady-state behaviour of Markovian and	
Earlangian Models. (M/M/1, M/M/C,	Earlangian Models. (M/M/1, M/M/C,	
$M/E_k/1$). Introduction to discrete time	$M/E_k/1$). Introduction to discrete time	
queueing system.	queueing system.	
SECTION – C	SECTION – C	
Inventory Theory; Deterministic	Inventory Theory; Deterministic	
economic lot size models and their	economic lot size models and their	
extensions, models with lost sales and	extensions, models with lost sales and	
partially backlogged, continuous	partially backlogged, continuous	
production with varying demand rates.	production with varying demand rates.	
[Stochastic lot size models and their	Probabilistic model time independent and	Unit is very
extensions], Probabilistic model time	time dependent with and without lead	lengthy.
independent and time dependent with and	time.	
without lead time.		

M.A./M.Sc(Mathematical Sciences) IV Semester

Contact Hours: 90

Sectio	Existing syllabus 2008-09	Proposed syllabus 2009-10	
n			Remark
А	Space curves: Class, tangent, tangent line	Space curves: Class, tangent, tangent line	grey part
	and arc length, order of contact between	and arc length, order of contact between	was
	curves and surfaces. Osculating plane at a	curves and surfaces. Osculating plane,	missing
	point of a curve of intersection of two	Osculating plane at a point of a curve of	so it has
	surfaces. Normal lines and normal planes.	intersection of two surfaces. Normal lines	been
	Rectifying plane, orthonormal traid of	and normal planes. Rectifying plane,	included
	fundamental unit vectors t, n, b.	orthonormal traid of fundamental unit	
	fundamental planes. Principal normal	vectors t, n, b. fundamental planes.	
	vector and binormal, curvature, torsion,	Principal normal vector and binormal,	
	Serret-Frenet formula, curvature and	curvature, torsion, Serret-Frenet formula,	
	torsion of any curve.	curvature and torsion of any curve.	
В	Translation, rotation and isometries in	Translation, rotation and isometries in IRn,	grey
	IRn, fundamental theorem on curves in	Cylindrical helices, fundamental theorem	parts
	IR3, congruent curves, circle of	on curves in IR3, congruent curves,	was
	curvature, locus of the centre of	Osculating circle (circle of curvature),	missing
	curvature, Osculating sphere (sphere of	locus of the centre of curvature, Osculating	so it has
	curvature), locus of the centre of	sphere (sphere of curvature), locus of the	been
	spherical curvature, Involute and Evolute.	centre of spherical curvature, Involute and	included
		Evolute,	
С	Regular point and singularities,	Surface:Definition, class, Regular point and	grey
	Parametric curves and tangent plane,	singularities, Parametric curves and	parts
	Normal and vector fields, length of a	tangent plane, Normal and vector fields,	was
	curve and first fundamental form, surface	length of a curve and first fundamental	missing
	of revolution, angle between curves on a	form, surface of revolution, angle between	so it has
	surface, orthogonal trajectories and ruled	curves on a surface, orthogonal trajectories,	been
	surfaces, second fundamental form,	ruled surfaces (developabe and skew),	included
	Weingarten equation, envelopes.	second fundamental form, Weingarten	
		equation, envelopes.	

Differential Geometry

Text Books/References:

1.Willmore, T.J. : An introduction to Differential Geometry, Oxford U. Press, 1978.

2.Spivak, Michel : Differential Geometry Vol.I&II.

3.Kobayashi, S.& Nomizu, K. : Foundations of Differential Geometry Vol.I&II.

4.Prakash, Nirmala : Differential Geometry An Integrated Approch. Tata Mc-GrawaHill, New Delhi, 1981.

5.Weatherburn, C.E. : Differential Geometry of Three Dimensions, Cambridge U.Press, 1930.

6.Sinha, H.C.: Three Dimensional Geometry. S. Chand & Company New Delhi.

7.Gupta, Malik, Pundir. : Differential Geometry Pragati Prakashan, Meerut, 2008.

Annexure VI(a)

M.Phil. Programme in Mathematical Sciences

Eligibility: M.A./M.Sc. in Mathematical Sciences/ Mathematics/ Statistics/ Operations Research/Applied Mathematics from the Vidyapith or recognized examination equivalent thereto with aggregate equal to or more than 55% marks.

Admission: Based on Merit.

Course Structure:

- 1. A two-Semester course with one core course and one elective in each Semester, and
- 2. **Project/Dissertation:** Student must carry out a project or Dissertation of 10 months (minimum of 30 working weeks) under the supervision of a faculty. This period is divided into three parts. The division is made according to the work, and marks and weightages are allotted correspondingly.

Existing	Proposed	Remark		
I	Phase I	Crossed matter		
part students will define the problem	In this part students will decide on	is deleted.		
of Dissertation /project work. By the	which area they want to do their	Grey matter is		
end of this period the student must	Dissertation /project work. The	added.		
be clear about the aim and objective	aim of the work must be clear.			
of the work along with	Within seven weeks of starting of			
methodology.	the Dissertation/project (with			
Within five weeks of starting of the	clear-cut goals) a report giving			
Dissertation/project (with clear-cut	area, list of reviewed journals &			
goals) a report giving area, title,	articles, name of the supervisor			
name of the supervisor and work	and work plan must be reported to			
plan must be reported in a standard	the institute in a standard format.			
format.				
Part – II (20%)	Phase II			
After fifteen weeks duration the		Crossed matter		
student is required to personally	After 15 weeks(In the first week	is deleted.		
deliver a seminar on her	of II Sem.) duration the student	Grey matter is		
Dissertation/project. It is required	must submit a synopsis of her	added.		
that by this time the student must	Dissertation/project and give a			
have completed review of literature	presentation for the same. By this			
(SRS and SDS in case of software	time the student must have			
--	-----------------------------------	------------------		
project) The presentation should	finished 50% to 60% of the total			
accompany a report on the work	work. The synopsis must also bear			
completed by then (mid term report)	the certificate by the			
certified by the supervisor/guide.	supervisor/guide.			
	The external examiner is to be			
	appointed and synopsis is to be			
	available to them.			
Part – III (20%)	Phase III	Crossed matter		
After 25 weeks duration the student	At the end of the duration of ten	is deleted.		
must submit a synopsis of her	months final report is to be	Grey matter is		
Dissertation/project. By this time the	submitted and a presentation	added.		
student must have finished 80% to	and viva-voce will be held. The			
85% of the total work. The synopsis	Dissertation/project will be			
must also bear the certificate by the	evaluated by three-member			
supervisor/guide.	committee chaired by Head and			
	two other (one internal and one			
	external) members. A panel			
	comprising of one external			
	examiner, one internal examiner			
	and one VC nominee will conduct			
	the viva-voce.			
Part – IV (45%)		Part – IV is		
At the end a final report is to be		shifted in Phase		
submitted and a presentation		Ш		
and viva-voce will be held. The				
Project/Dissertation will be evaluated				
by a three-member committee				
chaired by the Head and having two				
other (internal) members. The				
Project/Dissertation - an external				
examiner, an internal examiner and a				
Director's nominee will conduct				
Viva.				

Financial Assistance :

M.Phil. students are eligible for financial assistance as follows :

1. TA/RA ship :

Candidates admitted to the M.Phil. program may be offered the teaching Assistantship (TA) or Research Assistantship provided they have secured at least 60 percent mark (55 percent for SC/ST candidates) in their qualifying degree examination and provided they are willing to assist in the teaching of undergraduate class. A teaching assistant can be asked to conduct labs and can also be asked to teach tutorial sessions to the undergraduate students.

A research assistant can be asked to support the department in various academic activities. It could be providing help in maintaining and upgrading department labs, downloading, installing software, etc. A RA can also be assigned to faculty members to help them in their research effort.

The assistantship amount will be (not exceeding Rs. 10,000/- p. a.) approximately divided by the institute ranging from Rs. 1000/- to Rs. 2000/- per month.

Scheme of Examination

- 1. The course of study for M.Phil. Examination shall extend over a period of one year divided into two Semesters with an examination at the end of each Semester.
- The Examination shall be conducted by means of Continuous assessment/Written Papers/ Practical/Dissertation/Project Report.

The following shall be the Scheme of Examination:

I SEMESTER

Course		Contact		Cont.	Ass.	Ann. Ass.		Tot	al	Min	i.
		Hours	s/week	Marl	KS	Marl	KS	Mark	S	Pass	Marks
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р
1.	Advance Analysis	6	0	30	0	60	0	90	0	36	0
2.	*Elective II	6	0	30	0	60	0	90	0	36	0
		4	4	20	10	40	20	60	30	24	12
	Total			60	0	120	0	180	0	72	0
				50	10	100	20	150	30	60	12
п	SEMESTER										
Co	urse	Со	ntact	Co	nt. Ass.	Ann.	Ass.	Tot	al	Mini.	
		Hours	s/week	M	arks	Ma	ırks	Ma	rks	Pass 1	Marks
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р
1.	Mathematical Modelling	6	0	30	0	60	0	90	0	36	0
2.	*Elective II	6	0	30	0	60	0	90	0	36	0
		4	4	20	10	40	20	60	30	24	12
	Total			60	0	120	0	180	0	72	
				50	10	100	20	150	30	60	12

Existin	ıg	Proposed					
Part I - 50			Part I - 20				
Part II- 70		Part II- 60					
Part III- 70		Part III					
		1. Dissertation/Project Ev	aluation -				
			100				
			2. Seminar -	30			
			3. Viva-voce -	30			
Part IV							
1. Dissertation/Project Repo	ort -	70					
2. Seminar	-	30					
3. Viva-voce	-	50					
Grand Total = 50+70+70+	150=34	Grand Total = 20+60+1	60=240				

Distribution of marks of Dissertation/Project:

Grand Total =180 + 180 + 240 = 600

*Contact hours/week are according to selected course.

Elective must be relevant to the Area of Dissertation/Project.

Students could not be allowed to take the course as an elective, which she had already done in M.A./M. Sc.

The Project/Dissertation will be evaluated by three member committee chaired by the Head and having two other (internal) members. The Project/Dissertation - Viva will be conducted by an external examiner, an internal examiner and a Director's nominee. The marks of the continuous assessment will be compiled by the Head of the Department based on various interim reports mid-term/end of term evaluation received from the host organization and timely submission of reports, synopsis and dissertation.

	List of Electives	Contact hours/week				
		Т	Р			
1.	Abstract Algebra	6	0			
2.	Advance Differential Geometry	6	0			
3.	Advance Graph Theory	6	0			
4.	Advanced Inference	6	0			
5.	Bayesian & Multivariate Analysis	4	4			
6.	Bayesian Inference	6	0			
7.	Clinical Analysis	6	0			
8.	Decision Theory	6	0			
9.	Demography and Advanced Sampling	4	4			
10.	Design of Experiments and Linear Models	4	4			
11.	Differential Geometry	6	0			
12.	Discrete Mathematics	6	0			
13.	Econometrics	6	0			
14.	Financial Mathematics	6	0			
15.	Finite Element Methods	6	0			
16.	Functional Analysis	6	0			
17.	Fuzzy Logic and Belief Theory	6	0			
18.	Information Theory	6	0			
19.	Inventory Theory	6	0			
20.	Marketing Management	6	0			
21.	Network Analysis	4	4			
22.	Non- parametric Inference and Sequential Analysis	4	4			
23.	Non-linear Analysis	6	0			
24.	Population Studies	6	0			
25.	Queuing Theory	6	0			
26.	Rings and Modules	6	0			
27.	Soft Computing	6	0			
28.	Theory of Games	6	0			
29.	Theory of Reliability	6	0			
30.	Time Series and Stochastic Processes	6	0			
31.	Time Series Modeling	6	0			
32.	Topology	6	0			

Electives

Annexure v(b)

Elective

Class: M. Phil.

Course : Advanced Graph Theory

<mark>Contact Hours – 90</mark>

<mark>Section – A</mark>

Basic concepts of graph theory. Directed graph. Euler graph. Hamiltonian graph. Matrix representation of graphs. Shortest path in a weighted graph. K-connected and K-edge-connected graphs. Planar graphs. Coloring of graphs, Vertex colouring of graphs, Edge colouring of graphs, Vizing's theorem.

Trees: Rooted trees, Spanning tree and Cut set, Minimum-spanning tree. Flow network in a graph, max-flow- min cut theorem.

<mark>Section – B</mark>

Types of Enumeration, Counting Labeled Trees, Burnside's lemma, Polya's counting theorem, Graph enumeration with Polya's theorem. Graphs in Markov Process. Branching and Gossip, List colorings and Choosability, Partitions using path and cycles. Matchings in bipartite graphs, Hall's matching theorem, Min-Max theorem, Independent sets.

<mark>Section – C</mark>

Perfect graphs. Ramsey's theorem, Ramsey numbers, Graph Ramsey theory, Sperner's lemma and Bandwidth. Random graphs. Eigenvalues of graphs.

Text/Reference Books :

- 5. Graph Theory; Narsingh Deo; Prentice Hall of India, 2002
- 6. Introductions to Graph Theory; D.B. West, Prentice-Hall of India, 2001.
- 3. Graph Theory; Frank Harary, Addison-Wesley Publication

<mark>M.Phil</mark>

Mathematical Sciences

Finite Element Methods

Contact Hours : 90

Section-A

The fundamentals of finite element methods, Discritization of the bounded area, stiffness matrix, assembly of stiffness matrices, Global stiffness matrix.

Section-B

Shape function: Linear and higher order shape functions for linear, triangular and rectangular elements, Variational Formulation; Rayleigh-Ritz method and Weighted residue method; Galerkin's method

Section-C

Finite Element formulation for PDE ; Laplace equation, wave equation and diffusion equation.

Text / Reference Books :

- 1. J.N.Raddy: 'Finite Element Methods' 2nd ed, McGraw Hill, 1993.
- D.H.Norrie and G.Devries : 'Introduction to Finite Element Methods', Academic Press.
 - 3. K.E.Brenner and R. Scott: 'The Mathematical Theory of Finite Element Methods', Springer-Verang, Berlin, 1994.
- P.G.Ciarlet : 'The Finite Element Methods for Elliptic Problems,' North Holand, Amsterdam, 1978.
- C. Johnson : 'Numerical Solution of Partial Differential Equations by Finite Element Methods', Cambridge University Press, Cambridge, 1987.
 - C.Mercier : 'Lectures on Topics in Finite Element Solution of Elliptic Problems,' TIFR Lectures on Mathematics and Physics, Vol. 63, Naroca Publ. House, New Delhi, 1979.

M.Phil (Mathematical Sciences)

Elective- Advanced Differential Geometry

Contact Hours: 90

Section-A

Local Non-intrinsic properties of a surface: Normal curvature, Meusnier's theorem, Principal direction, Principal curvature, Minimal surface, Developable surface, Lines of curvature, Rodrique's formula, Monge's theorem, Euler's theorem, Jochimsthal's theorem, Dupins indicatrix.

Section-B

Conjugate directions with principal property, condition of conjugate, Asymptotic lines with condition of orthogonality, Asymptotic lines on a ruled surface, curvature and torsion of a asymptotic line, Theorem of Beltrami and Ennper, The fundamental equation of surface theory, Gauss characteristic equation, Mainardi-Codazzi equation, Parallel surfaces with Gaussian and mean curvature, Bonnet's theorem, Isometry lines.

Section-C

Gauss equation, Geodesics, canonical geodesic equations, nature of geodesics on a suface of revolution, Clairaut's theorem, Differential equation of geodesics by using their normal property, Torsion of a geodesic, Geodesic tangent, Geodesic curvature, Liouville's formula for K_g , Geodesic parallels, angle between a curve on a surface and a geodesic through the pole, Bonnet's theorem, Gauss-Bonnet theorem, Surface of constant curvature, Conformal& Geodesic mappings, Tisst's theorem, Dinn's theorem.

Text Books/ References:

- Kobayashi,S & Nomizu, K. : Foundations of Differential Geometry Vol.I&II. Springer Verlag, New York.
- 2. Spivak, Michel : Differential Geometry Vol.I&II.
- 3. Willmore, T.J.: An Introduction to Differential Geometry . Oxford Univ. Press, 1978.
- **4. Weatherburn, C.E. :** Differential Geometry of Three Dimensions. Cambridge Univ. Press London, 1930.
- 5. Sinha, H.C.: Three Dimensional Geometry. S. Chand & Company, New Delhi.
- 6. Gupta, Malik, Pundir : Differential Geometry Pragati Prakashan Meerut, 2008.
- 7. Mittal, Agrawal : Differential Geometry Krishna Prakashan Mandir, Meerut, 2003.
- 8. Singh, H.D. & Singh, P.K. : Differential Geometry Ram Prasad & Sons, Agra.
- Sinha, B.B. : An Introduction to Modern Differential Geometry, Kalyani Prakashan, New Delhi, 1982.

M.Phil Programme

Elective

Contact Hours: 90

Time series Modeling

Section A

Review of Time series analysis : Estimation and elimination of of trend and Seasonal component. Simple time series models and their applications, Wald decomposition theorem, Estimation of AR/MA/ARMA models Autocorrelation and partial autocorrelation functions. Diagnostic tests (AIC, BIC criterion), Forecasting ARMA processes.

Section B

Non stationary time series models (ARIMA): Estimation and forecasting. Testing of parameter stability, Multivariate time series models (ARMA), Cointegration: a general cointegrated system, two variable model: Engle-Granger method, Johansen procedure; error correction model and tests for cointegration.

Section C

Vector autoregression and Granger causality. Non linear models: Volatility, Autoregressive conditional heteroscedastic (ARCH/GARCH) models, different interpretations, various generalizations, estimation and testing.

Reference Books:

- Brockwell, Peter J., Davis, Richard A., Introduction to Time series and Forecasting, Second Edition, Springer, 2008.
- Introduction to statistical time series (Wiley Series in Probability and Statistics), 2nd edition, 1996, by Wayne A. Fuller.
- C. Chatifield (Reader in Statistics, The university of Bath, UK), "The Analysis of Time Series – An introduction", fifth edition
- Terence C. Mills (Midland Montagu Centre for Financial Markets, City University Business School "Time series techniques for economists"

Scheme of Examination M.Sc. Bio Statistics (2009-10)

Co	purse	Con Hou	tact rs/week	Cont. Marl	Ass. Ks	Ann Marl	. Ass. ks	T Ma	otal rks
		Т	Р	Т	Р	Т	Р	Т	Р
1.	Probability and Statistics	s 4	4*	20	10	40	20	60	30
2.	Computer Programming in C ⁺⁺	4	4	20	10	40	20	60	30
3.	Epidemiology I	6	0	30	0	60	0	90	0
4.	BioStatistical Inference	6	0	30	0	60	0	90	0
Т	otal	20	8	100	20	200	40	300	60= (36

I SEMESTER EXAMINATION

Using Microsoft Excel or SPS

II SEMESTER EXAMINATION

Course	Coi	Contact		Cont. Ass.		Ann. Ass.		Total	
	Ho	Hours/week		Marks		Marks		Marks	
	Т	Р	Т	Р	Т	Р	Т	Р	
1. Regression Analysis	4	4*	20	10	40	20	60	30	
2. Epidemiology II	6	0	30	0	60	0	90	0	
3. Bioinformatics and									
Computational Biology	4	4* 20	10	40	20	60	30		
4. Stochastic Modelling and	l								
Time Series Analysis	5 6	0	30	0	60	0	90	0	

Total	20	8	100	20	200	40	300	60 = (360)

* Basic Statistical Computing-II (Practical)

Practicals and Data Analysis using Excel or SPSS

	III SEMESTER EXAMINATION										
Cours	Course		act	Cont	. Ass.	Ann	n. Ass.	То	tal		
		Hour	s/week	Ma	arks	M	arks	Ma	rks		
		Т	Р	Т	Р	Т	Р	Т	Р		
1.	Demography and										
	Advanced Sampling	4	4*	20	10	40	20	60	30		
2.	Survival Analysis	6	0	30	0	60	0	90	0		
3.	Design of Experimen and Linear Models	ts 4	4*	20	10	40	20	60	30		
4.	Statistical Genetics and Bioassay	6	0	30	0	60	0	90	0		
Total	20	8	100	20	200	40	300	60=	(360)		

*Advanced Statistical Computing-I and Practicals and Data Analysis using R and Systat

Course		Cont	tact	Cont.	Ass.	An	n. Ass.	Τα	otal
		Hours/week		Marks		Marks		Ma	arks
		Т	Р	Т	Р	Т	Р	Т	Р
1.	Clinical Trials 6	0		30	0	60	0	90	0
2.	Statistical Ecology	6	0	30	0	60	0	90	0
3.	Elective-I	4	0	20	0	40	0	60	0
4.	Elective -II	4	0	20	0	40	0	60	0
5.	Project	0	8	0	20	0	40	0	60
Tota	ıl	20	8	100	20	200	40	300	60 = (360)

Syllabus for M.Sc. Biostatistics

Semester I

Probability and Statistics

Section-A

Review of probability- Random variable and Distribution function. Marginal and joint probability distribution Mathematical expectation of sum and product of random variables. Moments, Cumulates and their interrelationship. Moment generating function and cumulate generating function, Binomial normal and Poisson with their properties.

Section - B

Correlation and Regression, Karl Pearson and Spearsman Rank, Correlation coefficient, Regression coefficient and lines of regression. Partial and multiple correlation. Sampling distribution, Standard error, Simple, Random sampling and stratified random sampling with their role.

Section-C

Test of significance for mean, variance, proporting and correlation coefficient. Test of goodness of fit and Independence of attributes. Analysis of variance for one way and two way classified data, concept of estimation, Definition of unbiasedness, consistency and efficiency, Statistical Decision making: Risk function, Loss function. Baye's role and Baye's approach.

References

1.1

Fundamental of Statistics, Vol. I & Vol. II A.M. Goon, M.K. Gupta and B. Das Gupta.
A Dublin of Statistical Theory-Vol. I & II. A.M. Goon, M.K. Gupta, B.Das Gupta
Probability and Random Process: S.K. Srinivasan & S.M. Mehta.
Mathematical Statistics: J.N. Kapoor & H.C. Saxena
An Introduction to probability theory and mathematical statistics: V.K. Tohatgi (Wiley Eastern
Publisher Ltd., New Delhi).

1.2 Computer Programming in C⁺⁺

Section A

Basic concepts and Measures of disease frequency: What is epidemiology?, Emergence of modem epidemiology, causation and causal inference in epidemiology, incidence time, incidence rate, other types of rates, incidence proportions and survival proportions, product-limit and exponential formulae, prevalence, standardization, Measures of effect and association, types of Epidemiologic study.

Section **B**

Field methods in epidemiology: Measures of effect, measures of association, standardized measures, prevalence ratios, other measures, types of experimental studies, types of nonexperimental (observational studies), data collection instruments, data preparation. Precision, validity and accuracy considerations in epidemiologic studies: Precision, validity, internal validity, generalizability, improving precision and validity, source of information on exposure and diseases.

Section C

Vital and health statistics: Population census, registration of vital events, sample registration system in India, notification of diseases, hospital statistics, disease registries, record linkage, morbidity indicators and mortality indicators (death rate, expectation of life, Infant mortality rate, perinatal mortality, maternal mortality, disease-specific mortality, proportional mortality).

References

Rothman K.I and Greenland S (1998). Modem Epidemiology, Second edition, Lippincott - Raven publishers.

Hennekcns CH, Burings .IE (1987). Edited by Mayrent SL. Epidemiology in medicine, Little, Brown and Company, Boston.

Kleinbaum DG, Kupper LL, Morgenstem H (1982). Epidemiologic research Principles and quantitative methods, VNR Publishers, New York,.

Lilienfeld AM and Lijienfeld DE (1980). Foundations of epidemiology, 2ndedition, New York, Oxford University Press.

Kleinbaum DG (1996). Methods in observational epidemiology, Oxford University press, Oxford.

Park K (2000). Textbook of preventive and social medicine, 16thedition, Mis Banarsidas Bhanot publishers, Jabalpur.

1.4 Biostatistical Inference

Section A

Estimator and estimate, mean square error (MSE), properties of estimators- unbiasedness, consistency, efficiency and sufficiency, Cramer-Rao lower bound, Minimum variance unbiased estimator, relative efficiency of an estimator. Fisher information, complete and sufficient statistic, Rao-Blackwell theorem, UMVUE, linkage estimation (Examples from Genetics).

Section B

Concepts of confidence interval, confidence coefficient, confidence interval for the parameters of univariate normal, proportion, mean, difference of means. Small sample and large sample confidence intervals. Large sample confidence intervals for binomial and Poisson parameters, Jacknife and bootstrap methods.

Section C

Sequential and Non parametric tests: Wald's SPRT with illustrations, OC and ASN functions for tests regarding binomial and normal populations. Sign test, Wilcoxon-Mann Whitney test, run test, median test, Chi-square test for independence of attributes, homogeneity, goodness of fit, Kruskal Wallis test, Kolmogorov-Smirnov one sample and two sample tests, Freidman's test.

(15L)

References:

Davison A.C. and Hinkley, D.V. (1997). Bootstrap methods and their application, Cambridge University Press

Gibbons, J.D. (1985). Nonparametric statistical inference, 2nd ed., Marcel Dekker, Inc

Kale, B.K. (1999). A first Course on Parametric Inference, Narosa Publishing House.

Rohatgi, V.K. and Saleh, A.K.Md.(2001). An Introduction to Probability and Statistics, John Wiley & Sons.

50

1.5 Laboratory practices

This paper includes practical problems using data from Biostatistical contexts based on papers 1.1 and 1.2. Data Analysis using Microsoft Excel & SPSS is expected

Semester II

Regression Analysis

Section A

Linear regression, Simple linear regression, multiple regression, fit of polynomials and use of orthogonal polynomials. Residuals and their plots as tests for departure from assumptions such as fitness of the model, normality, homogeneity of variances, detection of outliers and remedies, influential observations, power transformations for dependent and independent variables. Multicollinearity, ridge regression and principal component regression, partial least squares, subset selection of explanatory variables, Mallow's Cp statistic.

Section **B**

Robust and L-1 regression, estimation of prediction error by cross-validation and bootstrap. Nonlinear regression models, different methods of estimation (least squares, maximum likelihood), asymptotic properties of estimators, maximum likelihood, MINQUE and restricted maximum likelihood estimators of variance components, best linear unbiased predictors (BLUP), growth curves.

Section C

Generalized linear models, analysis of binary and grouped data by using logistic models, large sample tests about parameters, goodness of fit, analysis of deviance, variable selection, introduction to Poisson regression, log-linear models, Random and mixed effect models, Nonparametric regression and generalized linear models.

References

2.1

Draper, N.R. and Smith, H (2003). Applied Regression Analysis, John Wiley & Sons. McCulloch, C.E. and Searle, S.R. (2001). Generalized Linear and Mixed Models, John Wiley & Sons.

Montgomery and Peck (1998). Introduction to Linear Regression Analysis, John Wiley & Sons.

Rencher, A.C. (2000). Linear Models in Statistics, John Wiley & Sons.

Weisberg (1999). Applied Linear Regression, John Wiley & Sons.

Epidemiology II

Section A

Logistic regression analysis: Introduction to the logistic model, general definition of the logistic model. logistic regression for case-control studies, estimation and interpretation of logistic parameters, matched analysis- estimation of logistic parameters, unmatched analysis of matched data, confounder score.

Section **B**

Special topics: Clinical epidemiology: Describing clinical data. probabilities in clinical medicine, describing the performance of a diagnostic test, predictive value method for selecting a positivity criterion. receiver operator characteristic (ROC) curve (Knapp and). Nutritional epidemiology: Epidemiological studies of nutritional exposures, measurement of diet in epidemiological studies. Biochemical indicators of diet. anthropometry and measures of body composition, methodologic issues in nutritional epidemiology, Approaches to adjust for energy intake-residual method. standard multivariate method, energy partition method, nutrient density method.

Section C

Genetic epidemiology: Introduction. causal effect of genetic factors. family study designs. process of genetic epidemiology, models and hypothesis in genetic epidemiology (Thomas [10]). Concepts of infectious disease epidemiology: Time lines of infection, transmission probability, basic reproductive number. incidence rate as a function of prevalence and contact rate, measures of effect -transmission probability ratio. conditional and unconditional measures.

References:

Hennekens CH, Burings JE (1987). Edited by SL Mayrent. Epidemiology in Medicine. Little, Brown and Company, Boston.

Breslow NE and Day NE (1980). Statistical methods in cancer research Volume I – The analysis of case-control studies. International Agency for Research on Cancer, Scientific Publications

Kelsey JL, Whittemore AS, Evans AS, Thompson WD (1996). Methods in observational epidemiology, Second edition, Oxford University Press.

Breslow NE and Day NE (I 987). Statistical methods in cancer research Volume II – The design and analysis of cohort studies. International Agency for Research on Cancer. Scientific Publications No. 82.

Hosmer OW and Lemeshow S (1989). Applied logistic regression, Wiley publication, New York. Rothman KJ and Greenland S (\ 998). Modem epidemiology, Second edition, Lippincott -Raven publishers.

Knapp RG, Miller MC III (] 992). Clinical epidemiology and biostatistics. NMS from Williams & Wilkin, Baltimore.

Sackett DL, Haynes RB, Guyatt GH, Tugwell P (199]). Clinical epidemiology: A basic science for clinical medicine, second edition, Little, Brown & Company, Boston.

Thomas DC (2004). Statistical methods in genetic epidemiology. Oxford University Press, New York.

Khoury MJ, Beaty TH and Cohen BH (J 993). Fundamentals of genetic epidemiology.

Oxford University Press, New York.

Willett W (1998). Nutritional epidemiology, Second edition Oxford University press, NewYork. Kleinbaum DG (1996). Methods in observational epidemiology, Oxford University press, Oxford.

2.3 Bioinformatics and Computational Biology

Section A

Introduction to Bioinformatics: Bioinformatics Overview, Bioinformatics Concepts:- Functional Genomics, Comparative genomics, Structural biology, Medical information, Objectives of Bioinformatics. Applications, Challenges in Molecular biology, Careers in Bioinformatics, Skills required by Bioinformatics, Major databases & tools, Bioinformatics in India. : Data Mining – UNIGENE, EST, ORF, Pubmed, Phylogenetic Analysis, MSA, Gen BANK, COG Cluster, OMIM, Genome assembly & annotation, Gene Mapping, Sequence Assembly & Expression, Alignment of MS, Gene Annotation.

Section **B**

Proteomics: Macromolecules, Protein Structure & Purification, Visualization & prediction of Protein Structure, Methods used in protein structure prediction, PROSITE, PRODOM. Tools in Bioinformatics: Web based Bioinformatics Applications, Desktop based softwares, Online Analysis Tools & Servers, Exploration of Databases like NCBI, EBI standford MB Workbench, DDBJ, PDB, TIGR, SWISS-PROT, CATH, Annotation Systems-DAS, Homology Tools – BLAST, FASTA, SSEARCH, Multiple Alignment-CLUSTALW & PHYLIP, Molecular visualization.

Section C

Computational Biology: Genetic Algorithms, HMMR, Artificial Intelligence, Brute force, Dynamic Programming Algorithm. Local & Global Alignment Algorithm, Needleman- Wunsch Algorithm, Smith –Waterman Algorithm, Heuristic Algorithm like BLAST, FASTA-Multiple Segment Alignment Algorithm, Gene finding Algorithm, Protein secondary structure prediction Algorithm. Programming in Perl Language

NB: As this paper requires computational techniques, hand-on practical sessions are important and should be held in conjunction with lectures.

References

Bergeron, B.(2003). Bioinformatics Computing, Prentice Hall of India.
Bozdogan, H (2003). Statistical Data Mining & Knowledge Discovery, CRC Press
Chen, Z (2001). Intelligent Data Warehousing, CRC Press
Ewens, W.J. and Grant, G.R. (2002). Statistical Methods in Bioinformatics, Springer.
Waterman, M.S.(2000). Introduction to Computational Biology, CRC Press.

2.4 Time series and Stochastic Process

Section – A

Time series as a stationary or non stationary stochastic process, time domain analysis based on currelogram, sample autocovariance function and autocorrelation function at log K, log correlation.

Measurement of cyclic fluctuations: Periodogram and its relation with acvf, Harmonic analysis. Measurement of irregular component: Variant difference method.

AR(p) process, MA(q) process, mited ARMA(p,q) process, Stationarity and inevitability conditions, ARIMA (p,d,q) model, estimation of parameters, tests for stationarity Stochastic – Process.

Section – B

Markor Chain having two states, n-step transition probabilities, Classification of states, recurrent and transient states, Chapman-Kolmogorov equations, Stationary probability theorems and limit theorem for ergodic chains, martingales.

Section- C

Poisson process, birth and death process, Random walk and Gambler's Ruin problem, Wiener process, Renewal theory and its application, Branching chains: Discrete Process (Galton-Watson), Continuous process (Markov Branching), Fundamental theorem of Extinction.

References

Introduction to stochastic processes: P.G.Hoel, S.C. Port, C.J. Stone, Universal Book Store, New Delhi.

Stochastic Processes: S.K. Srinivasan, K.M. Mehata, Tata McGraw-Hill Publishing Company limited, New Delhi.

Stochastic Processes by J. Medhi.

Time series Analysis: Forecasting and control by G.E.P. Box and G.M. Jenkins.

The Analysis of Time Series: Theory and Practice by C. Chatfield.

2.5 Laboratory Practices

This paper includes practical problems from papers 2.1 and 2.3. Data Analysis using Excel or MINITAB is expecte

Semester III

3.1 Demography and Advanced Sampling

SECTION – A

Logistic models, measures of morbidity, mortality graduation, methods of construction of abridged life tables and its applications, population estimates and projection.

SECTION - B

- Cluster sampling with equal clusters.
- Ratio and Regression estimators.
- Sampling with varying probability of selection (WR and WOR)
- Cumulative Total and Lahiri's method of selection.
- Estimation of population mean.
- Desraj Ordered estimates.
- Horwitz Thompson estimates.
- Midzuno sem and Narain Methods of sampling.

SECTION - C

- Post stratification and deep stratification.
- Double sampling in ratio and regression estimation.
- Two stage and multistage sampling.
- Basic idea of randomised response technique.
- Non sampling errors: Interpenetrating samples.

Reference:

Sampling theory of surveys with applications by P. V. Sukhatme, B. V. Sukhatme, C. Ashok. Sampling theory and methods by M. N. Murthy

Sampling theory by Des Raj.

Theory and analysis of by D. Singh and F. S. Chaudhary. Sample survey design

Technical demography by R. Ramakumar.

Fundamentals of statistics Vol. II by A. M. Goon, M. K. Gupta and B. Dasgupta.

3.2 Survival Analysis

Section A

Concepts of time, order and random censoring, likelihood in these cases. Life distributionsexponential, gamma, Weibull, lognormal, pareto. Linear failure rate, Parametric inference (point estimation, confidence intervals, scores, LR, MLE tests (Rao-Wilks-Wald) for these distributions.

Section **B**

Life tables, failure rate, mean residual life and their elementary properties. Ageing classes and their properties, Bathtub failure rate. Multiple decrement life table.

Section C

Semi-parametric regression for failure rate- Cox's proportional hazards model with one and several covariates. Rank test for the regression coefficients. Competing risks model, parametric and nonparametric inference for this model.

References

Cox, D.R. and Oakes, D. (1984): Analysis of survival data, Chapman & Hall, New York Elandt, Johnson and Johnson (1998). Survival Models and Data Analysis, John Wiley & Sons. Gross and Clark (1999). Survival distributions: Reliability Applications in the Biomedical sciences, John Wiley & Sons. Kleinbaum, D.G. (1997). Survival Analysis, Springer Lee (2000). Statistical Methods for Survival Data Analysis, Second Edition.

Klein, J.P. and Moeschberger, M.L.(2003). Survival Analysis, Springer.

Miller, R.G. (2000). Survival Analysis, Second Edition, John Wiley & Sons.

3.3 Linear models and Design of Experiments

SECTION -A

Estimable functions, estimation and error space, linear models and regression, Standard Gauss Markov Models, Best linear unbiased estimate (BLUE), Method of least squares and Gauss-Markov theorem, Variance covariance matrix of BLUES, use of g-inverse.

SECTION - B

General two –way classification, Analysis of covariance $(2^n, 3^2 \text{ and } 3^3)$ factorial experiments, complete and partial confounding. Split and strip plot designs.

SECTION - C

Balanced Incomplete Block design (BIBD) construction of BIBD, Infra block and inter block Analysis, BIBD with recovery of inter block information, Partially balanced Incomplete block design (PBIBD) for two associate classes, Introduction to quasi-Latin square design.

References					
Linear estimation and design of exper-	By D. D. Joshi				
Analysis of variance	:	By N. Giri			
Design and analysis of experiments	:	By M. N. Das and N. C. Giri			
Design and analysis of experiments	:	By H. B. Mann			
Linear statistical inference	:	By C. R. Rao			
Theory of block designs	:	By Aloke De			

Statistical Genetics and Bioassay

Section A

Basic biological concepts in genetics, Mendel's law,genetic diseases, Hardy Weinberg equilibrium, Mating tables, estimation of allele frequency (dominant/ co-dominant cases), Approach to equilibrium for X-linked gene. The law of natural selection, mutation, genetic drift, equilibrium when both natural selection and mutation are operative. Non-random mating, inbreeding, phenotypic assortative mating. Analysis of family data - relative pair data, 1, T, 0 matrices, identity by descent.

Section **B**

Linkage, estimation of re combination fraction, inheritance of quantitative traits. Models and estimation of parameters. Sequence similarity. Homology and alignment. Algorithms for pairwise sequence alignment and multiple sequence alignment, construction of phylogenetic trees, UPGMA, neighbour joining, maximum parsimony and maximum likelihood algorithms. Types of biological assays, direct assays.

Section C

ratio estimators, asymptotic distributions, regression approaches for estimating dose response relationships. Logit and probit analysis with applications in bioassay. Quantal responses, methods of estimation of parameters, dose allocation schemes, median dose, polychotomous quantal response, estimation of points on the quantal response function.

References

3.4

Collett, D (2003). Modelling Binary Data, Chapman & Hall.

Durbin, R., Eddy, Krogh, A. and Mithison, G.(1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.

Ewens, W.J. (2004). Mathematical Population Genetics, Springer

Finney. D.J. (1971). Statistical Method in Bioassay, Griffin

Govindarajulu, Z (2000). Statistical Techniques in Bioassay, S. Kargar

Lange, K (2002). Mathematical and Statistical Methods for Genetic Analysis, Springer Nagylaki, T.(1992). Introduction to Theoretical Population Genetics, Springer Sham, P (1997). Statistics in Human Genetics, Arnold Publications.
 Laboratory Practices

This paper includes practical problems from papers 3.1 and 3.3 Data Analysis using R and Systat is expected.

Semester IV

4.1

Clinical Trials

Section A

Introduction to clinical trials. New drug application and clinical development. Bias and variability of primary clinical endpoint. Design consideration of clinical trials: Patient selection, selection of controls, statistical consideration. Randomisation and blinding.

Section **B**

Overview of phase I-IV trials.

Design for clinical trials: Parallel, crossover, cross-sectional, longitudinal, titration, enrichment design. Classification of clinical trials:Multicentre, active control combination, equivalence trials. Concept of surrogate endpoints. An introduction to meta analysis of clinical trials.

Section C

Group sequential methods in clinical trials. Pallock's and O'Brien & Fleming's tests (with properties}. Group sequential tests for binary data, survival data. Analysis for categorical data.

References: -

Piantadosi, S. (1997). Clinical Trials; A Methodological Perspective. Wiley and sons. Jennison, C. and Turnbull ,B.W. (1999); Group Sequential Methods with Applications to Clinical Trials, CRC Press.

Furburg, L. M. C. & Demets ,D.L. (1998); Fundamentals of Clinical Trials, Springer Verlag.

Fleiss, J.L. (1989). The Design and Analysis of Clinical Experiments. Wiley & sons. Marubeni, E. and chi ,M.G. (1994). Analysing Survival Data from Clinical Trials and Observational Studies, Wiley & sons.

4.2 Statistical Ecology

Section A

Introduction to Ecology and evolution, Population dynamics : single species –Exponential, logistic and Gompertz models, Leslie matrix model for age and stage structured population, Survivorship curves- Constant, monotone and bath tub shaped hazard rates.

Section **B**

Two species : Lotka- Volterra equations, isoclines, competition and coexistence, predator-pray oscillations. Abundance estimation : Capture-recapture, Nearest neighbour, line transect sampling, indirect methods. Ecological Diversity : Species abundance curve, Indices of diversity (Simpson's index, Shannon–Wiener index).

Section C

Harvesting renewable biological resources- Maximum sustainable yield, tragedy of the commons.

Game theory in ecology- Evolutionarily stable strategy, its properties, simple games such as Hawk – Dove game.

References

Anil Gore and S. A. Paranjpe (2000). A course on mathematical and Statistical Ecology (Kluwer).

Chow, S.C. and Liu, J.P. (1999). Design and Analysis of Bioavailability and Bioequivalence Studies, 2nd ed., CRC Press

Clark, C.W. (1976). Mathematical Bioeconomics: Optimal Management of Renewable Resources (Wiley).

Maynard Smith, J. (1982). Evolution and the Theory of Games, Cambridge University Press.

Pielou, E.C. (1977). An Introduction to Mathematical Ecology, Wiley.

Seber, G. A.F. (1982). Estimation of Animal Abundance and Related Parameters, Charles Griffin.

Wheeler (1996). Environmental Studies: Mathematical, Computational and Statistical Analysis, Springer

4.5 Laboratory Practices

This paper includes practical problems from papers 4.1 and Elective Data Analysis using R and other software packages is expected.

Elective Bayesian Inference and MCMC Methods Section A

Subjective interpretation of probability in terms of fair odds. Evaluation of (i) subjective probability of an event using a subjectively unbiased coin (ii) subjective prior distribution of a parameter. Bayes' theorem and computation of the posterior distribution. Natural Conjugate family of priors for a model. Hyper parameters of a prior from conjugate family. Non informative, improper and invariant priors. Jeffrey's invariant prior.

Section B

Bayesian point estimation: as a prediction problem from posterior distribution. Bayes estimators for (i) absolute error loss (ii) squared error loss (iii) 0-1 loss. Generalization to convex loss functions. Evaluation of the estimate in terms of the posterior risk.

Bayesian testing of Hypothesis : Specification of the appropriate form of the prior distribution for a Bayesian testing of hypothesis problem. Prior odds, Posterior odds, Bayes factor for various types of testing of hypothesis problems depending upon whether the null hypothesis and the alternative hypothesis are simple or composite.

Section C

Specification of the Bayes tests in the above cases. Simulation Techniques, Gibbs sampling, Monte-Carlo methods, Markov Chain Monte Carlo (MCMC) methods, bootstrap methods and other computer simulation methods.

References

Berger, J.O. Statistical Decision Theory and Bayesian Analysis, Springer Verlag.

Bernando J.M. and Smith, A. F. M. Bayesian Theory, John Wiley and Sons

Box, G.P. and Tiao, G.C. Bayesian Inference in Statistical Analysis, Addison-Wesley.

Chen (2001). Monte Carlo Methods in Bayesian Computation, Springer.

DeGroot M. H. Optimal Statistical Decisions. McGraw Hill.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2003). Bayesian Data Analysis, 2nd edition, CRC Press.

Germerman, D. (2002). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman & Hall.

Lee, P.M. (2004). Bayesian Statistics, Arnold publishers.

Robert C.P. and Casella, G. (2004). Monte Carlo Statistical Methods, Springer-Verlag.

Sorensen (2002). Likelihood, Bayesian and MCMC Methods in Quantitative Genetics, Springer.

Annexure - VII

Apaji Institute of Mathematics and Applied Computer Technology

Banasthali University

	Details of Wodel 1 apers (2000 07) (Mathematics and Statistics)											
S.No.	Class	Course	Teacher	Model requ	Paper ired	Reason						
				Yes	No							
1.	B.A./B.Sc (Maths) I Sem	Calculus	Ms.Somya Upadhyay	YES		Scheme of Examination changed						
2.		Algebra	Dr. Deepa Sinha	YES		Scheme of Examination changed						
3.	B.A. / B.Sc. (Maths) II Year	Real Analysis	Mr.Pravin Garg	-	NO							
4.		Linear Algebra & Diff. Equations	Mr. Om Prakash	-	NO							
5.		Mechanics	Ms. Amla Olkha	-	NO							
6.		Numerical Analysis	Ms. Shinu Rani	-	NO							
7.		Integral Transforms	Ms. Nidhi (M.Phil.)	YES		Misprints						
8.	B.A. / B.Sc. (Maths) III Year	Algebra	Mr. Gauri Shanker	-	NO							
9.		Discrete Mathematics	Mr. Pravin Garg	-	NO							
10.		Complex Analysis	Dr. P.K. De	-	NO							
11.		Differential equation	Ms. Jaspreet Kaur (JRF)	-	NO							

Details of Model Papers (2008-09) (Mathematics and Statistics)

S.No.	Class	Course	Teacher	Model requ	Paper lired	Reason
				Yes	No	
12.		Advanced Calculus	Ms. Shinu Rani (JRF)	YES	-	Misprints
13.	BA/BSc I Sem (Stat)	Probability & Descriptive Statistics	Ms. Richa Joshi & P.K.Rai	YES	-	New Scheme
14.	BA/BSc II yr (Stat)	NA & Sampling Dist.	P.K.Rai	-	NO	
15.		St. Inf & SQC	Dr. J.S. Khan	-	NO	
16.	BSc III (Stat.)	App. Stat	Ms. Kakoli	-	NO	
17.		Sampling Tech.& DOE	Ms. Seema Mishra	-	NO	
18.		Practicals	Ms. Seema Mishra & Dr. Shalini Chandra	-	NO	
19.	BA I Sem (App Stat)	Basic Statistics	Ms. Swati Raj (JRF)	YES	-	New Scheme
20.		Basic Mathematics	Ms. Geetanjali (JRF)	YES	-	New scheme
21.	<u>BA II yr (App Stat)</u>	Th.Of Prob. & Inferential Statistics	Dr. J.S. Khan	YES	-	Out of Course
22.		Computer Application	Ms. Ms. Archana Mangal	-	NO	
23.	B.A.III yr (App. Stat.)	App. Stat	Dr. Sarla Pareek	-	NO	
24.		Sampling tech. & DOE	Ms. Jyoti Sharma	-	NO	
25.	BTech I Sem	Probability & Statistics (Sec C & D) (Sec D) (SecC)	Dr. Sarla Pareek Ms. Richa Joshi Ms. Swati Raj (JRF)	-	NO	
26.		Calculas (Sec A) (Sec B)	Ms. Amla Olkha Ms. Somya	YES	-	Syllabus Changed

S.No.	Class	Course	Teacher	Model Paper required		Reason
				Yes	No	
27.	<u>BBA III yr</u>	Mathematics for management	Ms. Usha Sharma (JRF)	YES	-	Syllabus Changed
28.	<u>Btech III Sem</u>	Probability & Staistics (CS) (IT) (EC)	Mr. P.K. Rai Ms. Jaspreet (JRF) Ms. Isha(JRF)	YES	-	First time introduced
29.	<u>BCA I Sem</u>	Mathematics I Batch A Batch B	Ms. Somya Upadhyay, Ms. Alpna Mishra Ms. Sunita Kumawat	YES	-	First time
30.	<u>BCA II yr</u>	Mathematics II Batch A Batch B	Ms. Geetanjali (JRF) Ms. Isha (JRF)	-	NO	
31.	<u>BA (CA) I Sem</u>	Mathematics I	Ms. Somya Upadhyay	YES	-	First time
32.	<u>BA (CA) II yr</u>	Mathematics II	Ms. Sunita (JRF)	-	NO	
33.	BCA III yr	Quantitative tech.	Ms. Somya Upadhyay	-	NO	
34.	<u>B. Pharma</u>	Basic Mathematics	Ms. Usha (JRF)	YES	-	First time
35.	M.A./M.Sc. I Sem	Real Analysis	Mr. Om Prakesh & Dr. Gauri Shankar	-	NO	
36.		Abstract Algebra	Mr. Pravin Garg	-	NO	
37.		Discrete Matematics	Mr. Pravin Garg	-	NO	
38.		Probability & Statistics	Mr. P.K.Rai	-	NO	
39.	<u>M.A./M.Sc.</u> (Pure/TCS/Stats.) III Sem	Mathematical Programming	Dr. Rakhee	-	NO	

S.No.	Class	Course	Teacher	Model Paper required		Reason
				Yes	No	
40.	<u>M.A./M.Sc.(Stat) III Sem</u>	Demography & Advance Sampling	Dr. J.S. Khan & Ms. Jyoti Sharma	-	NO	
41.		Design of Experiments & Linear Models	Dr. Shalini Chandra & Ms. Seema Mishra	-	NO	
42.		Econometrics M.A.(Economics) M.Sc(Stats)	Dr.Shalini Chandra Ms. Kakoli Mandal	-	NO	
43.		Time Series&Stochastic Processes	Dr.Sarla Pareek & Ms. Madhuri (JRF)	-	NO	
44.	M.A./M.Sc.(Pure) III Sem	Topology	Dr. Gauri Shankar	-	NO	
45.		Functional Analysis	Dr. P.K.De	-	NO	
46.		Partial Diff. Eqs. And Sp. Functions	Ms. Amla Olkha	-	NO	
47.		Elective-I- Time Series&Stochastic Processes	Dr.Sarla Pareek & Ms. Madhuri (JRF)	-	NO	
48.		Seminar & Term Paper	Dr.P.K. De (Co-odinator), Mr. Om Prakash, Dr. Deepa, Dr. Rakhee, Dr. Gauri Shankar	-	NO	
49.	M.A./M.Sc.(TCS) III Sem	Algorithms	Mr. Sanjay Sharma	-	NO	
50.		Theory of Computaion	Mr. Vikas Pareek	-	NO	
51.		Operating Systems	Ms. Manisha Agarwal	-	NO	
52.		Elective: Mobile Computing	Mr. Vikas Pareek	-	NO	

S.No.	Class	Course	Teacher	Model Paper required		Reason
				Yes	No	
53.	M.Phil I Sem	Advanced Analysis	Mr. Mr. Om Prakesh	YES	-	First Time
54.		Elective-Population Studies	Mr. P.K. Rai	-	NO	
55.		Queuing Theory	Dr. Rakhee	-	NO	
56.		Discrete Mathematics*	Mr. Pravin Garg	-	NO	
57.		Abstract Algebra*	Mr. Pravin Garg	-	NO	
58.	M.Sc. (Bioinformatics I Sem)	Basic Mathematics	Ms. Alpna Mishra (JRF)	-	NO	
59.		Statistical Techniques	Ms. Richa Joshi	-	NO	
60.	M.Sc.I Sem(Chem.)	Mathematics for Chemistry	Ms. Amla Olkha	YES	-	First Time
61.	M.C.A. I Sem.	Discrete Matematics	Dr. Deepa Sinha	-	NO	

Verified accept Dean Administration Banasthali Vidyapith Banasthali Vidyapith-304022 (Rajasthan)

Department of Mathematics and Statistics Banasthali Vidyapith, Banasthali

Minutes of the Board of Studies held on 26.12.2018 at 11.00 A.M in the CMS Conference Hall, Banasthali Vidyapith.

Present

1.	Dr. Abhishek Singh	:	Internal Member
2.	Dr. Amit Kumar	:	Internal Member
3.	Mr. Ankush Goel	:	Internal Member
4.	Ms. Anu Sirohi	:	Internal Member
5.	Ms. Bhawna Jha	:	Internal Member
6.	Prof. G.N. Purohit	:	Internal Member
7.	Dr. GargiTyagi	:	Internal Member
8.	Dr. Geetanjali Sharma	:	Internal Member
9.	Dr. Gulab Singh	:	Internal Member
10.	Dr. IshaSangal	:	Internal Member
11.	Dr. Madhuri Jain	:	Internal Member
12.	Mr. Manish Raghav	:	Internal Member
13.	Ms. Manju Suresh Prasad	:	Internal Member
14.	Dr. Manoj Kumar Singh	:	Internal Member
15.	Dr. Naresh Chandra	:	Internal Member
16.	Dr. Prashant Kushwah	:	Internal Member
17.	Dr. Preeti Jain	:	Internal Member
18.	Mr. Ramdayal Kushwaha	:	Internal Member
19.	Ms. Renu Naresh	:	Internal Member
20.	Dr. Sandeep Kumar Maurya	:	Internal Member
21.	Prof. SarlaPareek	:	Internal Member
22.	Prof. Shalini Chandra	:	Convener
23.	Dr. Shanu Goyal	:	Internal Member
24.	Dr. Shared Chand Pandey	:	Internal Member
25.	Ms. Teena Goyal	:	Internal Member
26.	Dr. Usha Sharma	:	Internal Member
27.	Prof. Sharad Gore	:	External Member

Note:Prof. C.S. Aravinda, TIFR Mumbai, Prof. Arvind Mishra, B.H.U. Varanasi(External Members)and Dr. Narendra Singh Thakur (Internal Member)could not attend the meeting.

The meeting started with a welcome of the members, by the convener of Board of Studies for Mathematics and Statistics, Prof. Shalini Chandra, Head, Department of Mathematics and Statistics, Banasthali Vidyapith, Rajasthan

1. The board took up the minutes of its last meeting held on April, 23, 2016.

The Board resolved that the minutes to be confirmed.

- 2. The board reviewed the existing panel of examiners and suggested to update the address and phone numbers of the existing examiners for each examination up to and inclusive of all Master's degree examination keeping in view the by-law 15.03.02 of the Vidyapith. Updated panel is sent to the examination and secrecy section.
- 3. The board reviewed the Study/Curricula, scheme of examination and proposed revisions in various courses of study as follows:

3 IB.A./B.Sc. (Mathematics) Examinations:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change ^{a,b}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^c
v.	Fifth Semester Examination, December, 2021	Revised ^{d, e}
vi.	Sixth Semester Examination, April/May, 2022	Revised ^{d, f}

The Board reviewed the objectives, schemes, syllabi and learning outcomes of the B.A./B.Sc. (Mathematics) programmes.

(a)In B.A./B.Sc. (Mathematics)III Semester, revision in the syllabus of *Abstract Algebra*(Course Code: MATH 201) was proposed. Board discussed the revision proposed and agreed upon the suggested syllabus. Board also recommended implementing the proposed revision in syllabus of *Abstract Algebra* by III Semester Examination, **December**, 2019.

(b)In B.A./B.Sc. (Statistics as a discipline)III Semester, Board reviewed the syllabus of *Numerical Analysis and Sampling Distribution* (Course Code: STAT 203) and *Numerical Analysis and Sampling Distribution Lab* (Course Code: STAT 203L). It was found that students of Statistics also study Numerical Analysis in VI semester. Board suggested removing numerical analysis portion from this course and strengthens the sampling distribution. The title of the course should be Sampling Distributions. Therefore, in B.A./B.Sc. (Statistics)III Semester, the course *Numerical Analysis and Sampling Distribution* (Course

Code: STAT 203) should be replaced by *Sampling Distributions* (Course Code: *to be generated*) and *Numerical Analysis and Sampling Distribution Lab* (Course Code: STAT 203L) should be replaced by *Sampling Distributions Lab* (Course Code: *to be generated*).Board recommended implementing the proposed revision of the III Semester Examination, **December, 2020**.

(c) In B.A./B.Sc. (Mathematics) IV Semester, Board suggested to replace the course *Introduction to Mechanics* (Course Code: MATH 203) by the course *Complex Analysis* (Course Code: MATH 301). Board recommended implementing the proposed change in scheme by IV Semester Examination, April, 2021.

(d) In B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) 3rd Year, Board suggested to include discipline electives in the scheme. Following is the list of electives

B.A./B.Sc. (Mathematics) discipline electives:

Introduction to Mechanics Linear Programing & Its Applications Vector Calculus Number Theory

B.A./B.Sc.(Mathematics) discipline electives for (Statistics/ Applied Statistics):

Sampling Techniques and Design of Experiments Applied Statistics Financial Statistics Health Statistics & Population Dynamics

Board recommend the implementation of electives form **Session 2021-2022**. The course *Introduction to Discrete Mathematics* (Course Code: MATH 302) and *Introduction to Numerical Analysis* (Course Code: MATH 303) are the core course in B.A./B.Sc. (Mathematics) V and VI Semester respectively with the following suggestions.

(e) The Board had a discussion on the course *Introduction to Discrete Mathematics* (Course Code: MATH 302) which is running in B.A./B.Sc. (Mathematics) V Semester, B.Tech. (CS) V Semester and MCA II Semester. To bring uniformity in the syllabus of the course across the various programs, board suggested revisionsin the syllabus of *Introduction to Discrete Mathematics*. Board also recommended implementing the proposed revision by V Semester Examination, **December, 2019**.

(f) In B.A./B.Sc. (Mathematics) VI Semester, revision in the syllabus and recommended books of *Introduction to Numerical Analysis* (Course Code: MATH 303) was proposed. Board discussed the revision and found that proposed syllabus is more elaborated and well arranged with the inclusion of some topics. It will help student to find the flow of study and understand the topics in the syllabus. Board agreed upon the revised syllabus and also recommended implementing the proposed revision in the syllabus of *Introduction to Numerical Analysis* by VI Semester Examination, April/May, 2020.

Programme specific outcomes and the list of disciplinary courses of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as **Annexure-I**.

The revised syllabus, learning outcomes and e-learning material of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as **Annexure-II**.

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Change ^a
v.	Fifth Semester Examination, December, 2021	Change ^{b,c}
vi.	Sixth Semester Examination, April/May, 2022	Change ^c
vii.	Seventh Semester Examination, December, 2022	No Change
viii.	Eighth Semester Examination, April/May, 2023	No Change

3 II. B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR) Examination:

(a) The Board discussed the various course running in B.Tech. Programme of Vidyapith by the department. Board recommended a tutorial in every course. Board suggested to revise the L-T-P-C of course *Differential Equation* (Course Code: MATH 208) from 4-0-0-4 to 3-1-0-4 and Complex Variables (Course Code: MATH 207) from 3-0-0-3 to 3-1-0-4. Board recommended implementing the proposed revision by **Session 2019-2020**.

(b)As discussed in 3.I (d), in B.Tech. (CS)V Semester, board recommended implementing the revised syllabus of "*Introduction to Discrete Mathematics*" by V Semester Examination, **December**, **2019**.

(c)Syllabus of "Probability and Statistical Methods" and "Numerical Methods" in B.Tech. third year were proposed. Both the papers have L-T-P-C 3-1-0-4.Board discussed the syllabus and agreed upon implementing new syllabi from session 2019-2020.
(d)TheBoard reviewed all the syllabi of Mathematics and Statistics courses running in B. Tech. programme in respect of learning outcomes and suggested readings.

Learning outcomes, proposed revised/ new syllabi, suggested books and suggested e-learning material of the B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR)courses is attached and marked as**Annexure-III.**

3 III. M.Sc. (Mathematical Science) Examination:

The Board discussed the recent trends in mathematical science education at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, more weightageshould be given to self-learning and independent research activities. In the light of the above-mentioned suggestions, the board proposed revisions in the scheme of M.Sc. (Mathematical Science) with specialization in pure mathematics/statistics/operations research/theoretical computer science.

3 IIIA M.Sc. (Mathematical Science - Pure Mathematics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* JI Semester Examination, **April/May**, **2020**.

(b)TheBoard had detailed discussion on the *Term Paper* (MATH 528P). To improve the quality of Term Paper and to inculcate best practices in the students, formal guidelines were proposed including the evaluation scheme. The proposed guidelines are given in **Annexure-IV**. Board also recommended implementing the proposed guidelines by III Semester Examination, **December, 2019**.

(c)TheBoard also has proposed new electives in the curricula as follows:

- Coding Theory (New Course)
- Fixed Point Theory (New Course)
- Introduction to Dynamical System (New Course)

- Bio Mathematics (New Course)
- Algebraic Topology (New Course)
- Combinatorial Optimization (New Course)
- Transportation System Analysis (New Course)
- Integral Transform and Special Functions (New Course)
- Fields and Galois Theory (New Course)

Board recommended implementing the new electives by Session 2020-2021.

(d)TheBoard proposed to omit Rings and Modules (MATH 524) from the list of electives of pure mathematics. Board recommended implementing the change by**Session 2020-2021.**

(e)TheBoard has proposed following new reading electives in the curricula:

- Network Biology (New Course)
- Fractional Calculus (New Course)
- Quantum Graphs (New Course)
- Point set topology (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by **Session 2020-2021**.

(f) To ensure the quality of Dissertation, formal guidelines are given in Annexure-IV

3 IIIB M.Sc. (Mathematical Science – Statistics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May, 2020**.

(b)TheBoard had detailed discussion on the *Seminar* (Course Code: STAT 514S). To improve the quality of *Seminar* and to inculcate best practices in the students, a formal guideline was proposed including the evaluation scheme. The proposed guidelines are attached and marked as **Annexure-IV**. Board

also recommended implementing the proposed guideline by III Semester Examination, **December**, **2019**.

(c) TheBoard reviewed the process of *Project* (Course Code: STAT 512P) and recommended formal guidelines for it. The proposed guidelines with evaluation scheme are attached and marked as **Annexure-IV**. Board also recommended implementing the proposed guidelines by IV Semester Examination, **April/May**, 2020.

(d)TheBoard reviewed the list of electives and found that the title of *Econometrics Models* (Course Code: MATH 510) should be replaced by *Econometric Models*. Board also suggested that some more models should be added. Board recommended implementing the proposed revision in syllabus of *Econometric Models* by **Session 2019-2020**.

(e)TheBoard also has proposed some new electives in the curricula as follows:

- Stochastic Models (New Course)
- Demography (New Course)
- Actuarial Statistics (New Course)
- Survival Analysis (New Course)
- Reliability and Renewal Theory (New Course)
- Operations Research (New Course)

Board recommended implementing the new electives by Session 2020-2021.

(f)TheBoard proposed following new reading electives in the curricula:

- Step-Stress Modelling (New Course)
- Categorical Data Analysis (New Course)
- Official Statistics (New Course)
- Robust Estimation in Non-Linear Models (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by **Session 2020-2021**.

3 III M.Sc. (Mathematical Science – Operations Research) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in

their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May, 2020**.

(b)TheBoard suggested that similar guidelines as suggested for *Seminar* (Course Code: STAT 514S), should be followed for Seminar (Course Code: MATH 525S). Board also recommended implementing the proposed guidelines by III Semester Examination, **December**, 2019.

(c) TheBoard suggested that similar guidelines as suggested for *Project* (STAT 512P), should be followed for Project (Course Code: MATH 520P). Board also recommended implementing the proposed guidelines by IV Semester Examination, **April/May**, 2020.

(d)TheBoard also has proposed some electives in the curricula as follows:

- Combinatorial Optimization
- Transportation System Analysis (New Course)
- Stochastic Models (New Course)
- Fuzzy logic and Belief Theory
- Partial Differential Equations (New Course)

Board recommended implementing the new electives by the Session 2020-2021.

(e)TheBoard has proposed following reading electives in the curricula:

- Selected Applications of Stochastic Models
- Operational Research Applications
- Step-Stress Modelling
- Categorical Data Analysis

Board recommended implementing the reading electives by **Session 2020-2021**.

3 III D M.Sc. (Mathematical Science - Theoretical Computer Science) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) Board reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in

numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May**, **2020**.

(b) Board has proposed following reading electives in the curricula:

- Operational Research Applications (New Course)
- Categorical Data Analysis (New Course)
- Network Biology (New Course)
- Fractional Calculus
- Quantum Graphs

The Board also recommended implementing the reading electives by **Session 2020-2021**.

(c) To bring uniformity in the credits of elective courses, Board suggested to remove following electives form the list of electives of M.A./M.Sc. (Mathematical Sciences – Theoretical Computer Science)

Web Development and .Net Framework

Web Development and .Net Framework Lab

Advanced communication Networks

Advanced communication Networks Lab

Data Communication and Networking

Data Communication and Networking Lab

The Board also recommended implementing the suggestion by **Session 2019-2020**.

Programmeeducational objectives and outcomes and the scheme of M.A./M.Sc. (Mathematical Sciences) programmeare attached and marked as **Annexure-V**

The revised syllabus, learning outcomes and e-learning material of the M.A./M.Sc. (Mathematical Sciences) programme is attached and marked as **Annexure-VI**.

3 IV. M. Phil. (Mathematical Science)Examination

Board discussed the curriculum structure of M. Phil. (Mathematical Science) and advised to restructure the programme in the light of one-year duration.

3 V. Certificate Examinations:

(a) The board suggested minor changes in the syllabus of *Certificate Course in Statistical Techniques and Applications*. Board recommended implementing the revised syllabus by **Examination**, 2020.

(b) Board discussed the syllabus of *Certificate Course in Actuarial Sciences* and suggested few changes. The revised syllabus is attached and marked as**Annexure-VII.** Board recommended implementing the revised syllabus by **April**,2020.

3 VI.Diploma Examinations:

The board suggested minor changes in the syllabus of *Diploma Course in Actuarial Sciences*. The revised syllabus is attached and marked as **Annexure-VII**. Board recommended implementing the revised syllabus by **Examination, 2020**.

4. Board reviewed the curriculum for the courses running in the other programs of the Vidyapith. Following suggestions were given

Bachelor of Business Administration					
MATH 306	Mathematics for Management	No Change			
STAT 108	Statistics for Management	No Change			
STAT 108L	Statistics for Management Lab	No Change			
Bachelor of C	Commerce				
MATH 109	Mathematics for Business Applications	No Change			
STAT 201	Business Statistics	No Change			
STAT 201L	Business Statistics Lab	No Change			
Bachelor of C	Computer Applications				
MATH 108	Mathematics -I	No Change			
MATH 204	Mathematics -II	No Change			
MATH 302	Introduction to Discrete Mathematics	No Change			
MATH 308	Quantitative Techniques (Math)	No Change			
Bachelor of P	harmacy				
MATH 110	Remedial Mathematics	No Change			
Bachelor of S	cience (Aviation Science)				
MATH 102	Basic Mathematics	No Change			
Master of Con	mputer Applications				
MATH 302	Introduction to Discrete Mathematics	Change ^a			
Master of Sci	ence (Bioinformatics)				
MATH 406	Introductory Mathematics	No Change			
STAT 405	Statistical Techniques	No Change			
STAT 405L	Statistical Techniques Lab	No Change			
Master of Sci	ence (Chemistry)	1			
MATH 407	Mathematics for Chemists	No Change			
Master of Tec	chnology (Biotechnology)				

MATH 506 Engineering Mathematics

(a)As discussed in 3.I (c), forM.C.A.II Semester, board recommended implementing the revised syllabus of "*Introduction to Discrete Mathematics*" by II Semester Examination, April/May, 2019.

(b)Board reviewed all the syllabi of Mathematics and Statistics courses running in other programmesof the Vidyapithin respect of learning outcomes and suggested readings. Course outcomes, suggested books and suggested e-learning material of remaining coursesis attached and marked as**Annexure-VIII.**

- **5.** Board reviewed the reports received from the examiners of different examinations of 2017 and 2018. All the reports were found to be satisfactory except three. The analysis of the reports received is enclosed in **Annexure-IX**.
- 6. The board evaluated the semester examination papers and found that most of them were analytic, descriptive and application based depending on the nature of course. The analysis of question papers is enclosed in **Annexure-X**.
- 7. The Board suggested starting two new P. G. programmes in Mathematics & Statistics along with M.Sc. (Mathematical Sciences) for the students who have interest in conventional degrees like M.Sc. (Mathematics) and M.Sc. (Statistics). The proposed schemes and courses are attached and marked as **Annexure-V** and **Annexure VI**, respectively.
- 8. Board suggested seeing the feasibility of beginning a certificate course on Data Science with linkage to industry which will have direct bearing on employability.
- **9.** Board also suggested starting internship program of two months for statistics students at post graduate level to give them exposure of field surveys.

Meeting ended with vote of thanks.

Name of Programmes: B.Sc (Mathematics)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. At the undergraduate level, Vidyapith promotes the development of a balanced and harmonious personality of the students through it's 'Panchmukhi Shiksha'. Panchmukhi Shiksha attempts a balance of the five aspects of education, namely Physical, Practical, Aesthetic, Moral and Intellectual. The educational objective of the B.Sc. (Mathematics)programme is to provide high quality education in mathematics, statistics, physics, electronics and computer science in order to prepare students for professional careers or higher education in science and related fields.

The main objectives of the B.Sc. programme are:

- To develop an understanding of mathematics and related areas opt by them.
- To develop an ability to identify, formulate, analyze and solve scientific problems.
- To develop a capacity to integrate knowledge from more than one subject and to apply appropriates mathematical principles to arrive at correct and effective solutions.
- To develop communication skills which enables them to effective multidisciplinary teamwork
- To develop their skillswhich will enable them to become a multi facet personality shining in any chosen field.

ProgrammeOutcomes: B.Sc. (Mathematics)

PO1: Knowledge Domain: Demonstrate an understanding of the basic concepts in mathematics, statistics, physics, electronics and computer scienceand their importance in the solution of some real-world problems.

PO2: Technical Skills: Understand tools of appropriate laboratory and perform experiments that support the development of scientific theory.

PO3: Ethics: Applyknowledge and moral principles by using a systematic approach of rational arguments.Understand the responsibility and the way our perception of right and wrong can play a part in politics and society.

PO4: Communication: Effectively communicate information by speaking, writing, or using some other mediumwith their peer and society at large, such as, being able to comprehend and write effective reports and make effective presentations.

PO5: Life- long learning: Demonstrate the ability to read and learn on their own that encourage the continuingdevelopment of knowledge and skills throughout their lives.

Programme Specific Outcomes (Applied Statistics)

- **PSO1:** Understand the basic concepts of sequence, series, sets, calculus, matrix theory, probability, inference, sample surveys and design of experiments and their applications.
- **PSO2:** Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.
- **PSO3:** Develop an understanding of importance of statistical methods and techniques.
- **PSO4:** Learn statistical software as exploratory, visualization, and computational tools.

Programme Specific Outcomes (Mathematics)

- **PSO1:** Understand the basic concepts of calculus, geometry, analysis, algebra and their applications. Solve arithmetic, algebraic, geometric expressions, equations, functions and problems using appropriate methods.
- **PSO2:** Analyse the relationships among structures in mathematics (e.g. sets, functions, groups, rings, vector spaces) and their importance within and outside the discipline.
- **PSO3:** Develop an understanding of importance of axioms, proofs and theorems.
- **PSO4:** Recognize and appreciate the connections between theory and applications.

Programme Specific Outcomes (Statistics)

- **PSO1:** Understand the basic concepts of probability theory, inference, sample surveys and design of experiments and their applications.
- **PSO2:** Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.
- **PSO3:** Develop an understanding of importance of statistical methods and techniques.
- **PSO4:** Learn statistical software as exploratory, visualization, and computational tools.

AnnexureI

Programme Scheme: B.A./B.Sc. (Mathematics) /B.A-B.Ed./B.Sc.-B.Ed.

Semester – I

Applied Statistics

	Existing						Proposed			
Course	Course Name	L	Т	Р	С	Course	Course Name	L	Т	Ī
Code						Code				l
MATH	Basic Mathematics	4	0	0	4	MATH	Basic	4	0	Ī
102						102	Mathematics			l
STAT	Basic Statistics	4	0	0	4	STAT	Basic Statistics	4	0	ĺ
101						101				

Mathematics

Existing

Course	Course Name		L	Τ	Р	С
Code						
MATH	Introduction	to	4	0	0	4
106	Calculus					
STAT	Introduction	to	4	0	0	4
104	Probability	and				
	Statistics					

11000500								
Course	Course Name	L	Т	Р	С			
Code								
MATH	Basic	4	0	0	4			
102	Mathematics							
STAT	Basic Statistics	4	0	0	4			
101								

Proposed

Course	Course Name		L	Τ	Р	С
Code						
MATH	Introduction t	0	4	0	0	4
106	Calculus					
STAT	Introduction t	0	4	0	0	4
104	Probability an	d				
	Statistics					

Statistics

Existing								
Course	Course Name	L	Т	Р	С			
Code								
STAT	Probability and	6	0	0	6			
106	Descriptive Statistics							
STAT	Probability and	0	0	4	2			
106L	Descriptive Statistics							
	Lab							

Proposed							
Course	Course Name	L	Т	Р	С		
Code							
STAT	Probability and	6	0	4	8		
106	Descriptive Statistics						

Semester – II

Applied Statistics

Existing								
Course	Course Name	L	Т	Р	С			
STAT 107	Statistical Methods	6	0	0	6			
STAT 107L	Statistical Methods Lab	0	0	4	2			

Proposed								
Course	Course Name	L	Т	Р	С			
Code								
STAT	Statistical	6	0	4	8			
107	Methods							

Mathematics

	Existing				
Course Code	Course Name	L	Т	Р	С
MATH 101	Analytic Solid Geometry	4	0	0	4

Proposed							
Course	Course Name	L	Т	Р	С		
Code							
MATH	Analytic Solid	4	0	0	4		
101	Geometry						

AnnexureI

STAT	Differential Equations	4	0	0	4
104	_				

n		•
Sto.	1161	100
Sia	1151	lius

Existing								
Course	Course Name		L	Т	Р	С		
Code								
STAT	Measures	of	6	0	0	6		
105	Association	and						
	Probability							
	Distributions							
STAT	Measures	of	0	0	4	2		
105L	Association	and						
	Probability							
	Distributions La	b						

104

Proposed								
Course	Course Name		L	Т	Р	С		
Code								
STAT	Measures	of	6	0	4	8		
105	Association	and						
	Probability							
	Distributions							

Semester – III

Applied Statistics

Existing							
Course	Course Name	L	Т	Р	С		
Code							
STAT	Probability	6	0	0	6		
205	Distributions and						
	Numerical Analysis						
STAT	Probability	0	0	4	2		
205L	Distributions and						
	Numerical Analysis						
	Lab						

Proposed							
Course	Course Name	L	Т	Р	С		
Code							
STAT	Probability	6	0	4	8		
205	Distributions and						
	Numerical Analysis						

Mathematics

Existing							
Course	Course Name	L	Т	Р	С		
Code							
MATH	Abstract Algebra	4	0	0	4		
201							
MATH	Real Analysis	4	0	0	4		
206							

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
MATH	Abstract Algebra	4	0	0	4
201	-				
MATH	Real Analysis	4	0	0	4
206					

Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Numerical Analysis &	6	0	0	6				
203	Sampling Distribution								
STAT	Numerical Analysis &	0	0	4	2				
203L	Sampling Distribution								
	Lab								

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Sampling Distributions	6	0	4	8

Semester – IV

Applied Statistics

Existing								
Course	Course Name	L	Т	Р	С			
Code								
STAT	Inferential Statistics	6	0	0	6			
202	and Quality Control							
STAT	Inferential Statistics	0	0	4	2			

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
STAT	Inferential Statistics	6	0	4	8
202	and Quality Control				

202L and Quality Lab	Control				
-------------------------	---------	--	--	--	--

Mathematics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
MATH	Introduction to Linear	4	0	0	4				
202	Algebra								
MATH	Introduction to	4	0	0	4				
203	Mechanics								

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
MATH	Introduction to	4	0	0	4
202	Linear Algebra				
MATH	Complex	4	0	0	4
301	Analysis				

Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Statistical Inference	6	0	0	6				
207	and Quality Control								
STAT	Statistical Inference	0	0	4	2				
207L	and Quality Control								
	Lab								

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
STAT	Statistical Inference	6	0	4	8
207	and Quality Control				

Semester – V

Applied Statistics

	Existing									
Course	Course Name	L	Т	Р	С					
Code										
STAT	Sampling Techniques	6	0	0	6					
302	and Design of									
	Experiments									
STAT	Sampling Techniques	0	0	4	2					
302L	and Design of									
	Experiments Lab									

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
	Discipline Elective I	6	0	4	8

Mathematics

Existing								
Course	Course Name	L	Т	Р	С			
Code								
MATH	Introduction to	4	0	0	4			
302	Discrete Mathematics							
MATH	Linear Programing &	4	0	0	4			
304	Its Applications							

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
MATH	Introduction to	4	0	0	4
302	Discrete Mathematics				
	Discipline Elective I	4	0	0	4

Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Sampling Techniques	6	0	0	6				
302	and Design of								
	Experiments								
STAT	Sampling Techniques	0	0	4	2				
302L	and Design of								
	Experiments Lab								

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
	Discipline Elective I	6	0	4	8

Semester – VI

Applied Statistics

Course	Existing Course Name	L	Т	Р	С
STAT 301	Applied Statistics	6	0	0	6
STAT 301L	Applied Statistics Lab	0	0	4	2

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Discipline Elective II	6	0	4	8

Mathematics

Existing										
Course	Course Name		L	Т	Р	С				
Code										
MATH	Complex Analysis		4	0	0	4				
301										
MATH	Introduction	to	4	0	0	4				
303	Numerical Analysis									

Proposed										
Course	Course Name	L	Т	Р	С					
Code										
MATH	Introduction to	4	0	0	4					
303	Numerical Analysis									
	Discipline Elective II	4	0	0	4					

Statistics

Existing											
Course	Course Name	L	Т	Р	С						
Code											
STAT	Applied Statistics	6	0	0	6						
301											
STAT	Applied Statistics Lab	0	0	4	2						
301L											

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
	Discipline Elective II	6	0	4	8

List of Discipline Electives

Applied Statistics

Course Code	Course Name	L	Т	Р	С
STAT 302	Sampling Techniques and Design of Experiments	6	0	4	8
STAT 301	Applied Statistics	6	0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics & Population Dynamics (New Course)	6	0	4	8

Mathematics

Course Code	Course Name	L	Т	Р	С
MATH 203	Introduction to Mechanics	4	0	0	4
MATH 304	Linear Programing & Its Applications	4	0	0	4
	Vector Calculus (New Course)	4	0	0	4
	Number Theory (New Course)	4	0	0	4

Statistics

Course Code	Course Name	L	Т	Р	С
STAT 302	Sampling Techniques and Design of Experiments	6	0	4	8
STAT 301	Applied Statistics	6	0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics & Population Dynamics (New Course)	6	0	4	8

Student can opt for at most 2 additional Open (Generic) audit/credit Electives from any discipline opting at most 1 per semester from Semesters III onwards with prior permission of respective heads and time table permitting.

CourseDetails: (SeeannexureII)

Name of Programmes: B.A./B.A.-B.Ed./B.Sc.(Mathematics)/B.Sc.-B.Ed. Course Details:

FIRST SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 102 Basic Mathematics	 On successful completion of the course, students will be able to, Understand the basic rules of logic, including the role of axioms or assumptions. Appreciate the role of mathematical proof in formal deductive reasoning. Distinguish a coherent argument from a fallacious one, both in mathematical reasoning and in everyday life. Understand the differences between inductive and deductive reasoning. Proficiently construct logical arguments and rigorous proofs. Formulate and solve abstract mathematical problems. 	-	 Suggested E-learning material 1. Matrix <u>https://www.askiitians.com/iit-jee-algebra/matrices-and-determinants.</u> 2. Sequence and Series <u>ncert.nic.in/ncerts/l/keep209.pdf</u> 3. Set, Function, Relation <u>ncert.nic.in/ncerts/l/keep201.pdf</u> 4. LPP <u>https://www.analyticsvidhya.com//lint</u> roductory-guide-on-linear-programming-explain 	No change in the syllabus
2.	STAT 101 Basic Statistics	 On successful completion of the course, students will be able to, Distinguish between qualitative variables and quantitative variables. Differentiate between discrete and 	-	Suggested E-learning material 1. Probability and its concept- <u>https://ocw.mit.edu/courses/mathematics</u> <u>/18-05-introduction-to-probability-and-</u> <u>statistics-spring-2014/</u>	No change in the syllabus

Annexure	II
----------	----

continuous variables.	2. Elementary Statistics -
 Construct/draft questionnaire. 	<u>https://newonlinecourses.science.psu.edu</u>
 Identify the need of Classification and 	<u>/statprogram/stat200</u>
Tabulation.	3. Probability and Statistics-
 Construct frequency tables, interprets the 	https://nptel.ac.in/courses/111105041/
data, and identifies the importance of	4. Permutation and Combination-
diagrammatic presentation of data.	https://nptel.ac.in/courses/106106094/28
• Explain and evaluate various measures of	5. Matrices-
central tendency.	https://nptel.ac.in/courses/122104018/
• Evaluate and interpret partition values –	
Quartiles, Deciles and Percentiles	

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
5.N. 1. M 1. M In to	Course List MATH 106 Introduction to Calculus	Learning Outcomes On completion of the course, students will be able to, • Apply the concept and principles of differential and integral calculus to solve geometric and physical problems. • Evaluate various limit problems both algebraically and graphically. • Differentiate and integrate the functions which are applicable in real life situations. • Interpret the geometric meaning of differential and integral calculus. • Apply differentiation to find linear	Existing Syllabus	Suggested Syllabus Suggested E-learning material: 1. Single Variable Calculus https://ocw.mit.edu/courses/mathematics /18-01sc-single-variable-calculus-fall-2010/ 2. Differentiation of two variables https://nptel.ac.in/courses/111104085/21 3. Multiple Integral https://nptel.ac.in/courses/111104085/29	Remark No change in the syllabus
		 Differentiate and integrate the functions which are applicable in real life situations. Interpret the geometric meaning of differential and integral calculus. Apply differentiation to find linear approximation, extrema, monotonicity, and concavity of functions. 		https://nptel.ac.in/courses/111104085/	<u>′29</u>

Δ	n	n	exiire	П
			CAULE	

					-
2.	STAT 104	On completion of the course, students will be	-	Suggested E-learning material:	No
	Introductiont	able to,		 Probability and Mathematical Statistics; 	change
	oProbability	• Compute numerical quantities that		Platform:	in the
	& Statistics	measure the central tendency and		<u>http://www.math.louisville.edu/~pksaho</u>	syllabus
		dispersion of a set of data.		01/teaching/Math662TB-09S.pdf	2
		• Understand basic probability axioms and			
		rules and the moments of discrete and			
		continuous random variables as well as be			
		familiar with common named discrete and			
		continuous random variables.			
		• Apply general properties of the expectation			
		and variance operators.			
		• Understand the properties and fitting of the			
		Normal, Binomial and Poisson distribution.			
		• Fit the straight line, second degree parabola			
		and curves of type: ab ^x and ax ^b			
		• Understand the concept of Correlation			
		(Karl Pearson) and Linear Regression.			

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 106	On completion of the course, students will be	-	Suggested E-learning material:	No
	Probability	able to,		1. Video lectures on Probability and Statistics:	change
	and	 Understand and differentiate between 		https://nptel.ac.in/courses/111105090/	in the
	Descriptive	population and sample, variables and		2. Video lectures on Introduction to Data	syllabus
	Statistics	attributes in any survey.		Analytics:	
		• Represent the data using suitable tabular		https://nptel.ac.in/courses/110106072/	
		and/or graphical method.			
		• Identify and calculate appropriate			
		summary statistics for the data.			

• Understand the concept of probability, probability mass and density functions. • Define a random variable and obtain its properties. 2. STAT 106L Probability able to, and express raw data in terms of frequency Descriptive Statistics Lab method of classification for -		
2. STAT 106L Probability and On completion of the course, students will be able to, Descriptive - - 2. STAT 106L Probability and On completion of the course, students will be billy and - - 2. STAT 106L Probability and On completion of the course, students will be billy and - - 2. STAT 106L Probability and On completion of the course, students will be billy using exclusive and inclusive Statistics Lab -		
• Define a random variable and obtain its properties. • 2. STAT 106L Probability and • Express raw data in terms of frequency Descriptive Statistics Lab method of classification for •		
properties. properties. 2. STAT 106L Probability and On completion of the course, students will be able to, bescriptive Statistics Lab - 4. • Express raw data in terms of frequency Descriptive Statistics Lab • Express raw data in terms of frequency method -		
2. STAT 106L Probability and On completion of the course, students will be able to, - - and • Express raw data in terms of frequency Descriptive Statistics Lab • Express raw data in terms of frequency table by using exclusive and inclusive of classification -		
 and the construction of the construction. Employ and interpret the measures of Skewness and Kurtosis. 	N. ch in sy	No hange n the yllabus

SECOND SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 107	On successful completion of the course,		Suggested E-learning material	No
	Statistical	students will be able to,		 Introduction to Probability and Statistics- 	change
	Methods	• Explain the purpose of measures of		https://ocw.mit.edu/courses/mathematics	in the
		dispersion, and the information they		/18-05-introduction-to-probability-and-	syllabus
		convey.		statistics-spring-2014/	
		• Select an appropriate measure of dispersion		2. <u>Elementary Statistics-</u>	
		and correctly calculate and interpret the		<u>https://newonlinecourses.science.psu.edu</u>	
		statistic.		<u>/statprogram/stat200</u>	
		• Describe and explain the mathematical		3. Probability and Statistics-	
		characteristics of the standard deviation.		https://nptel.ac.in/courses/111105041/	
		• Apply the definition of independence to			
		attempt to determine whether an			
		assumption of independence is justifiable in			
		a given situation.			
		• Find probabilities of single events,			
		complementary events and the unions and			
		intersections of collections of events.			
		• Describe the main properties of probability			
		distributions and random variables.			
		• Identify the random variable(s) of interest			
		in a given scenario.			

				Ашкласт	L
2.	STAT 107L	On successful completion of the course,	-	-	No
	Statistical	students will be able to,			change
	Methods Lab	• Make the frequency distribution for			in the
		inclusive and exclusive type of class			syllabus
		intervals on excel.			
		 Construct the table for given raw data. 			
		• Draw the graphs for the given data like			
		histogram, frequency polygon, frequency			
		curve and ogives.			
		• Draw the diagrams like bar diagram and			
		pie charts etc.			
		• Calculate the measures of central tendency			
	and	and dispersion on excel for given set of			
		observations.			
		• Fit the curves like straight line, parabola,			
		exponential and power curve by using			
		excel.			

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 101	On completion of this course, student will be	-	Suggested E-learning material:	No
	Analytical	able to,		1. Plane and solid Geometry:	change
	Solid	• Understand the basic applications of		http://www.aproged.pt/biblioteca/planea	in the
	Geometry	analytic and solid geometry.		ndsolidgeometry.pdf	syllabus
		• Understand geometrical terminology for planes, tetrahedron, spheres, paraboloids,		 Solid Geometry introduction: <u>http://altairuniversity.com/wp-</u> 	
		hyperboloids and ellipsoids.		<u>content/uploads/2014/02/HM_SolidGeo</u>	
		 Visualize and represent geometric figures 		<u>mintro.pdf</u>	
		and classify different geometric solids.		3. Math handbook of formulas, Process	
				&Trics:	

2.	MATH 104	On completion of this course the student will	_	http://www.mathguy.us/Handbooks/Ge ometryHandbook.pdf Suggested E-learning material:	No
	Differential Equations	 be able to: Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution. Student will be able to solve first order differential equations utilizing the standard techniques for separable, exact, linear, homogeneous, or Bernoulli cases. Create and analyze mathematical models using first order differential equations to the linear and nonlinear ordinary differential equations of first and second order. Determine the complete solution of a differential equation with constant coefficients by variation of parameters Evaluate the Laplace and Inverse Laplace transform of functions of one variable 		 Separable, homogeneous, exact, Linear differential equations, Laplace transform<u>https://nptel.ac.in/courses/1221</u>04018/7 Open course in Differential Equations (All topics)<u>https://nptel.ac.in/courses/1111061</u>00/ Open course in Differential Equations (All topics)<u>https://swayam.gov.in/course/378</u>7-differential-equations Second order linear differential equation with constant coefficient thttps://ls-03sc-differential-equations-fall-2011/ Laplace transform<u>https://www.math.ust.hk/~mac has/differential-equations.pdf</u> 	change in the syllabus

1	Subject: Statistics				
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 105 Measures of Association and Probability Distributions	 On completion of the course, students will be able to, Fit the linear regression equation for real data sets arising in various fields of the populations. Understand the concept of multiple and partial correlation. Apply selected probability distributions to solve problems Understand how to check the independence of attributes. Fit the Binomial, Poisson and Normal distribution for real life data. 	-	 Suggested E-learning material: 1. Probability and Random variables. MIT Open Course. <u>https://ocw.mit.edu/courses/mathematics</u> /18-440-probability-and-random-variables- spring-2014/lecture-notes/ 2. Probability and Statistics, NPTEL. <u>https://nptel.ac.in/courses/111105041/27</u> 	No change in the syllabus
2.	STAT 105L Measures of Association and Probability Distributions Lab	 On completion of the course, students will be able to, Apply and use fitting of various curves such as Straight line, parabola, exponential curve etc. Effectively distinguish between and compute, correlation and rank correlation, Partial and Multiple correlations. Understand and perform the fitting of Binomial, Poisson and Normal distribution 	-	-	No change in the syllabus

THIRD SEMESTER

Subject: Applied Statistics					
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 205 Probability Distributions and Numerical Analysis	 On successful completion of the course, students will be able to: Understand the basic principles of Probability, sample space, conditional probability. Differentiate between basic discrete & continuous distributions & how to work with them. Understand cumulative distribution function, expectation and distributions for functions of random variables. Work with bivariate distributions & basic two variable statistics. Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and apply them to obtain approximate solutions to mathematical problems. 		 Suggested E-learning material Introduction to Numerical Analysis » Lecture notes. https://ocw.mit.edu/courses/mathematic s/18-330-introduction-to-numerical-analysis-spring-2004/lecture-notes/ Probability and Random Variables https://ocw.mit.edu/courses/mathematic s/18-440-probability-and-random-variables-spring-2014/ Numerical Analysis-https://nptel.ac.in/courses/111107062/ Probability - https://nptel.ac.in/courses/111107061/8 	No change in the syllabus
2.	STAT 205L Probability Distributions and Numerical Analysis Lab	 On successful completion of the course, students will be able to: Fit the probability distributions by using Excel. Find out the missing values using interpolation Get the approximate values of 	-	-	No change in the syllabus

differentiation and integration by using		
excel.		
 Obtain the solution of linear and nonlinear 		
equations and the solution of differential		
equations and apply them to obtain		
approximate solutions to mathematical		
problems.		

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 201	On completing the course, students are able	Unit 1 [Set, Relations, Functions and] Binary	Unit 1 Divisibility in Z, division algorithm,	1. Studen
	Abstract	to,	operations, [Binary operations in contrast to	greatest common divisor, Euclidean	t learn
	Algebra	• Demonstrate the mathematical maturity of	unary and ternary operations,] Group:	Algorithm, modular arithmetic, Binary	the
		understanding the proof.	Definition, examples and simple properties of	Operations, Group: Definition, examples	concep
		- Understand the definition of a snown and	group and subgroup.	and properties of group.	ts of
		Onderstand the definition of a group and he able to toot a set with binary operation	Unit 2 Permutation group, Cyclic group, Cosets,	Linit 2 Subgroups Cyclic groups Permutation	sets,
		be able to test a set with binary operation	Lagrange's theorem. Homomorphism and	group symmetric and alternating groups of	relatio
		to determine if it is a group.	Isomorphism of group, Cayley's theorem	dogrado no external directo meducto of	functio
		 Find the order of elements of groups. 	Unit 3 Normal subgroup and [Quotient] group,	degree n, external direct products of	ns in
		 Identify subgroups of a siven group guels. 	Fundamental theorem of homomorphism of	groups.	the
		• Identify subgroups of a given group, cycle	group (First, Second and third theorem of	Unit 3 Cosets, Lagrange's theorem,	real
		groups, normai groups.	isomorphism).	Homomorphism and Isomorphism of	analysi
		• Understand permutation groups and be	Unit 4 Rings: Definition, and example, [Residue classes]	group, Cayley's theorem,Normal	s
		able to decompose permutations into 2-	ring, Special classes of ring,] Integral Domain,	subgroups and Factor groups.	course.
		cycles.	Division ring (ring, field[), Simple properties of	Unit 4Fundamental theorem of homomorphism of	2. To
		Grasp the significance of the concepts of	ring, Subring, Subfield], Ring homomorphism and	group (First, Second and third theorem of	better
		bomomorphism isomorphism and	ring isomorphism.	isomorphism).	unders
		automorphism, and he able to check a	Unit 5 Ideal, Principal ideal, Principal ideal [#i#g,	Rings: Definition and examples, Integral	tand
		given function is one of these	Quotient] ring, Prime ideal, Maximal ideal,	Domain, Division ring, fields	the
		given function is one of these.	Euclidean ring and its properties, Polynomial	Unit 5 Ideal, Principal ideal, Principal ideal	examp
				domain, Factor ring, Prime ideal, Maximal	165 01

		Amexuen	*
Classify groups up to isomorphism.	ring.	ideal, Ring homomorphism and ring	groups
 Identify a set with to binary operation forms a ring or not. 	Suggested Text Books:	isomorphism.	as Z_{IV}
 Understand the special types of rings and be able to construct new examples from the old ones 	1. V.K. Khanna and S.K. Bhambri, A Course in Abstract Algebra: Vikas Pub. House, New Delhi, 2 nd rev. ed. 1998.	Text Books: 1. Gallian, J. A. (2013). Contemporary abstract algebra, (8th Ed.). Boston, MA: Brooks/Cole	G (2,n) concep
 Check a subset of a ring is an ideal or not and be able to identify proper and maximal ideal. 	2. A.R. Vashistha, Modern Algebra: Krishna Prakashan Mandir, Meerut, 2 nd rev. ed., 1971.	Cengage Learning. Reference Books:	ts of divisib ility and
maximal ideal.	Suggested Reference Book : 1. I.N. Herstein, Topics in Algebra: Wiley Eastern, New Delhi, 2 nd ed. 1975.	 Kelerence Books: Dummit, D. S. & Foote, R. M. (2004) Abstract algebra(3rd Ed.). New Jersey: Wiley. Hungerford, T. W. (2014) Abstract algebra: An introduction (3rd Ed.). Australia: Brooks/Cole Cengage Learning. Hillman A. P. & Alexandersor, G. L. (2015) Abstract algebra: A first undergraduate course(5th Ed.). CBS Publishers & Distributors Pvt. Ltd. Fraleigh, J. B. (2003) A first course in abstract algebra (7th Ed.). Harlow: Pearson. Sen, M. K., Ghosh, S., Mukhopadhyay, P. & Maity, S. K. (2019) Topics in abstract algebra 	and modul ar arithm etic is import ant. 3. Extern al direct produ ct is neede d to unders tand the classifi
		 Herstein, I. N. (1991) Topics in algebra (2nd Ed.). New Delhi: Wiley Eastern. Khanna, V.K. & Bhambri, S. K. (2008) A course in abstract algebra, (3rd Ed.). New Delhi: Vikas Pub. House. 	cation of groups upto isomor phism.

				Annexure I	I
				Suggested E-learning material:	advan
				1. Lecture Notes:	ced
				https://ocw.mit.edu/courses/mathematics	topics
				/18-703-modern-algebra-spring-	such
				2013/related-resources/	as
				2 Video Lectures	Euclid
				https://www.extension.harvard.edu/open	ean
				-learning-initiative/abstract-algebra	ring
					and
					polyno
					rings
					are
					remov
					ed
					from
					Unit
_					V.
2.	MATH 206	On completion of the course, students will be	-	Suggested E-learning material	No
	Real Analysis	able to,		1. Real Analysis;NPTEL:	change
		• Think about basic proof techniques and		https://nptel.ac.in/courses/111106053/	in the
		fundamental definitions related to the real			syllabus
		number system.			
		• Understand the concept of real-valued			
		functions. limit. continuity. and			
		differentiability.			
		• Find expansions of real functions in series			
		forms.			
		• Demonstrate some of the fundamental			
		theorems of analysis.			
		• Develop the capacity to solve real integral			
		while understanding of integrable			

	functions.		

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT (to be generated) Sampling Distributions	 On completion of the course, students will be able to, Understand the difference between probability distribution and sampling distribution. Understand the sampling distribution of the mean of a sample from a Normal Population. Understand the properties of the sampling distribution of the sample mean in general situations, using the Central Limit Theorem. Understand the concepts of the t, F and x2 distributions. Apply t, F and x2 tests on real life data. 	-	 Unit 1Limit laws: convergence in probability, almost sure convergence, convergence in mean square and convergence in distribution and their inter relations, Chebyshev's inequality, W.L.L.N., S.L.L.N. and their applications, De-Moivre Laplace theorem, Central Limit Theorem (C.L.T.) for i.i.d. variates, applications of C.L.T. and Liapunov Theorem (without proof). Unit 2Basic concept of Sampling and sampling distribution, sampling distribution, sampling distribution, sampling distribution, standard errors of sample mean, sample variance and sample proportion. Null and alternative hypotheses, level of significance, Type I and Type II errors, their probabilities and critical region. Concept of p-values. Unit 3Large sample tests of significance: Sampling for attributes and variables, 	This paper is a replace ment of the paper STAT 203 Numeric al Analysis and Samplin g Distribu tion.
				Tests of significance and confidence intervals for proportion, difference of	

	two proportions, single mean,
	difference of two means, standard
	deviation and difference of standard
	deviations.
	Unit 4 Chi-square distribution with its
	moment generating function, moments
	and cumulant, Additive property of chi-
	square variates, Limiting case of chi-
	square distribution. Tests of
	significance and confidence intervals
	based on Chi-Square distribution.
	Yates Correction for 2x2 contingency
	table.
	Unit 5 Students 't' and Fishers 't' statistics
	and their distributions Application of t'
	test for one sample and two sample
	problems and for testing the
	significance of a sample, Correlation
	coefficient Paired 't' test, F-statistic and
	its distribution. Application of F-test for
	testing the equality of variance,
	Fisher's transformation and its uses.
	Relationship between 't' and 'F'
	statistics and F and Chi-square
	statistics
	Note: Use of scientific calculator is
	permissible.
	Text Books:
	1. Hogg, R. V., & Tanis, E. (2009).
	Probability and Statistical Inference.
1	Prentice Hall.
	2. Goon, A. M., Gupta, B. D. & M. K.

			Annexure II	[
			Gupta.(1968). Fundamental of Statistics. (Vol. I).The World Press Pvt. Ltd. Kolkata.	
			 Reference Books: Mood, A. M., Graybill, F. A., &Boes, D. C. (1974). Introduction to Theory of Statistics. McGraw- Hill International. Gupta, S. C., & Kapoor, V. K. (2013). Fundamental of Mathematical Statistics (11⁴ed.). New Delhi: Sultan Chand Publication. Gupta, S.P. (2014). Statistical Methods (44th. ed.). Sultan Chand & Sons. Freund, J. E. (2004). Modern Elementary Statistics (12th. ed.). New Jersey: Pearson Prentice Hall. 	
			Suggested E-learning material 1. Sampling distribution and central limit; Platform: Colorado State University https://www.stat.colostate.edu//~vollmer	
2.	STAT (to be generated) Sampling Distributions Lab	 On completion of the course, students will be able to, Effectively compute and understand testing of significance and confidence intervals in various contexts such as, for single proportion, difference of two proportions for large sample, for single mean, difference of two means for large sample. 	 /stat307pdfs/LN5 2017.pdf List of Practicals Testing of significance and confidence intervals for single proportion and difference of two proportions for large sample. Testing of significance and confidence intervals for single mean and difference of two means for large sample. Testing of significance and confidence for mean and difference of means 	This paper is a replace ment of the paper STAT 203LNu

	Annexure II	
Proficiently test for goodness of fit,	(paired and unpaired cases) and for	merical
independence of attributes.	correlation coefficient	Analysis
 Understand how and when to use testing 	4. Testing of significance and confidence	and
for equality of two population variances	intervals for difference of two standard	Samplin
	deviations.	g
	5. Testing if the population variance has a	Distribu
	specific value and its confidence	tion Lab.
	intervals.	
	6. Testing of goodness of fit.	
	7. Testing of independence of attributes.	
	8. Testing based on 2 X 2 contingency	
	table without and with Yates'	
	corrections.	
	9. Testing of significance and confidence	
	intervals of an observed sample	
	correlation coefficient.	
	10.Testing and confidence intervals of	
	equality of two population variances	
	Note: (i) The above list is only for the	
	guidance of the students.	
	(ii) Whenever it is feasible, students	
	should be asked to collect the	
	required data themselves to use it	
	in their practical.	
	(iii) Where it is feasible practical	
	practice should be done through	
	spreadsheet, package or	
	programming	
	programming,	

FOURTH SEMESTER

5	Subject: Applied Statistics					
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark	
1.	STAT 202 Inferential Statistics and Quality Control	 On successful completion of the course, students will be able to, Define estimator, its unbiasedness and efficiency. Obtain maximum likelihood estimates of parameters of some simple distributions. Perform testing of significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. Understand the concept of non-parametric testing. Apply the non-parametric methods to test for single population and two populations. Understand the concept of statistical quality control. Construct control charts for variables and attributes. 	-	Suggested E-learning material: 1. Lecture notes and video on "Parameters, Statistics, and Sampling Error": http://www.statisticslectures.com/topics/ parametersstatistics/ 2. Video lectures on Introduction to Data Analytics: https://nptel.ac.in/courses/110106064/ 3. Lecture notes and video on "Quality Control in Textile Industry": https://nptel.ac.in/courses/116102019/	No change in the syllabus	
2.	STAT 202L Inferential Statistics and Quality Control Lab	 On successful completion of the course, students will be able to, Test the significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. Understand when and how to use various non-parametric tests such as Sign 	-	-	No change	

test, Run test, Median test etc. for single		
population and two populations.		
• Plot various control charts for variables and		
attributes such as X, R, and s charts and		
determine whether the given procedure is		
in statistical control or out of statistical		
control.		

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 202	After completing this course, students will be	-	Suggested E-learning Material:	No
	Introduction	able to		1. <u>Video</u>	change
	to Linear	• Understand vector spaces over a field and		Lectures:https://www.edx.org/learn/linea	in the
	Algebra	subspaces and apply their properties.		r-algebra	syllabus
		• Understand linear independence and		2. <u>Video</u>	
		dependence.		Lectures:https://ocw.mit.edu/courses/ma	
		• Find basis and dimension of a vector		thematics/18-06-linear-algebra-spring-	
		space, and understand change of basis.		2010/	
		Compute linear transformations, kernel		3. <u>Video</u>	
		and range, and inverse linear		Lectures:https://onlinecourses.nptel.ac.in/	
		transformations, and find matrices of		noc17 ma04/preview	
		general linear transformations.		-	
		• Find eigenvalues and eigenvectors of a			
		matrix and of linear transformation.			
		• Understand inner product on a vector			
		space.			

_					
		• Understand the concept of orthogonality in inner product spaces.			
		• Create orthogonal and orthonormal bases:			
		Gram-Schmidt process.			
2.	MATH 301	On completion of the course, students will be	-	Suggested E-learning material	No
	Complex	able to,		1. Complex Analysis; NPTEL	change
	Analysis	• Demonstrate understanding of the basic		https://nptel.ac.in/courses/111103070/	in the
		concepts and fundamental definitions			syllabus
		underlying complex analysis.			Shifted
		• Investigate complex functions, concept of			from VI
		limit, continuity and differentiability of			Semeste
		complex functions.			r to IV
		• Demonstrate capacity for mathematical			Semeste
		reasoning through analyzing analytic			r.
		functions.			
		• Prove and explain concepts of series and			
		integration complex functions.			
		Understand problem-solving using			
		complex analysis techniques.			
		• Enjoy the roll of complex functions today's			
		mathematics and applied contexts.			

Subject: Statistics

S.N	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 207	On completion of the course, students will be	-	Suggested E-learning material	No
	Statistical	able to,		1 Statistical Inference: Platform:	change
	Inference and	• Apply various basic parametric, non-		1. Sudsitur interence, i indorni.	in the

				Annexure I	[
	Quality Control	 parametric and sequential estimation techniques and testing procedures to deal with real life problems. Understand the concept of confidence interval in case of normal distribution, Nevman-Pearson fundamental lemma, 		<u>MIT</u> OPENCOURSEWARE <u>https://ocw.mit.edu/index.htm</u> 2. Statistical Inference; Platform: Coursera <u>https://www.coursera.org</u> 3. Statistical Inference: Platform: e-PG Pathshalahttps://epgp.inflibnet.ac.in	syllabus
		UMP test.Understand SPRT, OC and ASN function.Understand the non-parametric techniques such as sign, median and run test.			
2.	STAT 207L Statistical Inference and Quality Control Lab	 On completion of the course, students will be able to, Understand when and how to use various control charts such as X, R, and s charts. Effectively understand and determine the AOQ and AOQL plots. Understand when and how to use various non - parametric tests such as Sign test, Run test, Median test etc. 	-	-	No change

FIFTH SEMESTER

Subject: Mathematics (Core Course)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 302 Introduction to Discrete Mathematics	 On completion of the course, students will be able to, Write an argument using logical notation and determine if the argument is or is not valid. Demonstrate the ability to write and evaluate a proof or outline the basic structure of and give examples of each proof technique described. Understand the basic principles of sets and operations in sets. Prove basic set equalities. Apply counting principles to determine probabilities. Demonstrate an understanding of relations and functions and be able to determine their properties. Determine when a function is 1-1 and "onto". Demonstrate different traversal methods for trees and graphs. Model problems in Computer Science using graphs and trees. 	 Unit 1 Sets and Multisets, Relations and Functions, Equivalence relations, Partial order relations, Chains and Antichains. Permutations, Combinations, selection with & without replacement, Permutation and Combinations of multisets. Discrete probability. The rules of sum and product. Unit 2 Basic concepts of graph theory, Multigraphs, weighted graphs, Paths & Circuits. Matrix representation of graphs Eulerian path and circuits, Hamiltonian path and circuits. Shortest path in weighted graph, Planar graphs. Unit 3 [K connected and K edge connected graphs, Vizing's theorem. Trees and cut sets- Trees, Rooted tree, Path lengths in rooted trees, Spanning tree and cut set, Minimum spanning tree. Unit 4 Pigeon hole principle, Inclusion-exclusion principle. Discrete numeric functions. Asymptotic behavior of numeric functions. Generating functions and recurrence relations. Linear recurrence relation with constant coefficients and their solutions. 	 Unit 1 Sets and Multisets, Relations and Functions, Equivalence relations, Partial order relations, Chains and Antichains. Permutations, Combinations, selection with & without replacement, Permutation and Combinations of multisets. Discrete probability. The rules of sum and product. Unit 2 Basic concepts of graph theory, Multigraphs, Paths & Circuits, Eulerian path and circuits, Hamiltonian path and circuits, Weighted graphs, Shortest path in weighted graph, Planar graphs, Vertex connectivity and edge connectivity of graphs. Unit 3 Vertex coloring and edge coloring of graphs, Vizing's theorem, Trees and cut sets. Trees, Rooted tree, Path lengths in rooted trees, Spanning tree, Matrix representation of graphs. Unit 4 Pigeon hole principle, Inclusion-exclusion principle. Discrete numeric 	Conventi onal terminol ogies necessary for the concerne d unit are included.

 Unit S Lattices and Boolean algebra. Uniqueness of finite Solean expressions. Propositional Calculus. Text Books: C.L. Liu, Elements of Discrete mathematics: McGraw Hill, International editions, 2008. Narsingh Deo, Graph Theory: Prentice Hall of India, 2004. Reference Books: N. N.L. Biggs, Discrete Mathematics: Oxford Science Publication, 1985. Kenneth H. Rosen, Discrete Mathematics with Applications: Academic Press, 2005. T. Kosen, K.H. (1999). Discrete mathematics and it's applications. McGraw Hill. Lina, C.L. & Mohapatra, D.P. (2008). Elements of India. Reference Books: N. N.L. Biggs, Discrete Mathematics with Applications: Academic Press, 2005. T. Kosen, K.H. (1999). Discrete mathematics and it's applications. McGraw Hill. Lina, C.L. & Mohapatra, D.P. (2008). Elements of India. Reference Books: Sevence Publication, 1985. Sevence Publication, 1985. Sevence Publication, 1985. Sevence Publications: Academic Press, 2005. 	 		
McGraw Hill, International editions, 2008.Constant functions and coefficients and their solutions.I. Narsingh Deo, Graph Theory: Prentice Hall of India, 2004.Coefficients and their solutions.Reference Books:I. N.L. Biggs, Discrete Mathematics: Oxford Science Publication, 1985.Coefficients and their solutions.I. N.L. Biggs, Discrete Mathematics with Applications: Academic Press, 2005.Text Books:I. N.L. Biggs, Discrete Mathematics with Applications: Academic Press, 2005.Text Books:I. N.L. Biggs, Discrete Mathematics with Applications: Academic Press, 2005.Text Books:I. Reference Books:I. Rosen, K.H. (1999). Discrete mathematics and it's applications. Academic Press, 2005.I. Biggs, N.L. (1985). Discrete mathematics with Applications: Academic Press, 2005.I. Biggs, N.L. (1985). Discrete mathematics. Oxford Science Publication.S. Construct Science Publication.Storete mathematics.Storete mathematics.I. Notes on Graph Theory.New PublicI. Notes on Graph Theory.Storete mathematics.I. Notes		 Unit 5 Lattices and Boolean algebra. Uniqueness of finite Boolean algebra. Boolean functions and Boolean expressions. Propositional Calculus. Text Books : 1. C.L. Liu, Elements of Discrete mathematics: 	functions-manipulation of numeric functions. Asymptotic behavior of numeric functions. Generating functions and recurrence relations. Linear recurrence relation with constant
		 C.L. LIU, Elements of Discrete mathematics: McGraw Hill, International editions, 2008. Narsingh Deo, Graph Theory: Prentice Hall of India, 2004. Reference Books: N.L. Biggs, Discrete Mathematics: Oxford Science Publication, 1985. Kenneth H. Rosen, Discrete Mathematics and its Applications: McGraw Hill, 1999. T. Koshy, Discrete Mathematics with Applications: Academic Press, 2005. 	 Linear recurrence relation with constant coefficients and their solutions. Unit 5 Mathematical logic: Basic Connectives, normal forms (CNF and DNF), proof of Validity, Predicate logic, Lattices and Boolean algebra. Uniqueness of finite Boolean algebra. Boolean functions and Boolean algebra. Boolean functions and Boolean expressions. Propositional Calculus. Text Books: Rosen, K.H. (1999). Discrete mathematics and it's applications. McGraw Hill. Liu, C.L. & Mohapatra, D.P. (2008). Elements of discrete mathematics, Tata McGraw Hill. Deo, N. (2004). Graph theory., New Delhi: Prentice Hall of India. Reference Books: Biggs, N.L. (1985). Discrete mathematics with applications. Academic Press. Suggested E-learning material: Notes on Graph Theory: https://www.geeksforgeeks.org/engineer ino-mathematics-tutorials/
SIXTH SEMESTER

Subject: Mathematics (Core Course)

S.N.	Course List	Learning Outcomes		Existing Syllabus		Suggested Syllabus	Remark
1.	MATH 303 Introduction to Numerical Analysis	 On completion of the course, students will be able to, Apply numerical methods to obtain approximate solutions to mathematical problems. Solve the nonlinear equations, system of linear equations and interpolation problems using numerical methods. Examine the appropriate numerical differentiation and integration methods to solve problems. Apply the numerical methods to solve differential equations. 	Unit 1 Unit 2 Unit 3 Unit 4	Error- its sources, propagation and analysis, Numerical solution of system of linear equations, Direct methods-The matrix inversion method, Gauss elimination method, Gauss-Jordan method, Iterative methods: Gauss-Jacobi Method, Gauss Siedel method. Differences, Relation between difference and derivatives, Differencesof polynomials, Newton's formula for forward and backward interpolation, Divided differences and simple differences, Newton's general interpolation formula, Lagrange's interpolation formula, Error in interpolation. Numerical differentiation and numerical integration- Simpson's, Weddle's and Trapezoidal rules, Newton's Cotes Quadrature formula, Gauss Quadrature formula. Root finding for nonlinear equations (Transcendental and Algebraic equations), Iterative method, Bisection method, Regula-Falsi method, Newton Raphson's method, order of convergence.	Unit 1	Error analysis: Exact and approximate numbers, rounding of numbers, Significant digits, various types of errors encountered in computations, error in function approximation, the general error formula, Taylor's series, error in series approximation.Numerical solution of system of linear equations: Direct methods: The matrix inversion method, Gauss elimination method with pivoting strategies, Gauss-Jordan method, Factorization methods (LU- Doolittle, Crout, LDL ^T , Cholesky), computing inverse of a matrix. Iterative methods: Gauss-Jacobi Method, Gauss-Siedel method. Finite differences:forward, backward, central and divided difference operators, their properties and difference table, propagation of error in difference table, missing data calculation, Relation between difference and derivatives, differences of polynomials. Polynomial	Subtopics of the existing topic, necessary for the efficient teaching, are elaborate d in proposed syllabus. Factoriza tion methods have been added as these are importan t to solve some matrix based problems

		Annexure n
 Unit 5 Numerical solution of first and secon order differential equations, Euler Method, Picard's Method, Taylor's serie approximation, Runge-Kutta'sMethod. Suggested Text Books: S.S. Sastri, An Introductory Methods i Numerical Analysis: P.H.I, New Delhi, 4' edition 2005. J.L. Bansal, J.P.N. Ojha, Numerical Analysi JPH, Jaipur, 1991. Reference Books: Kendall E. Atkinson, An Introduction - Numerical Analysis: John Wiley, New Yor 2nd edition 2001. P.K. De, Computer Based Numerical Method and Statistical Techniques/CBS Publicatio New Delhi, 1stedition 2006. 	1 5 4 7 7 7 7 7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	interpolation: Newton-Gregory forward and backward interpolation, Gauss's forward and backward, Stirling's, Bessel's interpolation, Lagrange's and Newton's divided differences interpolation, inverse interpolation, computation errors in these formulae and analysis of errors. Numerical differentiation, Numerical integration: Newton's Cotes Quadrature formula, Simpson's, Weddle's and Trapezoidal rules, Gauss Quadrature formula. Root finding for nonlinear equations (Transcendental and Algebraic equations), Iterative method, Bisection method, Regula-Falsi method, Newton Raphson's method, order of convergence. Numerical solution of first and second order differential equations: Euler's Method Picard's Method
New Delhi, 1 ⁹⁴ edition 2006.	Unit 5 Text B 1. Sasi nun Lea	method, Regula-Falsi method, Newton Raphson's method, order of convergence. Numerical solution of first and second order differential equations: Euler's Method, Picard's Method, Taylor's series approximation, Runge- Kutta's Method. ooks: try, S.S. (2012). Introductory methods of nerical analysis. New Delhi, ND: PHI rning Private Limited.

	2. Chauhan, D. S., Vyas, P., &Soni, V. (2005).
	Studies in numerical analysis. Jaipur, Jaipur
	Publishing House.
	Reference Books:
	1. Jain, M. K., Ivenear, S. R. K., & Jain, R. K.
	(2007). Numerical methods for scientific
	and engineering computations. New Delhi,
	ND: New Age International.
	2. Rajaraman, V. (1984). Computer oriented
	numerical methods. New Delhi, ND:
	Prentice Hall of India.
	3. Phillips, G.M., & Taylor, P.J. (1996). Theory
	and applications of numerical analysis.
	Academic Press, Elsevier,
	4. Burden, K.L., Faires, D.J., Burden, A.M.
	(2016). Numerical Analysis. Cengage
	Events and the second s
	Juggesteu Ereanning material Analysis: Platform:
	Nutrikiting (antel se i / ante
	2 Numerical Differentiation and Numerical
	2. Numerical Dimeritation and Numerical
	integration; Platform: Mill open
	courseware
	https://ocw.mit.edu/courses/mechanical-
	engineering/2-993j-introduction-to-numerical-
	analysis-for-engineering-13-002j-spring-
	2005/lecture-notes/lect 9.pdf
	3. Computational Error; Platform:
	Nptel <u>https://nptel.ac.in/courses/11110706</u>
	2/

Discipline Electives

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		0	0 5		
1.	MATH 203 Introduction to Mechanics	 On completion of the course, students will be able to, Explain the geometry of the motion of particle in plane curve, i.e. position, velocity, and acceleration, and how those quantities are related through calculus. Learn Newton's laws of motion and examines their application to a wide variety of problems. Learn the basic concept of composition and resolution of forces and friction. Understand and visualize the real physical problem in terms of Mathematics. Learn one-dimensional (SHM), multidimensional (Projectile motion), and constrained motion, motion of particle with or without connecting with string. 		 Suggested E-learning material: 1. Engineering Mechanics: Statics & Dynamics; Platform: cosmolearning, https://cosmolearning.org/courses/engin eering-mechanics-statics-dynamics/ 2. Engineering Mechanics: Statics & Dynamics; Platform: nptel https://nptel.ac.in/courses/112106180/ 3. Engineering Dynamics; Platform: MIT Open courseware, https://ocw.mit.edu/courses/mechanical- engineering/2-003sc-engineering- dynamics-fall-2011/ 	No change in the syllabus
2.	MATH 304	On completion of the course, students will be	-	Suggested E-learning material	No
	Linear	able to,		1.Linear Programming, a CPLEX	change
	Programming	• Formulate the LPP.		tutorial <u>https://ibmdecisionoptimization.gith</u>	in the
	& Its Applications	• Conceptualize the feasible region.		ub.io/tutorials/html/Linear_Programming.	sy‼labus

			-
	 Solve the LPP with two variables using graphical method. Solve the LPP using simplex method. Formulate the dual problem from primal. Solve Transportation and Assignment problems Solve the problems of competitive situations between two competitors. 	html 2.Linear Programming Tutorial Sophia Learning https://www.sophia.org/tutorials/linear- programming-5 3.Lectures - nptel: https://nptel.ac.in/courses/111102012/	
3. MATH (code to be generated) Vector Calculus	 On completion of the course, students will be able to, Manipulate vectors to perform geometrical calculations in three dimensions. Use Green's theorem and the Divergence theorem to compute integrals. Explain how Green's Theorem is a generalization of the Fundamental Theorem of Calculus. Communicate Calculus and other mathematical ideas effectively in speech and in writing. Recognize when it is appropriate to use a scalar and when to use a vector in problem solving. 	Unit I I Definition and examples of vector and scalar; Gasic operations: addition, subtraction, multiplication and scalar product of vectors, geometric representation of vectors, magnitude and direction, dot product and cross product. Unit II Scalar and vector product of three vectors, product of four vectors, vector-valued function; Scalar-valued function, limit, Continuity, differentiability and Integration of vector-valued functions of one variable. Unit III Partial derivatives: chain rule, exact differentials, Del Applied to scalar valued Function (Divergence, Physical interpretation of divergence, Physical interpretation of curl, Irrotational and Solenoidal vector-valued function. Unit IV Directional derivative, tangent planes and	New Course

		Annexure II
		normal lines, Tangential line integral, Circulation, Work, Independence of path, Conservative fields, Normal Surface integral,
		Flux across a surface. Unit V Vector fields, characterization of Irrotational
		and Solenoidal vector fields, Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem, Simple applications.
		TEXT / REFERENCE BOOKS 1. Thomas, G.B., Weir, M.D., &Hass, J. (2011). <i>Thomas' Calculus</i> (11 th edition). Pearson Education.
		 Grewal ,B.S., & Grewal, J.S. (2005).Higher Engineering Mathematics(37thedition).New Delhi: Khanna Publishers. Davis H F & Snider A D
		(1998).Introduction to Vector Analysis(7thedition). William C Brown Publication.
		4. Matthews, P. C. (1998).Vector Calculus.Springer-Verlag. Suggested E-learning material https://www.brightstorm.com/tag/scalar/
4. MATH (c to be	ode On completion of the course, students will be able to	Integers, well-ordering principle, induction, Cours
generated Number Theory	• Understand the concept of divisibility and Number Cheory	Fibonacci numbers, divisibility, Greatest Common Divisor, least common multiple, Euclidean algorithm, prime numbers,
	Appreciate the importance of prime	distribution of primes, fundamental theorem of arithmetic.

	7 Interval e II
numbers and their distribution.	Unit II
 Solve linear congruences and system of 	Congruences, linear congruences, Chinese
linear congruences.	remainder theorem, congurences with prime
• Know Fuler's theorem Fermat's theorem	power modulai. linear Diophantine equations.
	Unit III
and Wilson's theorem.	Arithmetic functions, Euler's Theorem,
 Demonstrate the applications of number 	Fermat's little theorem, Wilson's theorem,
theory in cryptography.	primality testing and pseudoprimes and
	Carmichael numbers.
	Unit IV
	Group of units, Euler's function, primitive
	root, the group $U_{p^{e}}$ and $U_{2^{e}}$. Mobius inversion
	formula, Quadratic residues, Legendre
	symbol, Gauss's lemma, quadratic reciprocity,
	Unit V
	Perfect numbers, Fermat and Mersenne prime.
	Applications of number theory in
	cryptography.
	Text Books:
	1. Burton, D. M. (2012). Elementary number
	theory. McGraw-Hill Education (India).
	Keference Books:
	1. Niven, 1., Zuckerman, H. S., &
	Montgomery, H. L. (2013). An introduction
	to the theory of numbers. New York: whey.
	2. Kosen, K. H. (2005). Elementary number
	theory and its applications. Boston:
	Pearson/Addison wesley.
	Suggested E-learning Material:
	1. Lecture Notes: NPTEL:
	nttps://nptef.ac.in/courses/111103020/

	2. Lecture Notes: MIT OPEN COURSE WARE:	
	https://ocw.mit.edu/courses/mathematic	
	s/18-781-theory-of-numbers-spring-	
	<u>2012/index.htm</u>	

Subject: Statistics/Applied Statistics

S.N. Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1. STAT 302 Sampling Techniques and Design of Experiments	 On completion of the course, students will be able to, Understand the methods for designing and selecting a sample from a population. Estimate finite population parameters e.g. totals and means, for some standard sampling schemes. Analyze the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. Describe how the analysis of the data from the experiment should be carried out. Develop understanding of the principles and methods used to design survey sampling schemes focusing on methodology for survey-based estimation for population totals and related quantities for some standard sample designs and statistical sampling techniques that are 	-	Suggested E-learning material 1. Sampling Theory, NPTEL. <u>https://nptel.ac.in/courses/111104073/</u> 2. Biostatistics and Design of Experiments, NPTEL, <u>https://nptel.ac.in/courses/102106051/</u> 3. Design of Experiments and sample Survey. ePATHSHALA. <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u>	No change in the syllabus

				/ IntreAdd e In	L
		 used to make inferences about a population. Understand why the sampling design is essential for data collection and to determine how we choose to graph the data, estimate certain parameters, and quantify the uncertainty in these estimates with a margin of error. 			
2.	STAT 302L Sampling Techniques and Design of Experiments Lab	 On successful completion of the course, students will be able to, Comprehend the basic principles underlying survey design and estimation. Describe how to draw a random sample by using with and with replacement sampling technique in excel. Calculate the sampling mean and sampling variance in case of SRSWR and SRSWOR. Draw a random sample from stratified and systematic sampling and also to compare the efficiencies of these sampling techniques with respect to each other. Analyze the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. Compare several means by using the technique of one way and twoway ANOVA. 	2	-	No change

				Annexure II	[
		• Compare the three designs named CRD, RBD and LSD in terms of their efficiencies.			
3.	STAT 301 Applied Statistics	 On completion of the course, students will be able to, Understand the concept of time series data and its application in various fields. Identify principle sources of demographic data and assess their strengths and weaknesses. 	-	-	No change
4.	STAT 301L Applied Statistics Lab	 On completion of the course, students will be able to, Measure trend and seasonal fluctuations, based on real life data. Compute and interpret different death and birth rates such as CDR, CBR, etc. Compute and differentiate between different index numbers such as Laspeyre's index, Pasche's index and Fisher's index. Compute and understand different scores, reliability of test scores and IQ. 	-	-	No change
5.	STAT (code to be generated) Financial Statistics	 On completion of the course, the students will be able to, Understand acquisition of financial data Describe financial data using distributions Find relation between two or more financial series 	-	UNIT I Essential practical familiarization with financial data. Typical challenges with real financial data. Basics on data acquisition, manipulation, filtering, graphical representa- tion and plotting. UNIT II Statistical distribution of returns. Moments of	

		Annexure II
 Understand the conprocess Apply basic stoch financial data. 	ncept of stochastic hastic models in	the distribution. Non-Normal distributions and fat-tails. Large fluctuations and tail risk. Stable distributions. Generalized extreme value distribution. Estimation methods to characterize the tails of the distributions. Calibration and validation. Applications to measures of risk.
		UNIT III Measures of dependency: linear and non- linear correlations. Lagged correlations and causality. Information theoretic perspective: mutual information, transfer entrophy. Spurious correlations. Correlation filtering through networks. Calibration, validation and application issues.
		UNIT IV Stochastic Process: Concept, types, properties. Discrete Stochastic Processes, Binomial processes, Gaussian Process. Random walk, General random walks, Geometric random walks, Binomial models with state dependent increments.
		UNIT V Stochastic Models in Finance: Discrete time process- binomial model with period one. Stochastic Models in Finance: Continuous time process- geometric Brownian motion.

			 Suggested Books Franke, J., Hardle, W.K. And Hafner, C.M. (2011): Statistics of Financial Markets: An Introduction, 3rd Edition, Springer Publications. Stanley L. S. (2012): A Course on Statistics for Finance, Chapman and Hall/CRC. Casella G. & Berger R. L. (2002). Statistical Inference, Brooks/Coles. Bouchaud, J P. & Potters, M. (2003). Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management, Cambridge University Press. Lehmann, E. L. & Romano, J. P. (2006). Testing Statistical Hypotheses, Springer, 2006. Reference Books Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer. Gumbel, E. J. (2013). Statistics of Extremes, Echo Point Books & Media. 	
6.	STAT (code to be generated) Financial	 On completion of this course, the students will be able to, Understand the behavior of financial data through graphs Describe the nature of financial data 	 (Using spreadsheet/ R) 1. Graphical representation of financial data 2. Fit non-normal distributions to financial data 	
	Statistics Lab	 Calculate risk through financial data 	3. Obtain characteristics of the distribution	

			Annexu	re II
		 Find relationship between financial series Model financial data using some simple stochastic models. 	 Find measures of risk Measure relationships between financial series. Apply stochastic processes for a financial data 	
7.	STAT (code to be generated) Health Statistics And Population Dynamics	 On completion of this course, the students will be able to, Understand different measures related to health statistic, Able to calculate morbidity measures, Identify principle sources of demographic data and assess their strengths and weaknesses. Discuss the demographic significance of age and sex structures and the implications of variations in age & sex structure. Construct and interpret life tables. Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Estimate and project the population by different methods. 	Unit 1 Health statistics: Introduction, utilization basic data, sources of health statistics, prob in the collection of sickness data, measurer of sickness, hospital statistics and international classification of diseases, diffe measures: incidence rates, prevalence rate, at rate, case fatality rate. Measures of accurac validity, sensitivity index, specificity index. Unit 2 Sources of demographic data in India: cer vital events, registration, survey, extent of u registration, Population pyramids and its Population growth rates: arithmetic, geom and exponential growth rates, popula estimation and projection. Unit 3 Mortality and its measures: Crude, direct indirect standardization of death rates, specific death rate, infant mortality rate, natal mortality rate, definitions and evaluation. Fertility and its measures: CBR, ASBR, meas of reproduction: GFR, TFR,GRR, NRR, co	of ems icent the rent tack y or sus, ider use. etric tion and age neo- their ures hort

		Unit 4 Measures of migration crude, specific and standardized rates survival ratio and national growth rate method. Urbanization - Growth and distribution of rural - urban population in developed and developing countries.	
		Unit 5 Life tables and their application: construction of complete and abridged life tables and their interrelationship, force of mortality, evaluation of probabilities of survival and death from life table.	
		 Text Books Rao, P.S.S.Sundar, & Richard, J. (2004). An introduction to Biostatistics (A manual for students in health sciences), Prentice Hall of India, Pvt. Ltd. Misra, B.D. (2004). An introduction to the study of population, South Asian Publishers Pvt. Ltd. Ramkumar, R. (2006). Technical Demography. New Age International. Pathak, K.B.& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House. 	
		Reference Books 1. Keyfitz.N. (2013). Applied Mathematical	

Annexure II Demography, New York: John Wiley. 2. Bhinde, A. A. & Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E- Learning Material 1. Demographic data; Platform: National Family Health Survey, India http://rchiips.org 2. Population Studies; Platform; e-PG Pathshala https://epgp.inflibnet.ac.in 3. Demography; Platform: University Library - The University of Adelaide https://www.adelaide.edu.au/library/ 4. Demography; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm (Using spreadsheet/R) 1. Measures of morbidity 8 STAT (code On completion of this course, the students will be able to, to be generated) • Calculate various measures of 2. Measures of accuracy or validity, morbidity and their accuracy sensitivity index, specificity index Health Construct population pyramid and Statistics And identify its features 3. Construction of population pyramid Population Estimate population growth rates and Dynamics 4. Population growth rate project for future Lab Calculate measures of mortality and 5. Measures based on mortality fertility for a given population

Calculate simple measures of life table	6. Measures based based on fertility	
and analyze it.	7. Construction of Life table	

Name of the Programme: M.Sc. (Mathematical Science)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. Mathematical Sciencesis the most important discipline in today's world which open doors in engineering, business, finance, computing, data science, health sciences and environmental sciences. The educational objective of the M.Sc. Mathematical Sciencesprogramme is to provide high quality education in mathematics, statistics, operations research and theoretical computer science in order to prepare students for professional careers in mathematical sciences and related fields.

The aim of the programme is to equip students with mathematical and statistical knowledge to define mathematical concepts, calculate quantities, estimate solutions, design data collection, analyze data appropriately and interpret to draw conclusions from these data. It emphasizes on both theory and applications of mathematics and statistics and is structured to provide knowledge and skills in depth necessary for the employability of students in industry, other organizations, as well as in academics.

The main objectives of the M.Sc. (Mathematical Sciences) programme are:

- To develop an understanding of the mathematics, statistics, operations research and theoretical computer science as a unifying language of science.
- To use mathematical and statistical techniques to solve well-defined real-world problems and understand the limitations.
- To provide exposure to various mathematical and statistical software packages, including analysis and programming.
- To develop communication and technical writing skills which enables them to present mathematical and statistical ideas clearly in oral and written forms using appropriate technical terms and deliver data analysis results.
- To nurture skills in effective multidisciplinary teamwork and adherence to principles of professional accountability and ethics.

Programme Outcomes:

PO1: Knowledge Domain:Demonstrate an understanding of the basic concepts in mathematics, statistics, operations research and theoretical computer science and their importance in the solution of some real-world problems.

PO2: Problem Analysis:Analyze and solve the well-defined problems in mathematics statistics, operations research and theoretical computer science. Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, while solving problems and making decision. Find, analyze, evaluate and apply information systematically and shall make defensible decisions.

PO3:Presentation and Interpretation of Data: Demonstrate the ability to manipulate and visualize data and to compute standard statistical summaries.

PO4: Modern tool usage: Learn, select, and apply appropriate methods and procedures, resources, and computing tools such as Excel, MATLAB, MATHEMATICA, SPSS, R etc. with an understanding of the limitations.

PO5: Technical Skills: Understand tools of modeling, simulation, and data analysis to bear on real-world problems, producing solutions with the power to predict and explain complex phenomena.

PO6: Ethics:Analyze relevant academic, professional and research ethical problems and commit to professional ethics and responsibilities with applicable norms of the data analysis and research practices.

PO7: Communication:Effectively communicate about their field of expertise on their activities, with their peer and society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations.

PO8: Project Management: Apply knowledge and understanding of principles of mathematics and statistics effectively as an individual, and as a member or leader in diverse teams to manage projects in multidisciplinary environment.

PO9: Research Proposal:Define, design and deliver a significant piece of research work that is clear and concise. Demonstrate the necessary skills and knowledge of deeper understanding of their chosen research area. Understand the philosophy of research in mathematical sciences and appreciate the value of its development.

PO10: Life- long learning:Demonstrate the ability to read and learn mathematical and statistical tools on their own that encourage independent exploration in the specific area of mathematics, statistics, operations research and theoretical computer science. Continue to acquire mathematical and statistical knowledge and skills appropriate to professional activities in the context of technological change.

Programme Scheme: (With specialization in pure mathematics)

Semester I

	Existing								
Course Code	Course Name	L	Т	Р	С				
MATH 401	Algebra-I	6	0	0	6				
MATH 403	Analysis-I	6	0	0	6				
MATH 405	Discrete Mathematics	6	0	0	6				
STAT 402	Probability and Statistics	4	0	0	4				
CS 415	Computer Programming	4	0	0	4				
STAT 402L	Probability and Statistics Lab	0	0	4	2				
CS 415L	Computer Programming Lab	0	0	4	2				
	Total:	26	0	8	30				

Proposed									
Course Code	CourseName	L	Т	Р	С				
	Algebra-I	5	0	0	5				
	Analysis-I	5	0	0	5				
	Discrete Mathematics	4	0	0	4				
STAT 402	Probability and Statistics	4	0	0	4				
CS 415	Computer Programming	4	0	0	4				
CS 415L	Computer Programming Lab	0	0	4	2				
	Computational Lab-I	0	0	4	2				
	Total:	22	0	8	26				

Semester II

Existing									
Course Code	Course Name	L	Т	Р	С				
MATH 402	Algebra-II	6	0	0	6				
MATH 404	Analysis-II	6	0	0	6				
MATH 410	Ordinary Differential Equations	6	0	0	6				
MATH 411	Topology	6	0	0	6				
MATH 409	Numerical Analysis	4	0	0	4				
MATH 409L	Numerical Analysis Lab	0	0	4	2				
	Total:	28	0	4	30				

	Proposed									
Course Code	CourseName	L	Т	Р	C					
	Algebra-II	5	0	0	5					
	Analysis-II	5	0	0	5					
	Ordinary Differential Equations	4	0	0	4					
	Topology	4	0	0	4					
MATH 409	Numerical Analysis	4	0	0	4					
MATH 409L	Numerical Analysis Lab	0	0	4	2					
	Computational Lab-II	0	0	4	2					
	Total:	22	0	8	26					

Semester III

Existing									
Course Code	Course Name	L	Т	Р	С				
MATH 502	Advanced Calculus	6	0	0	6				
MATH 508	Functional Analysis	6	0	0	6				
MATH 511	Integral Transform and Special Functions	6	0	0	6				
MATH 515	Mathematical Programming	6	0	0	6				
	Elective-I	4	0	0	4				
MATH 528P	Term Paper	0	0	4	2				
	Total:	28	0	4	30				

	Proposed									
Course Code	CourseName	L	Т	Р	C					
	Advanced Calculus	4	0	0	4					
	Functional Analysis	4	0	0	4					
	Operations Research	4	0	0	4					
	Discipline Elective-I	4	0	0	4					
	DisciplineElective-II	4	0	0	4					
	Reading Elective-I	0	0	0	2					
MATH 528P	Term Paper	0	0	8	4					
	Total:	20	0	8	26					

Semester IV

	Existing						Proposed						
Course Course Name Code		L	Т	Р	С		Course Code	e CourseName		Т	Р	С	
MATH 518 Operations Research		6	0	0	6			Differential Geometry	4	0	0	4	
MATH 505 Differential Geometry		6	0	0	6			Partial Differential Equations	4	0	0	4	
MATH 519	Partial differential Equations	6	0	0	6			DisciplineElective-III	4	0	0	4	
	Elective-II	4	0	0	4	1		Open Elective	4	0	0	4	
	Elective-III	4	0	0	4			Reading Elective-II	0	0	0	2	
MATH 523P Research Paper		0	0	8	4			Dissertation	0	0	16	8	
	Total:	26	0	8	30			Total:	16	0	16	26	

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Discipline Electives

CourseCode	Course	L	Т	Р	C
CS 315	Theory of Computation	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 501	Advanced Analysis (Analysis on abstract spaces)	4	0	0	4
MATH 503	Advanced Functional Analysis	4	0	0	4
MATH 504	Analytic and Algebraic Number Theory	4	0	0	4
MATH 510	Integral equations and Calculus of Variations	4	0	0	4
MATH 517	Number Theory and Cryptography	4	0	0	4
MATH 527	Tensor Analysis and Geometry of Manifolds	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
MATH 530	Viscous Fluid Dynamics		0	0	4
Fuzzy Logic and Belief Theory		4	0	0	4
	Inventory Theory	4	0	0	4
	Queuing Theory	4	0	0	4
	Integral Transforms and Special Functions	4	0	0	4
	Measure Theory and Advanced Probability	4	0	0	4
	Time series and Stochastic Process	4	0	0	4
	Coding Theory	4	0	0	4
	Fixed Point Theory	4	0	0	4
	Introduction to Dynamical System	4	0	0	4
	Bio Mathematics	4	0	0	4
	Algebraic Topology	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Fields and Galois Theory	4	0	0	4

List of Reading Electives

CourseCode	Course	L	Τ	Р	С
	Network Biology	0	0	0	2
	Fractional Calculus	0	0	0	2
	Quantum Graphs	0	0	0	2
	Point set topology	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in Statistics)

Semester I

Existing								
Course Code	Course Name	L	Т	Р	C			
MATH 401	Algebra-I	6	0	0	6			
MATH 403	Analysis-I	6	0	0	6			
MATH 405	Discrete Mathematics	6	0	0	6			
STAT 402	Probability and Statistics	4	0	0	4			
CS 415	Computer Programming	4	0	0	4			
STAT 402L	Probability and Statistics Lab	0	0	4	2			
CS 415L	Computer Programming Lab	0	0	4	2			
	Total:	26	0	8	30			

	Proposed				
Course Code	CourseName	L	Т	Р	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
CS 415L	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing									
Course Code	Course Name	L	Т	Р	C				
MATH 402	Algebra-II	6	0	0	6				
STAT 403	Statistical Inference	6	0	0	6				
STAT 401	Measure Theory & Advanced Probability	6	0	0	6				
MATH 409	Numerical Analysis	4	0	0	4				
CS 417	Database Management Systems	4	0	0	4				
MATH 409L	Numerical Analysis Lab	0	0	4	2				
CS 417L	Database Management Systems Lab	0	0	4	2				
	Total:	26	0	8	30				

	Proposed						
Course Code	CourseName	L	Т	Р	C		
	Analysis-II	5	0	0	5		
	Statistical Inference	5	0	0	5		
	Measure Theory & Advanced Probability	4	0	0	4		
MATH 409	Numerical Analysis	4	0	0	4		
CS 417	Database Management Systems	4	0	0	4		
MATH 409L	Numerical Analysis Lab	0	0	4	2		
CS 417L	Database Management Systems Lab	0	0	4	2		
	Total:	22	0	8	26		

Semester III

	Existing				
Course Code	Course Name	L	Т	Р	С
MATH 515	Mathematical Programming	6	0	0	6
STAT 517	TimeSeriesandStochastic Process	6	0	0	6
STAT 507	Design of Experiments and Linear Models	4	0	0	4
STAT 506	Demography and Advanced Sampling	4	0	0	4
STAT 507L	Design of Experiments and Linear ModelsLab	0	0	4	2
STAT 506L	Demography and Advanced Sampling Lab	0	0	4	2
	Elective-I	4	0	0	4
STAT 514S	Seminar	0	0	4	2
	Total:	24	0	12	30

	Proposed					
Course Code	CourseName	L	Т	Р	C	
	Survey Sampling	4	0	0	4	
	Time Series and Stochastic Process	4	0	0	4	
STAT 507	Design of Experiments and Linear Models	4	0	0	4	
	Computational Lab-III	0	0	4	2	
	DisciplineElective-I	4	0	0	4	
	DisciplineElective-II	4	0	0	4	
	Reading Elective-I	0	0	0	2	
	Seminar	0	0	4	2	
	Total:	20	0	8	26	

Semester IV

	Existing						
Course Code	Course Name	L	Т	Р	C	Course Code	0
MATH 518	Operations Research	6	0	0	6		ŀ
STAT 501	Advanced Inference	6	0	0	6	STAT 502	E A
STAT 502	Bayesian & Multivariate Analysis	4	0	0	4	STAT 502L	E A
STAT 502 L	Bayesian & Multivariate Analysis Lab	0	0	4	2		Ι
	Elective-II	4	0	0	4		(
	Elective-III	4	0	0	4		I
STAT 512P	Project	0	0	8	4		Ι
	Total:	24	0	8	30		

	Proposed						
Course Code	CourseName	L	Т	Р	C		
	Advanced Inference	4	0	0	4		
STAT 502	Bayesian and Multivariate Analysis	4	0	0	4		
STAT 502L	Bayesian & Multivariate Analysis Lab	0	0	4	2		
	DisciplineElective-III	4	0	0	4		
	Open Elective	4	0	0	4		
	Reading Elective-I	0	0	0	2		
	Project	0	0	12	6		
	Total:	16	0	16	26		

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

Course Code	Course Name	L	Т	Р	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 516	Network Analysis and Goal Programming	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 504	Clinical Trials	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 508	Distribution Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 511	Non-Parametric Inference and Sequential Analysis	4	0	0	4
STAT 513	Regression Analysis	4	0	0	4
STAT 515	Statistical Computing	4	0	0	4
	Queuing Theory	4	0	0	4
	Stochastic Models	4	0	0	4
	Demography	4	0	0	4
	Actuarial Statistics	4	0	0	4
	Survival Analysis	4	0	0	4
	Reliability and Renewal Theory	4	0	0	4
	Operations Research	4	0	0	4
	Inventory Theory	4	0	0	4

List of DisciplineElectives

List of ReadingElectives

Course Code	Course Name	L	Т	Р	C
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2
	Official Statistics	0	0	0	2
	Robust Estimation in Non-Linear Models	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in operations research)

Semester I

Existing								
Course Code	Course Name	L	Т	Р	С			
MATH 401	Algebra-I	6	0	0	6			
MATH 403	Analysis-I	6	0	0	6			
MATH 405	Discrete Mathematics	6	0	0	6			
STAT 402	Probability and Statistics	4	0	0	4			
CS 415	Computer Programming	4	0	0	4			
STAT 402L	Probability and Statistics Lab	0	0	4	2			
CS 415L	Computer Programming Lab	0	0	4	2			
	Total:	26	0	8	30			

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
CS 415L	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

	Existing				
Course Code	Course Name	L	Т	Р	C
MATH 402	Algebra-II	6	0	0	6
MATH 404	Analysis-II	6	0	0	6
CS 209	Data Structures	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	24	0	12	30

	Proposed				
Course Code	CourseName	L	Т	Р	C
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	22	0	8	26

С

Semester III

	Existing				
Course Code	Course Name	L	Т	Р	С
MATH 509	Fuzzy logic and Belief Theory	6	0	0	6
MATH 522	Queuing Theory	6	0	0	6
STAT 507	Design of Experiments and Linear Models	4	0	0	4
MATH 515	Mathematical Programming	6	0	0	6
STAT 507L	Design of Experiments andLinear Models Lab	0	0	4	2
	Elective-I	4	0	0	4
MATH 525S	Seminar	0	0	4	2
	Total:	26	0	8	30

	Proposed				
Course Code	Course	L	Т	Р	С
	Queuing Theory	4	0	0	4
CS 209	Data Structures	4	0	0	4
	Inventory Theory	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
	DisciplineElective-I	4	0	0	4
	DisciplineElective-II	4	0	0	4
	Reading Elective-I	0	0	0	2
	Seminar	0	0	4	2
	Total:	20	0	8	26

Semester IV

	Existing]		Proposed			
Course Code	Course Name	L	Т	Р	С		Course Code	Course	L	Т	Р
STAT 516	Theory of Reliability	6	0	0	6			Reliability and Renewal Theory	4	0	0
MATH 512	Inventory Theory	6	0	0	6		MATH 516	Network Analysis & Goal Programming	4	0	0
MATH 516	Network Analysis& Goal Programming	4	0	0	4		MATH 516L	Network Analysis & Goal Programming Lab	0	0	4
MATH 516L	Network Analysis & Goal ProgrammingLab	0	0	4	2			DisciplineElective-III	4	0	0
	Elective-II	4	0	0	4			Open Elective	4	0	0
	Elective-III	4	0	0	4			Reading Elective-II	0	0	0
MATH 520P	Project	0	0	8	4			Project	0	0	12
		24	0	8	30				16	0	16

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

Course Code	Course Name	L	Τ	Р	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 507	Financial Mathematics	4	0	0	4
MATH 513	Marketing Management	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 517	Time Series and Stochastic Process	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Stochastic Models	4	0	0	4
	Fuzzy logic and Belief Theory	4	0	0	4
	Partial Differential Equations	4	0	0	4

List of Electives

List of Reading Electives

CourseCode	Course Name	L	Т	Р	С
	Selected Applications of Stochastic Models	0	0	0	2
	Operational Research Applications	0	0	0	2
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2

Programme Scheme: (With specialization in theoretical computer science)

Semester I

	Existing				
Course Code	Course Name	L	Т	Р	C
MATH 401	Algebra-I	6	0	0	6
MATH 403	Analysis-I	6	0	0	6
MATH 405	Discrete Mathematics	6	0	0	6
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
STAT 402L	Probability and Statistics Lab	0	0	4	2
CS 415L	Computer Programming Lab	0	0	4	2
	Total:	26	0	8	30

	Proposed				
Course Code	Course	L	Т	Р	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
CS 415L	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing					
Course Code	Course Name	L	Т	Р	C
MATH 402	Algebra-II	6	0	0	6
MATH 404	Analysis-II	6	0	0	6
CS 209	Data Structures	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	24	0	12	30

	Proposed				
Course Code	Course	L	Т	Р	C
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	22	0	8	26

Semester III

Existing								
Course Code	Course Name	L	Т	Р	C			
MATH 515	Mathematical Programming	6	0	0	6			
CS 315	Theory of Computation	4	0	0	4			
CS 213	Design and Analysis of Algorithms	4	0	0	4			
CS 308	Operating Systems	4	0	0	4			
CS 213L	Design and Analysis of Algorithms Lab	0	0	4	2			
CS 308L	Operating Systems Lab	0	0	2	1			
	Elective-I	4	0	0	4			
MATH 526S	Seminar	0	0	4	2			
	Total:	22	0	10	27			

	Proposed				
Course Code	Course	L	Т	Р	C
CS 315	Theory of Computation	4	0	0	4
CS 209	Data Structures	4	0	0	4
CS 308	Operating Systems	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
	DisciplineElective-I	4	0	0	4
	Reading Elective-I	0	0	0	2
MATH 526S	Seminar	0	0	4	2
	Total:	20	0	8	26

Semester IV

	Existing						Proposed				
Course Code	Course Name	L	Т	Р	C	Course Code	Course	L	Т	Р	C
CS 313	Software Engineering	4	0	0	4	CS 315	Software Engineering	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4	CS 213	Design and Analysis of Algorithms	4	0	0	4
MATH 518	Operations Research	6	0	0	6	CS 213L	Design and Analysis of Algorithms Lab	0	0	4	2
	Elective-II	4	0	0	4		DisciplineElective-II	4	0	0	4
	Elective-III	4	0	0	4		Open Elective	4	0	0	4
MATH 521P	Project	0	0	8	4		Reading Elective-II	0	0	0	2
							Project	0	0	12	6
		22	0	8	26			16	0	16	26

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Electives

|--|

CS 419	Distributed Computing	4	0	0	4
CS 427	Parallel Computing 4		0	0	4
CS 431	Real Time Systems	4	0	0	4
CS 433	Soft Computing	4	0	0	4
CS 436	Web Development and .Net Framework	4	0	0	4
CS 436L	Web Development and .Net Framework Lab	4	0	0	4
CS 502	Advanced Communications and Networks	4	0	0	4
CS 502L	Advanced Communications and Networks Lab	0	0	4	2
CS 507	Artificial Intelligence	4	0	0	4
CS 510	Client-Server Computing and Applications	4	0	0	4
CS 517	Data Communication and Networking	4	0	0	4
CS 517L	Data Communication and Networking Lab	0	0	4	2
CS 527	Mobile Computing	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 517	Time series and Stochastic Process	4	0	0	4

List of Reading Electives

CourseCode	Course Name	L	Τ	Р	C
	Operational Research Applications	0	0	0	2
	Categorical Data Analysis				2
	Network Biology				2
	Fractional Calculus	0	0	0	2
	Quantum Graphs	0	0	0	2

Name of Programme: M.Sc. (Mathematical Science) Course Details:

Note: 1. Black Shaded part is shifted.

2. Strikeout is deleted.

3. Italic and Underline is rewritten.,

4. Grey shaded part is added.

First Semester

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (To be	Oncompletion of the course, students	Section A	Section A	Shaded
	generated)	will be able to	Groups: Dihedral groups, symmetric groups, matrix	Vector spaces, subspaces, linear span, bases, quotient	part in
	Algebra-I	 Analyze finite and infinite 	groups; subgroups generated by subsets of a group,	spaces, coordinate vectors, change of basis, linear	Black from
		dimensional vector spaces and	Homomorphism and Normal Subgroups,	transformations, isomorphism, range and kernel of a	section A
		subspaces over a field and their	Isomorphism theorems, group actions, stabilizers and	linear transformation, matrix of a linear transformation,	and B is
		properties, including the basis	kernals of group actions,cycle Decomposition,	algebra of L(U, V), invertible transformations and	shifted in
		structure of vector spaces.	Conjugates, Conjugacy in $\mathrm{S}_{n'}$ Class equation for a	matrices, Linear functionals and dual spaces.	Algebra II
		• Understand the properties of linear	Group, Sylow's theorem; Applications of Sylow's	Section B	and from
		transformations, matrices of linear	theorem, Simplicity of Alternating Group A _n for	Linear operator, annihilating polynomials, invariant	section C is
		transformations and change of	n>5 Commutator Series of Subgroups, Jordan	subspaces of linear operator, direct sum decomposition,	shifted in
		basis, including kernel, range and	Holder Theorem Solvable Croups	cyclic operator, maximal vector, indecomposable linear	Fields and
		isomorphism.	Section B	operators, invariant factors, canonical forms, operators	Galois
		 Compute inner products and 	Rings homomorphism and quotient rings. Ideals:	on real and complex vector spaces.	Theory.
		determine orthogonality on vector	Prime and Maximal, rings of fractions, Divisibility,	Section C	
		spaces, including Gram-Schmidt	Fuclidean and Principal Ideal Domains: Unique	Inner Product Spaces, Orthonormal Sets, Gram-Schmidt	Change in
		orthogonalization.	Factorization Domains: Polynomial Rings over	Process, Orthogonal Complements and Projections,	Credit
		• Identify operators in inner product	fields, irreducibility criteria polynomial in several	Adjoints , self-adjoints and normal operators, unitary	
		spaces.	variables. Noetherian ring, Hilbert basis theorem.	and orthogonal operators, Forms on inner product	
		 Identify bilinear forms, canonical 	Grohner basis solving algebraic equation	spaces, Bilinear forms, symmetric bilinear forms and	
		forms for symmetric and skew-	Section C	quadratic form.	
		symmetric forms.	Field Theory: characteristic of a field, prime subfield.	Suggested Books:	
			extension fields. Algebraic Extensions. Splitting	1. Hoffman, K., & Kunze, R. A. (2010). Linear algebra.	
			fields and algebraic closures. Normal and Separable	New Delhi: PHI Learning.	
			Extensions, Fundamental Theorem of Galois Theory	2. Cooperstein, B. N. (2015). Advanced linear algebra.	
			extensions, runkunenkur incorent of Sulois incory.	(Advanced Linear Algebra, Second Edition.) Boca	

			Text Book:	Raton: CRC Press.	
			1. Dummit, D. S. and Foote, R. M.: Abstract	3. Lang, S. (2011). Linear algebra. (3rd Ed.). New York:	
			Algebra, 3 rd Ed., Wiley, 2004.	Springer.	
			Reference Books:	4. Halmos, P. R. (2013). Finite dimensional vector spaces.	
			1 Herstein, I. N.: Topics in Algebra, 2nd Ed., Wiley	(2nd Ed.). S.l.: Literary Licensing, LLC.	
			Eastern, New Delhi, 1991.	5. Yang, Y. (2015) Advanced linear algebra. Cambridge :	
			2. Gallian, J. A.: Contemporary Abstract Algebra,	Cambridge University Press.	
			8th Ed. Cengage Learning, 2006.	Suggested E-learning Material:	
			3. Jacobson, N.: Lectures in Abstract Algebra, D.	1. Lecture Notes:	
			Van Nostrand, New York, 1964.	https://nptel.ac.in/downloads/111102011/#	
			4. Jacobson, N.: Basic Algebra-I, Hindustan	2. Video Lectures & Notes:	
			Publishing, Delhi, 1984.	https://onlinecourses.nptel.ac.in/noc17_ma0	
			5. Bhattacharya; P. B. Jain S.K. and Nagpal S.R. :	4/preview	
			Basic Abstract Algebra. 2 nd Ed. Cambridge	-	
			University Prees, 1990.		
2.	MATH (To be	On completion of the course, the	Section A	Section A	Change in
2.	MATH (To be generated)	On completion of the course, the student will be able to,	Section A Countable & Uncountable Sets, Statements of Axiom	Section A Countable & Uncountable sets, well ordering principle,	Change in Credit
2.	MATH (To be generated) Analysis-I	On completion of the course, the student will be able to, • understand modern theory of set	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma ,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem,	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem.	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated &	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma.	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma.	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. derive the Fourier series of 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma. Section C	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C Fourier series of integrable functions. Discussion of	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. derive the Fourier series of integrable functions. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma , Transfinite Induction . Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma. Section C Fourier Series of Integrable Functions. Discussion of	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C Fourier series of integrable functions. Discussion of pointwise & uniform convergence of series, Fejer's	Change in Credit

		convergence of series.	Fejer'sTheorem for Continuous Periodic Functions,	Orthogonality, Parseval's Theorem. Riez Fischer
			Orthogonality, Parseval's Theorem. Riesz Fischer	theorem.
			theorem.	Suggested Text Books:
			Suggested Text Books:	1. Royden, H. L. (2011). Real analysis. (3rd Ed.). New
			1. H. L. Royden, Real Analysis, 3 rd Ed., Pearson	Delhi: Prentice hall of India.
			Education Pvt. Limited, Singapore, 2003. (for Sec.	2. Barra, G. D. (2008). Measure theory and integration.
			A &B)	New Delhi: New Age International.
			2. G. D. Barra, Measure Theory &Integration, 2nd	3. Carslaw, H. S. (1959). Introduction to the theory of
			Ed. Wiley Eastern Limited, New Delhi, 1991. (for	Fourier's series and integrals. New York: Dover
			Sec. B)	Publications.
			3. H. S. Carslaw, An Introduction to the Theory of	Suggested Reference Books:
			Fourier Series and Integrals 3rd Revised Edition	1. Rudin, W. (2017). Principles of mathematical
			Dover Pub New York 1950 (for Sec. C)	analysis. (3rd Ed.). Chennai: McGraw Education
			Suggested Reference Books:	(india) Private Limited.
			1 W Rudin Principles of Mathematical Analysis	2. Apostol, T. M. (1974) Mathematical analysis. (2nd
			2rd Ed McCrowy Hill Avaidand 1085	Ed.). New Delhi: Narosa Publishing House.
			31 Ed. McGraw- Fill, Auckland, 1965.	3. Titchmarsh, E. C. (1968). The theory of functions.
			2. T.M. Apostol, Mathematical Analysis, 2 nd Ed,	London: Oxford Univ. Press.
			Narosa Publishing House, New Delhi, 1974.	4. Hewitt, E., & Stromberg, K. R. (2009). Real and
			3. E.C. Tichmarch, Theory of Functions, Oxford	abstract analysis: A modern treatment of the theory of
			University Prees, 1962.	functions of a real variable. New York: Springer.
			4. E. Hewitt and K. Stromberg, Real and Abstract	5. Goldberg, R. R. (2019). Methods of real analysis.
			Analysis: A modern treatment of the theory of	New Delhi: Blaisdell Pub. Co.; Oxford and IBH.
			functions of a real variable, Narosa Publishing	Suggested E-learning material
			House, New Delhi, 1978.	1. A Basic Course in Real Analysis:
			5. G. Das and S. Pattanaik, Fundamentals of	NPTL:https://nptel.ac.in/courses/111105069/
			Mathematical Analysis, T.M.H./New Delhi, 1989.	2. Fourier Series Part-1:NPTL:
			6. Richard R. Goldberg, Methods of Real Analysis,	https://nptel.ac.in/courses/122107037/24
			Oxtord & IBH, New Delhi, 1970.	
3.	MATH (To be	After completing the course, students	Section A	Section A
	generated)	will be able to	Sets and Multisets, Partial Order Relations, Chains	Logic, Propositional Equivalences, Predicates and

Discrete	•	Understand logical arguments	and Antichains. Permutation and Combination of	Quantifiers, Nested Quantifiers, Methods of Proof,
Mathematics		and logical constructs. Have a	Multisets. Pigeon hole Principle, Inclusion-Exclusion	Multi-set, Relations and Functions, Introduction to
		better understanding of sets,	Principle, Derangements.	Algorithms, The growth of functions, Complexity of
		functions and relations.	Discrete Numeric Functions, Generating Functions,	Algorithms. Partially ordered sets, Chains and Anti-
	•	Apply logical reasoning to solve	Recurrence Relations, linear Recurrence Relation with	chains, Lattices, Complete lattices, Distributive lattices,
		a variety of mathematical	Constant Coefficients and their Solutions, Solution by the	Complements, Boolean Algebra, Uniqueness of Finite
		problems.	method of Generating Functions.	Boolean Algebras, Boolean expressions and Boolean
	•	Understand and apply the	Boolean Algebra, Lattices, Uniqueness of Finite	functions, Normal forms.
		fundamental concepts in graph	Boolean Lattices, Boolean Functions and Boolean	Section B
		theory.	Expression. Propositional Calculus.	Basic counting Principles, Permutations and
	•	Acquire ability to apply graph	Section B	Combinations, Permutations and Combinations on
		theory-based tools in solving	Basic Concepts of Graph Theory. Directed Graph. Euler	multi-sets, Generation of permutations and
		practical problems	Graph. Hamiltonian Graph. Matrix Representation of	Combinations, Pigeon-hole principle, Principle of
		Improve the proof writing skills	<u>Graphs. Shortest Path in a Weighted Graph. K connected</u>	inclusion and exclusion. Discrete numeric functions,
		and able to develop	and K-edge-connected Graphs. Planar	Generating Functions, Combinatorial problems.
		mathematical maturity	Graphs. Coloring of Graphs , Vertex Coloring of	Recurrence relations, linear recurrence relation with
		maticinatical maturity.	Graphs <mark>- Edge Coloring of Graphs, Vizing's Theorem.</mark>	constant coefficients and their solutions. Solution by the
			Trees: Rooted Trees, Spanning Tree and Cut Set,	method of generating Functions.
			Minimum Spanning Tree. Flow Network in a Graph,	Section C
			Max-Flow-Min Cut Theorem.	Graphs, Vertices of graphs, degrees, Sub-graphs, Paths,
			Section C	Walks and cycles, Connected graphs, Connected
			Types of Enumeration, Counting Labeled Trees,	components, Weighted graphs, Directed graphs, Matrix
			Burnside's Lemma, Polya's Counting Theorem,	representations of graphs. Shortest path Problem
			Graph Enumeration with Polya's Theorem.	Operations on graphs. Blocks, Cut-points, bridges Block
			Matchings in Bipartite Graphs, Hall's Matching	graphs and Cut-point graphs. Euler tours, Euler graphs
			Theorem, Min Max Theorem, Independent Sets,	Hamiltonian paths, Hamiltonian graphs, Closure of a
			Factorization, 1-Factorization, 2-Factorization,	graph. Isomorphism in graphs. Euler's formula, Planar
			Arboricity.	graphs, Vertex colouring , Chromatic number.
			Suggested Text/Reference Books:	Chromatic polynomial, R - Critical graphs, Acvelic
			1. C.L. Liu, Elements of Discrete Mathematics, Mc-	graphs- Trees, Elementary properties of trees, Center.
			Graw Hill, International Edition, 1985.	Connectivity, Connectivity and line connectivity,

2. N. Deo, 0	Graph Theory, Prentice Hall of India, Partitions, Cut edges - Cut vertices, Spanning tree and	
2002.	minimum Spanning tree.	
3. K.H. Ro	sen, Discrete Mathematics and it's Suggested Books:	
Applicati	ions, 7th Ed. Mc-Graw Hill, 2013. 1. Liu, C. L. (1985) Elements of discrete mathematics. Mc-	
4. K.D. Josh	i, Foundation of Discrete Mathematics, Graw Hill, International edition.	
Wiely Eas	stern Ltd., 1989. 2. Deo, N. (2012). Graph theory: With applications to	
5 DB Wes	t Introduction to Graph Theory 2nd engineering and computer science. New Delhi: PHI	
Ed. Pretir	Learning Private Limited	
	3. Rosen, K. H. (2013). Discrete mathematics and its	
	applications: Seventh edition. New York: McGraw-	
	Hill.	
	4. Joshi, K. D. (1089) Foundation of discrete mathematics.	
	Wiely Eastern Ltd.	
	Suggested E-learning Material:	
	1. Lecture notes:	
	https://nptel.ac.in/downloads/111104026/	
	2. Lecture notes:	
	http://home.iitk.ac.in/~arlal/book/mth202.pdf	
	3. Lecture notes: <u>https://ocw.mit.edu/high-</u>	
	chool/mathematics/combinatorics-the-fine-art-of-	
	<u>counting/lecture-</u>	
	notes/MITHFH lecturenotes 8.pdf	
	4. Lecture notes:	
	<u>http://www.math.kit.edu/iag6/lehre/graphtheo20</u>	
	<u>15w/media/lecture_notes.pdf</u>	
	5. Online Course:	
	https://swayam.gov.in/courses/4926-discrete-	
	mathematics	
	6. Online Course:	

4.	STAT 402	On completion of the course, the	- Suggested E-learning material:	No change	
	Probability	student will be able to:	1. Probability and Statistics; Platform: NPTEL	in the	
	and Statistics	• Understand the meaning of	nptel.ac.in/courses/111105041/.	syllabus	
		probability and probabilistic			
		experiment and all approaches to	2. Probability; Platform: e-		
		probability theory and particularly,	PGPathshalahttps://epgp.inflibnet.ac.in/ahl.ph		
		the axiomatic approach.	<u>p?csrno=34.</u>		
		• Understanding the meaning of			
		conditional	3. Introduction to Probability-		
		probability,conditioning, and	https://ocw.mit.edu/resources/res-6-012-		
		reduced sample space.	introduction-to-probability-spring-2018/		
		• Understand the concepts of random			
		variables, sigma-fields generated by			
		random variables, probability			
		distributions and independence of			
		random variables related to			
		measurable functions.			
		• Distinguish between independent			
		and uncorrelated random variables.			
		• Distinguish between discrete,			
		continuous, and mixed random			
		variables and be able to represent			
		them using probability mass,			
		probability density, and cumulative			
		distribution function.			
		• Understand the concepts of			
		sampling distributions and use of			
		sampling distribution in hypothesis			
		testing.			
5.	CS 415	On successful completion of the course	-	Suggested E-learning material:	No change
----	-------------	---	---	---	-----------
	Computer	students will be able to		1. Introduction to Programming in C	in the
	Programming	 Understanding the concepts of 		https://nptel.ac.in/courses/106104128/	syllabus
		computer basics and		2. Introduction to Programming in C Specialization by	
		programming.		Duke University	
		 Understanding of the 		https://www.coursera.org/specializations/c-	
		organization and operations of a		programming	
		computer system.		3. Computer Fundamentals by P. K. Sinha	
		Understanding of Binary logic in		https://www.edutechlearners.com/computer-	
		design of electronic circuits.		fundamentals-p-k-sinha-free-pdf/	
		 Students would have logical 			
		thinking for Analyzing			
		problems, designing and			
		implementing algorithmic			
		solutions.			
		Students would get the skills for			
		the use of the C programming			
		language to implement the real			
		world applications.			
6.	MATH (To be	On completion of the course, the	-	1. Introduction to MATLAB	New
	generated)	student will be able to,		Defining Vectors, Array, Matrices and their	Course
	Computatio-	 Perform basic mathematical 		mathematical operations	
	nal Lab-I	operations in MATLAB.		3. Special variables and Numeric display formats	
		Create vectors, arrays, matrices		4. Matrix Functions: Norm, rank, determinant,	
		and perform fundamental		transpose, inverse, g-inverse, diagonal, trace, etc.	
		matrix operations.		5. Finding roots of a polynomial, characteristic	
		 Visualize basic mathematical 		equation, eigen values and eigen vectors	
		functions.		6. Solving system of linear equations: Gauss	
1		Solve linear equations and		elimination Method, Matrix Decomposition:	

system of linear equ	ations.		Cholesky, LU, and QR factorizations, diagonal
Import/export data	, summarize		forms, singular value decomposition.
and visualize the da	ta.	7.	2D plots for Cartesian, parametric and polar curves
Fit some standard d	istributions	8.	Evaluating and plotting: Trigonometric functions,
and test hypothesis.			hyperbolic functions, complex functions, Logarithms,
			exponentials, etc.
		9.	3D plots: surfaces, contour plot, mesh
		10.	. Data import and export
		11.	. Building frequency tables: Univariate, Bivariate.
		12.	Finding descriptive statistics: averages, dispersion,
			skewness, kurtosis.
		13.	. Data visualization: Dot plots, Histogram, Box plots,
			bar diagram, pie diagrams, etc.
		14.	. Fitting and visualization of Probability distributions:
			Binomial, Poisson and Normal.
		15.	. Empirical cumulative distribution function plot,
			Histogram based on empirical cumulative
			distribution function, Histogram with a distribution
			fit, Normal probability plot, Probability plots,
			Quantile-quantile plot.
		16.	. Hypothesis Tests: t-test, F-test, chi-square goodness-
			of-fit test
		17.	. Introduction to M-files and programming in
			MATLAB,
		Su	ggested Books:
		1.	D. Duffy, Advanced Engineering mathematics with
		1.	MATLAB, 3 rd Ed. Taylor & Francis, 2010
		2.	A. Knight, Basics of Matlab and beyond, CRC Press,
			1999

	Suggested E-learning material:	
	1. PDF Documentation for MATLAB:	
	https://in.mathworks.com/help/pdf_doc/matl	
	<u>ab/index.html</u>	

SECOND SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be	After completing the course, students	SectionA	Section A	Shaded in
	generated)	will be able	Vector spaces, subspaces, quotient spaces, span and	Review of groups, direct product of groups, normal	Black from
	Algebra-∏	 To demonstrate the 	independence, bases (finite and infinite), coordinate	subgroups, quotient groups, isomorphism theorems,	section A,
		mathematical maturity of	vectors, linear transformations, projection map,	Conjugates, Conjugacy in Sn, Class equation for a Group,	B and C is
		understanding the proof.	range and kernel of a linear transformation,	Sylow's Theorems, Applications of Sylow's theorem,	shifted in
		 To understand the algebraic 	isomorphism, correspondence theorem ,	Simplicity of Alternating Group An for n>5,	Algebra I.
		structures groups, rings,	<i>isomorphismtheorems,</i> matrix of a linear	Section B	
		modules.	transformation, algebra of L(U, V), <u>singular and</u>	Rings, Ring homomorphism and quotient rings, Ideals:	Shaded in
		 To grasp the significance of 	nonsingular mappings, Linear functionals and dual	Prime and Maximal, fields of fractions, Divisibility,	Grey is
		the concepts of	spaces, Franspose of a linear mappings .	Euclidean and Principal Ideal Domains, Unique	added.
		homomorphism &	SectionB	Factorization Domains, Polynomial Rings over fields,	
		isomorphism and be able to	Determinant function,Properties of determinant,	irreducibility criteria.	Change in
		check a given function is one	modules, multilinear functions, characteristic values,	Section C	Credit
		of these.	annihilating polynomials, invariant subspaces, direct	Modules, Quotient modules, module homomorphisms,	
		 To understand the class 	sum, invariant direct sum, primary decomposition	generation of modules, direct sums, free modules,	
		equation for a finite group	theorem, cyclic operator, Cyclic Decomposition	modules over PID's, Chain conditions, Artinian	
		and its applications in Sylows	Theorem, Generalized Cayley Hamilton theorem,	modules, Northerian modules, Composition series,	
		theorems.	indecomposable linear operator, invariant	Modules of finite length, Jordan Holder Theorem,	
		 To classify groups up to 	factors, <u>Jordan form, Normal form</u> .	Artinian rings, Northerian rings, Hilbert Basis Theorem,	
		isomorphism.	SectionC	I.S.Cohen's Theorem, Introduction of Nil radical and	
		• To really understand the	Inner product, orthogonal sets, orthogonal	Jacobson radical.	
		special types of rings and be	complement and projections, adjoints, self adjoints,	Suggested Books:	

 able to construct new examples from the old ones. To check a subset of a ring is an ideal or not and be able to identify proper and maximal ideal. To understand the concept of unique factorization domain and able to write a polynomial as the product of irreducible factors To describe as a generalization of vector space and able to understand types of modules. To grasp the concept of Artinian modules, Northerian modules, Artinian rings and Northerian rings. 	 spectral theorems, normal operators, unitary and orthogonal operators, polar and singular values decomposition, Bilinear maps, symmetric bilinear maps and quadratic form. Text Books: Hoffman and Kunze: Linear Algebra, 2nd Ed. Pearson, 1998. Bruce N. Cooperstein: Advanced Linear Algebra, 2nd Ed., CRC Press, 2015 Reference Books: S. Lang: Linear Algebra, 3rd Ed., Springer Verlag, New York, 1987. P.R. Halmos: Finite Dimensional Vector Spaces, 2nd Ed., Van Nostrand, New York, 1965. Yisong Yang: Advanced linear algebra, Cambridge University Press, 2015 	 Gallian, J. A. (2013). Contemporary abstract algebra. (8th Ed.). Boston, MA: Brooks/Cole Cengage Learning. Dummit, D. S. & Foote, R. M. (2004) Abstract algebra (3cd Ed.). New Jersey: Wiley. Musili, C. (1994) Introduction to Rings and Modules (2ndEd.). New Delhi::Narosa Publishing House. Hungerford, T. W. (2014) Abstract algebra: An introduction (3cd Ed.). Australia: Brooks/Cole Cengage Learning. Hillman A. P. & Alexandersor, G. L. (2015) Abstract algebra: A first undergraduate course (5th Ed.). CBS Publishers & Distributors Pvt. Ltd. Fraleigh, J. B. (2003) A first course in abstract algebra (7th Ed.). Harlow: Pearson. Sen, M. K., Ghosh, S., Mukhopadhyay, P. & Maity, S. K. (2019) Topics in abstract algebra (3rd Ed.). University Press. Herstein, I. N. (1991) Topics in algebra (2nd Ed.). New Delhi: Wiley Eastern.
		Suggested E-learning Material:
		1. Lecture Notes on Groups and Rings:
		https://ocw.mit.edu/courses/mathematics/18-
		<u>703-modern-algebra-spring-2013/related-</u>
		2 Video Lectures on Algebra:
		https://www.extension.harvard.edu/open-

2.	MATH (To be generated) Analysis-II	 On completion of the course, the student will be able to, demonstrate understanding of the basic and advanced concepts underlying complex analysis. demonstrate familiarity with a range of examples of these concepts. prove advanced results/theorems 	-	learning-initiative/abstract-algebra Open Source Book Abstract algebra: Theory and applications by Thomas W. Judson http://abstract.ups.edu/download/aata-20110810.pdf Suggested E-learning material 1. Complex Analysis; NPTL: https://nptel.ac.in/courses/111103070/	No change in syllabus. Change in Credit.
2.	mann (10 be	will be able to		1 Complex Analysis: NPTL:	in cullabue
	generated)	will be able to,		1. Complex Analysis, NFTL.	in synabus.
	Analysis-11	demonstrate understanding of the		https://hpter.ac.in/courses/1111050/0/	Changesin
		basic and advanced concepts			Cradit
		underlying complex analysis.			Cieun.
		• demonstrate familiarity with a			
		concepts.			
		 prove advanced results/theorems 			
		in complex analysis.			
		 apply the methods of complex 			
		function theory to evaluate			
		integrals and infinite series of			
		complex functions.			
		demonstrate understanding and			
		appreciation of a deeper aspects			
		of complex function theory.			
		demonstrate skills in			
		communicating mathematics			
		orany and in writing.			
3.	MATH (To be	On completion of the course, students	Section A	Sections A	
	generated)	will be able to	First order differential equations: Method of successive	Existence and Uniqueness of solutions: Introduction,	
	Ordinary	 Understand the existence and 	approximation, Lipschitz condition, convergence of	Picard's Successive Approximations, Picard's theorem,	
	Differential	uniqueness of IVPs and their	<u>successive</u> approximation, non local existence of	Continuation and dependence of initial conditions,	
	Equations	solution	solutions.	Existence of solutions in the large, Existence and	

Understand method of successive	e System of differential equations: solution by general	Uniqueness for systems, fixed point technique for
approximations, variation	of <u>method and matrix exponentials, Two Dimensional</u>	nonlinear differential equations.
constants, annihilator metho	1, Autonomous Systems and Phase Space Analysis: critical	Section B
and reduction of order of	a points, proper and improper nodes, spiral points and	Linear Differential equations of higher order with
homogeneous equation.	<u>saddle points.</u>	variable coefficients: Introduction, Existence and
 Solve linear differential equation 	s Section B	Uniqueness theorem, linear dependence and Wronskian.
of higher order with variable	Linear Differential Equations: Existence and	Solution; Method of variation of parameters, Method of
coefficients.	uniqueness theorems constantand variable	undetermined coefficients, Reduction of order.
 Solve boundary value problems 	coefficients (2nd order and nth order), Linear	Boundary Value Problems for second order equations:
for second order equations.	dependence and independence of solutions,	Introduction, Green's function, Sturm Liouville problem.
Solve Boundary Value problem	Wronskian, variation of constants, annihilator	Applications of BVPs.
for second order equations	y method, reduction of the order of a homogeneous	Section C
Green's function, Strum-Liouvi	e quation.	System of linear differential equations: Introduction,
Boundary Value problem.	Section C	Existence and Uniqueness theorem, Solution of the
Grasp the concept of the stability	Homogeneous equation with analytic coefficients,	system; Eigenvalue-Eigenvector Method and
of system of differential equation	s Legendre equation, Euler equation, method of	Fundamental Matrix Method. Matrix Exponential
 Solve system of linear different 	I Frobenius, Bessel's equation, Boundary Value	Function, Non-homogeneous linear systems. Phase
equations and study t	e Problems for Second Order Equations: Green's	Portrait in R ² . Plane Autonomous Systems: critical points
qualitative behavior of the	e function, Sturm-Liouville boundary value problem,	and types of critical points and stability.
systems.	eigenvalue Problem.	Text Books:
	Text Books:	1. Deo, S. G., Raghavendra, V., Kar, R.
	1. E. A. Coddington: An Introduction to Ordinary	&Lakshmikantham, V. (2015) Textbook of ordinary
	Differential Equations, Dover Publication Inc.,	differential equations (3rd Ed.). New Delhi: Mc Graw
	1961.	Hill Education.
	2. S. Ahmad and A. Ambrosetti: A text book on	2. Ahmad, S. &Ambrosetti, A. (2015). A Textbook on
	Ordinary Differential Equations, 2nd Ed	Ordinary Differential Equations (2nd Ed.).
	Springer 2015.	Switzerland: Springer.
	Reference Books:	Deferment Develop
	1. S. A. Wirkus and R. I. Swift: Ordinary	Kererence Books:
	Differential Equation 201 Ed. CDC Brass 2015	1. WIRKUS, S.A. & SWIIT, K.J. (2015). Ordinary
	Differential Equation, 2 ^{nm} Ed., CKC Press, 2015.	Differential Equations, (2nd Ed.). USA: CRC

4. MATH to be Opon successiul completion of this Section A Section A				 William E. Boyce and Richard C. Di Prima, Elementary Differential Equations and Boundary Value Problems, 10th Ed., 2012 Shepley L. Ross, Differential Equations, 3rdEd., Wiley Publication, 1989. P. Hartman; Ordinary Differential Equations; John Wiley and sons, New York, 1964. TynMyint-U, Ordinary Differential Equations, Elsevier North-Holland, 1978. 	 Press. 2. Birkhoff, G. & Rot, G.C. (1989). Ordinary Differential Equation (4th ed.), India: John Willey. 3. Braun, M. (1975). Differential Equations & their Applications. New York: Springer Verlag. 4. Codington, E.A. & Levinson, N. (1955). Theory of ordinary differential equation. New York: Mcgraw Hill. 5. Ross, S. L. (1984). Differential Equations (3rd ed.). India: Wiley Publication. 6. William E. B., & Richard C. D. (2012). Elementary Differential Equations and Boundary Value (10th ed.). New York: Wiley Publication. 7. Coddington, E. A. (1961). An Introduction to Ordinary differential equations. New Jersey, USA: Dover Publication Inc. 8. Hartman, P. (1964). Ordinary Differential Equations. New York; John Wiley and sons. Suggested E-learning material 1. Lecture notes: http://www.math.ust.hk/~machas/differential equations.pdf 2. NAPTEL: https://nptel.ac.in/courses/111106100/ 3. Lecture Notes: http://home.iitk.ac.in/~sghorai/TEACHING/MTH203/ode.html 	
Infinite gate and avious of choice and avious of choice avail and and avious of choice available avious of choice available avious of choice av	4.	MATH (to be	Upon successful completion of this	Section A	Section A	

Topol	ogy	• Define and illustrate the concept of	the maximum principle, Topological spaces, Bases	maximum principle, Topological spaces, Bases for a
		topological spaces and continuous	for a Topology, The order Topology, The Product	topology, The order topology, The product topology,
		functions.	Topology, The Subspace Topology, Closed sets and	The subspace topology, Closed sets and limit points,
		• Define and illustrate the concept of	Limit points, Continuous function. Continuity of a	Continuity of a function, Homeomorphism,
		product topology and quotient	function, Homeomorphism, Construction of	Construction of continuous functions.
		topology.	continuous functions, Metric Topology, The quotient	Section B
		Calculate simple topological	Topology (Introduction only).	Metric topology, The quotient topology (Introduction
		invariants, such as the number of	Section B	only), Connected spaces, Path connected spaces,
		path components.	Connectedness and Compactness: Connected Spaces,	Connected sets in the real line, Components, Path
		• Define and illustrate the concepts	Connected sets in the Real line, Components and path	components, Local connectedness, Local path
		separation axioms.	components, Local Connectedness, Compact spaces,	connectedness, Compact spaces.
		Use continuous functions and	Compact sets in the Real line, limit point	Section C
		homeomorphisms to understand	compactness.	First countability axiom, Second countability axiom,
		structure of topological spaces.	Section C	Lindelof space, Regular space, Normal spaces, The
		1 5 1	The Tietze extension Theorem, The	Urysohn Lemma, Completely regular space. The Tietze
			UrysohnMetrization Theorem. The Tychnoff	extension theorem.
			Theorem, The completely regular spaces, The Stone-	Suggested Books:
			Cech compactification (Statement only),Complete	1. Munkres, J. R. (1975) Topology: A first course. New
			Metric Spaces and Function spaces: Complete Metric	Delhi: Prentice Hall of India.
			Spaces, Compactness in Metric spaces, Pointwise	2. Singh, T. B. (2013) Elements of topology, CRC
			convergence, The Compact Open Topology, Baire	Press.
			Spaces.	3. Joshi, K. D. (1986) Introduction to general topology.
			Suggested Text/Reference Books:	New Delhi: Wiley Eastern.
			1. J.R. Munkres, Topology- A First Course, Prentice	4. Murdeshwar, M. G. (1983) General topology.New
			Hall of India, New Delhi, 1975. (The scope is	Delhi: Wiley Eastern.
			indicated by the chapters 1, 2, 3, 4, 5, 6 & 7).	5. Simmons, G. F. (1963) Introduction to topology &
			2. K.D. Joshi, Introduction to General Topology,	modern analysis. Auckland: McGraw Hill.
			Wiley Eastern, Delhi, 1986.	6. Dugundji, J. (1990) Topology, New Delhi:
			3. Mangesh G. Murdeshwar, General Topology,	Universal Book Stall.
			Wiley Eastern, New Delhi, 1983.	Suggested E-learning Resources:
			4. George F. Simmons, Introduction to Topology	1. Video Lectures:

			&Modern Analysis, McGraw Hill, Auckland, 1963	https://nptel.ac.in/courses/111106054/	
			5 James Dugundii, Topology, Universal Book Stall		
			New Delhi,1990.		
5.	MATH 400	On completion of the course, the student	Section A	Section A	1. Shufflin
	MATH 409	will be able to,	Accuracy and approximate calculations: Different	Accuracy and approximate calculations: Different types	g of the
	Numerical	Demonstrate numerical methods to	types of errors and their computations; Finite	of errors and their computations.	topics
	Analysis	obtain approximate solutions to	differences: forward, backward and divide	Numerical solution of system of linear equations:	has been
		mathematical problems.	difference tables, propagation of error in difference	Direct methods: Gauss elimination method and Crout's	done to
		• Derive numerical methods for various	table, missing data calculation, errors in polynomial	(factorization) methods, Iterative methods: Jacobi	maintain
		mathematical operations and tasks,	interpolation,Newton-Gregory forward and	method, Gauss-Seidel method, Vector and matrix norm,	the flow
		such as interpolation, differentiation,	backward interpolation, <mark>central differences: central</mark>	Condition number and ill-conditioning, condition of	of
		integration, the solution of linear and	difference table, Gauss formula, Stirling's formula,	convergence in iterative methods. Eigen values and	syllabus.
		nonlinear equations, and the solution	Bessel's formula. Interpolation with unequal	Eigen vectors: Singular value decomposition, Power	2. Some
		of ordinary differential equations.	intervals,Lagrange's formula,divided differences and	method, Aitken's acceleration, Inverse Power method.	advance
		Analyze the appropriate numerical	their properties, Newton's general Interpolation	Section B	d topics
		method to find the Eigen values and	formula, inverse interpolation, computation errors in	Numerical solutions of algebraic and transcendental	and
		corresponding eigenvectors of a	these formulae and analysis of errors.	equations: Polynomial and transcendental equations,	numeric
		system.	Section B	intermediate value theorem, Bisection method, Iterative	al
		• Use rational approximation of a	Numerical solutions of algebraic and transcendental	method, Newton-Raphson method, Convergence	methods
		function like Padé approximant for	equations: polynomial, transcendental equations,	analysis of these methods.	have
		power series.	intermediate value theorem, Bisection method,	Interpolation: Newton-Gregory forward and backward	been
		Solve the boundary value problems	Iterative method, method of false-position, secant	interpolation, Lagrange's formula, inverse interpolation,	added to
		using shooting method and finite	method, Newton-Raphson method, Stability and	computation errors in these formulae and analysis of	benefit
		difference method.	Convergence analysis of these methods, Curve	errors, Approximation of function: Padé	the
		• Define and use the concepts accuracy,	fitting (method of least squares, cubic splines	approximation.	students
		consistence, stability and convergence.	interpolation), approximation of functions:	Numerical Differentiation: Maximum and minimum	
			Chebyschev'spolynomials.Taylor's series	value of a tabulated function, Solution of difference	

approximation, Solution of linear systems of	equations, Numerical Integration: Newton-cotes'
equations: Direct method, matrix inversion , Gauss	integration formula, Trapezoidal, Simpson's 1/3 and
elimination, Gauss-Jordan and Crout's(factorization)	Simpson's 3/8 and Weddle's rules, Gaussian quadrature
methods, iterative method, Jacobi and Gauss-Seidel	formula.
methods, condition of convergence in iterative	Section C
methods.	Numerical solution of ordinary differential equations:
Section C	Initial value problems:Lipschittzcondition for initial
Numerical Differentiation: Maximum and minimum	value problems, solution by Taylor's series method,
value of a tabulated function, Solution of difference	Euler's method, Picard's method, Runge-Kutta methods,
equations, Numerical integration: Trapezoidal,	Runge-Kutta-Fehlberg method, Predictor corrector
Simpson's 1/3 and Simpson's 3/8 and Weddle's	methods: Milne's method, estimation of errors,
rules, Newton-cotes' integration formula, Gaussian	Boundary value problems: Shooting Method, Finite
quadrature formula. Numerical solution of ordinary	difference method, Rayleigh-Ritz method. Stability
differential equations: solution by Taylor's series	analysis of these numerical methods.
method, Euler's method & modified Euler's method,	
Picard's method, Runge Kuttamethod(forth order),	Suggested Text Books:
Predictor Corrector Method; Miline's method,	1. Cheney, E. W., & Kincaid, D. (2008). Numerical
estimation of errors, Introduction to simultaneous	mathematics and computing (5th ed.). Thomson
and higher order equations, Solution of PDE (using	Brooks/Cole.
finite difference approximation to derivatives).	2. Jain, M. K., Iyengar, S. R. K., & Jain, R. K.
Text Books:	(2007). Numerical methods for scientific and engineering
1. S.S. Sastry, Introductory Methods of Numerical	computation (5 th ed.). New Delhi: New Age
Analysis, 4th ed., PHI Learning Private Limited,	International.
New Delhi, 2005.	3. Sastry, S. S. (2012). Introductory methods of numerical
	analysis (5th ed.). New Delhi: Prentice-Hall of India.
Reference Books:	
1. V. Rajaraman, Computer Oriented Numerical	Suggested Reference Books:
Methods, 2nd ed., Prentice Hall of India. New	1. Burden, R. L., & Faires, J. D. (2005). Numerical analysis
Delhi,1984.	(7th ed.). Thomson Brooks/Cole.
2. S.D. Conte and C.D. Boor, Elementary	2. Chauhan, D. S., Vyas, P., &Soni, V. (2014). Studies in
Numerical Analysis: An Algorithmic Approach.	numerical analysis (Reprint ed.), Jaipur Publishing

			 ^{3rd} ed., McGraw Hill, Auckland, 1981. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and 	House. 3. Rao, K. S. (2005), Numerical methods for scientists and anginger (2nd od). Nov. Dolhi, Propring Hall of India	
			Engineering Computations, 4th ed., New Age International, New Delhi, 2003.	 Phillips, G. M., & Taylor, P. J. (1996). Theory and applications of numerical analysis (2nd ed.). Elsevier. 	
			 Nentifi L. Ardensol, All Information to Numerical Analysis, John Wiley, New York, 2nd ed., 2001. G.M. Phillips and Peter J. Taylor, Theory and Applications of Numerical Analysis, 2nded.,Elsevier, 1996. John R. Rice, Numerical Methods, Software and Analysis, MGH, Auckland, 1983. P.K. De, Computer Based Numerical Methods and Statistical Techniques, CBS Publication, New Delhi, 1st ed., 2006. 	 Suggested E-learning material: Introduction to Numerical Analysis for Engineering, Platform: MIT open courseware https://ocw.mit.edu/courses/mechanical-engineering/2-993j-introduction-to-numerical-analysis-for-engineering-13-002j-spring-2005/index.htm Numerical Analysis, Platform: nptelhttps://nptel.ac.in/courses/111107062/ Elementary Numerical Analysis, Platform: nptel https://nptel.ac.in/courses/111101003/ 	
6.	MATH 409L	On completion of the course, the student	Using MATLAB: Command window computations.	1. A review of basic MATLAB functions on	Listof
		will be able to,	M-files, Programming in MATLAB, Basic	command window.	Practicals
	Numerical Analysis Lab	 Implement numerical methods in MATLAB to solve systems of linear 	Mathematical Operations in MATLAB: Scalar addition and multiplication, Matrix addition and	2. Writing Scripts and functions in MATLAB (m- files).	is revised according
		equations, compute quadrature, solve	multiplication etc.	3. Flow control commands (If-else, for, while,	to the
		ordinary differential equations and	1. An M-file to implement the bisection method	switch).	syllabus of
		various computational problems.	2. MATLAB M-file to implement Newton-Raphson	4. An M-file to implement Gauss elimination	Computati
		Write efficient, well-documented	method for nonlinear systems of equations	method with partial pivoting for solving system	onal lab-1
		MAILAB code and present numerical	3. Using MAILAB to Manipulate Polynomials and	of linear equations.	(New
	1	results in an informative way.	Determine Their Koots	 An M-file to implement Gauss-Seidel method. 	Course)

	٠	Show logical thinking	in coding a	4.	MATLAB Matrix Manipulations		6. An M-file to implement the bisection method.	and
		mathematical problem	in algorithmic	5.	Solving Linear Algebraic Equations Using		7. An M-file to implement Newton-Raphson	revised
		form.			MATLAB		method for nonlinear equations.	syllabus of
	•	Use their knowled	dge of a	6.	An M-file to implement Gauss elimination		8. An M-file to implement Newton's interpolation.	Numerical
		programming in MAT	LAB to learn	7.	Solving linear systems with Gauss elimination		9. An M-file to implement Lagrange's interpolation.	Analysis
		more easily any other	programming		with partial pivoting		10. Curve fitting: least-squares n th order polynomial	(MATH
		language like Mathem	natica, Python	8.	LU Factorization with MATLAB		to data (liner and Quadratic).	409).
		etc.		9.	MATLAB M-file to implement Gauss-Seidel.		11. An M-file to implement the trapezoidal and	
				10). Eigenvalues and Eigenvectors with MATLAB		Simpson's rules.	
				11	. MATLAB Implementation for fitting a least-		12. An M-file to implement Euler's method for	
					squares nth-order polynomial to data		solving ordinary differential equations with a	
				12	2. Fitting a straight line with linear regression		plot of exact and numerical solutions.	
				13	3. Polynomial Regression with MATLAB		13. An M-file to implement Runge-Kutta methods	
				14	. Nonlinear Regression with MATLAB		(ode23 and ode45) for solving ordinary	
				15	5. An M-file to implement Newton interpolation		differential equations with a plot of exact and	
				16	6. An M-file to implement Lagrange interpolation.		numerical solutions.	
				17	7. M-file to implement the composite trapezoidal		14. An M-file to implement finite difference method	
					rule		for solving ordinary differential equations with a	
				18	3. M-file to implement the trapezoidal rule for		plot of exact and numerical solutions.	
					unequally spaced data			
				19	P. Calculating Differentiation using MATLAB			
				20). An M-file to implement Euler's method for	Te	ext Books/ Reference Books:	
					ordinary differential equations		1. Fausett, L. V. (2008). Applied numerical analysis	
							using MATLAB (2nd ed.). Pearson Education.	
							2. Chapra,S. (2006). Applied numerical methods with	
							MATLAB for engineers and scientists, McGraw-Hill	
							Higher Education.	
						Su	ggested E-learning material:	
							1. Introduction to Numerical Methods and	

			MATLAB Programming for Engineers, Platform: Ohio University; <u>http://www.ohiouniversityfaculty.com/youngt</u> <u>/IntNumMeth/</u> 2. Using numeric approximations to solve continuous problems, Platform: MathWorks; <u>https://in.mathworks.com/discovery/numerica</u> <u>Lanalysis.html</u>	
7.	MATH (code to be generated) Computation al Lab-II	 On successful completion of the course, - the students will be able to, Understand the fundaments of procedural and functional programming with Mathematica software; Efficiently use these technical computing systems in one's studies and research. Set up simple engineering problems such that they can be solved and visualized using basic codes. 	 Introduction to Wolfram Mathematica: Entering input, variables, assignment, execution, and evaluation of mathematical functions, rules and replacement, Notebooks in Mathematica. Basic commands of Mathematica, Trigonometry. Calculus: Roots of polynomials, partial fractions, differentiation, limits and expansions, integration, Optimization. Lists and Matrices: Matrix Operations, transpose, determinant, inverse of a matrix, Index Notation. Linear Algebra: Characteristic equation, Eigen values and Eigenvectors, Row reduced echelon form and normal form, Vector Spaces, Linear Transformations, Solutions to system of linear equations. Graphics: Plotting of simple functions, Two- and Three-dimensional Plotting (Cartesian, parametric and polar equations, Vector plots), Graphics Primitives, and Formatting. Differential equations: analytic and numerical solutions of ODEs, Plotting of second order 	New Course

				solution family of differential equation, System of	
				ODEs (critical points, phase portrait diagrams and	
				time series plots).	
				8. Plotting of recursive sequences.	
				9. Study the convergence of sequences through	
				plotting.	
				10. Verify Bolzano-Weierstrass theorem through	
				plotting of sequences and hence identify	
				convergent subsequences from the plot.	
				11. Study the convergence/divergence of infinite	
				series by plotting their sequences of partial sum.	
				Cauchy's root test by plotting nth roots.	
				12. Ratio test by plotting the ratio of n^{th} and $(n+1)^{\text{th}}$	
				term.	
				Suggested Readings:	
				1. The Mathematica Book, Fifth Edition by Stephen	
				Wolfram;	
				https://www.wolfram.com/language/elementary	
				-introduction/2nd-ed/	
				2. Lecture Notes on Mathematics for Materials	
				Scientists and Engineers;	
				https://ocw.mit.edu/courses/materials-science-and-	
				engineering/3-016-mathematics-for-materials-	
				scientists-and-engineers-fall-2005/lecture-notes/	
8.	STAT (To be	After successful completion of this	-	Suggested E-Learning Material:	No change
	generated)	course, student will be able to:		1. Statistical Inference; Platform:	in syllabus.
	Statistical	 Apply various parametric, non- 		MIT OPENCOURSEWARE	
	Inference	parametric and sequential		https://ocw.mit.edu/index.htm	Change in
		estimation techniques and testing		2. Statistical Inference; Platform: Coursera	credit.
		procedures to deal with real life		https://www.coursera.org	

		problems.		3. Statistical Inference: Platform: e-PG	
		 Understand confidence interval, 		Pathshala <u>https://epgp.inflibnet.ac.in</u>	
		Nevman-Pearson fundamental			
		lemma, UMP test, Interval			
		estimation.			
		 Understand SPRT, OC and ASN 			
		function.			
		 Understand non-parametric 			
		methods, U-statistic.			
		,			
9.	STAT (To be	On successful completion of this unit,	Section A	Section A	Change in
	generated)	students will be able to:	Measure Theory - Fields, Sigma Fields, Monotone	Measure Theory-Fields, Sigma Fields, Monotone Classes,	credit.
	Measure	• Understand the basic concepts of	Classes, Set Functions, Measure, Outer Measure,	Set Functions, Measure, Outer Measure, Carotheodory's	
	Theory &	measure and integration theory.	Carotheodory's Extension Theorem. Probability	Extension Theorem. Probability Measure, Lebesgue	
	Advanced	 Understand of the theory on the 	Measure, Lebesgue Measure, Lebesgue Stieljes	Stieljes Measure. Measurable Functions, Monotone and	
	Probability	basis of examples of application.	Measure. Measurable Functions, Monotone and	Dominated Convergence Theorem. Product Spaces,	
		 Use abstract methods to solve 	Dominated Convergence Theorem. Product Spaces,	Fubini's Theorem (without proof).	
		problems and to use a wide range	Fubini's Theorem (without proof), Signed Measure,	Section B	
		of references and critical thinking.	Radon Nikodym Theorem (without proof).	Sequences of Distribution Function, convergence:	
		 Use weak and strong law of large 	Section B	convergence in distribution, convergence in probability,	
		numbers in statistical theory.	Inequalities-Cauchy-Schwartz Inequalities, Holder	almost sure convergence, convergence in Mean Square.	
		-	Inequalities, Minkowski Inequality, Jensen	Helly Bray theorem, Borel-Cantelli lemma and zero one	
			Inequality Hajek Renyi Inequality. Sequences of	law. Characteristics function, inversion and continuity	
			Distribution Function, Helly Bray Theorem. Almost	theorem.	
			sure Convergence, Convergence in Probability,	Section C	
			Convergence in Mean Square. Borel-Cantelli Lemma	Inequalities: Cauchy-Schwartz inequality, Chebychev's	
			and Zero One Law. Characteristics Function.	inequality, Holder Inequality, Minkowski Inequality,	
			Inversion and Continuity Theorem.	Jensen Inequality. Weak and strong Law of Large	
			Section C	Numbers-Khintchine, Kolmogorov theorem. One	
			Weak and Strong Law of Large Numbers-	Dimensional Central Limit theorem- Lindeberg Levy,	
			Khintchine, Kolmogorov Theorem. One Dimensional	Lyapunov, Lindeberg Feller theorem.	

			Central Limit Theorem- Lindeberg Levy, Lyapunov,	Suggested Text/Reference Books:
			Lindeberg Feller Theorem Penrecentation of	1. Feller, W (2008) An Introduction to probability theory a
			Distribution Function as a mixture of Discrete and	annlications (Vol 1 & Vol 1) John Wiley & Sons
			Contineurs Distribution Eurotion Convolutions	2 Chung K I (2011) A Course in Probability Theory (2
			Marginal and Conditional Distributions of Rivariate	2. Chung, R. E. (2011). If Course in Proceeding Practy (5
			Distributions	2 Phatt P D (2010) Modern Drohehility Theory (4th of
			Distributions.	5. Bhatt, B. K. (2019). Wowern Frobubulty Theory (4th ed
			Suggested Lexty Reference Books:	London, OK : New Academic Science.
			1. W. Feller, An introduction to Probability	4. Konatgi, V. K. (2000). An introduction to probability the
			Theory and Applications, Vol I & Vol II, John	and mathematical statistics (2nd ed.). Wiley series
			Wiley & Sons.	probability and statistics.
			2. K.L. Chung, A Course in Probability Theory,	5. Halmos, P. R. (2013). Measure Theory (Vol. 18). N
			Academic Press.	York: Springer.
			3. B.R. Bhatt, Modern Probability Theory.	6. Bauer, H. (1981). Probability theory and element of meas
			4. V.K. Rohtagi, An Introduction to Probability	theory (2nd ed.).London: Academic Press.
			Theory and its Applications, John Wiley & Sons.	Suggested E-Learnings Material:
			5. P.R. Halmos, Measure Theory, Springer-Verlag.	1. Measure Theory:
			6. H. Bauer, Probability Theory and Elements of	www.math.tifr.res.in/~publ/ln/tifr12.pdf
			Measure Theory, Academic press.	2. Measure Theory and probability:
				https://www.math.ucdavis.edu/~hunter/meas
				<u>ure theory/</u>
				3. CLT and applications:
				https://newonlinecourses.science.psu.edu/stat4
				14/node/133/
10	00.447			
10.	CS 417	On successful completion of the course	-	Suggested E-Learnings Material:
	Database	students will be able to		1. Data Base Management System
	Management	 Describe data models and 		https://nptel.ac.in/courses/1061051757
	Systems	schemas in DBMS		2. Database Management Essentials by University of
		 Understand the features of 		Colorado
		database management system and		<u>https://www.coursera.org/learn/database-</u>
		Relational databases.		management

 Use SOL the standard language 	3 Database System Concents by Abraham Silberschatz	
• Ose SQL - the sumative innguage	5. Dudbase System concepts by rotatian onderschatz,	
of relational databases.	Henry F. Korth and S. Sudarshan	
Understand the functional	https://kakeboksen.td.org.uit.no/Database%20Syste	
dependencies and design of the	m% 20Concepts% 206th % 20edition.pdf	
database.		
 Understand the concept of 		
Transaction and Query		
processing.		

THIRD SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to,	Euclidean Space R ⁿ , Basic Topology on R ⁿ ,	Euclidean Space R ⁿ , Basic Topology on R ⁿ , Functions on	credit.
	Advanced	 Analyze vector functions to find 	Functions on Euclidean spaces, continuity Uniform	Euclidean spaces, continuity, Uniform Continuity,	
	Calculus	derivatives, tangent lines,	Continuity, Differentiability; Partial and directional	differentiability; partial and directional derivatives.	
		integrals, and arc length.	derivatives.	Affine functions, First order approximation of Real	
		 Evaluate integrals of functions or 	Affine functions, First order approximation of Real	valued functions, quadratic functions, Hessian Matrices,	
		vector-related quantities over	Valued functions, quadratic Functions Hessian	second order approximation and second derivative test.	
		curves, surfaces, and domains in	Matrices, second order approximation and second	Section B	
		two- and three-dimensional space.	derivative test.	Linear mappings and Matrices, The derivative matrix,	
		• Use the Lagrange multiplier	Section B	First order approximation Theorem for mappings, Chain	
		method to find extrema of	Linear mappings and Matrices, The Derivative	Rule, Inverse Function Theorem, Implicit Function	
		functions with constraints.	matrix, First order approximation Theorem for	Theorem, Lagrange Multipliers.	
		• Solve problems involving tangent	mappings, Chain Rule, Inverse Function Theorem,	Section C	
		planes and normal lines.	Implicit Function Theorem, Lagrange Multipliers.	Riemann Integral of real-valued functions on	
			Section C	Generalized rectangles, Continuity and integrability,	
			Riemann Integral of real-valued functions on	Integration of functions on Jordan Domains, Fubini's	
			Euclidean spaces, Integration of functions on Jordan	Theorem, Change of Variables.	
			Domains, Fubini's Theorem, Change of Variables,	Suggested Text Book:	

			Line and Surface Integrals, Green and Stokes	1. Fitzpatrick, P. (2009). Advanced calculus.	
			Theorem.	Providence, R.I: American Mathematical Society.	
			 Text Book : Patrick M. Fitzpatrick, Advanced Calculus, Second edition, AMS. Suggested Text/Reference Books: J.R. Munkres, Analysis on Manifolds, Addison-Wesley, 1991. GB Folland, Advanced Calculus, Pearson. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall Inc., Englewood Cliffe, New Jersery, 1974. W. Fleming, Funcetions of Several variables, 2nd Edition, Springer-Verlag, 1977. W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, 1984. M. Spivak, Calculus on Manifolds, A Modern Approach to Classsical Theorems of Advanced Calculus, W.A. Benjamin, Inc., 1965. 	 Suggested Reference Books: Munkres, J. R. (2018). Analysis on manifolds. Boca Raton, FL: CRC Press/Taylor & Francis Group/Advanced Book Program. Folland, G. B. (2009). A guide to advanced real analysis. Washington, D.C.: Mathematical Association of America. Rudin, W. (2017). Principles of mathematical analysis. Chennai: McGraw Education (India) Private Limited. Suggested E-learning material Lecture Notes on Multivariable Calculus; Platform: NPTEL https://nptel.ac.in/courses/111107108/ 	
2.	MATH (to be generated) Functional	On completion of the course, the student will be able to, • explain the basic concepts of Euroctional Analysis including	-	Suggested E-learning material 1. Introduction to Functional Analysis; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/courses/mathematics/18-	No change in Syllabus. Change in
	Anarysis	the study of operator theory		102-introduction-to-functional-analysis-spring-	credit.
		and the study of topological		<u>2009/</u>	
		function spaces.		2. Functional Analysis; Platform;	
		 describe how to illustrate the 		NPTEL <u>https://nptel.ac.in/courses/111105037/</u>	
		abstract notions in functional		3. Functional Analysis; Platform: Free video	
		analysis via examples.		lectures <u>https://freevideolectures.com/course/3</u>	

		 apply Hilbert space-theory, 		<u>145/functional-analysis</u>	
		including Riesz'			
		representation theorem and			
		weak convergence, and			
		methods in problem solving.			
		 solve the problems appear in 			
		PDEs via the powerful tools			
		from functional analysis,			
		 study in a range of other 			
		fields, e.g. Quantum Theory,			
		Stochastic calculus and			
		Harmonic analysis.			
3.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to,	Network Analysis, Introduction of Network	Linear Programming: Simplex method, Theory of	Credit.
	Operations	 Build a mathematical 	analysis, shortest path problem PERT & CPM	simplex method, Duality in linear programming. Dual	
	Research	programming model of a real-life	Updating of PERT charts, project planning and	simplex method. Assignment and Transportation	
		situation	scheduling with CPM & PERT.	Problem.	
		• Write a report that describes the	Section B	Section B	
		formulation of a linear and	Queuing Theory, Probability description of arrivals	Dynamic Programming: Introduction, characteristics of	
		nonlinear programming problem,	and service times, objectives and different	dynamic programming, dynamic programming	
		and presents and interprets the	characteristics of a queuing system, deterministic	algorithm, solution of discrete dynamic programing	
		solutions.	queuing system, steady-state behaviour of	problem.	
		 Understand the basic theory in 	Markovian and Earlangian Models (M/M/1,	Sequencing Problem: Introduction, processing n jobs	
		linear and nonlinear	M/M/C, M/Ek/l).Introduction to discrete time	through two machines, processing n jobs through k	
		programming	queuing system.	machines, processing two jobs through K machines.	
		 Apply a suitable method in 	Section C	Network Analysis, Introduction of Network analysis,	
		research to develop the theories	Inventory Theory, Deterministic economic lot size	shortest path problem PERT & CPM. Updating of PERT	
		which will be applicable in the	models and their extensions, models with lost sales	charts.	
		real-life problems.	and partially backlogged, continuous production	Section C	
		 Understand the concepts of 	with varying demand rates. Probabilistic model time	Queuing Theory, Probability description of arrivals and	

dynamic programming, job	independent and time dependent with and without	service times, objectives and different characteristics of a	
sequencing, network analysis.	lead time.	queuing system, deterministic queuing system, steady-	
 Understand the basic concepts 	Suggested Text/ Reference Books:	state behaviour of Markovian and Earlangian Models	
and need of inventory theory and	1. J.C. Pant, Introduction to Optimization:	(M/M/1, M/M/C, M/Ek/l).	
queuing theory.	 J.C. Pant, Introduction to Optimization: Operations Research, 2nd ed., Jain brothers, New Delhi, 1988. Hamdy A. Taha, Operations Research, Machmillan& Co, 9th ed., New York, 2010. Frederick S. Hiller & Gerald J. Lieberman, Operations Research, 2nd ed., Holden-San Francisco, 1974. Kanti Swaroop, Operations Research, S.Chand, New Delhi, 1977. S.D. Sharma, Operations Research, Kedarnath Ramnath, Meerut, 1994. Nirmal Singh Kambo, Mathematical Programming Techniques, Affiliated East-West, New Delhi, 1991. 	 Inventory Theory, Deterministic economic lot size models and their extensions, models with lost sales and partially backlogged, continuous production with varying demand rates. Suggested Books: Swarup, K., Gupta, P. K., & Mohan, M. (1977). Operations Research (Answers to problems). New Delhi: Sultan Chand & Sons. Pant, J. C. (2004). Introduction to optimization: Operations Research. New Delhi: Jain Brothers. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow [i 21 pozostałych: Pearson. Hillier, F. S., & Lieberman, G. J. (1972). Introduction to operation research. San Francisco: Holden-Day. Sinha, S. M. (2006). Mathematical programming: Theory and methods. New Delhi: Elsevier. Suggested E-learning material: Tutorial: https://ibmdecisionoptimization.github.io/tutor ials/html/Linear Programming.html Tutorial: Sophia Learning: https://www.sophia.org/tutorials/linear-programming5 	
		3. Lectures – NPTEL:	

			https://nptel.ac.in/courses/111102012/ 4. Nonlinear Programming – MIT http://web.mit.edu/6.252/www/. 5. Nonlinear Programming: https://ocw.mit.edu/courses/sloan-school-of- management/15-084j-nonlinear-programming- enring 2004 (locture notes /	
4	STAT (to be	On completion of the course, the student	Soction A	Now
ч.	generated)	will be able to	Review of Simple random Sampling. Stratified	Course
	Survey	• Understand the distinctive	Sampling, Cluster sampling with equal/unequal sample	course
	Sampling	features of sampling schemes and	sizes, double sampling. Post and deep stratification.	
	1 0	its related estimation problems.	Sampling with varying probability of selection with	
		• Learn about various approaches	replacement and without replacement, Midzuno Sen	
		(design based and model-based)	and Narain methods of sampling.	
		to estimate admissible parameters;	Section B	
		with and without replacement	Horwitz-Thompson estimates, Desraj ordered estimator,	
		sampling scheme, sampling with	Lahiri's method and cumulative total, Yates and Grandy	
		varying probability of selection.	estimate of variance its non-negativity.	
		• Learn about the methods of post-	Auxiliary variable: Ratio, product and regression	
		stratification (stratified sampling)	method of estimation, Quenouille's techniques of bias	
		and controlled sampling and also	reduction,Hortley and Ross unbiased ratio type	
		double sampling procedure with	estimator. Ratio and Regression estimators with	
		unequal probability of selection.	combined and separate type estimates, two phase	
		• Learn about the applications of	sampling (double sampling) in Ratio and Regression	
		sampling methods; systematic,	estimation.	
		stratified and cluster sampling.	Section C	
		• Understand the cluster and two	Non-sampling errors: Incomplete samples effect of non	
		stages sampling with varying	response, Hensen and Hurvitz technique, Politz –	
		sizes of clusters/first stage units.	Simmon's "not at home" method, Interpenetrating	
		• Understand the super population	samples. Randomized response techniques – both	
			qualitative and quantitative.	

approach to estimation.	Suggested Readings	
 Understand non sampling error 	1. Cochran, W. G. (2007). Sampling techniques(3rd.	
and estimation techniques in	ed.). John Wiley & Sons.	
presence of non response.	2. Raj, D., & Chandhok, P. (1998). Sample survey	
	theory. Narosa.	
	3. Chaudhuri, A. (2014). Modern survey sampling.	
	CRC Press.	
	4. Chaudhuri, A. (2016). Randomized response and	
	indirect questioning techniques in surveys.	
	Chapman and Hall/CRC.	
	5. Sukhatme, P. V. (1963). Sampling theory of surveys	
	with applications. The Indian Society Of	
	Agricultural Statistics; New Delhi.	
	6. Murthy, M.N. (1967). Sampling Theory and	
	Methods. (2nd ed.). Statistical Publishing Society,	
	Calcutta.	
	7. Singh, D. & Chaudhary, F.S. (2018). Theory and	
	Analysis of Sample Survey Design. New Age	
	International (P) Ltd.	
	8. Goon, A. M., Gupta, M. K., & Dasgupta, B.	
	(2016). Fundamental of Statistics Vol. II. World	
	Press.	
	9. Chaudhuri, A. (2016). Randomized response and	
	indirect questioning techniques in surveys.	
	Chapman and Hall/CRC.	
	10. Chaudhuri, A. (2013): Essentials of Survey	
	Sampling, PHI Learning Pvt. Ltd, Delhi.	
	Suggested E-learning Resources	
	4. Design of experiment and sample surveys;	
	Platform: e-PG Pathshala	
	https://epgp.inflibnet.ac.in	

				5. Survey Sampling; Platform: University Library - The University of Adelaide	
				https://www.adelaide.edu.au/library/	
				6. Survey Sampling; Platform:	
				MITOPENCOURSEWARE	
				https://ocw.mit.edu/index.htm	
5.	STAT (to be	On the successful completion of the	Section A	Section A	Change in
	generated)	course the students should be able to	Time series as a stationary or non stationary	Time series as a stationary or non stationary stochastic	Credit.
	Time Series	• Plot a time series and interpret the	stochastic process, Time domain analysis based on	process, Time domain analysis based on correlogram,	
	and	components.	correlogram, Sample autocovariance function and	Sample autocovariance function and autocorrelation	
	Stochastic	 Identify and estimate cyclical 	autocorrelation function at lag K, Lag correlation.	function at lag K, Lag correlation. Measurement of cyclic	
	Process	fluctuations in the time series.	Measurement of cyclic fluctuations: Periodogram	fluctuations: Periodogram and its relation with acvf,	
		 Examine the relationship between 	and its relation with acvf, Harmonic analysis.	Harmonic analysis. Measurement of irregular	
		the lagged values of the series.	Measurement of irregular component: Variate	component: Variate difference method.	
		 Test for the stationarity of the 	difference method.	AR(p) process, MA(q) process, mixed ARMA(p , q)	
		series.	AR(p) process, MA(q) process, mixed ARMA(p, q)	process, Stationarity and inevitability conditions,	
		 Estimate ARIMA(p,d,q) model for 	process, Stationarity and inevitability conditions,	ARIMA (p, d, q) model, Estimation of parameters, Tests	
		the series.	ARIMA (p, d, q) model, Estimation of parameters,	for stationarity Stochastic – Process.	
		 Define stochastic process and 	Tests for stationarity Stochastic – Process.	Section B	
		identify its type .	Section B	Markov Chain having two states noten transition	
		 Understand the concept of 	Markov Chain having two states, n-step transition	probabilities Classification of states Recurrent and	
		Markov chain and its basic	probabilities, Classification of states, Recurrent and	transient states. Chanman-Kolmogorov equations	
		properties using some theorems.	transient states, Chapman-Kolmogorov equations,	Stationary probability theorems and limit theorem for	
		Define and understand the	Stationary probability theorems and limit theorem	ergodic chains. Martingales	
		concept and application	for ergodic chains, Martingales.	Fastion C	
		martingale.	Section C	Section C	
		Define Poisson process and	Poisson process, birth and death process, Random	Poisson process, birth and death process, Random walk	
		understand its properties with	walk and Gambler's Ruin problem, Wiener process,	and Gambler's Ruin problem, Wiener process, Renewal	
		some applications.	Kenewal theory and its application, Branching	theory and its application, Branching chains: Discrete	
1	1	 Apply gamblers ruin problem for 	chains: Discrete Process (Galton-Watson),		1

some problems. • Understand the basic concept and applications of Weiner process, Renewal theory and branching process.	Continuous process (Markov Branching), Fundamental theorem of Extinction. Suggested Text/ Reference Books: .	 Process (Galton-Watson). Suggested Text/Reference Books 1. Hoel, P. G., Port, S. C., & Stone, C. J. (1971). Introduction to probability theory, Universal Book Store, New Delhi. 2. Srinivasan, S. K., & Mehata, K. M. (1988). Stochastic
	 S.K. Srinivasan, K.M. Guenda, Stochastic Processes, Tata McGraw-Hill Publishing Company limited, New Delhi, 1988. J. Medhi, Stochastic Processes.New Age international, 1982. G.E.P. Box, G.M. Jenkins, and Gregory C. Reinset Time Series Analysis: Forecasting and Control, John Wiley 4th edn 2008. C. Chatfield, The Analysis of Time Series: Theory and Practice, Chapman and Hall in 1975. 	 Processes. New Delhi: Tata McGraw Hill. J. Medhi, J. (1994). Stochastic processes. New Age International Publications. Box, G. E. P., Jenkins, G. M., &Reinsel, G. C. (2008). Time series analysis: Forecasting and control. Hoboken: Wiley. Chatfield, C. (1975). The Analysis of Time Series: Theory and Practice. Boston, MA: Springer US. Suggested E-learning material: Lecture Notes and Videos on "Stochastic
		 Hydrology": <u>https://nptel.ac.in/courses/105108079/</u> Course material on "Time Series Analysis": <u>http://hdl.handle.net/1721.1/46343</u> Lecture Notes on "Introduction to Stochastic Processes": <u>https://ocw.mit.edu/courses/mathematics/18- 445-introduction-to-stochastic-processes-spring- 2015/lecture-notes/</u> Lecture Notes on "Discrete Stochastic Processes": <u>https://ocw.mit.edu/courses/electrical- engineering-and-computer-science/6-262-</u>

				discrete-stochastic-processes-spring- 2011/course-notes/	
6.	STAT 507 Design of Experiments and Linear Models	 After successful completion of this course, student will be able to: Identify what design was followed and its features, describe what assumptions are appropriate in modelling the data. Analyse the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. Interpret statistical results from an experiment and report them in non-technical language. Compare efficiency of the experimental designs. 	-	Suggested E-learning Resources 1. Lecture notes on Design of Experiments <u>http://www.iasri.res.in/ebook/EB_SMAR/e-book_pdf%20files/Manual%20III/2-Basic%20Experiments.pdf</u>	No change in Syllabus.
7.	STAT (to be generated) Computation al Lab-III	 On completion of the course, the student will be able to, Analyze 2ⁿ- factorial experiments. Apply ANCOVA with one and two concomitant variable Execute analysis and understanding of Split-plot designs and strip-plot design Appraise Narain, Horwitz-Thompson estimator, Des Raj's ordered estimator. Employ AR (p) process,MA (q) 	-	 Design of Experiment and Linear Models. Analysis of Completely randomized design (CRD) and Randomised block design (RBD). 2-square factorial experiment. 2- cube factorial experiment without confounding. 2- cube factorial experiment with partial confounding. 2- cube factorial experiment with complete confounding. 2- cube factorial experiment with complete confounding. Split-plot designs ANCOVA with one concomitant variable. 	New Course

process, Mixed ARMA (p, q) process.	9. ANCOVA with two concomitant variable.	
	10. BIBD	
	Survey sampling:	
	1. Estimation of mean and variance of sampling	
	mean in cluster sampling.	
	2. Estimation of mean and variance using combined	
	and separate ratio type estimators.	
	3. Estimation of population mean and total by	
	ration and regression method of estimation.	
	4. Double sampling for ratio and regression	
	methods of estimation.	
	5. Narain, Horwitz-Thompson estimator and its	
	variance.	
	6. Des Raj's ordered estimator and the estimate of	
	their variances.	
	Time Series and Stochastic Process:	
	1. Decomposition of time series.	
	2. Correlogram analysis.	
	3. Testing for stationarity.	
	4. Estimation of ARMA (p, q) process.	
	5. Estimation of ARIMA (p, d, q) model.	
	Suggested E-learning Material:	
	1. Lawson, I. (2014). Design and Analysis of	
	Experiments with R. Chapman and Hall/CRC.	
	2. Book on Design of Experiment with R	
	https://cran.r-	
	project.org/doc/contrib/Vikneswaran-	
	ED companion.pdf	
	3. Statistics: An introduction using	

				R:https://bit.ly/30deSj5	
8.	MATH (To	On completion of the course, the student	Section A	Section A	Change in
	be	will be able to	Concept of stochastic processes. Markov Chains discrete	Introduction of stochastic processes, Markov process,	Credit.
	generated)	 Understand the principles and 	and continuous time parameter. Objectives and	Markov Chain, Poisson process with its properties and	
	Queuing	objectives of model building based	different characteristics of a Queueing system.	related distributions (without proof) and birth-death	
	Theory	on Markov chains.	Performance measures. Steady state solution of	process. Objectives and different characteristics of a	
		 Analyze the queueing situations. 	Markovian Models (M/M/1, M/M/c, M/Ek/1,	Queueing system. Performance measures. Steady state	
		 Understand the mathematical 	Ek/M/1).	solution of Markovian queueing models: M/M/1 and	
		tools that are needed to solve	Section B	M/M/c. and their performance measures.	
		queueing problems.	Analytical method and use of randomization technique to	Section B	
		 Identify and develop queueing 	find the transient solution of M/M/1, M/M/c and	Steady State solution of $M/E_k/1$ and $E_k/M/1$ queueing	
		models from the verbal	$M/M/\mu$ queuing models including busy period	models with their performance of measures. The	
		description of the real system.	distribution.	transient solution of $M/M/1$ and $M/M/\infty$ Queueing	
			Section C	models including busy period distribution.	
			Imbedded markov chain technique and its use to the	Section C	
			queueing models: M/G/1, GI/M/1 and M/D/c,	Imbedded Markov chain technique and its use to solve the Original models $M/C/1$ and $CI/M/1$. Bulk	
			<u>Bulk queuing models</u> . Different design and control	the Queueing models: $M/G/1$ and $G/M/1$. Butk	
			policies ((O, N) and vacation policies) for Markovian	design and control policies for Markovian Queueing	
			Queuing models. Introduction to discrete time	modele Simulation procedures: Data generation and	
			queuing system.	Book- keeping aspects	
			Simulation procedures: Data generation and Book-	Suggested Text Books:	
			keeping aspects.		
			Suggested Text Books:	1. Gross, D., & Harris, C. M. (1985). Fundamental	
			1. D. Gross and C.M. Harris, Fundamentals of	of Queueing Theory. (2 nd ed.). John Wiley.	
			Queueing Theory, 2 nd Ed., John Wiley, 1985.	2. Michel, E. W. (1994). Communication and	
			2. Michel E. Woodward, Communication and	Computer Networks Modeling with discrete Time	
			Computer Networks Modeling with Discrete	queues. IEEE Computer Society Press. (Chapter 4)	
			Time Queues, IEEE Computer Society Press,	Suggested Reference Books:	
			1994. (Chapter 4)	1. Cooper, R. B. (1981). Introduction to Queuing	

			Suggested Reference Books:	Theory. (2 nd ed.). North Holland, Elsevier.
			1. R.B. Cooper, Introduction to Queuing Theory,	2. Cox, D. R. & Smith, W. l. (1961). Queues.
			2nd Ed. North Holland 1981	Mathuen& Co. Ltd.
			2 DR Cox and WI Smith Onenes Mathuen	3. Kleinrock, L. (1975). Queuing System. (Vol. 1).
			1961	John Wiley.
			2 I Klainrock Ononing Systems Vol I John	4. Medhi, J. (1991). Stochastic Models in queuing
			Wilow 1975	Theory. Academic Press.
			4 I Modhi Stochastic Model in Opening theory	5. Satty, T. L. (1961). Elements of Queuing Theory with
			4. J. Media, Stochastic Woder in Queuing theory, Academic Press, 1991.	Applications. Tata McGraw Hill.
			5. T.L. Satty, Elements of Queuing Theory with	Suggested E-learning Material:
			Applications, Mc-Graw Hill, 1961.	1. Queuing Systems, NPTEL
				https://nptel.ac.in/courses/117103017/1
				2. <u>Introduction</u> to stochastic process and
				applications, NPTEL
				https://nptel.ac.in/courses/110104024/1
				3. Stochastic Process and Time series,
				ePATHSHALA <u>https://epgp.inflibnet.ac.in/ahl.p</u>
				<u>hp?csrno=34</u>
9.	CS 209 Data	On successful completion of the course	-	Suggested E-learning material:
	Structures	students will be able to		1. Programming and Data Structures
		 Develop knowledge of basic data 		https://swayam.gov.in/course/1407-programming-
		structures for storage and retrieval		and-data-structures
		of ordered or unordered data.		2. Data Structures and Program Methodology
		Data structures include: arrays,		https://nptel.ac.in/courses/106103069/
		linked lists, stacks, queues, binary		
		trees, heaps.		
		 Develop knowledge of 		
		applications of data structures		
		including the ability to implement		
		algorithms for the creation,		

		 insertion, deletion, searching, and sorting of each data structure. Learn to analyze and compare algorithms for efficiency using Big-O notation. Understand the concept of Dynamic memory management, data types, algorithms, Big O notation. Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data 			
10.	MATH (to be	On completion of this course, students will be able to:	Section A	Section A Concepts of Inventory, Classification of inventory models,	Change in Credite
	Inventory	Comprehend the dynamics of	problems. Inventory related costs, properties of inventory	EOQ model, EPQ model, EOQ model with shortages, EPQ	Cieuis
	Theory	inventory management's	systems, Factors influencing inventories.	model with shortages, EOQ model with constraints: Quantity	
		principles, concepts, and	Deterministic inventory models and extensions without	discounts, Floor Constraints, Investment Constraint.	
		techniques as they relate to the	and with lead time, Inventory models with partial	Sensitivity analysis in inventory models.	
		entire supply chain (customer	backlogging and sales, Models with continuous	Section B	
		demand, distribution, and product	production and non-constant demand with known	Stochastic Inventory Models and Extensions without and with	
		transformation processes),	constraints Organtity discounts: All units and	lead time. Power demand pattern inventory model,	
		 Understand the methods used by accomizations to obtain the right 	incremental. Sensitivity of the lot size system N	Inventory (VMI).	
		quantities of stock or inventory	products and M-Machines model.	Sector C	
		Familiarize themselves with	Section B	Simulation in Inventory system. Classification of items viz:	
		inventory management practices.	Stochastic Inventory Models and Extensions without	ABC, VED, FNSD, HML, SDE, XYZ, Case studies in	
		Optimize different case studies	and with lead time, Use of transformation from time-	inventory control.	
		requires efficient methods and	dependent for continuous and discrete demand,	Suggester Dooks:	
		practices to address inventory	Power demand pattern Inventory Model , Safety	1. Hadley, G., Whitin, T. M. (1963). Analysis of inventory	
		management problems.	stock and Buffer stock.	systems. Englewood Cliffs, N.J.: Prentice-Hall.	
				2. Naddor, E. (1984). Inventory systems. Malabar, Fla:	

		• Understand the behavior of the	Section C	R.E. Krieger.	
		inventory parameters after some	Simulation in Inventory system, Production	3. Waters, D. (2008). Inventory Control And Management,	
		time using simulation techniques.	scheduling, Classification of items viz: ABC, VED,	2Nd Ed. Wiley India Pvt. Limited.	
			(FNSD, HML, SDE, XYZ), Case studies.	Suggested E-learning material:	
			 Text Books: 1. Kanti Swarup, Operation Research, Sultan Chand & Sons, 2010. 2. Sharma S.D., Operations Research, Kedarnath Ramnath, Meerut, 1972. Reference Books: 	 Inventory Models costs, EOQ model(Lecture PDF) <u>https://nptel.ac.in/courses/110106045/9</u> Inventory management(PDF) <u>https://ocw.mit.edu/courses/engineering.</u> <u>systems-division/esd-260j-logistics-systems-fall-2006/lecture-notes/</u> 	
			1. G. Hadley, T. Whitin, Analysis of Inventory		
			 Systems, Prentice Hall, 1965. E.Naddor, Inventory System, John Wiley, New York, 1966. 		
11.	CS 315	On successful completion of the course	-	Suggested E-learning material:	No Change
	Theory of	students will be able to		1. Theory of Computation	
	Computation	• Explain basic concepts in formal		https://nptel.ac.in/courses/106104028/	
		language theory, grammars,		2. An Introduction to Formal Languages and	
		automata theory, computability		Automataby Peter Linz	
		theory, and complexity theory.		http://almuhammadi.com/sultan/books/Linz.5ed.	
		Understand abstract models of including		pdf	
		deterministic (DFA) non-			
		deterministic (NFA), Push Down			
		Automata(PDA) andTuring (TM)			
		machine models and their power			
		to recognize the languages.			
		 Understand the application of 			

		 machine models and descriptors to compiler theory and parsing. Relate practical problems to languages, automata, computability, and complexity. Apply mathematical and formal techniques for solving problems in computer science. Understand the relationship among language classes and grammars with the help of Chomsky Hierarchy. 			
12.	CS 308	On successful completion of the course	-	Suggested E-learning material:	No Change
	Operating	students will be able to		1. Operating Systems	
	Systems	• Learn the fundamentals of		https://nptel.ac.in/courses/106108101/	
		Operating Systems.		2. Linux for Developers by The Linux Foundation	
		• Learn the mechanisms of OS to		https://www.coursera.org/learn/linux-for-	
		handle processes and threads and their communication		developers	
		 Learn the mechanisms involved in 			
		memory management in contemporary OS			
		 Gain knowledge on Mutual 			
		exclusion algorithms, deadlock			
		detection algorithms and			
		agreement protocols			
		 Know the components and 			
		management aspects of			
		concurrency management			
		 Learn Case study of Unix OS. 			

13.	CS 528	On successful completion of the course	- Suggested E-learning material:	No Change
	Modeling	students will be able to	1. Modelling and Simulation of Descrete Event System	
	and	Define basic concepts in modeling	https://nptel.ac.in/courses/112107220/	
	Simulation	and simulation (M&S).	2. Simulation and modeling of natural processes by	
		 Classify various simulation 	University of Geneva	
		models and give practical	https://www.coursera.org/lecture/modeling-	
		examples for each category.	simulation-natural-processes/modeling-and-	
		 Construct a model for a given set 	simulation-F7vas	
		of data and perform its validity.		
		Generate and test random number		
		and apply them to develop		
		simulation models.		
		 Analyze output data produced by 		
		a model and test validity of the		
		model.		
		 Explain parallel and distributed 		
		simulation methods.		
		 Know how to simulate any 		
		discrete system using queuing		
		systems.		
14.	MATH (to be	On completion of this course, students	- Section A	New
	generated)	will be able to	Fields, prime subfields, Extension fields, algebraic	Course
	Fields and	• Understand the concepts of field	extensions, simple extensions, transcendental extension,	
	Galois	extension and appreciate its	minimal polynomial, Kronecker's Theorem, splitting	
	Theory	importance.	fields, uniqueness of splitting fields and algebraic	
	_	 Understand different types of 	closures.	
		extensions.	Section B	
		• Find the Galois group for some	Finite fields, existence and uniqueness of finite fields,	
		extension fields.	Normal and separable extensions, perfect fields,	
		• Know the link between field theory	Automorphisms of field, fixed fields, Galois group, F-	

and group theory.	conjugate, Frobenius map, character, linear	
• Demonstrate the solvability of	independence of characters.	
quadratic, cubic and quartic equations	Section C	
by radicals.	Fundamental theorem of Galois theory, cyclotomic	
	extensions and abelian extensions, cyclotomic	
	polynomials, cyclic extension, radical extension, solution	
	of quadratic, cubic and quartic equations by radicals.	
	Suggested Books:	
	1. Howie, J. M. (2006). Fields and Galois theory.	
	London: Springer.	
	2. Escofier, JP. (2001). Galois theory. New York:	
	Springer.	
	3. Gallian, J. A. (2013). Contemporary abstract algebra.	
	(8th Ed.). Boston, MA: Brooks/Cole Cengage	
	Learning.	
	4. Dummit, D. S. & Foote, R. M. (2004) Abstract	
	algebra (3 rd Ed.). New Jersey: Wiley.	
	5. Sen, M. K., Ghosh, S., Mukhopadhyay, P.	
	&Maity, S. K. (2019) Topics in abstract algebra (3 rd	
	Ed.). University Press.	
	6. Morandi, P. J. (2003). Field and Galois theory.	
	Beijing: Beijing World Pub.	
	Suggested E-learning Material:	
	1. Notes on Galois Theory:	
	www.math.iitb.ac.in/~srg/Lecnotes/galois.pdf	
	2. Lecture Notes:	
	https://nptel.ac.in/courses/111101001/	
	<u> </u>	

FOURTH SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to	Curves in Plane and Space : Parameterized curves,	Curves in Plane and Space: Parameterized curves,	Credit.
	Differential	Compute Reparameterization,	Tangent vector, Arc length, Reparametrization,	Tangent vector, Arc length, Reparametrization, Regular	
	Geometry	Curvature and Torsion of smooth	Regular curves, Curvature and Torsion of smooth	curves, Curvature and Torsion of smooth curves, Frenet-	
		curves of curves.	curves, Frenet-Serret formulae, arbitrary speed	Serret formulae, Osculating circle, Osculating sphere,	
		• Discuss about Osculating circle,	curves, Frenet approximation of a space curve.	Involutes and Evolutes, Bertrand curves, Spherical	
		Osculating sphere, Involutes and	Osculating circle, Osculating sphere, Involutes and	indicatrices, Helices.	
		Evaluates, Bertrand curves, and	Evolutes, Bertrand curves, Spherical indicatrices,	Section B	
		Helices.	Helices, Intrinsic equations of space curves,	Surfaces in R ³ Smooth surfaces. Tangent, Normal and	
		• Compute quantities of geometric	Fundamental theorem of space curves, Isomeries of	Orientability Examples of surfaces: Generalized	
		interest such as curvature, as well	R ³ , Global Properties of Curves.	cylinder and cone, ruled surfaces. Surface of revolution.	
		as develop a facility to compute in	Section B	First fundamental form. Isometries of surfaces.	
		various specialized systems, such	Surfaces in R ³ : Smooth surfaces, Tangents, Normals	Conformal mapping of surfaces, Surface Area, Equiareal	
		as semi geodesic coordinates or	and Orientability. Examples of surfaces: Generalized	maps and Theorem of Archemedes, Second fundamental	
		ones representing asymptotic lines	cylinder and cone, Ruled surfaces and Surface of	form, Curvature of curves on a surface, Normal and	
		or principal curvatures.	revolution.Inverse function theorem and its	Principal curvatures, Meusnier's theorem, Euler's	
		 Develop arguments in the 	applications, First fundamental form, Isometry of	theorem, Classification of point on surface, Geometric	
		geometric description of curves	surfaces, Conformal mapping of surfaces, Surface	interpretation of principal curvatures, Umbilical points.	
		and surfaces in order to establish	Area, Equiareal maps and a Theorem of	Section C	
		basic properties of geodesics.	Archemedes, Second fundamental form, Curvature	Gaussian and Mean curvature. Pseudo sphere. Flat	
			of curves on a surface, Normal and Principal	surfaces Surfaces of constant mean curvature Gaussian	
			curvatures, Meusnier's theorem, Euler's theorem,	curvature of compact surfaces Gauss man Geodesics	
			Classification of points on a surface, Geometric	Definition and basic properties. Geodesic equations.	
			interpretation of principal curvatures, Umbilical	Geodesics on a surface of revolution. Clairaut's theorem	
			points.	Geodesics as shortest paths. Geodesic coordinates.	
			Section C	Security as profess pulls, Security coordinates,	

	Caussian and Mean surveture. The Resudeenhere	Coodoois surgesture of a surge	
	Elat surfaces Surfaces of constant mean surveture	Geodesic curvatule of a curve.	
	Causeian curvature of compact surfaces. Cause man	Suggested Text Book	
	Gaussian curvature of compact surfaces, Gauss map.	1. Pressley, A. (2012). Elementary differential	
	Geodesics: Definition and basic properties, Geodesic	geometry. London: Springer.	
	equations, Geodesics on a surfaces of revolution,	Suggested Reference Books:	
	Clairaut's theorem, Geodesics as shortest paths,	1. Carmo, M. P. (1980). Differential geometry of curves	
	Geodesic coordinates, Geodesic curvature of a curve,	and surfaces. Englewood Cliffs, N.J: Prentice-Hall.	
	Gauss TheoremaEgregium (Statement only), Gauss	2. O'Neill, B. (2006). Elementary differential geometry.	
	equations, Codazzi Mainardi equations, Gauss-	London: Elsevier/Academic Press.	
	Bonnet Theorem (Statement only).	3. Gray, A. (2000). Modern differential geometry of	
	Text book:	curves and surfaces. FL: CRC Press.	
	• Pressley, Elementary Differential Geometry,	4. Somasundaram, D. (2010). Differential geometry: A	
	Springer (Undergraduate Mathematics Series),	first course. Harrow: Alpha Science International.	
	2001.		
	Reference books:	Suggested E-learning material:	
	1. M. P. Do Carmo, Differential Geometry of	1. NOC:Differential Calculus in Several Variables:	
	Curves and Surfaces. Prentice-Hall. Inc.	https://nptel.ac.in/courses/111104092/	
	Englewood Cliffs, New Jersey, 1976	2. NOC:Curves and Surfaces:	
	2 A Gray Differential Geometry of Curves and	https://nptel.ac.in/courses/111104095/	
	Surfaces, CRC Press, 1998.		
	3 B O' Neill Elementary Differential Geometry		
	Academic Press, 1997		
	4 C Bär Flamentary Differential Coometry		
	Cambridge University Press 2001		
	E L A There Elementary Terics in Differential		
	5. J. A. Thorpe, Elementary Topics in Differential		
	Geometry, Springer (Undergraduate Texts in		
	Mathematics), 19/9.		
	6. D. Somasundaram, Differential Geometry, A		
	First Course,Narosa Publishing House, New		
	Delhi, 2005.		

-					
2.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to	Mathematical classification of Partial Differential	Mathematical classification and Formulation of partial	Credit.
	D (1	 apply the techniques for solving 	Equation, Illustrative examples of elliptic, parabolic and	differential equations, Partial Differential equation of the	
	Partial	partial differential equations.	hyperbolic equations. Physical examples of elliptic,	first order, Lagrange's linear equation, different forms of	
1	differential	 describe the most common partial 	parabolic and hyperbolic partial differential equations,	non-linear partial differential equations, Charpit's	
	Equations	differential equations that appear	Formulation of partial differential equations. Partial	method. Linear partial differential equations with	
		in problems concerning e.g. heat	Differential equation of the first order, Lagrange's	constant coefficients. Homogeneous equations, Non-	
		conduction, flow, elasticity and	linear equation, different forms of non-linear partial	homogeneous equation.	
		wave propagation	differential equations, Charpit's method. Linear	Section B	
		 solve simple first order equations 	partial differential equations with constant	Dettoil D	
		using the method of	coefficients. Homogeneous equations, Non-	Partial Differential equations of second order with	
		characteristics and classify second	homogeneous equation.	variable coefficients, Monge's Methods, Separation of	
		order equations.	Section B	variables, The Wave equation (one and two	
		 describe, compute and analyse 	Partial Differential equations of second order with	dimensional) Fourier series solutions of the Wave	
		wave propagation and heat	variable coefficients, Monge's Methods, Separation	equations (homogeneous and non-homogeneous),	
		conduction in mathematical terms	of variables, canonical forms, Cauchy's problem. The	Numerical solution of the wave equation.	
		• formulate maximum principles for	Wave equation (one and two dimensional) Fourier	Section C	
		various equations and derive	series solutions of the Wave equations	Heat equations (homogeneous and non-homogeneous),	
		consequences.	(homogeneous and non-homogeneous), Numerical	Numerical approximation of solution of standard heat	
		 evaluate and assess the results of 	solution of the wave equation. Wave motion along	condition problem, Harmonic Functions and Dirichlet	
		various problems in other subjects	infinite and semi infinite strings. Characteristics and	Problem, Green's Functions and Properties. Existence	
		based on these concepts.	d' Alembert's solution. Normal modes of Vibration	theorem by Perron's Method.	
		I	of a circular elastic membrane and rectangular	Suggested Text Books:	
			membrane.	1 John F (1991) Dantial differential equations Non-	
			Section C	1. Joint, F. (1991). Pariau aggereniau equations. New	
			Heat equations (homogeneous and non-	Paneal I. J. P. Dhami H. S. (2004) Differential	
			homogeneous). Numerical approximation of	2. Dansal, J. L., &Ditalili, H. S. (2004). Differential	
			solution ofstandard heat condition problem.	2 Oblail D V (2012) Advanced anoincoming	
			solution of annual new contraction problem.	3. O'Neil, P. V. (2012). Advanced engineering	

г
Harmonic Functions and Dirichlet Problem, Green's	mathematics. India: Cengage Learning.	
Functions and Properties. Existence theorem by	4. Sneddon, I. N. (1981). Elements of partial	
Perron's Method. Heat Equation, Maximum	differential equations. New York MacGraw-Hill.	
Principle. Uniqueness of Solutions via Energy	Suggested References Books:	
Method. Uniqueness of Solutions of IVPs for Heat	1 Weinberger H F (1995) A first course in partial	
Conduction Equation.	differential equations with complex variables and	
Text Books:-	transfrom methods New York: Dover Publications	
1. JohnF. Partial Differential Equations, Springer	2 Williams W E (1980) Partial differential	
Verlag, New York, 1991.	equations Oxford [Eng] : New York : Clarendon	
2. J. L. Bansal and H. S. Dhami: Differential	Press : Oxford University Press	
Equations Vol.11, 2004, JPH, India.	3. Folland, G. B. (2003). Introduction to partial	
3. P. V. 0' Neil: Advanced Engineering	differential equations New Delhi: Prentice Hall of	
Mathematics, Cengage Learning, India, 2011.	India.	
4. I. N. Sneddon: Elements of Partial Differential	4. Rao, K. S. (2010). Introduction to Partial differential	
Equations, Mc-Graw Hill New Delhi 1957	equations. New Delhi: Prentice Hall of India.	
References Books:-	5. Amaranath, T. (2009). An elementary course in	
1. H.F. Weinberger: A First Course in Partial	partial differential equations. Sudbury, Mass: Jones	
Differential Equations, John Wiley New	and Bartlett Publishers.	
York,1965.	6. Sharma, J. N., & Singh, K. (2009). Partial	
2. W.E. William: Partial Differential Equations,	differential equations for engineers and scientists.	
Clarendan .Press, Oxford, 1980.	Oxford: Alpha Science International Ltd.	
3. Folland G. B. Introduction to partial differential	Suggested E-learning material:	
equations, Princeton University Press1996	1 Partial Differential Equation: Platform:	
4. K.SankaraRao Introduction to Partial	https://ocw.mit.edu/courses/mathematics/18	
Differential Equations, PHI learning Pvt Ltd	02 multivariable calculus fall 2007/video	
2010.	lectures/lecture-15-partiaLdifferentiaL	
5. P Prasad and R Ravindran: Partial Differential	equations/	
Equations, New Age International, 2011.	2 Introduction to partial differential equation:	
6. T. Amaranath : An Elementary Course in	Platform: NPTEL	
Partial Differential Equations. Jones &	https://nptel.ac.in/courses/111103021/	
 P Prasad and R Ravindran: Partial Differential Equations, New Age International, 2011. T Amaranath An Elementary Course in 	<u>lectures/lecture-15-partial-differential-</u> <u>equations/</u> 2. Introduction to partial differential equation; Platform: NPTEI	
Partial Differential Equations, Jones &	https://nptel.ac.in/courses/111103021/	ļ

			 Bartlett Learning, 2009 7. J N Sharma and K Singh: Partial Differential Equations for engineers and scientists.Narosa New-Delhi, India.2014. 	3. Video Lectures for Partial Differential Equations; Platform: LAMAR <u>http://www.math.lamar.edu/faculty/maesumi</u> /PDE1.html#pdeRESOURCES	
3.	STAT (to be generated) Advanced Inference	 After successful completion of this course, student will be able to Apply various estimation and testing procedures to deal with real life problems. Understand Fisher Information, Lower bounds to variance of estimators, MVUE. Understand consistency, CAN estimator, MLE. Understand Neyman-Pearson fundamental lemma, UMP test. Apply Likelihood Ratio test in real life testing problems. Understand invariant and similar test. 	Section A Consistency and asymptotic relative efficiency of estimators, Consistent asymptotic normal (CAN) estimator, Method of MLE and its large sample properties, Best Asymptotic normal (BAN) for one parameter, <u>MLE in Pitman family and exponential of</u> distribution. Section B <u>Best critical region (BCR)</u> , Generalized <u>Peyman</u> Pearson lemma, UMP tests for distribution with monotone likelihood ratio (MLR), Unbiased tests, <u>Locally most powerful test</u> , Similar regions and test of Neymann structure. <u>Section C</u> Invariance tests and UMP invariant tests, <u>Asymptotic</u> <u>distribution of</u> Likelihood ratio test (LRT) statistics, <u>Asymptotic distribution of log likelihood</u> <u>ratio</u> , <u>Consistency of large sample test</u> , <u>Asymptotic</u> power of large sample test. Text Book: 1. Ferguson, T.S. (1996) : A Course in Large Sample Theory, Chapman & Hall, London. 2. Goon, A.M. Gupta, M.K. Dasgupta, B. (1973). An Outline of Statistical Theory, vol. 2, World Press. Reference Books: 1. Gupta, A.D. (2008), Asymptotic Theory of	Consistency and asymptotic relative efficiency of estimators, Consistent asymptotic normal (CAN) estimator, Best asymptotic normal (BAN) for one parameter, Method of MLE and its large sample properties. Section B Generalized Neyman- Pearson lemma, UMP tests for distribution with monotone likelihood ratio (MLR), Unbiased tests, Similar regions and test of Neyman structure. Section C Invariance tests and UMP invariant tests, Likelihood ratio test. Consistency of Likelihood ratio test. Asymptotic properties of likelihood ratio test. Text Books 1. Ferguson, T. S. (1996). A course in Large sample Theory. London, Chapman and Hill. 2. Goon, A. M., Gupta, M. K. & Gupta, B. D. (1973). Fundamental of Statistics (Vol. II), The world Press Pvt. Itd. Reference Books: 1. Gupta, A. D. (2008). Asymptotic Theory of Statistics and Probability. New York, Springer. 2. Kale, B. K. (1999). A first course on parametric inference. Narosa Publication.	Change in Credit.

			 Statistics and Probability, Springer, NewYork. Kale, B.K. (1999), A First Course in Parametric Inference, Narosa, Publication. Lehmann, E.L. and Casella, G. (1998), Theory of Point Estimation, Springer, New York. Rao, C.R. (1995), Linear Statistical Inference and its Applications, Wiley, New York. Lehman, E. (1986), Theory of Point Estimation, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. 	 Lehman, E. L. &Cesella, G. (1998). Theory of Point estimation.New York, Springer. Rao, C. R. (1995). Linear Statistical Inference and Its Applications. Wiley Eastern Ltd. Lehman, E. L. (1986). Testing of Point Estimation, John Wiley & Wiley eastern. Lehman, E. L. (1986). Testing of Statistical Hypothesis, John Wiley & Wiley eastern. Suggested E-learning Resources Statistical Inference, NPTEL, <u>https://nptel.ac.in/courses/111105043/</u> Statistical Inference, 	
				hp?csrno=34	
4.	STAT 502	On the successful completion of the	-	Suggested E-learning material:	No Change
	Bayesian and	course, student will be able to,		1. Video lecture on 'Bayesian statistics without	in Syllabus.
	Multivariate	 Find posterior distribution of a 		tears' https://podcasts.ox.ac.uk/bayesian-	
	Analysis	parameter.		statistics-without-tears	
		 Identify the nature of the prior. 			
		Understand various types of loss			
		Functions and their nature.			
		• Ose bayesian meory to traw			
		Define multivariate normal			
		distribution and understand its			
		properties.			
		 Estimate the mean vector and 			
		covariance matrix of the			
		multivariate normal population.			

		•	Test the significance of single			
			mean vector and difference in the			
			two mean vectors.			
		•	Perform PCA and factor analysis			
			on real data set.			
		•	Classify and discriminate the			
			observations in two populations.			
		•	Perform correlation analysis			
			between two multivariate			
			populations.			
5.	STAT 502L	On co	ompletion of this course, the student	-	Suggested E-learning Material	No Change
	Bayesian &	will b	e able to		1. Using R for Multivariate Analysis <u>https://little-</u>	in Syllabus
	Multivariate	•	Differentiate between the nature		book-of-r-for-multivariate-	
	Analysis Lab		of prior and posterior densities by		<u>analysis.readthedocs.io/en/latest/src/multivari</u>	
			means of their plots		<u>ateanalysis.html</u>	
		•	Find Bayes estimator, Bayes Risk			
			and perform Bayes testing			
		•	Estimate mean vector and			
			covariance matrix of given data			
			set			
		•	Perform testing of significance of			
			single mean vector and difference			
			of two mean vectors			
		•	Reduce dimension of the data			
			using principal component			
			analysis and factor analysis			
		•	Classify and discriminate			
			observations in two or more			
			populations			
		•	Observe correlation between two			

		sets of multivariate data sets.			
6.	STAT (to be generated) Reliability and Renewal Theory	 On successful completion of the course, the students will be able to: Understand the importance of validity and reliability assessment and the link between the two. Estimate the reliability function and mean time to failure for different types of systems Analyze statistical experiments leading to reliability modeling. Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. Analyze non-repairable systems of independent components, with and without redundancy First look at what a random processes are. Describe, derive, and prove important theorems and formulas for renewal theory Use renewal theory to solve 	- Concept of Reliability. Evaluation of Reliability function. System, Re Parallel system, partia system with perfect (k,n) system, Bridge S its molding for variou Software Reliability. Reliability models of Allocation Problems, Age, Block, Policies, I Corrective Maintenand repair, Notions of aging Renewal Theory, Distr moments, Recurrence Application of Renew type equations, Optim system reliability. Text Books 1. Sinha, S. K. (1986). York: Wiley. 2. Gert s bakh, I.B. applications to preven Contenance	Section A Classes of Life time distributions. ty function, Shape of Reliability liability Evaluation : Series & ally redundant system, standby switching/imperfect switching, tructure. Availability theory and is configurations. Introduction to Section B maintained systems. Reliability Discrete Replacement Policies : Preventive Maintenance Policies, ce Policies, Concept of minimal g. Section C ibution of number of renewals & time & its limiting distribution. al Theory, Solutions of Renewal ization problem with respect to Reliability and life testing. New (2009). Reliability theory: With ntive maintenance. New Delhi:	New Course
l		problems where Poisson is not a	1 0		

		realistic process	3. Cox, D. R. (1982). <i>Renewal theory</i> . London: Chapman and Hall.	
			4. Lewis, E. E. (1996). Introduction to reliability engineering. New York, NY: Wiley.	
			Reference Books	
			1. Barlow, R. E., &Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Rinehart and Winston.	
			2. Jardine, A.K.S. (1973). Maintenance, Replacement and Reliability. UK: Pitman Publication.	
			3. Medhi, J. (2009). <i>Stochastic Process</i> (3rd Ed.). New Age International, 2009.	
			Suggested E-learning material:	
			1. 2011 Lecture 17: Modules, Systems, and Reliability:	
			https://ocw.mit.edu/courses/mechanical- engineering/2-627-fundamentals-of-	
			photovoltaics-tail-2013/ lecture-videos- elidee (2011 lecture 17 modules systems and	
			reliability/	
			2. <u>Probability Theory and Applications: Lecture 40</u> Reliability of Systems:	
			https://nptel.ac.in/courses/111104079/40	
7.	MATH 516	On completion of this course, students	- Suggested E-learning material:	No Change
	Network	will be able to:	1.Critical path method (PDF)	in Syllabus.
	Analysis &	 Plan and structure a project. 	http://textofvideo.nptel.ac.in/112106131/lec34.	
	Goal	 Understand basic techniques for 	pdf	
	Programmin	quality improvement,	2.Project Management(Video Lecture)	
	g	 Apply the PERT & CPM techniques 	https://nptel.ac.in/courses/110104073/21	

	to optimize the project goals. • Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. • Understand how to model and solve problems using Goal Programming		
8. MATH 516L Network Analysis & Goal Programmin g Lab	 On completion of the course, the student will be able to, Implement optimization methods in software to solve shortest path problem, spanning tree problem, programming problems etc. The science learning goals of laboratory experiences include enhancing mastery of science subject matter, developing scientific reasoning abilities, increasing understanding of the complexity and ambiguity of empirical work, developing practical skills, increasing understanding of the nature of science, cultivating interest in science and science learning. Write efficient, well-documented code and present numerical results in an informative way. 	 Practical/Lab to be performed on a computer using OR I (TORA, LINGO, MATLAB etc.)/Statistical packages. 1. Determines the Flow of commodity in a network 2. Solution of Shortest path problem as a LPP 3. Shortest Path Problem using Dijkstra's algorithm 4. Problem based on Minimal Spanning Tree 5. Project planning (Deterministic case-CPM) 6. Project planning (Probabilistic case-PERT) 7. Problem based on Project management with Crashing 8. Solution of Flow Shop Problem 9. Solution of Job Shop Problem 10. To solve Goal Programming Problem using Graphical Method 11. Graphical solution of pre-emptive Goal programming 13. Solution of Goal Programming Problem with simplex method 	List of Practical is added.

			 Text Books/ Reference Books: 1. Winston, W. L. (2009). Operations research: Applications and algorithms. Belmont, Calif: Brooks/Cole, Cengage Learning. 2. Hillier, F. S., & Lieberman, G. J. (2016). Introduction to Operations Research. Boston: McGraw-Hill. Suggested E-learning material: 	
			 Optimization Toolbox <u>https://in.mathworks.com/help/optim/index.h</u> <u>tml</u> LINGO <u>http://swmath.org/software/4942</u> 	
9.	CS313	On successful completion of the course	- Suggested E-learning material:	No Change
	Software Engineering	 students will be able to Understand the system development lifecycle. Understand the software-development process, including requirements analysis, design, programming, testing and maintenance. Model object-oriented software systems. Investigate and improve the specification of a software system. Specify, design and construct CASE tools and application software. Develop and apply testing 	 Software Engineering https://nptel.ac.in/courses/106101061/ Software Engineering by Roger S. Pressman http://qiau.ac.ir/teacher/files/911610/13-11-1387- 17-31-03.pdf 	

		strategies for software applications. • Identify some of the main risks of software development and use.		
		 Effectively participate in team- based activities. 		
10.	CS 213 Design and Analysis of Algorithms	 On successful completion of the course students will be able to Analyze the performance of various algorithms in terms of time and space. Solve recurrence relation using various methods. Compute complexity of various iterative and recursive algorithm. Understand the concept and design algorithm using data structures including threaded binary tree, B-Tree and hashing techniques. Understand numerous algorithm design techniques including divide& conquer, greedy, dynamic programming, backtracking and branch& bound. 	 Suggested E-learning material: Design and Analysis of Algorithms https://nptel.ac.in/courses/106101060/ Algorithms Specialization by Stanford University https://www.coursera.org/specializations/algorith ms Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein https://mcdtu.files.wordpress.com/2017/03/introd uction-to-algorithms-3rd-edition-sep-2010.pdf 	No Change
		 Choose appropriate algorithm design techniques for solving real world problems. Understand how the choice of the algorithm design methods impact 		

the performance of programs

THIRD/FOURTH SEMESTER (Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 501	On completion of the course, students	-	Suggested E-learning material	No change
	Advanced	will be able to,		1. Normed space, Banach space and Hilbert spaces	in the
	Analysis	• Explain when Normed space become		and its properties;	syllabus
	(Analysis on	Banach space.		Platform: <u>https://nptel.ac.in/courses/111105037/</u>	
	Abstract	 Define the Hilbert spaces. 			
	Spaces)	 Define multi linear mappings. 			
		 Check whether the function is 			
		bounded or not?			
		 What is directional derivative? 			
		• Explain the difference between			
		partial derivative and directional			
		derivative.			
		 Tell about the Lipschitz's constant 			
		and conditions			
		 Related the analysis and differential 			
		equation			
2.	MATH 503	On completion of the course, students	-	Suggested E-learning material	No change
	Advanced	will be able to,		1. Normed space, Banach space and Hilbert spaces	in the
	Functional	 Check whether a sequence of 		and its properties;	syllabus
	Analysis	operators convergence or		Platform: <u>https://nptel.ac.in/courses/111105037/</u>	
		divergences?			
		• Explain how continuous function on			
		a closed and bounded interval can be			

		uniformly approximated on that			
		interval by polynomials to any			
		degree of accuracy.			
		 Explain how you will apply the 			
		Banach fixed point theorem.			
		 Relate the fixed point with solution 			
		of differential and Integral equation.			
		 Check the spectral properties of 			
		bounded linear operators			
		 Check whether the operator is 			
		compact or not?			
		• Explain and use of the properties of			
		compact linear operators.			
3.	MATH 504	On completion of the course, students	-	-	No change
	Analytic and	will be able to,			in the
	Algebraic	 Demonstrate the knowledge of 			syllabus
	Number	arithmetic functions and their			
	Theory	property.			
		 Know the prime number theorem 			
		and its analytic proof.			
		 Understand basic concepts of 			
		algebraic number theory such as			
		conjugates, discriminants, algebraic			
		integers, integral basis, norms and			
		traces.			
		 Understand prime factorization of 			
		ideal and unique factorization.			
		 Know some important theorem in 			
		algebraic number theory.			
4.	MATH 510	On completion of the course, students	-	Suggested E-learning material	No change

	Integral	will be able to,		1. Open course in Integral equations, calculus of	in the
	Equations	 Acquire ability to recognize 		variation and its applications (all Topics)	syllabus
	and Calculus	difference between Volterra and		https://nptel.ac.in/courses/111107103/	
	of Variations	Fredholm Integral Equations, First		2. Volterra and Fredholm Integral Equations	
		kind and Second kind, homogeneous		http://staff.ul.ie/mitchells/Final_notes.pdf	
		and inhomogeneous.		3. Green's Functions	
		• Be thorough with different types of		http://www.maths.manchester.ac.uk/~wparnell/	
		integral equations and apply these		MT34032/34032 IntEguns.pdf	
		methods to solve Integral Equations.		4. Neumann series, resolvent kernels and variational	
		• Students will have much better and		problem	
		deeper understanding of the		https://swayam.gov.in/courses/4824-july-2018-	
		fundamental concepts of the space of		integral-equations-calculus-of-variations-and-its-	
		admissible variations and concepts of		applicati	
		a weak and a strong relative		5. Open course in integral equations:	
		minimum of an integral.		https://ocw.mit.edu/courses/mathematics/18-	
		 Solve isoperimetric problems of 		307-integral-equations-spring-2006/	
		standard type.			
		 Solve simple initial and boundary 			
		value problems by using several			
		variable calculus.			
5.	MATH 517	On completion of the course, students	-	Suggested E-learning material:	No change
	Number	will be able to,		1. Lecture Notes on Number Theory:	in the
	Theory and	• Understand the basic concepts of		https://nptel.ac.in/courses/111103020/	syllabus
	Cryptograph	number theorem and their		2. Video Lecture on Number Theory:	5
	y	applications in cryptography.		https://bit.ly/2ToTdjZ	
	-	• Know the need of security of digital		3. Video Lecture on Cryptography:	
		data.		https://nptel.ac.in/courses/106105031/	
		• Demonstrate the application of			
		mathematics in computer science.			
		Appreciate the historical			

		cryptosystems and the development			
		of modern cryptography.			
		 Demonstrate the knowledge of 			
		mathematics behind RSA			
		cryptosystem, ElGamal			
		Cryptosystem and secrete sharing			
		schemes.			
6.	MATH 527	On completion of the course, students	-	Suggested E-learning material:	No change
	Tensor	will be able to,		1. NOC: Differential Calculus in Several Variables:	in the
	Analysis and	• Discuss different kinds of surfaces,		https://nptel.ac.in/courses/111104092/	syllabus
	Geometry of	connection and covariant derivatives.		2. NOC: Multivariable Calculus:	-
	Manifolds	 Understand the concepts of manifold 		https://nptel.ac.in/courses/111107108/	
		and illustrate some examples of		3. NOC: Calculus of One Real Variable:	
		manifolds.		https://nptel.ac.in/courses/109104124/	
		• Understand the Ricci identity and			
		enable to use it in proving different			
		theorems.			
		• Define and illustrate some examples			
		of Lie group.			
7.	MATH 529	On completion of the course, students	-	Suggested E-learning material:	No change
	Theory of	will be able to,		1. Game Theory: Lecture	in the
	Games	 Understand all the basic concepts 		notes(PDF) <u>https://ocw.mit.edu/courses/econo</u>	syllabus
		and results of game theory.		mics/14-126-game-theory-spring-2016/	
		 Understand terms like Nash 		2. Game Theory and Economics: Lecture	
		equilibrium, the extensive form		notes(PDF) <u>https://nptel.ac.in/courses/1091030</u>	
		(which computer scientists call game		<u>21/</u>	
		trees), Bayesian games (modelling			
		things like auctions), repeated and			
		dynamic games.			
		 Recognize and model strategic 			

		 situations, to predict when and how your actions will influence the decisions of others and to exploit strategic situations for your own benefit. Understand the game theoretic tools for modelling and solving problems in operations management. 			
8.	MATH 530 Viscous Fluid Dynamics	 On completion of the course, students will be able to, Understand the fundamental concepts of fluid dynamics. Derive the fundamental equations governing the flow of a viscous fluid. Demonstrate the analytical solutions of Navier-Stokes equations by making certain assumptions for certain geometries. Identify, formulate and solve engineering problems. 	-	 Suggested E-learning material 1. Viscous Fluid Flow, Platform: The University of Manchester; <u>http://www.maths.man.ac.uk/~mheil/Lectures/</u><u>Fluids/index.html</u> 2. Fluid Mechanics, Platform: nptel; <u>https://nptel.ac.in/courses/112105171/</u> 3. Introduction to Fluid Mechanics and Fluid Engineering, Platform: FreeVideoLectures; <u>https://freevideolectures.com/course/3513/intro</u> <u>duction-to-fluid-mechanics-and-fluid-</u> <u>engineering/28</u> 	No change in the syllabus
9.	MATH 507 Financial Mathematics	 On completion of the course, students will be able to, Understand financial analysis and planning. Know the cost of capital, capital structure and dividend policies. Apply technique of Goal Programming to profit planning and 	-	-	No change in the syllabus

		 financial budgeting. Make financing decision onproblem of determining optimal capital structure Understand the concept of leasing, debt management, analysis of commitment of funds and risk of cash insolvency. 			
10.	MATH 513	On completion of the course, students	-	-	No change
	Marketing	will be able to,			in the
	Managemen	 Understand the concept of marketing 			syllabus
	t	and its role in business and public			
		organization.			
		 Understand the need for scientific 			
		marketing analysis.			
		 To uses Mathematical models in 			
		Marketing and understand their			
		limitations.			
		 Understand the concept of 			
		promotional decisions in the			
		presence of competition.			
		 Use game theory models for 			
		promotional effort.			
		 Make channels of distribution and 			
		transportation decision.			

11.	MATH (to be	On completion of the course, students	-	Section A	New
	generated)	will be able to,		Basic concept of Fuzzy Logic: Introduction to fuzzy set,	elective
	Fuzzy	 Learn crips and fuzzy set theory. 		membership function, Various forms of membership	
	Logic and	• Decide the difference between crips set		functions, type of fuzzy sets, LR- representations of	
	Belief	and fuzzy set theory.		fuzzy sets, properties of fuzzy sets (support,	
	Theory	• Make calculation on fuzy set theory.		cardinality, alpha-cut set, convexity).Operations on	
		Recognize fuzzy logic membership		Fuzzy sets: Union, Intersection, complement,	
		function.		combinations of operations. Fuzzy extension principle,	
		• Recognize fuzzy logic fuzzy inference		Fuzzy Relations: fuzzy cartesian product and	
		systems		composition, Crisp versus fuzzy relations, binary fuzzy	
		• Make applications on Fuzzy logic		relation, fuzzy equivalence relations, fuzzy	
		membership function and fuzzy		compatibility relations, fuzzy ordering relations. Fuzzy	
		inference systems.		graphs, Fuzzy morphism (homomorphism), Fuzzy	
		• Utilize fuzzy logic approach to		relation equations.Fuzzy Numbers: Definitions and	
		problems arising in the field of		types of fuzzy numbers, interval analysis in arithmetic,	
		Operations Research, Computer		triangular and trapezoidal types, Arithmetic operations	
		Science and Engineering.		on fuzzy numbers. Fuzzy Function: Introduction to	
		• Formulate logical expressions, fuzzy		fuzzy function, type of fuzzy function, fuzzy extrema of	
		logic to solve a variety of problems		function, differentiation and integration of fuzzy	
		related to real scenarios		function.	
		 Apply defuzzification methods. 		Section B	
				Fuzzy Logic: Classical logic, logic variable, logic	
				function, truth tables, tautology and inference rule,	
				Linguistic variables. Predicate logic, Quantifier, fuzzy	
				expression, operators in fuzzy expression, fuzzy	
				predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy	
				if-then rules: Basics of fuzzy rules, fuzzy mapping	
				rules, fuzzy implication rules.Fuzzy Decision Making:	
				Introduction, multistage decision making, fuzzy	
				ranking method, fuzzy linear programming, fuzzy	

	transportation problemsFuzzy System: Introduction to	
	fuzzy system.Defuzzification methods: centre of area	
	(or centre of gravity or centroid), centre of maxima,	
	mean of maxima.Fuzzy controllers: an overview of	
	fuzzy controller.Fuzzy Systems and Neural Network:	
	Introduction to neural network, fuzzy neural networks.	
	Section C	
	Probability, Uncertainty and Fuzzy Measures:	
	Probability verses Possibility, Fuzzy event, Crisp	
	probability of fuzzy event and fuzzy probability of	
	fuzzy event, Level of uncertainty, Measure of fuzziness:	
	(i) using Shannon's entropy formula and (ii) using	
	metric distance.	
	Belief Theory: Evidence Theory- Mathematical Theory	
	of evidence, Introduction to Shafer's Belief Theory,	
	Belief representation: mass of belief, belief measure,	
	plausibility measure, properties of belief function-	
	relation between belief and plausibility measure,	
	Dempster's Rule of Combination, Applications of	
	Fuzzy logic and fuzzy set theory in Operations	
	Research, Computer Science and Engineering fields.	
	Suggested Text Books:	
	1. Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag	
	 Klir, G. J., & Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India. 	
	Suggested Reference Books:	
	1. Klir, G. J., & Folger, T. A. (2010). Fuzzy sets,	

			uncertainity and information. New Delhi: PHI Learning Private Ltd.	
			 Yen, J., &Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. Nguyen, H. T., & Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman & Hall/CRC. 	
			Suggested E-learning material: 1. Introduction to Fuzzy Logic(Videos) https://nptel.ac.in/courses/106105173/2 2. Fuzzy Logic: Introduction (PDF) http://cse.litkgp.ac.in/~dsamanta/courses/sca/resou rces/slides/FL-01%20Introduction.pdf	
12.	MATH (to be	On successful completion of this course	Section A	New
	generated)	students will be able to,	Communication channels, maximum likelihood	elective
	Coding	 Understand the need of coding 	decoding,Hamming distance, minimum distance	
	Theory	theory.	decoding, distance of a code, finite fields, structure of	
		 Appreciate the applications of 	finite fields, minimal polynomial, linear codes,	
		abstract and linear algebra in	Hamming weight, bases of linear codes, generator	
		coding theory.	matrix and parity check matrix, encodingand decoding	
		 Find the generator and parity 	of linear codes, syndrome decoding.	
		check matrix of linear codes.	Section B	
		 Understand the main coding 	The coding theory problem, lower bounds, Hamming	

theory problem.	bounds and perfect codes, singleton bound and MDS	
 Derive classical bounds of codes 	codes, nonlinear codes, Reed-Muller codes, subfields	
and the distance of the code.	codes.	
Understand cyclic codes and their	Section C	
decoding.	Cyclic codes: definitions, generator polynomials,	
-	generator and parity check matrices, decoding of cyclic	
	codes, Burst-error-correcting codes, BCH codes:	
	definitions, parameters of BCH codes, Decoding of	
	BCH codes. Reed-Solomon codes, generalized Reed-	
	Solomon codes, Goppa codes.	
	Suggested Text Book:	
	1. Ling, S., & Xing, C. (2004). Coding Theory: A first	
	Course. Cambridge: Cambridge University	
	Press.	
	Suggested Deference Pooles	
	1 MacWilliams F. L. & Sloano, N. I. A. (2007) The	
	Harvenianis, F. J., & State IV, J. A. (2007). The	
	North Holland	
	2 Deterson W & Wildon F. I. (2008) Error	
	2. Feelsoni, v. v., e. veenni, E. J. (2000). Entor	
	Broce	
	2 Boylakamp F. P. (2015) Alashraig goding theory	
	(Algebraic Coding Theory) Singapore: World	
	Calgeonia Coung meory.) Ongapore. Work	
	A Huiffman W. C. & Diore V. (2010). Europeontele	
	4. Fullman, W. C., & ress, V. (2010). Fundamentals	
	Univ. Proc.	
	Univ. Press. 5 Lill D (2001) A first source in active theory.	
	5. Hill, K. (2001). A first course in county theory.	
	(Direction Control of Control	
	b. Knee, M. 1. (1989). Error-correcting coaing theory.	

			Singapore: McGraw-Hill. Suggested E-learning Material: 1. Online Course on Coding Theory:https://onlinecourses.nptel.ac.in/noc17 _ee07 2. Lecture Notes: https://ocw.mit.edu/courses/electrical- engineering-and-computer-science/6-895- essential-coding-theory-fall-2004/	
13.	MATH (to be	On successful completion of this course	Section A	New
	generated)	students will be able to:	Metrics space, Complete metric space, Convergence,	elective
	Fixed Point	• Understand various concepts in	Cauchy sequence and Completeness, Various concept	
	Theory	metric spaces such as	in metric space, Normed linear space, Banach space,	
	-	completeness.	normed space and Hilbert space, open mapping	
		Demonstrate standard examples	theorem and Closed graph theorem, linear operator.	
		of metric spaces and prove simple	Section B	
		results related to them.	Lipschitz mapings, expansive and Nonexpansive	
		 Understand the proof of open 	Mappings, contractive and contraction mappings,	
		mapping theorem and Closed	Upper and lower semi continuity of maps, contractive	
		graph theorem.	and nonexpansive multivalued maps, Banach's	
		 Check the conditions for 	contraction principle, Fixed point theorem of	
		expansive and Nonexpansive	Schauder's and Kirk, Tarsiki's Fixed point theorem.	
		Mappings, contractive and	Section C	
		contraction mappings.	Banach Fixed point theorem for multivalued maps,	
		 Understand standard fixed-point 	Generalized Schauder Fixed point theorem. Existence of	
		theorems.	solutions of ordinary equations and systems of linear	
		• To present the basic ideas of the	equations in several unknowns, applications in the	
		theory, and illustrate them with a	theory of differential and integral equations.	
		wealth of examples and	Suggested Books:	
			1. Zeidler, E. (2000). Nonlinear functional analysis	

		applications in differential and	and its applications: Vol 1. New York: Springer.	
		integral equations.	2. Khamsi, M. A., & Kirk, W. A. (2001). An	
			introduction to metric spaces and fixed point theory.	
			New York: John Wiley & Sons.	
			3. Smart. D. R. (1980). Fixed point theorems.	
			Cambridge: Cambridge University Press.	
			4 Istra tescu. V I (1981) Fixed noint theory An	
			introduction Dordrecht Holland D Reidel Pub	
			5 A garwal R P Meehan M & O'Regan D	
			(2000) Errad point theory and aminations	
			Combridge IW: Combridge University Proce	
			Cambridge, OK. Cambridge Oniversity Press.	
			E-Resources	
			1. National Programme for Technology Enhanced	
			Learning (NPTEL)	
			https://nptel.ac.in/courses/111105037/	
14	MATH (to be	On successful completion of this course	- Section A	New
	generated)	students will be able to,	Introduction to Dynamical Systems: Background and	Elective
	An	 Describe the main features of 	examples, dynamical systems, attractors and invariant	
	Introduction	dynamical systems and their	sets.	
	to Dynamical	realisation as systems of ordinary	Non-linear Systems-local analysis: the fundamental	
	Systems	differential equations.	existence-uniqueness theorem, The flow defined by a	
	5	 Identify fixed points of simple 	differential equation, Linearization, The stable manifold	
		dynamical systems, and study the	theorem, The Hartman-Grobman theorem, Stability and	
		local dynamics around these fixed	Liapunov functions, Saddles, Nodes, Foci, and Centers,	
		points, in particular to discuss	Section B	
		their stability	Non-linear Systems-global analysis: Dynamical systems	
		Use a range of specialised	and global existence theorem. Limit sets and Attractors.	
		- Osculturge of specialised	Pariodic orbits Limit Cycles and Saparatrix cycles the	
		analytical techniques which are	I CHOME OLDIG, LIIIIL CACES, and selenatia a cores, the	
		analytical techniques which are	Poincare map, the stable manifold theorem for periodic	
		analytical techniques which are required in the study of dynamical	Poincare map, the stable manifold theorem for periodic orbits, the Poincare-Bendixon theory in R2	

		Describe dynamical systems	LineardSystems, Bendixon's Criteria.	
		geometrically and represent them	Section C	
		graphically via phase plane	Discrete dynamical systems: finite dimensional maps,	
		analysis.	limit sets, Stability, Invariant manifolds, Runge-Kutta	
		 Find fixed points and period 	methods: the framework, linear decay, Lipschitz	
		orbits of discrete dynamical	conditions, Dissipative systems, Generalized	
		systems, and find their stability.	dissipative systems, Gradient system.	
		 Do graphical analysis of 1D 	Suggested Books:	
		discrete dynamical systems.	1. Perko, L. (2009). Differential equations and	
		• Understand the basic properties of	dynamical systems. (3rd Ed.). New York, NY:	
		a chaotic dynamical system.	Springer.	
		5	2. Stuart, A. M., & Humphries, A. R. (1998).	
			Dynamical systems and numerical analysis.	
			Cambridge: Cambridge University Press.	
			3. Lynch, S. (2014). Dynamical systems with	
			applications using MATLAB. (2nd Ed.). Cham:	
			Birkhäuser.	
15.	MATH (to be	On completion of the course, the student	Section A	New
	generated)	will be able to,	Continuous population Models for single species: Basic	elective
	Bio	 model the single species and two 	concepts. Exponential growth model, formulation,	
	Mathematics	species systems.	solution, interpretation, and limitations. Compensation	
		 study the stability of these systems. 	and depensation. Logistic growth model, Continuous	
		 Apply harvesting of the species. 	Growth Models, Insect out break Model: Spruce	
		 to model epidemics and analyse the 	Budworm, Delay models, Linear Analysis of Delay	
		dynamics	Population Models: Periodic solutions. Harvesting a	
			single Natural Population.	
			Section B	
			Continuous Models for interacting	
			Population:Interaction between species: two species	
			models, definition of stability, community matrix	

	approach, Qualitative behavior of the community	
	matrix, Competition: Lotka-Volterra models, Extension	
	to Lotka-Volterra models, Competition in field	
	experiments, Competition for space, Models for	
	Mutualism. Predator-Prey interaction: Lotka-Volterra	
	Models, dynamic of the simple Lotka-Volterra models,	
	Role of density dependent in the Prey, Classic	
	laboratory experiment on predator, predation in natural	
	system. Some predator-prey models.	
	Section C	
	Mathematical modeling of epidemics: Basic concepts.	
	Simple epidemic model, formulation, solution,	
	interpretation, and limitations. General epidemic	
	model, formulation, solution, interpretation, and	
	limitations	
	Suggested Text Books:	
	1. Murray, J. D. (2013). Mathematical Biology. Berlin:	
	Springer Berlin.	
	2. Freedman, H. I. (1987). Deterministic	
	mathematical models in population ecology. (2nd	
	Ed.). Edmonton, Alta., Canada: HIFR	
	Consulting.	
	Suggested Reference Books:	
	1 Hastings, A. (2010). Population biology New	
	York: Springer.	
	2. Meerschaert. M. M. (2013). Mathematical	
	modeling. (4th Ed.). Amsterdam: Elsevier	
	Academic Press.	
	3. Meyer, W. J. (1984). Concepts of mathematical	
	modeling. New York, N.Y.	

			 4. May, R. (1976). Theoretical ecology. Principles and applications. United States. 5. Bailey, N. T. J., & Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. Suggested E-learning material NPTEL: https://nptel.ac.in/courses/102101003/ and https://nptel.ac.in/courses/102101003/# Biomathematics Lectures - UBC Zoology: www.zoology.ubc.ca/~bio301/Lectures 	
16	MATIL(to be	On completion of the course the student		More
10.	MAIH (to be	will be able to	Section A Homotony Straight line homotony Null homotony	alastiva
	Algebraic	• Concrete original colutions to a	Contractible spaces and Homotopy, Nun Konotopy.	elecuve
	Tapalagy	 Generate original solutions to a variate of mothematical mobilema 	Deformation Potest and Fitness Parts and Fitness Potest	
	Topology	vallety of mathematical problems	No Patraction theorem Eurodamental Croun and its	
		related to the fundamental group	non-static The Decrementary benefative	
		and covering spaces.	properties. The Degree map, pain homotopy	
		 Recall all definitions and theorems 	class. Simply connected spaces.	
		in this course and use them to	Faction P	
		construct original proofs and/or	Calculation of Fundamental Groups of Circle The	
		counterexamples, even on	Cylinder The Torus the Punctured Plane And the n	
		discussions)	snhara Sn Brauwar's Firad-Paint Theorem for the	
		Llos algebrais invariante of	Discs. The Fundamental Theorem of Algebra Covering	
		 Use algebraic invariants of topological appages to distinguish 	nrolections Properties of covering projection	
		apages which otherwise com	projections, risperties of covering projection.	
		spaces which otherwise seem	Section C	
		Similar.	The Path Lifting Property, Homotopy Lifting Property.	
		 Apply computational algorithms 	Applications of Homotopy Lifting Theorem The	
			reprictions of frontotopy Entiting friction, f	

	to compute algebraic invariants of simple topological spaces.	 Monodromy Theorem. The Right Action of the fundamental group. Lifting of an arbitrary map. Lifting theorem. Covering homomorphism. Group of Deck transformation. Universal covering space, The Covering theorem. Borsuk-Ulam theorem. Suggested Text books: Deo, Satya. 2003. Algebraic topology: a primer. New Delhi: Hindustan Book Agency. Munkres, J. R. (1978). Topology, a first course. New Delhi: Prentice-Hall of India. Suggested Reference books: Singh, T. B. (2013). Elements of topology. CRC Press. 	
		 Hatcher, Allen. 2002. Algebraic topology. New York: Cambridge University Press. Bredon, Glen E. 2006. Topology and geometry. New York: Springer. Suggested E-learning material Algebraic Topology; Platform: NPTEL <u>https://nptel.ac.in/courses/111101002/</u> 	
17. MATH (to be generated) Combinatori al Optimization	 On completion of the course, the student will be able to, define the concept of combinatorial (optimisation or satisfaction) problem recognize many types of combinatorial optimization problems; formulate linear and integer 	- Section A Combinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory - Matchings and alternating paths-Tutte-Berge formula- Maximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity.	New elective

programs, and identify when a	Single Source Shortest path algorithms-Bellman Ford
problem can be viewed in terms of	algorithm, all pair shortest path algorithms - Floyd
various "standard" combinatorial	Warshall algorithm.
optimization problems;	Section B
understand the mathematical	Algorithmic Perspective to Simplex Method:
concepts underlying these	Introduction to Linear Optimization, Equivalence of
problems and their solutions;	optimization and separation, LP Formulation,
 solve combinatorial optimization 	Geometry of Linear Programs, Theory of Simplex
problems using suitable	Algorithm, Geometric interpretation of Degeneracy,
algorithms	Avoiding cycles, Methods for obtaining initial Basic
 analyze the performance of simple 	Feasible Solutions, Linear Programming formulations
algorithms, understand and	of shortest path problem.
interpret computational	Section C
complexity, and reduce one	Integer Programing: Integrality gap, Branch and Bound
problem to another.	algorithm, Cutting-plane algorithm, Applications of
	these algorithms on Travelling Salesman Problem
	Primal-Dual Algorithms: Interpretation of Dual,
	Optimality conditions for primal and dual, primal-dual
	algorithms based on complementary slackness, Primal-
	dual algorithms for shortest path problem, vertex cover
	and set cover.
	Suggested Text Books:
	1. Papadimitriou, C. H., &Steiglitz, K.
	(2006). Combinatorial optimization: Algorithms and
	complexity. New Delhi: Prentice-Hall of India.
	2. Hillier, F. S., & Lieberman, G. J.
	(1995). Introduction to mathematical programming;
	2nd ed. New York: McGraw-Hill.
	3. Cook, W. J. (2011). Combinatorial optimization.
	New York: Wiley.

		 Suggested References Books: 1. Lange, K. (2004). Optimization. New York: Springer. 2. Bazaraa, M. S., Jarvis, J. J., &Sherali, H. D. (2013). Linear Programming and Network Flows. Hoboken: Wiley. 3. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow: Pearson. 4. Korte, B., &Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg. 5. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, N.J: Prentice- Hall. 	
		Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 2. Optimization -Introduction(Video Lecture) https://nptel.ac.in/courses/111105039/	
18. MATH (to be generated) Transportati on System Analysis	 On completion of the course, the student will be able to, Use optimal transportation decision-making schemes based on transportation data analysis by establishing, testing and solving transportation models. 	Section A Introduction of transportation system analysis; characteristics, goal and role of transportation system analysis; applications and methodologies of transportation system analysis; Scope of transportation system analysis; TAF system; Impact of TAF system	New elective

- Doutour cinents statistics	an altraia	Costion D
Feriorin simple statistical an transportation field	analysis d. data	Section B Pandom variables applications of probability
cample estimation and hu	notheria	distributions in transportation system analysis sample
sample estimation and hy	potnesis	distributions and means in transportation system
Design with the second	/stem.	analysis Control Limit Theorem Bayesian Theorem
• Lesign suitable sampli	ng and	significance and hypothesis testing in transportation
experimental methods	3 TOT	significance and hypothesis testing in transportation
transportation system	anaiysis	systems. Ose of transportation neid data and data
and realize error sources.		gautering techniques, sources of errors, considerations
		or transportation system sample size; experiment
		design for transportation system demand forecasting
		and transportation operations analysis.
		Faction C
		Intelligent Transportation System (ITC) components of
		TTe: Coursel Loop Disgramming (CLD) system
		dynamice annexed arrestigation and
		dynamics approach, conceptualization and
		development in transportation system policy and
		scenario analysis; fransportation system scenario
		generation models and techniques: Delphi technique;
		Seth Harva model; Multi criteria decision making
		model.
		Suggested Books:
		1. Papacostas, C.S. (1987) Fundamentals of
		transportation system analysis, PHI.
		2. Cascetta, Ennio. (2012). Transportation Systems
		Analysis: Models and Applications. Springer
		Verlag.
		3 Edwards, I. D. & Institute of Transportation
		Engineers (1999) Transportation planning
		handbook (2nd Ed.) Washington: Institute of

			 Transportation Engineers. Levin, R. I., & Rubin, D. S. (2008). Statistics for management. New Delhi: Prentice Hall of India. Walpole, R. E. (2014). Essentials of probability and statistics for engineers and scientists. Pearson. Mohapatra, P. K. J., Mandal, P., & Bora, M. C. (1994). Introduction to system dynamics modelling. London: Sangam. Roberts, N. (1998). Introduction to computer simulation: A system dynamics modeling approach. Portland, Or: Productivity Press. 	
19.	MATH (to be	On completion of the course, the student	- Section A	New
	generated)	will be able to,	Laplace Transform: Definition, Transform of some	elective
	Integral		elementary functions, rules of manipulation of Laplace	
	Transform	 understand transformations, and 	Transform, Transform of Derivatives, relation	
	and Special	their conditions of existence.	involving Integrals, the error function, Transform of	
	Functions	 carry out integral transformations 	Bessel functions, Periodic functions, convolution of	
		and inverse transformation of	two functions, Inverse Laplace Transform of simple	
		different special functions,	function, Tauberian Theorems. Applications of	
		including some most useful	Laplace Transform to solve ordinary differential	
		special functions.	equations with constant and variable coefficients,	
		 demonstrate understanding of the 	initial and boundary value problems.	
		concepts of recurrence relations,		
		generating functions, series	Section B	
		representations pertaining to		
		different special functions and	Fourier series, Fourier integral Theorem, Fourier	
		polynomials.	Transform, Fourier Cosine Transform, Fourier Sine	
		determine some significant	Transform, Transforms of Derivatives, Fourier	
		properties of special functions and	transforms of simple Functions, Fourier transforms of	
		integral transformations.	Rational Functions, Convolution Integral, Parseval's	
		 discuss the nature of special 	Theorem for Cosine and Sine Transforms, Inversion	

functions in different domains.	Theorem, Solution of Partial Differential Equations by	
	means of Fourier Transforms. Mellin transform,	
	Properties, Mellin transform of derivatives and	
	integrals, Mellin inversion theorem, Convolution	
	theorem.	
	Section C	
	The Hypergeometric function: An integral	
	representation, differential equation and solutions.	
	F(a,b,c;1) as a function of the parameters, evaluation	
	of F(a,b,c;1), contiguous function relations,	
	Hypergeometric differential equations	
	Legendre polynomials: Solution of Legendre's	
	Equation, Generating function, Rodrigue's formula,	
	Orthogonal properties. Integrals involving Legnedre	
	polynomials, Recurrence relations, Legendre's	
	function of second kind $Q_n(x)$. Bessel functions,	
	solutions of Bessel's equation, Generating function,	
	Integral expressions. Recurrence relations, orthogonal	
	properties.	
	Suggested Text Books:	
	1. Sneddon, I.N. (1974)The use of integral transforms,	
	New Delhi: Tata McGraw Hill.	
	2. Rainville, E. D. (1960)Special functions, New	
	York:Chelsea Publishing Company.	
	Suggested References:	
	1. Davies, B. (1978)Integral transforms and their	
	applications, New York:Springer.	
	2. Slater, L. J. (2008). Generalized hypergeometric	

				 <i>functions.</i> Cambridge: Cambridge University Press. Mathai, A. M., &Haubold, H. J. (2011). Special functions for applied scientists. New York: Springer. Suggested E-learning material Advanced Engineering Mathematics; NPTL: https://nptel.ac.in/courses/111105035/22 	
20.	STAT 505	On completion of the course, students	-	Suggested E-learning Resources	No change
	Decision	will be able to,		 Decision Theory; platform: 	in syllabus.
	Theory	 Understand a decision theoretic 		http://www.utdallas.edu/~mbaron/7330/	
		approach to the problem, evaluate			
		a utility function, propose a			
		conjugate family of prior			
		distributions, evaluate Bayes			
		and posterior risks and find the			
		optimal solution.			
		 Solve Multilevel Decision 			
		Problems, Decision Process with			
		sampling information			
		 Understand Basic Concept of the 			
		sampling time Markov decision			
		process, telecommunication and			
		queuing theory.			
21.	STAT 508	On completion of the course, students	-	Suggested E-learning Resources	No change
	Distribution	will be able to,		1. Probability Distribution-	in syllabus.
	Theory	 Formulate the statistical models 		nptel.ac.in/courses/111105041/	
		for real data sets arising in various		2. Distribution Functions-	
		fields in order to analyze in		https://epgp.inflibnet.ac.in/ahl.php?csrno=	
		respect of various useful		<u>34</u>	

		 characteristics of the populations Develop problem-solving techniques needed to accurately calculate probabilities. Identify the distribution of random variable under various discrete and continuous distributions. Calculate probabilities, moments and other related quantities based on given distributions. Determine the probability distribution after transformation. Understand how to use noncentral distributions in real life problems. 		 Introduction to Probability- <u>https://ocw.mit.edu/resources/res-6-012-</u> <u>introduction-to-probability-spring-2018</u> 	
22	STAT 510	On completion of this course students	Section A	Section A	The
22.	Econometric	will be able to	Review of multiple linear regression models	Nature of Econometrics Review of linear regression	evisting
	Models	Construct aconometric models	Polynomial Regression Sterwise Regression Lasso	models polynomial regression model Stepwise	svllabus is
	models	from economic models	Regression Model Selection Methods: AIC BIC	Regression, Lasso Regression, Model Selection	a bit short
		 Detect influential observations 	Mallow's Cp. Cross-validation. Regression	Methods: AIC, BIC, Mallow's Cp. Cross-validation.	so some
		and perform robust regression	regularization methods.	Regression regularization methods.	new topics
		Estimate regression models when		Influential observations: Standardized and studentized	are added
		the dependent variable is nominal.	Section B	residuals, Cook's distance, DFFITS, DFBETAS,	which have
		ordinal or a quantile.	Distributed lag models: Finite polynomial lags,	COVRATIO. Robust regression techniques: LAD and	good
		• Fit distributed lag model when the	determination of the degree of polynomial.	LMS regression.	application
		data is time series.	The Construction of the second state of the se	Section B	in
		• Diagnose the identifiability of a	infinite distributed lags, adaptive expectations and	Logit and Probit models: binary response model,	analyzing
		simultaneous equation model.	partial adjustment models, determination of lag	multinomial choice models: ordered and unordered	an

 Estimate a simultaneous equation 	length. Methods of estimation.	response models. Censored regression, truncated	empirical
system.		regression models.	data.
	[Introduction to logistic regression and] Poisson	Poisson regression: estimation and prediction.	
	regression.	Introduction to Generalized linear model.	
	Section C	Introduction to quantile regression and non-parametric	
	Simultaneous equation model: concept of structural	regression. General non-linear regression:	
	and reduced forms, problem of identification, rank	Assumptions, Least squares estimation, Testing.	
	and order conditions of identifiability, [indirect least	Section C	
	squares; two stage least squares, Maximum likelihood	Distributed lag models: Finite polynomial lags,	
	estimation.]	determination of the degree of polynomial. Infinite	
	Text/References Books:	distributed lags, adaptive expectations and partial	
	1. Johnston, J. (1984). Econometric Methods,	adjustment models, determination of lag length.	
	McGraw Hill Kogakusha Ltd.	Methods of estimation.	
	2. Judge, G.C., Hill, R,C. Griffiths, W.E.,	Simultaneous equation models: concept of structural	
	Lutkepohl, H. and Lee, T-C. (1988).	and reduced forms, problem of identification, rank and	
	Introduction to the Theory and Practice of	order conditions of identifiability. Limited information	
	Econometrics, Second Edition, John Wiley &	and full information estimation methods.	
	Sons.	Suggested Text/References Books:	
	3. Kendall, M.G. and Stuart, A. (1968). The	1. Baltagi, B. H. (2007). Econometrics. Springer Science	
	Advanced Theory of Statistics (Vol. III),	& Business Media.	
	Second Edition, Charles Griffin.	2. Gujarati, D. N. (2003). Basic econometrics. McGraw	
		Hill.	
		3. Johnston, J., & DiNardo, J. E. (2007). Econometric	
		Methods. McGraw-Hill.	
		4. Montgomery, D. C., Peck, E. A., & Vining, G. G.	
		(2006). Introduction To Linear Regression Analysis, 3rd	
		Ed. Wiley India Pvt. Limited.	
		5. Rawlings, J. O., Pantula, S. G., & Dickey, D. A.	
		(1998). Applied Regression Analysis: A Research Tool	
		(2nd Ed.). New York: Springer-Verlag.	

				 Wooldridge, J. M. (2006). Introductory Econometrics: A Modern Approach. Cengage Learning. William H. Greene (2012). Econometric Analysis (7th Ed.). Pearson Education limited. Suggested E-learning material: Lecture Notes on Regression Analysis by Shalabh, ITTK: <u>http://home.iitk.ac.in/~shalab/course5.htm</u> An article on "Understanding logistic regression analysis" by Sandro Sperandei :https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/ Lecture Notes on "Econometrics": https://ocw.mit.edu/courses/economics/14-382- econometrics-spring-2017/lecture-notes/ 	
23	. STAT 504	On completion of this course, students	-	Suggested E-learning Resources	No change
	Clinical	will be able to,		1. Clinical Trials	in the
	Trials	 Identify and classify different 		http://www.esourceresearch.org/eSourceBook/Cli	syllabus.
		types of trial designs when		<u>nicalTrials/1LearningObjectives/tabid/192/Defaul</u>	
		reading a trial report.		t.aspx	
		 Understand the essential design 		2. Clinical Trials as Research	
		issues of randomized clinical		https://newonlinecourses.science.psu.edu/stat509	
		triais.		<u>/ hode/ 6/</u>	
		Appreciate three possible sources		<u>/ node/ 0/</u>	
		 Appreciate three possible sources of errors that could lead to erroneous trial results. 		<u>/110de/ 6/</u>	
		 Appreciate three possible sources of errors that could lead to erroneous trial results. Understand the basic statistical 		<u>/110de/ 6/</u>	
		 Appreciate three possible sources of errors that could lead to erroneous trial results. Understand the basic statistical principles, concepts, and methods 		<u>/1104e/ 6/</u>	
		 Appreciate three possible sources of errors that could lead to erroneous trial results. Understand the basic statistical principles, concepts, and methods for clinical data analysis and 		<u>/1104e/ 6/</u>	

		 Understand some frequently used terms in clinical trials. Understand the relative contributions of clinical judgment and clinical trials in evaluating new medical therapies. 			
24.	STAT 511 Non	On completion of this course, student will be able to,	-	Suggested E-learning Resources 1. Statistical Methods for Scientists and Engineers-	No change in the
	Parametricin	 Solve hypothesis testing problems where the conditions for the 		Non Parametric Methods: https://pptol.ac.ip/courses/111105077/29	synabus.
	Sequential	traditional parametric inferential		2 Statistics for Applications:	
	Analysis	tools to be applied are not fulfilled.		https://ocw.mit.edu/courses/mathematics/18-	
	Ĵ	Build non-parametric density estimates.		650-statistics-for-applications-fall-2016/	
		 The application of sequential statistical techniques. 			
		Critically examining sequential			
		procedures for appropriate statistical analyses.			
25.	STAT 508	On successful completion of the course,	-	Suggested E-learning Resources	No change
	Distribution	the students will be able to:		1. Probability Distribution-	in the
	Theory	• Formulate the statistical models for		nptel.ac.in/courses/111105041/	syllabus.
		real data sets arising in various fields		2. Distribution Functions-	
		in order to analyze in respect of		no=34	
		populations		3. Introduction to Probability-	
		Develop problem-solving techniques		https://ocw.mit.edu/resources/res-6-	
		needed to accurately calculate probabilities.		012-introduction-to-probability-spring- 2018	
1			1	1	

		 Identify the distribution of random variable under various discrete and continuous distributions. Calculate probabilities, moments and other related quantities based on given distributions. Determine the probability distribution after transformation. Understand how to use non-central distributions in real life problems. 		
26.	STAT 513	On completion of the course, the students	Suggested E-learning Resources	No change
	Regression	should be ableto,	1. The resources site for the book 'Introductory	in the
	Analysis	Understand the concept of	Brooke	synabus.
		regression and the underlying	brooks https://www.cambridge.org/us/acadomic/tov	
		assumptions.	thooks (introductory accompaties	
		 Estimate least squares estimate or regression coefficients 	2 Lecture Notes on "Econometric Theory":	
		Perform testing of complete	https://nptel.ac.in/courses/111104072/	
		 regression model and subset of 	3. Course material on "Econometrics":	
		regression model	https://ocw.mit.edu/courses/economics/14-	
		Measure the goodness of the	32-econometrics-spring-2007	
		model.		
		 Check the validity of the 		
		assumptions for a real data.		
		• Find a suitable remedy to reduce		
		the effect of violation of any		
		assumption.		
		 Include a qualitative variable as 		
		regressors in a regression model		
		using dummy variables. Check the model for specification errors and its testing. Understand the concept of outlier, leverages and influential observations. Understand the concept of a simple logistic regression and make interpretations. 		
----	-------------	--	--	------------
27	STAT 515	On successful completion of this course,	- Suggested E-learning Resources	No change
	Computing	Generate random numbers from a	MITOPENCOLIRSEWARE	svllabus.
	8	given distribution.	https://ocw.mit.edu/index.htm	- J
		Perform MCMC simulation.	2. Statistics: Platform: e-PG	
		Understand the basic concepts of	Pathshalahttps://epgp.inflibnet.ac.in	
		statistical theories in depth.	3. Exploratory Data analysis ; Platform: Coursera	
		 Handle real world problems with 	https://www.coursera.org	
		large scale data.	4. https://ocw.mit.edu/index.htm	
28	STAT (to be	On completion of this course, the	- Section A	New
	generated)	students will be able to:	Review of Stochastic processes, Markov process,	elective
	Stochastic	Acquire skills in handling situations	Markov chain, Poisson Process. Birth and Death	introduced
	Models	involving more than one random	process. Expression for mean and variance of a birth	•
		variables.	and death process. Introduction of queues, Queueing	
		Understand to analyze the	system. Components of a queueing system, Measures of	
		performance of reliability models.	effectiveness and Notations. Steady state solution of $M(M(t) = M(t))$	
		Learn how to analyze a network of	M/M/T and M/M/T/N Queueing Models and their	
		queues with Poisson arrivals and	neasures of enecuveness.	
		Learn how to analyze a network of	Steady state solution of M/M/C Oueueing Models and	
1		- Learn now to analyze a network of	citatiy suite someon of highly of Queenonig from the	

queues with Poisson arrivals and	their measures of effectiveness. The transient solution	
general service requirements.	of M/M/1 and M/M/∞ Queueing models including	
 Understand the concept of switching 	busy period distribution. Imbedded Markov chain	
in reliability modeling.	technique and its use to solve the $M/G/1$ queueing	
	models. Measures of Effectiveness of M/G/1 queueing	
	model.	
	Section C	
	Reliability Models: Concept of reliability, early age	
	failures, wearout failures and chance failures.	
	Derivation of general reliability function failure rate,	
	failure density functions and mean time between	
	failures (MTBF). System reliability evaluation: series	
	system, parallel system, partially redundant system,	
	standby system with perfect switching / imperfect	
	switching. Effect of spare components (identical / non-	
	identical) on the system reliability.	
	Text/References books:	
	1. Cox, D. R., & Miller, H. D. (1972). The theory of	
	stochastic processes. London: Chapman and Hall.	
	2. Billinton, R., & Allan, R. N. (2013). Reliability	
	evaluation of engineering systems: Concepts and	
	techniques. New Delhi: Springer (India).	
	3. J. Medhi, J. (1994). Stochastic processes. New Age	
	International Publications.	
	4. Bazovsky, I. (2013). Reliability Theory and Practice.	
	Dover Publications.	
	5. Gross, D., &Harris C.M (2002). Fundamentals of	
	Queueing Theory. John Wiley & Sons.	
	6. Allen, A. O. (2014). Probability, Statistics, and	
	Queueing Theory with Computer Science Applications.	

			Academic Press.	
			Suggested E-learning Resources 1. Introduction to Stochastic Processes and its Applications https://nptel.ac.in/courses/110104024/ 2. Statistics e-PG-pathshala: https://epg.inflibnet.ac.in/ahl.php?csrno=34 3. Reliability Engineering, NPTEL: https://nptel.ac.in/courses/105108128/	
29.	STAT (to be generated)	On completion of the course, students will be able to,	Section A Meaning and scope of demography; Sources of	New elective
	Demography	Identify principle sources of	demographic data; Census; Population composition	introduced
		demographic data and assess their strengths and weaknesses	and its basic demographic measures: Ratios,	
		 Discuss the demographic significance 	Proportions and Percentages; Population pyramids; Quality of democraphic data: Population growth rate:	
		of age and sex structures and the	Rates of natural increase: Doubling time: Stochastic	
		implications of variations in age & sex	models for population growth; Intrinsic growth rate	
		structure.	models for population growth and their fitting to	
		 Construct and interpret life tables. 	population data; Coverage and content errors in	
		Calculation and interpretation of the	demographic data; Balancing	
		principal demographic measures, and	equations;Chandrasekharan - Deming formula to check	
		standardize these measures for	completenessof registration data; Adjustment of age	
		 Understand the components of 	data- use of Whipple, Myer and UN indices; Population	
		population change including the	transition theory.	
		effects of changing birth, death and	Section B	
		migration rates, and demonstrate	Mortality: Rates and Ratios: Crude and age-specific	
		their influences on age structure.	death rates:Infant mortality rate (IMR): Child death rate	
		 Understand the concept of 	(CDR); Under five, neo-natal and post neo-natal	

urbanization on the economic growth	mortality rate; Maternal mortality rate and Maternal
of the contrary.	mortality ratio (MMR); Direct and Indirect
 Estimate and project the population 	Standardization; Factors for decline in mortality in
by different methods.	recent past; Life tables and their applications;
 Understand the concept of stable and 	Increment-decrement life tables; Construction of
stationary population.	complete and abridged life tables; Model life table.
	Natality:Fecundity and fertility: Measure of fertility:
	Cohort fertility; Children ever born (CEB); Current
	family size (CFS); Age specific martial fertility rate;Birth
	order and parity; Parity progression ratio; Length of
	generation, Measures of reproduction: Total fertility
	rate; Gross reproduction rate; Net reproduction rate;
	Replacement index; General fertility models; Fertility
	schedules; Differential fertility; Levels and trends of
	fertility.
	Section C
	Migration - Concepts and types; Its effect on population
	growth and pattern; Differentials of migration;
	Measures of migration: Migration rates; Volume of
	migration and its estimation; Migration component;
	Migration streams; Hamilton's rate; Migration models;
	Concept of international migration; Concept of
	morbidity and its measures.
	Urbanization - Growth and distribution of rural - urban
	population in developed and developing countries.
	Nuptiality - Concept and analysis of marital status;
	Singulate mean age at marriage.
	Stationary and Stable population theory; Uses of
	Lotka's stable population theory in estimation of

	demographic parameters; Population estimates; Population projections and forecasting; Methods of Inter-censal and Post-censal estimation; Methods of population projection.	
	Suggested Text Books:	
	1. Ramkumar, R.(2006). <i>Technical Demography.</i> New Age International.	
	2. Pathak, K.B.& Ram, F. (2019). <i>Techniques of Demographic Analysis</i> (2nd. ed.). Himalaya Publishing House.	
	3. Srinivasan, K., Saxena, P. C., &Kanitkar, T. (1979). Demographic and Socio-economic Aspects of the Child in India. Himalaya Publishing House.	
	Suggested Reference Books:	
	 Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. 	
	Suggested E-learning Resources	
	 Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata. php?action=loadpaperlist1&maincat=453</u> 	
	3. Demography ; Platform: University Library -	

			The University of Adelaide	
			https://www.adelaide.edu.au/library/	
			4. Demography; Platform:	
			MITOPENCOURSEWARE	
			https://ocw.mit.edu/index.htm	
30.	STAT (to be	On completion of this course, the	Section A	New
	generated)	students will be able to:	Actuarial science: an overview, Introductory Statistics	elective
	Actuarial	 Understand the applications of 	and Insurance Applications: Discrete, continuous and	introduced
	Statistics	Actuarial Statistics in insurance	mixed probability distributions, risk and insurance,	
		sector.	insurance products, reinsurance and its different types.	
		 Understand the concept of utility 	Utility theory: Utility functions, expected value	
		theory and premium principles.	principle, expected utility criterion, types of utility	
		 Construct life tables with various 	function, insurance and utility theory. Principles of	
		factors.	Premium Calculation: Properties of premium	
		• Understand the concept of compound	principles.	
		interest.	Section B	
		 Apply various life Insurance models 	Survival Distribution and Life Tables: Age at death	
		in real life situations.	random variable, survival function, time until-death for	
			a person, curate future lifetime, force of mortality, life	
			tables, relation of life table functions to the survival	
			function, deterministic and random survivorship	
			group, life table characteristics, recursion formulas,	
			assumptions for fractional age, analytical laws of	
			mortality, select and ultimate tables.	
			Section C	
			Principles of compound interest: Nominal and effective	
			rates of interest and discount, force of interest and	
			discount, compound interest, accumulation factor,	
			continuous compounding, present value of a future	
			payment. Life Insurance models: Models for insurance	

			payable at the moment of death and at the end of the	
			year of death - level benefit insurance, endowment	
			insurance, deferred insurance and varying benefit	
			insurance.	
			Text/Reference Books:	
			1. Dickson, C. M. D. (2005). Insurance Risk and Ruin	
			(International Series no. 1 Actuarial Science),	
			Cambridge University Press.	
			2. Bowers, N.L., Gerber, H.U., Hickman, J.C.,	
			Jones, D.A. and Nesbitt, C.J. (1997). Actuarial	
			Mathematics. Society of Actuaries, Itasca, Illinois,	
			U.S.A.	
			3. Rotar, V.I. (2015). Actuarial Models: The	
			Mathematics of Insurance, 2nd ed., CRC Press,	
			New York.	
			4. Deshmukh, S.R. (2009). Actuarial Statistics: An	
			Introduction Using R, University Press, India.	
			Suggested E-learning Resources	
			1. Winkel, M. (2003). Actuarial Science	
			http://www.stats.ox.ac.uk/~winkel/o13.pdf	
21	CTAT (to be	On semidation of the second the student	Castion A	Now
51.	generated)	will be able to	Characteristics of survival data and problems	alactiva
	Survival	• Identify abaractoristics of our vival	consoring and its types likelihood and inforence of life	introduced
	Analysis	Identify characteristics of survival	distributions relationship hotsean the survival	mirouuccu
	1 mary 515	analyzia	function distributions, relationship between the survival	
		analysis	hand output and annual time bargard unit work relative	
		• Define and understand the	survival data using the Kanlan Major estimator and	
		relationship between the survival	actuarial actimator actimation under the accumption	
		function, distribution function, hazard	of IEP/DEP to the of average table assumption	
		runcuon, relative nazard, and	or involves or exponentiality against non-	

Image: cumulative hazard parametric classes, total time on test. Image: cumulative hazard Section B Image: cumulative hazard Two-sample analyses of survival data using common statistical procedures such as the log rank test and Kaplan-Meier estimator Image: cumulative hazard Section B Image: cumulative hazard Gehan test, Parametric and semi-parametric regression Image: cumulative hazards scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, Image: cumulative hazards Section C Imag		
 Perform and interpret one-sample and two-sample and two-sample analyses of survival data using common statistical procedures such as the log rank test and Kaplan-Meier estimator Formulate research questions involving survival data and assess the estimation, scientific significance, precision, and interpretation of regression model to survival data and assess the state and academset to survival data and assess the sciencific significance, precision, and interpretation of regression coefficients Fit the proportional hazards regression model to survival data and assess the sciencific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated. Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assess in the proportional hazards models and propose alternate solutions when common assumptions are violated. Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated. Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated. Use time-dependent covariates in the proportional hazards model and estimate and interpret the coefficients. Understand and use methods for analyzing correlated survival data. Interpret and critically evaluate survival data.	cumulative hazard	parametric classes, total time on test.
two-sample analyses of survival data Two-sample analyses of survival data using common statistical procedures such as the log rank test and Gehan test, Parametric and semi-parametric regression model to survival data as regression problems • Formulate research questions involving survival data as regression and parametric regression models to survival data as regression problems • Fit the proportional hazards regression and parametric regression section C regression and parametric regression section C models to survival data assess the scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, • Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions were violated Competing risk model: parametric and non-parametric inference for this model. • Use time-dependent covariates in the proportional hazards model and interpret the coefficients models for analyzing correlated survival data in Medical Research. London: Chapman and Hall. • Understand and use methods for analyzing correlated survival data and models of Survival data. • Interpret and critically evaluate survival data survival data. • Interpret and critically evaluate survival data and models of Count Sutistical Median of Time to Evert Data. New York: Wiley. • Interpret and critically evaluate survival data Survival A	 Perform and interpret one-sample and 	Section B
 such as the log rank test and Kaplan- Meier estimator Formulate research questions involving survival data as regression problems Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression Section C Time-dependent covariates in the proportional hazards methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric information of the proportional hazards Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret ta coefficients Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. Hommer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. New York: Wiley. Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts 	two-sample analyses of survival data	Two-sample analyses of survival data using common
such as the log rank test and Kaplan- Meier estimator Gehan test, Parametric and semi-parametric regression model to survival data and assess the estimation, scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, • Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients Section C • Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Time-dependent covariates in the proportional hazards model and estimate and interpret the coefficients, methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric inference for this model. • Use time-dependent covariates in the proportional hazards model and interpret the coefficients I. Collet, D. (2003). Modeling Survival Data in Medical Research London: Chapman and Hall. • Understand and use methods for analyzing correlated survival data I. Horsmer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. New York: Wiley. • Interpret and critically evaluate survival analysing correlated survival data I. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, p. 2: The Design and Analysis of Cohert Statistical Methods in Cancer Research, P. 2000). Modeling Survival Data: Extending the Cox Model. New	using common statistical procedures	statistical procedures such as the log rank test and
Meier estimator model to survival data and assess the estimation, scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, Section C Section C Significance, precision, and interpret the coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, Section C Significance, precision, coefficients model and estimate and interpret the coefficients, methods for analyzing correlated survival data, Competing risk model: Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when coefficients, Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when coefficients, Time-dependent covariates in the proportional hazards model and estimate and interpret adorticinates model and interpret the coefficients Understand and use methods for analyzing correlated survival data and interpret and critically evaluate survival data and assess the solutions when common assumptions are violated 1. Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. Understand and use methods for analyzing correlated survival data survival analyses in biomedical or epidemiologic manuscripts 1. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Chort Studies. Lyon: IARC. Interpret and criticicily version	such as the log rank test and Kaplan-	Gehan test, Parametric and semi-parametric regression
 Formulate research questions involving survival data as regression problems Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC: Thereau T, and Grambach, P. (2000). Modeling Survival Data. New York: Wiley. 	Meier estimator	model to survival data and assess the estimation,
involving survival data as regression problems regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated, Section C Section C scientific significance, precision, and interpretation of regression coefficients Section C Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Section C Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Competing risk model: parametric and non-parametric inference for this model. Use time-dependent covariates in the proportional hazards model and interpret the coefficients Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. Understand and use methods for analyzing correlated survival data Hosmer, D. and Lemeshow S. (1999). Applied Survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Interpret and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	 Formulate research questions 	scientific significance, precision, and interpretation of
 problems Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when compose alternate solutions when correlated survival data, Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies, Lyon: IARC. Thereau T, and Grambsch, P. (2000). Modeling Survival Data. Survival Data: Extending the Cox Model. New	involving survival data as regression	regression coefficients, graphical and other methods to
 Fit the proportional hazards regression and parametric regression models to survival data and assess th scientific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	problems	assess the adequacy of fitted models and propose
 regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analysis of Cohort Studies. Lyon: IARC. Interneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	 Fit the proportional hazards 	alternate solutions when common assumptions are
models to survival data and assess the scientific significance, precision, and interpretation of regression coefficientsSection CUse graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violatedTime-dependent covariates in the proportional hazards model and estimate and interpret the coefficients, competing risk model: parametric and non-parametric inference for this model.Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violatedText BooksUse time-dependent covariates in the proportional hazards model and interpret the coefficientsCollet, D. (2003). Modeling Survoical Data in Medical Research. London: Chapman and Hall.Understand and use methods for analyzing correlated survival dataSurvival dataInterpret and critically evaluate survival analyses in biomedical or epidemiologic manuscriptsReference BooksInterpret and critically evaluate survival analyses in biomedical or epidemiologic manuscriptsIberefit Berefit B	regression and parametric regression	violated,
scientific significance, precision, and interpretation of regression coefficientsTime-dependent covariates in the proportional hazards model and estimate and interpret the coefficients, methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric inference for this model.Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violatedText BooksUse time-dependent covariates in the proportional hazards model and interpret the coefficientsCollet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall.Understand and use methods for analyzing correlated survival dataSurvival Analysis. Regression Modeling of Time to Event Data. New York: Wiley.Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscriptsReference BooksInterpret and critically could be and Aralysis of Cohort Studies. Lyon: LARC.Interpose Incomesch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	models to survival data and assess the	Section C
 interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Stuties, Lyon: LARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	scientific significance, precision, and	Time-dependent covariates in the proportional hazards
coefficients methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric inference for this model. competing risk model: parametric and non-parametric inference for this model. a dippopse alternate solutions when common assumptions are violated Text Books • Use time-dependent covariates in the proportional hazards model and interpret the coefficients 1. Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. • Understand and use methods for analyzing correlated survival data 2. Hosmer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. New York: Wiley. • Interpret and critically evaluate survival data 8. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies, Lyon: 1ARC. • Understand, analyses in biomedical or epidemiologic manuscripts 1. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies, Lyon: 1ARC.	interpretation of regression	model and estimate and interpret the coefficients,
 Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Competing risk model: parametric and non-parametric inference for this model. Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall. Hosmer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. New York: Wiley. Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	coefficients	methods for analyzing correlated survival data,
 assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	 Use graphical and other methods to 	Competing risk model: parametric and non-parametric
 and propose alternate solutions when common assumptions are violated Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	assess the adequacy of fitted models	inference for this model.
Image: common assumptions are violatedText Books• Use time-dependent covariates in the proportional hazards model and interpret the coefficients• Collet, D. (2003). Modeling Survival Data in Medical Research London: Chapman and Hall.• Understand and use methods for analyzing correlated survival data• Understand and use methods for analyzing correlated survival data• Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts• Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC.• Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	and propose alternate solutions when	
 Use time-dependent covariates in the proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival and use retroscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data in Medical Research uses in the properties Survival Data in Medical Research uses in the properties of the prope	common assumptions are violated	Text Books
 Proportional hazards model and interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Medical Research. London: Chapman and Hall. Hosmer, D. and Lemeshow S. (1999). Applied Survival Analysis: Regression Modeling of Time to Event Data. New York: Wiley. Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	 Use time-dependent covariates in the 	1. Collet, D. (2003). Modeling Survival Data in
 Interpret the coefficients Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Interpret and critically evaluate survival analyses of Cohort Studies. Lyon: IARC. Interpret and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	proportional hazards model and	Medical Research. London: Chapman and Hall.
 Understand and use methods for analyzing correlated survival data Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	interpret the coefficients	2. Hosmer, D. and Lemeshow S. (1999). Applied
analyzing correlated survival data Event Data. New York: Wiley. • Interpret and critically evaluate Reference Books survival analyses in biomedical or 1. Breslow, N. and Day, N. (1987). Statistical pidemiologic manuscripts Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. 2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New Survival Data: Extending the Cox Model. New	Understand and use methods for	Survival Analysis: Regression Modeling of Time to
 Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts Reference Books Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	analyzing correlated survival data	Event Data. New York: Wiley.
Reference Books survival analyses in biomedical or epidemiologic manuscripts Reference Books 1. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. 2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	Interpret and critically evaluate	
and introduction of epidemiologic manuscripts 1. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. 2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	survival analyses in biomedical or	Reference Books
Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies. Lyon: IARC. 2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New	anidamiologic manuscrints	1. Breslow, N. and Day, N. (1987). Statistical
 Analysis of Cohort Studies. Lyon: IARC. 2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New 	epidemiologic manuscripts	Methods in Cancer Research, v. 2: The Design and
2. Therneau T, and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New		Analysis of Cohort Studies, Lyon: IARC.
Survival Data: Extending the Cox Model. New		2. Therneau T, and Grambsch, P. (2000). Modeling
		Survival Data: Extending the Cox Model. New

	York: Springer 3. Kalbfleish, JD. and Prentice, RL. (2002). The Statistical Analysis of Failure Time Data. New York: Wiley.	
	Suggested E-learning Resources1. Lecture Notes on Introduction to Survival Analysis: http://www.stat.columbia.edu/~madigan/W 2025/notes/survival.pdf	

THIRD/FOURTH SEMESTER

(Reading Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1	MATH (to be	On completion of the course, the student	-	Networks in Biology, Graph Theory, Global Network	New
	generated)	will be able to,		Properties, Network Centralities, Network of Clustering,	course
	Network	 Understand the use of graph 		Network Motifs, Petri Nets, Signal Transduction and	proposed.
	Biology	theory in biology		Gene Regulation Networks, Protein Interaction	
		 Build and analyse network of 		Networks, Metabolic Networks, Phylogenetic Networks,	
		biological systems.		Ecological networks, Correlation Network, Network	
				Construction.	
				Suggested Readings:	
				1. Junker, B. H., & Schreiber F. (2008). Analysis of	
				Biological Networks, John Wiley & Sons, Inc.	
				2. Zhang, W. (2013). Network Biology Theories,	
				Methods and Applications, Nova Science	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
				Publishers, Inc.	
2	MATH (to be generated) Fractional Calculus	 On completion of the course, the student will be able to, Understand fractional integrals of some important functions Understand the concepts of Fractional Derivatives Carry out research on the topic related to fractional calculus 		 Origin, Significant contributions, development in different timelines, different aspects, contributors in the field, The Riemann Liouville Fractional Calculus: Fractional Integrals of some functions namely binomial function, exponential, the hyperbolic and trigonometric functions, Bessel's functions, Hyper-geometric function. Dirichlet's Formula, Derivatives of the Fractional Integral and the Fractional Integral of Derivatives. Laplace Transform of the Fractional Integral, Leibniz's Formula of Fractional Derivatives. Suggested Readings: 1. Oldham, K.B. &Spanier, J. (2006). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications Inc. 2. Machado, J.T.A., Virginia, K., &Mainardi, F. (2011). Recent History of Fractional Calculus. Communications in Nonlinear Science and Numerical Simulation. 3. Machado, J. A. T., Kiryakova , V. &Mainardi, F. (2010). A poster about the recent history of fractional calculus. J. Fractional Calculus and Applied Analysis. 	New course proposed.
3	MATH (to be generated) Quantum Graphs	 On completion of the course, the student will be able to, Describe some basic tools in the spectral theory of Schrödinger 		Introduction, Operators on graphs, Quantum Graphs, Quantum Graphs: Some Special topics, Spectra of quantum graphs, Spectra of periodic graphs, Spectra of quantum graphs, Quantum Chaos on graphs, Some	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		operator on metric graphs		Applications and generalizations. The Spectral Form	
		 Demonstrate results on the count of 		Factor for Quantum Graphs with Spin-Orbit Coupling,	
		zeros of the eigen functions of		Approximation of Permutation-Symmetric Vertex	
		quantum graphs.		Couplings in Quantum Graphs, Determinant of the	
		 Demonstrate key concepts of 		Schrodinger Operator on a Metric Graphs, Laplacian or	
		general spectral theory.		Metric Graphs; eigenvalues, resolvents and Semigroups.	
				Suggested Readings:	
				1. Berkolaiko G. and Kuchment Peter (2016),	
				Introduction to Quantum Graphs, Indian Edition.	
				2. Berkolaiko G., Carlson R., Fulling S. A. and	
				Kuchment Peter (2006), Quantum Graphs and	
				Their Applications, American Mathematical	
				Society.	
4	MATH (to be	Course Outcomes: On completion of the		Sets, Functions, The Real Numbers, Zorn's Lemma,	New
	generated)	course, the student will be able to,		Countable Sets, Metric Spaces, Sequences and	course
	Point Set	 Express the notion of metric space, 		completeness, Continuity, Compactness, Connectedness,	proposed.
	Topology	construct the topology by using		The BaireCategory Theorem, Topological Spaces, Base	
		the metric and using this topology		and Subbase for a Topology, Continuous Functions,	
		identify the continuity of the		Compactness and Connectedness,	
		functions which are defined		Pathwiseconnectedness, Infinite Products, Nets ,	
		between metric spaces.		Quotient Topology.	
		 Define the notion of topology; 		Suggested Readings:	
		construct various topologies on a		1. Conway, J. B. (2014). A course in point set topology.	
		general set which is not empty by		Springer.	
		using different kinds of		2. Körner, T. (2010). Metric and topological spaces.	
		techniques.		3. Munkres, J. R. (1978). Topology, a first course. New	
		 Define the subspace topology, 		Delhi: Prentice-Hall of India.	
		Construct the product topology on			
		product spaces, and Construct the			

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		quotient topology.			
5	MATH (to be	On completion of the course, the student		Media allocation problem, Cargo Loading Problem,	New
	generated)	will be able to,		Production Scheduling Problem, Wood cutting problem,	course
	Operational	 To have the knowledge of role of 		School bus routing problem using spanning tree,	proposed.
	Research	O.R. in solving industrial		Simulation, Knapsack problem, Set Covering Problem,	
	Applications	problems.		Fixed Charge Transportation Problem, Project Selection	
		• To introduce the important ideas		Problem.	
		in operations research which are		Suggested Readings:	
		both fundamental and long		1. Taha, H. A. (2010). Operations Research-An	
		lasting.		Introduction (9th Ed.), Prentice Hall.	
		 To prepare and motivate future 		2. Winston, W. L., &Venkataramanan, M. (2002).	
		specialists to continue in their		Introduction to Mathematical Programming: Applications	
		study by having an insightful		and Algorithms (4th ed.). Duxbury Press.	
		overview of operations research.		3. Ravindran, A., Phillips, D. T. & Solberg, J. J. (2005).	
		 To demonstrate the cohesiveness 		Operations Research. Principles and Practice, John	
		of operations research		Wiley & Sons.	
		methodology.		4. Hadley, G. (1964). Nonlinear and Dynamic	
		 To identify the resources required 		Programming, Addison-Wesley.	
		for a project and generate a plan			
		and work schedule.			
6	STAT (to be	On completion of the course, the student		Markov decision processes: finite and infinite horizon	New
	generated)	will be able to,		models. Optimality of Markov policies. Computational	course
	Selected	• Elucidate the power of stochastic		aspects. Examples from inventory systems, resource	proposea.
	Applications	processes and their range of		allocation, etc.	
	of Stochastic	applications.		Learning algorithms: Temporal difference methods.	
	Models	 Demonstrate essential stochastic 		Methods based on approximation functions;	
		modelling tools including Markov		TD(lambda); Q-learning. Stability of queuing models.	
		chains and queuing theory.		Little's law and its extensions. Advanced queuing	
		 Use probabilistic arguments 		models in discrete and continuous time.	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		including conditional		Some classes of stochastic scheduling rules; minimizing	
		distributions and expectations.		mean sum of completion times on a single machine with	
		 Carry out basic modelling using 		and without pre-emptions and index policies. Makespan	
		Markov chains in discrete and		with and without pre-emptions on parallel machines;	
		continuous time.		due date related objectives.	
		 Review and apply Markov chains 		Suggested Readings:	
		methods based on stationary and		1. Bertsekas, D. P. (1995). Dynamic programming and	
		asymptotic distributions.		optimal control (Vol. 1 & 2). Belmont: Athena	
				publications.	
				2. Wolff, R.W. (1989). Stochastic modeling and theory of	
				queues. Englewood Cliffs: Prentice-Hall Inc.	
				3. Pinedo, M. (1995). Scheduling: Theory, algorithms and	
				systems. Englewood Cliffs: Prentice-Hall Inc.	
7	STAT (to be	On completion of the course, the student		Deferent Aspects of ALT Models, Accelerated Life Test,	New
	generated)	will be able to,		Step Stress Test, Acceleration Model, Cumulative	course
	Step-Stress	 Understand statistical models and 		Exposure Model, Optimum Step-Stress Accelerated Life	proposed.
	Modelling	methods for analyzing accelerated		Test Models, Optimum Step-Stress Partially Accelerated	
		life-test data from step-stress tests.		Life Test Plans with Type-I and Type-II Censoring.	
		 Understand how to use ALT 		Suggested Readings	
		methods in real life problems.		1. Kundu, D. and Ganguly, A. (2017). Analysis of Step-	
				Stress Models. Elsevier.	
				2. Tang, L-C. (2018). Multiple-steps Step-stress Accelerated	
				Life Test. Springer.	
				3. Accelerated Life Test; Platform:	
				http://home.iitk.ac.in/~kundu/seminar25.pdf	
				4. Different aspects of ALT models; Platform:	
				https://www.worldscientific.com/doi/pdf/10.1142/	
				<u>9789813141261 fmatter</u>	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
8	STAT (to be	On completing the course, the student		Categorical Response Data: Nominal/Ordinal scale,	New
	generated)	will be able to:		statistical inference for a proportion and discrete data.	course
	Categorical	 Identify and understand the 		Probability Structures for Contingency Tables.	proposed.
	Data	structure of categorical data and		Comparing Proportions in Two-by-Two Tables, Odds	
	Analysis	be able to phrase the appropriate		Ratio: their properties and relation with relative risk.	
		scientific questions in terms of		Tests of Independence of two attributes. Testing	
		parameters of interest.		Independence for Ordinal Data: Choice of Scores, Trend	
		 Understand the various 		Tests for $I \times 2$ and $2 \times J$ Tables, Nominal–Ordinal Tables,	
		assumptions needed for the		Exact Inference for Small Samples. Association in Three-	
		various methodologies		Way Tables.	
		 Test for independence, and 		Logistic regression model: Interpretations, inferences,	
		equality of proportions		model selection, model checking. Logit Models for	
		• Fit logistic models for binary data		Nominal Responses, Cumulative Logit Models for	
		 Check model assumptions and 		Ordinal Responses, Paired-Category Ordinal Logits.	
		analyze residuals and goodness-		Loglinear Models for Two-Way and Three-Way Tables	
		of-fit		Suggested Readings	
		 Conduct inference for model 		1. Alan Agresti, An Introduction to Categorical	
		parameters and interpret the		Data Analysis, Second Edition, Wiley	
		output of the models		Interscience, 2007.	
		1		2. Categorical Data Analysis:	
				http://web.pdx.edu/~newsomj/cdaclass/	
					NT.
9	STAT (to be	On completion of this course, student will		Non Linear Models: Introduction to non Linear models,	New
	generated)	be able to		non-linear least squares estimators, outliers, robustness	course
	Robust	Understand the basics of fitting		of models against outliers, robust M-estimation	proposed.
	estimation in	and inference for nonlinear		approach, asymptotic properties of robust M-estimators,	
	Non Linear	regression methods when the		the asymptotic theoretical properties of M-estimators	
	Models	regression function acting on the		under different possibilities of the M-estimation function	
		predictors is not linear in the		and noise distribution assumptions.	
		parameters.		It is an important and challenging problem to design	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		 Check the robustness of the fitted 		robust order estimation techniques for nonlinear nested	
		model.		models and establish their asymptotic optimality	
		Carry out research in the area of		properties	
		robust estimation.		Currents I and Dansa	
				Suggested readings:	
				1. Cizek, P. (2001).Robust Estimation in Nonlinear	
				A Definite Fatimation in Maniferry Department Ma	
				U Robust Estimation in Nonlinear Regression Mo	
				2. Znu, L., Ll, K., & Cui, H. (2013). Robust estimation	
				souvrietes Science Ching Mathematics 5(10) 2069	
				2008 https://doi.org/10.1007/c11425.012.4675.0	
				2000. <u>https://doi.org/10.100//s11425-015-40/5-0</u>	
				5. Neugebauer, 5.r. (1990). Robust Analysis of M-	
				citacearry ist new adu/zierudac/download2doi=101111125	
				23& won=wn1 ndf	
				2507ep=rep1puj	
10	STAT (to be	On completion of the course, the students		Official statistics provide a picture of a country or	
	generated)	will be able to:		different phenomena through data, and images such as	
	Official	 Know the key aspects of Official 		graph and maps. Statistical System in India: Central and	
	Statistics	Statistics, as distinct from other		State Government Organizations, Functions of Central	
		branches of statistics.		Statistical Organization (CSO), National Sample Survey	
		 Know the legal and ethical constraints 		Organization (NSSO). System of Collection of	
		on organizations producing Official		Agricultural Statistics - Crop forecasting and estimation	
		Statistics.		Productivity, fragmentation of holdings - Support prices	
		 Know the principal methods for data 		- Buffer stocks - Impact of irrigation projects. Statistics	
		collection, analysis and interpretation		related to industries, foreign trade - Balance of payment	
		of health, social and economic.		- Inflation - Social statistics. National Income – Measures	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		 Know the methods for presenting and 		of national income - Income, expenditure and	
		preparing commentaries on Official		production approaches - Applications in various sectors	
		Statistics.		in India. Measurement of income inequality: Gini's	
				coefficient, Lorenz curves, Application of Pareto and	
				Lognormal as income distribution.	
				Suggested readings:	
				1. Bhaduri, A. (1990). Macroeconomics: The	
				Dynamics of Commodity Production, Macmillan	
				India Limited, New Delhi.	
				2. Branson, W. H. (1992). Macroeconomic Theory	
				and Policy.(3rded.). Harper Collins Publishers	
				India (P) Ltd., New Delhi.	
				3. C.S.O. (1990). Basic Statistics Relating to the Indian	
				Economy.	
				4. C.S.O. (1995). Statistical System in India.	
				5. C.S.O. (1999). Guide to Official Statistics.	
				6. Panse, V. G. (1964). Estimation of Crop Yields	
		Verified		(FAO). Food and Agriculture Organization of	
				the United Nations.	
		Solice .		7. Central Statistical Organization:	
		TOTAL		http://www.mospi.gov.in/central-statistics-	
		Offer Secretary		office-cso-0	
		Banasthall Vidyapith		8. National Sample Survey Office (NSSO)	
		P.O. Banasthali Vidyapith		<u>http://www.mospi.gov.in/national-sample-</u>	
		Dialt. Jonk (Haj.)-304022		survey-office-nsso	
				9. Agriculture Survey Reports:	
				<u>https://eands.dacnet.nic.in/</u>	

Name of Programme: M.Phil (Mathematical Science) Course Details: (To be provided in the below mentioned table) Note: 1. Black Shaded part is shifted. 2. Strikeout is deleted.

3. Italic and Underline is rewritten.,

4. Grey shaded part is added.

First Semester

S.N. Course List Learning Outcomes Existing Syllabus Suggested Syllabus Remark 1. MATH (to be generated) New Research Course Methodology 2. MATH 602 On completion of the course, students Suggested E-learning material: No change Advanced will be able to, in the Analysis 1. Normed space Banach space and Hilbert spaces and syllabus • Tell what is Normed spaces • Explain when Normed space become Banach space its properties; Platform:<u>https://nptel.ac.in/courses/11110503/</u> • Define the Hilbert spaces • Define multi linear mappings Check whether the function is bounded or not? What is directional derivative? Explain the difference between • partial derivative and directional derivative • Tell about the fixed point • Tell about the Lipschitz's constant and conditions • Related the analysis and differential equation Explain the fixed point using graph ٠ theory 3. MATH 504 On completion of the course, students No change will be able to, in the --Analytic and

Algebraic	Demonstrate the knowledge of		syllabus
Number Theory	arithmetic functions and their		
	property.		
	 Know the prime number theorem 		
	and its analytic proof.		
	• Understand basic concepts of		
	algebraic number theory such as		
	conjugates, discriminants, algebraic		
	integers, integral basis, norms and		
	traces.		
	• Understand prime factorization of		
	ideal and unique factorization.		
	• Know some important theorem in		
	algebraic number theory.		

Electives	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 507 Financial Mathematics	 On completion of the course, students will be able to, Understand financial analysis and planning. Know the cost of capital, capital structure and dividend policies. Apply technique of Goal Programming to profit planning and financial budgeting. 			No change in the syllabus
		 Make financing decision onproblem of determining optimal capital structure Understand the concept of leasing, debt management, analysis of 			

		commitment of funds and risk of cash insolvency.		
2.	MATH 527 Tensor Analysis and Geometry of Manifolds	 On completion of the course, students will be able to, Discuss different kinds of surfaces, connection and covariant derivatives. Understand the concepts of manifold and illustrate some examples of manifolds. Understand the Ricci identity and enable to use it in proving different theorems. Define and illustrate some examples of Lie group. 	 Suggested E-learning material: 1. NOC: Differential Calculus in Several Variables: <u>https://nptel.ac.in/courses/111104092/</u> 2. NOC: Multivariable Calculus: <u>https://nptel.ac.in/courses/111107108/</u> 3. NOC: Calculus of One Real Variable: <u>https://nptel.ac.in/courses/109104124/</u> 	No change in the syllabus
3.	MATH 601 Advanced Graph Theory	 On completion of the course, the student will be able to, To understand and apply the fundamental concepts in graph theory. To recognize and express the mathematical ideas graphically. Acquire ability to apply graph theory based tools in solving practical problems. To improve the proof writing skills. To develop mathematical maturity. Understand some applications of graph theory to practical problems and other areas. 	Suggested E-learning material 1. Basic concepts in graph theory <u>https://nptel.ac.in/downloads/111104026/</u> 2. Basic concepts in graph theory <u>http://home.iitk.ac.in/~arlal/book/mth202.pdf</u> 3. Euler graph, Hamiltonian graph, connectivity and coloring <u>http://www.math.kit.edu/iag6/lehre/graphtheo2015w/</u> media/lecture_notes.pdf 4. Ramsey theory <u>http://math.mit.edu/~fox/MAT307- lecture05.pdf</u> 5. Matching <u>http://www- math.mit.edu/~djk/18.310/Lecture- Notes/MatchingProblem.pdf</u> 6. Open course in graph theory (All topics) a. <u>https://swayam.gov.in/course/3795-graph- theory</u> b. <u>https://swayam.gov.in/course/4403-advanced- graph-theory</u>	No change in the syllabus

4.	MATH 614 Finsler Geometry	 On completion of the course, the student will be able to Make use of purely metric methods in the investigation of various Finsler metrics that appear naturally in geometry, topology and convexity theory. 	Suggested E-learning material 1. Lectures on Differential Geometry: https://www.math.iupui.edu/~zshen/Research/pap ers/lecture.pdf 2. Lectures on Differential Geometry: https://www.worldscientific.com/worldscibooks/1 0.1142/4619#t=toc	No change in the syllabus
5.	MATH 619 Mathematical Cryptography	 On completion of the course, students will be able to, Understand the necessary concepts of number theory and complexity theory. Understand the need of cryptography and its impact on the society. Demonstrate the knowledge of one way functions and its concrete examples such as integer factorization and discrete logarithm. Understand the public key cryptosystems such as RSA and ElGamal. Know the concept of digital signature. 	Suggested E-learning material: 1. Lecture Notes on Number Theory: https://nptel.ac.in/courses/111103020/ 2. Video Lecture on Number Theory: https://bit.ly/2ToTdj2 3. Video Lecture on Cryptography: https://nptel.ac.in/courses/106105031/	No change in the syllabus
6.	STAT 504 Clinical Trials	 On completion of this course, students will be able to, Identify and classify different types of trial designs when reading a trial report. 	Suggested E-learning Resources 1. Clinical Trials <u>http://www.esourceresearch.org/eSourceBook/ClinicalTrials/1LearningObjectives/tabid/192/Default.aspx</u>	No change in the syllabus.

		 Understand the essential design 		2. Clinical Trials as Research	
		issues of randomized clinical		https://newonlinecourses.science.psu.edu/stat509/	
		trials.		node/6/	
		Appreciate three possible			
		sources of errors that could lead			
		to erroneous trial results.			
		 Understand the basic statistical 			
		principles, concepts, and			
		methods for clinical data			
		analysis and reporting; and			
		Understand some frequently			
		used terms in clinical trials.			
		 Understand the relative 			
		contributions of clinical			
		iudgment and clinical trials in			
		evaluating new medical			
		therapies			
		1			
7.	STAT 505	On completion of the course, students	-	Suggested E-learning Resources	No change
	Desision	will be able to,			in syllabus.
	Theory			1. Decision Theory; platform:	5
	Theory	Understand a decision theoretic		http://www.utdallas.edu/~mbaron/7330/_	
		approach to the problem,			
		evaluate a utility function,			
		propose a conjugate family of			
		prior distributions, evaluate			
		Bayes and posterior risks and			
		find the optimal solution.			
		Solve Multilevel Decision			
		Problems, Decision Process with			
		sampling information			
		Understand Basic Concept of the			
		sampling time Markov decision			
1	1	process, telecommunication and			

		queuing theory.			
8.	STAT 508 Distribution Theory	 On successful completion of the course, the students will be able to: Formulate the statistical models for real data sets arising in various fields in order to analyze in respect of various useful characteristics of the populations Develop problem-solving techniques needed to accurately calculate probabilities. Identify the distribution of random variable under various discrete and continuous distributions. Calculate probabilities, moments and other related quantities based on given distributions. Determine the probability distribution after transformation. Understand how to use non-central distributions in real life problems. 		Suggested E-learning Resources 1. Probability Distribution- npteLac.in/courses/111105041/ 2. Distribution Functions- https://epgp.inflibnet.ac.in/ahl.php?csrno=34 3. Introduction to Probability- https://ocw.mit.edu/resources/res-6-012- introduction-to-probability-spring-2018	No change in syllabus.
9.	STAT 510 Econometric Models	 On completion of this course, students will be able to, Construct econometric models from economic models. Detect influential observations and perform robust regression. Estimate regression models when the dependent variable is nominal, ordinal or a quantile. Fit distributed lag model when the data is time series. 	Section A Review of multiple linear regression models, Polynomial Regression, Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Section B	Section A Nature of Econometrics, Review of linear regression models, polynomial regression model. Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Influential observations: Standardized and studentized residuals, Cook's distance, DFFITS, DFBETAS, COVRATIO. Robust regression techniques: LAD and LMS regression.	The existing syllabus is a bit short, so some new topics are added which have good application in

		C 11 D	1 1 1
Diagnose the identifiability of a		Section B	anaiyzing
simultaneous equation model.		Logit and Probit models: binary response model,	an
Estimate a simultaneous		multinomial choice models: ordered and unordered	empirical
equation system.		response models. Censored regression, truncated	data.
		regression models.	
	[Introduction to logistic regression and] Poisson		
	regression.	Poisson regression: estimation and prediction.	
		Introduction to Generalized linear model.	
	Section C	Introduction to quantile regression and non-parametric	
	Simultaneous equation model: concept of structural	ragrassion Conoral non linear ragrassion: Assumptions	
	and reduced forms problem of identification rank	Least squares estimation Testing	
	and order conditions of identifiability. <i>Jundiment loget</i>	Least squares estimation, resting.	
	and order conditions of dentificating, financer was	Section C	
	likelihood estimation]		
	wice in the committee i		
	Text/References Books:		
	1 Johnston I (1984) Econometric Methods	· · · · · · · · · · · · · · · · · · ·	
	McGraw Hill Kogakusha Ltd		
	2 Judge G.C. Hill R.C. Griffithe W.F.		
	Lutkepoll H and Lee T.C. (1988)	Simultaneous equation models: concept of structural	
	Introduction to the Theory and Practice of	and reduced forms, problem of identification, rank and	
	Econometrics Second Edition John Wiley &	order conditions of identifiability. Limited information	
	Econometrics, Second Edition, John Whey &	and full information estimation methods.	
	$2 \mathbf{K}_{\text{exc}} = 1 1 \mathbf{M} \mathbf{C}_{\text{exc}} + \mathbf{C}_{\text{exc}} + \mathbf{A}_{\text{exc}} + \mathbf{A}_{$		
	5. Kenuali, M.G. and Stuart, A. (1968). The	Suggested Text/References Books:	
	Advanced Theory of Statistics (Vol. III),	1 Baltagi B H (2007) Econometrics Springer Science &	
	Second Edition, Charles Griffin.	Business Media	
		2 Guiarati D N (2003) Rasic aconometrics McCraw	
		Hill	
		Juni. Jahnston I. & DiNatdo I F. (2007) Econometric	
		Johnston, J., & Dinaruo, J. E. (2007). Leonometric	
		Wietnoas. McGraw-Hill.	
		4. Montgomery, D. C., Peck, E. A., & Vining, G. G.	
		(2006). Introduction To Linear Regression Analysis, 3rd	
		Ed. Wiley India Pvt. Limited.	

			 Sawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool (2nd Ed.). New York: Springer-Verlag. Wooldridge, J. M. (2008). Introductory Econometrics: A Modern Approach. Cengage Learning. William H. Greene (2012). Econometric Analysis (7th Ed.). Pearson Education limited. 	
			Suggested E-learning material:	
			 Lecture Notes on Regression Analysis by Shalabh, IITK: <u>http://home.iitk.ac.in/~shalab/course5.htm</u> An article on "Understanding logistic regression analysis" by Sandro Sperandei :<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/</u> Lecture Notes on "Econometrics": <u>https://ocw.mit.edu/courses/economics/14-382- econometrics-spring-2017/lecture-notes/</u> 	
10.	STAT 511 Non-Parametric Inference and Sequential Analysis	 On completion of this course, student will be able to, Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled. Build non-parametric density estimates. The application of sequential statistical techniques. Critically examining sequential procedures for appropriate statistical analyses. 	Suggested E-learning Resources 1. Statistical Methods for Scientists and Engineers- Non Parametric Methods: https://nptel.ac.in/courses/111105077/29 . 2. Statistics for Applications: https://ocw.mit.edu/courses/111105077/29 . 650-statistics-for-applications-fall-2016/	No change in the syllabus.

11.	STAT 513	On completion of the course, the	Suggested E-learning Resources	No change
	Regression	students should be able to,	1. The resources site for the book Introductory	in the
	Analysis	• The density of the second of	Economic of a final state of the book in t	syllabus.
	1 11111 9 010	Understand the concept of regression and the underlying	Brooks	
			biture: //www.combridge.org/us/coodomis/toyt	
		assumptions.	hosts/ / www.cantoridge.org/us/academic/text	
		Estimate least squares estimate	2 Lacture Nature on "Feedback"	
		of regression coefficients.	2. Lecture (Notes on Econometric Theory .	
		Perform testing of complete	interset of the second	
		regression model and subset of	5. Course material on Econometrics :	
		regression model.	https://ocv.miteau/courses/economics/14-32-	
		 Measure the goodness of the 	econometrics-spring-2007	
		model.		
		 Check the validity of the 		
		assumptions for a real data.		
		 Find a suitable remedy to 		
		reduce the effect of violation of		
		any assumption.		
		 Include a qualitative variable as 		
		regressors in a regression model		
		using dummy variables.		
		Check the model for		
		specification errors and its		
		testing.		
		 Understand the concept of 		
		outlier, leverages and influential		
		observations.		
		 Understand the concept of a 		
		simple logistic regression and		
		make interpretations.		
12	STAT 603	On completion of the course students	Suggested F-learning material	No change
12.	51111 005	will be able to:	Suggested E-tear ining material	in the
	Bayesian		1. Bayesian Statistics: From Concept to data analysis	syllabus.
	Inference	 Calculate simple likelihood 	https://www.coursera.org/learn/bayesian-statistics	5, incus
1			2. Introduction to Bayesian Statistics	

function and frequencies probabilities probabilities	d use relative to estimate s and conditional s.	https://www.statistics.com/bayesian-statistics/	
Calculate po using Bayes	osterior probabilities s´ theorem		
Describe the distribution function and distribution inference ab	e role of the posterior 1, the likelihood d the posterior 1 in Bayesian pout a parameter.		
• Explain in c framework its flexibility able to dem Bayesian ap beneficial.	detail the Bayesian for data analysis and y and be onstrate when the oproach can be		
Develop, an and implem multi param probability Bayesian fra	nalytically describe, tent both single and neter models in the amework.		
Demonstrat prior distrib inference ar articulate th informative conjugate p	te the role of the oution in Bayesian nd be able to te usage of non- priors and riors.		
Show high 1 of Bayesian and be able perform Bay	level Interpretation Analysis Results to readily yesian model		

		 evaluation and assessment. Demonstrate the necessary skills to: fit hierarchical models, provide thorough technical specifications for these models. Demonstrate how Bayesian Methods can be used to solve real world problems. Communicate complex statistical ideas to a diverse 		
13.	STAT 609 Population Sciences	audience. On completion of the course, students will be able to: Identify principle sources of population data and assess their strengths and weaknesses. Able to evaluate of human development index. Construct and interpret life tables. Aware various population policies and programs. Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. Understand the significance of age-sex structures and their implications on population	 Suggested E-learning material 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 2. Population Studies; Platform; e-PG Pathshala <u>https://epgp.inflibnet.ac.in/loaddata.php?action=l</u>oadpaperlistl&maincat=453 3. Demography; Platform: University Library - The University of Adelaide <u>https://www.adelaide.edu.au/library/</u> 4. Demography; Platform: <u>MIT</u> OPENCOURSEWARE <u>https://ocw.mit.edu/index.htm</u> 	No change in the syllabus.

				1
		 change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Understand the concept of urbanization on the economic 		
		 growth of the contrary. Estimate and project the population by different methods. 		
14.	STAT 613 Time Series Modeling	On completion of this course, the students will be able to, • Estimate and eliminate trend and seasonality in a time series • Fit stationary and non-stationary time series model to a series • Understand the concept of testing for parameter stability of a time series model • Demonstrate fitting of multivariate ARMA model to series • Understand the concept of cointegration analysis and procedure for two variable models. • Understand the concept of cointegration analysis and procedure for two variable models.	 Suggested E-learning material 1. Econometric Modeling. Platform: <u>https://nptel.ac.in/courses/110105053/29</u> 2. Video lectures on Econometric Modeling: <u>https://nptel.ac.in/courses/110105030/37</u> 3. Video lectures on e-PG- Pathshala, Subject: Statistics, Paper Name: P-14. Econometrics and Financial Time Series <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u> 	No change in the syllabus.

45		 causality. Understand the concept of volatility in a series and related models. 		
15.	generated) Fuzzy Logic and Belief Theory	 Vill be able to, Learn crips and fuzzy set theory. Decide the difference between crips set and fuzzy set theory. Make calculation on fuzy set theory. Recognize fuzzy logic membership function. Recognize fuzzy logic fuzzy logic fuzzy inference systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. 	Basic concept of Fuzzy Logic: Introduction to fuzzy set, membership function, Various forms of membership functions, type of fuzzy sets, LR- representations of fuzzy sets, properties of fuzzy sets (support, cardinality, alpha-cut set, convexity).Operations on Fuzzy sets: Union, Intersection, complement, combinations of operations. Fuzzy extension principle, Fuzzy Relations: fuzzy cartesian product and composition, Crisp versus fuzzy relations, binary fuzzy relation, fuzzy equivalence relations, fuzzy compatibility relations, fuzzy ordering relations. Fuzzy graphs, Fuzzy morphism (homomorphism), Fuzzy relation equations.Fuzzy Numbers: Definitions and types of fuzzy numbers, interval analysis in arithmetic, triangular and trapezoidal types, Arithmetic operations on fuzzy function, type of fuzzy function: Introduction to fuzzy function, differentiation and integration of fuzzy function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy truth qualifier.Fuzzy if- then rules: Basics of fuzzy truth qualifier.Fuzzy if- then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making:	elective

		Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy transportation problemsFuzzy System: Introduction to fuzzy system.Defuzzification methods: centre of area (or centre of gravity or centroid), centre of maxima, mean of
		maxima.Fuzzy controllers: an overview of fuzzy controller.Fuzzy Systems and Neural Network:
		Introduction to neural network, fuzzy neural networks.
		Probability, Uncertainty and Fuzzy Measures: Probability verses Possibility, Fuzzy event, Crisp probability of fuzzy event and fuzzy probability of fuzzy event, Level of uncertainty, Measure of fuzziness: (i) using Shannon's entropy formula and (ii) using metric distance.
		Belief Theory: Evidence Theory- Mathematical Theory of evidence, Introduction to Shafer's Belief Theory, Belief representation: mass of belief, belief measure, plausibility measure, properties of belief function- relation between belief and plausibility measure, Dempster's Rule of Combination, Applications of Fuzzy logic and fuzzy set theory in Operations Research, Computer Science and Engineering fields.
		Suggested Text Books:
		 Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag
		 Klir, G. J., & Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India.
		Suggested Reference Books:
		1. Klir, G. J., & Folger, T. A. (2010). Fuzzy sets,

			 uncertainity and information. New Delhi: PHI Learning Private Ltd. 2. Yen, J., &Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. 3. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. 4. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. 5. Nguyen, H. T., & Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman & Hall/CRC. Suggested E-learning material: Introduction to Fuzzy Logic(Videos) <u>https://nptel.ac.in/courses/106105173/2/</u> Fuzzy Logic: Introduction (PDF) <u>http://cse.iitkgp.ac.in/~dsamanta/courses/sca/resour ces/slides/FL-01%20Introduction.pdf</u> 	
16.	MATH (to be On completion of this course, students	Section A	Section A	
	generated) will be able to:	Analytical structure of production and Inventory	Concepts of Inventory, Classification of inventory models,	
	Inventory • Comprehend the dynamics of	problems, Inventory related costs, properties of inventory	EOQ model, EPQ model, EOQ model with shortages, EPQ	
	Theory inventory management's	Systems, ructors influencing internotories.	model with shortages, EOQ model with constraints: Quantity	
	principles, concepts, and	and with lead time Inventory models with partial	discounts, Floor Constraints, Investment Constraint.	
	techniques as they relate to the	backlogging and sales, Models with continuous	Sensitivity analysis in inventory models.	
	entire supply chain (customer	production and non-constant demand with known		
	demand, distribution, and	production capacity, Inventory models with constraints,	Section B	
	product transformation	Quantity discounts; All units and incremental,	Stochastic Inventory Models and Extensions without and with	
	Inderstand the methods used	Sensitivity of the lot size system, N products and M	lead time. Power demand pattern inventory model,	
	by organizations to obtain the	Machines model.	Introduction to Just In Time (JIT) and Vendor Managed	
	ey organizations to obtain the	Section B	introduction to sust in Time (STT) and Vendor Managed	

	right quantities of stock or inventory, • Familiarize themselves with inventory management practices. • Optimize different case studies requires efficient methods and practices to address inventory management problems. • Understand the behavior of the inventory parameters after some time using simulation techniques.	 Stochastic Inventory Models and Extensions without and with lead time, Use of transformation from time- dependent for continuous and discrete demand, Power demand pattern Inventory Model, Safety stock and Buffer stock. Section C Simulation in Inventory system, Production scheduling, Classification of items viz: ABC, VED, (FNSD, HML, SDE, XYZ), Case studies. Books Recommended: Text Books: 1. Kanti Swarup, Operation Research, Sultan Chand & Sons, 2010. 2. Sharma S.D., Operations Research, Kedarnath Ramnath, Meerut, 1972. Reference Books: 1. G. Hadley, T. Whitin, Analysis of Inventory Systems, Prentice Hall, 1963. 2. E.Naddor, Inventory System, John Wiley, New York, 1966. 	Section C Simulation in Inventory system, Classification of items viz: ABC, VED, FNSD, HML, SDE, XYZ, Case studies in inventory control. Suggested Books: 1. Hadley, G., Whitin, T. M (1963). Analysis of inventory systems. Englewood Cliffs, N.J.: Prentice-Hall. 2. Naddor, E. (1984). Inventory systems. Malabar, Fla: R.E. Krieger. 3. Waters, D. (2008). Inventory Control And Management, 2Nd Ed. Wiley India Pvt. Limited. Suggested E-learning material: 1. Inventory Models costs, EOQ model(Lecture PDF) https://nptel.ac.in/courses/110106045/9 2. Inventory management(PDF) https://ocw.mit.edu/courses/engineering-	
17. MATH (to be generated) Queuing Theory	 On completion of the course, the student will be able to Understand the principles and objectives of model building based on Markov chains. Analyze the queueing situations. Understand the mathematical tools that are needed to solve queueing problems. 	York, 1966. Section A <u>Concept of stochastic processes</u> . Markov Chains <u>discrete</u> <u>and continuous time parameter</u> . Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian Models (M/M/1, M/M/c, Section B <u>Analytical method and use of randomization technique to</u> <u>find the transient solution of M/M/1, M/M/c and</u>	2. Inventory management(PDF) <u>https://ocw.mit.edu/courses/engineering-</u> <u>systems-division/esd-260j-logistics-systems-fall-</u> <u>2006/lecture-notes/</u> Section A Introduction of stochastic processes, Markov process, Markov Chain, Poisson process with its properties and related distributions (without proof) and birth-death process. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian queueing models: M/M/1 and M/M/c. and their performance measures. Section B	Change in Credit.

	 Identify and develop queueing 	$M/M/\mu$ queuing models including busy period	Steady State solution of M/Ek/1 and Ek/M/1 queueing	
	models from the verbal	distribution.	models with their performance of measures. The	
	description of the real system.	Section C	transient solution of $M/M/1$ and $M/M/\infty$ Queueing	
		Imbedded markov chain technique and its use to the	models including busy period distribution.	
		queueing models: M/G/1, GI/M/1 and M/D/c,	Section C	
		Bulk queuing models. Different design and control	occubii e	
		policies ((O, N) and vacation policies) for Markovian	Imbedded Markov chain technique and its use to solve	
		Queuing models. Introduction to discrete time	the Queueing models: M/G/1 and GI/M/1. Bulk	
		queuing system.	queuing models: $M M/M/1$ and $M/M M/1$. Different	
		Simulation procedures: Data generation and Book-	design and control policies for Markovian Queueing	
		keeping aspects.	models. Simulation procedures: Data generation and	
		Suggested Text Books:	Book- keeping aspects.	
		1. D. Gross and C.M. Harris, Fundamentals of	Suggested Text Books:	
		 Queueing Theory, 2nd Ed., John Wiley, 1985. Michel E. Woodward, Communication and Computer Networks Modeling with Discrete Time Queues, IEEE Computer Society Press, 1994. (Chapter 4) Suggested Reference Books: R.B. Cooper, Introduction to Queuing Theory, 2nd Ed., North Holland, 1981 D.R. Cox and W.L. Smith, Queues, Mathuen, 1961. L. Kleinrock, Queuing Systems, Vol. I, John Wiley, 1975. J. Medhi, Stochastic Model in Queuing theory, Academic Press, 1991. T.L. Satty, Elements of Queuing Theory with Applications, Mc-Graw Hill, 1961. 	 Gross, D., & Harris, C. M. (1985). Fundamental of Queueing Theory. (2nd ed.). John Wiley. Michel, E. W. (1994). Communication and Computer Networks Modeling with discrete Time queues. IEEE Computer Society Press. (Chapter 4) Suggested Reference Books: Cooper, R. B. (1981). Introduction to Queuing Theory. (2nd ed.). North Holland, Elsevier. Cox, D. R. & Smith, W. I. (1961). Queues. Mathuen& Co. Ltd. Kleinrock, L. (1975). Queuing System. (Vol. 1). John Wiley. Medhi, J. (1991). Stochastic Models in queuing Theory. Academic Press. Satty, T. L. (1961). Elements of Queuing Theory with Applications. Tata McGraw Hill. 	
			Suggested E-learning Material:	
			1. Queuing Systems, NPTEL	

			https://nptel.ac.in/courses/117103017/1 2. Introduction to stochastic process and applications, NPTEL https://nptel.ac.in/courses/110104024/1 3. Stochastic Process and Time series, ePATHSHALA <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u>	
18.	STAT (to be generated) Reliability and Renewal Theory	 On successful completion of the course, the students will be able to: Understand the importance of validity and reliability assessment and the link between the two. Estimate the reliability function and mean time to failure for different types of systems Analyze statistical experiments leading to reliability modeling. Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. Analyze non-repairable systems of independent components, with and without redundancy First look at what a random processes are. 	- Section A Concept of Reliability. Classes of Life time distributions. Evaluation of Reliability function, Shape of Reliability function. System, Reliability Evaluation : Series & Parallel system, partially redundant system, standby system with perfect switching/imperfect switching, (k,n) system, Bridge Structure. Availability theory and its molding for various configurations. Introduction to Software Reliability. Section B Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies : Age, Block, Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging. Section C Renewal Theory, Distribution of number of renewals & moments, Recurrence time & its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability. Text Books 1. Sinha, S. K. (1986). <i>Reliability and life testing</i> . New York: Wiley.	New Course

		 Describe, derive, and prove important theorems and formulas for renewal theory Use renewal theory to solve problems where Poisson is not a realistic process 	 Gert s bakh, I. B. (2009). Reliability theory: With applications to preventive maintenance. New Delhi: Springer. Cox, D. R. (1982). Renewal theory. London: Chapman and Hall. Lewis, E. E. (1996). Introduction to reliability engineering. New York, NY: Wiley. 	
			Reference Books	
			1. Barlow, R. E., &Proschan, F. (1975). <i>Statistical theory</i> of reliability and life testing. New York: Holt, Rinehart and Winston.	
			2. Jardine, A.K.S. (1973). Maintenance, Replacement and Reliability. UK: Pitman Publication.	
			3. Medhi, J. (2009). <i>Stochastic Process</i> (3rd Ed.). New Age International, 2009.	
			Suggested E-learning material:	
			1. 2011 Lecture 17: Modules, Systems, and Reliability: https://ocw.mit.edu/courses/mechanical-	
			engineering/2-627-fundamentals-of- photovoltaics-fall-2013/lecture-videos-	
			slides/2011-lecture-17-modules-systems-and- reliability/	
			2. <u>Probability Theory and Applications: Lecture 40-</u>	
			Reliability of Systems:	
			<u>https://nptei.ac.in/courses/1111040/9/40</u>	
19.	MATH (to be	On completion of this course, students	- Section A	New
	generated)	will be able to	Fields, prime subfields, Extension fields, algebraic	Course
	Fields and Galois Theory	• Understand the concepts of field	extensions, simple extensions, transcendental extension,	
	Galois Theory	extension and appreciate its	minimal polynomial, Kronecker's Theorem, splitting	
		importance.	news, uniqueness of spirung news and algebraic	

Understand different types of	closures.			
• Find the Galois group for some	Section B			
extension fields.	Finite fields, existence and uniqueness of finite fields,			
 Know the link between field theory 	Normal and separable extensions, perfect fields,			
and group theory.	Automorphisms of field, fixed fields, Galois group, F-			
• Demonstrate the solvability of	conjugate, Frobenius map, character, linear			
quadratic, cubic and quartic	independence of characters.			
equations by radicals.	Section C			
	Fundamental theorem of Galois theory, cyclotomic			
	extensions and abelian extensions, cyclotomic			
	polynomials, cyclic extension, radical extension, solution			
	of quadratic, cubic and quartic equations by radicals.			
	Suggested Books:			
	1. Howie, J. M. (2006). Fields and Galois theory. London: Springer.			
	2. Escofier, JP. (2001). Galois theory. New York: Springer.			
	3. Gallian, J. A. (2013). Contemporary abstract algebra.			
	(8th Ed.). Boston, MA: Brooks/Cole Cengage			
	Learning.			
	 Dummit, D. S. & Foote, R. M. (2004) Abstract algebra (3rd Ed.), New Jersey: Wiley. 			
	5. Sen, M. K., Ghosh, S., Mukhopadhyay, P. &Maity, S. K. (2019) Topics in abstract algebra (3rd			
	Ed.). University Press.			
	6. Morandi, P. J. (2003). Field and Galois theory.			
	Beijing: Beijing World Pub.			
	Suggested E-learning Material:			
	1. Notes on Galois Theory:			
	www.math.iitb.ac.in/~srg/Lecnotes/galois.pdf			
			2. Lecture Notes:	
-----	--	--	--	-----------------
			https://nptel.ac.in/courses/111101001/	
20.	MATH (to be generated) Coding Theory	 On successful completion of this course students will be able to, Understand the need of coding theory. Appreciate the applications of abstract and linear algebra in coding theory. 	https://nptel.ac.in/courses/111101001/ Section A Communication channels, maximum likelihood decoding, Hamming distance, minimum distance decoding, distance of a code, finite fields, structure of finite fields, minimal polynomial, linear codes, Hamming weight, bases of linear codes, generator matrix and parity check matrix, encoding and decoding	New elective
		 Find the generator and parity check matrix of linear codes. Understand the main coding theory problem. Derive classical bounds of codes and the distance of the code. Understand cyclic codes and 	of linear codes, syndrome decoding. Section B The coding theory problem, lower bounds, Hamming bounds and perfect codes, singleton bound and MDS codes, nonlinear codes, Reed-Muller codes, subfields codes.	
		their decoding.	Section C	
			Cyclic codes: definitions, generator polynomials, generator and parity check matrices, decoding of cyclic codes, Burst-error-correcting codes, BCH codes: definitions, parameters of BCH codes, Decoding of BCH codes. Reed-Solomon codes, generalized Reed-Solomon codes, Goppa codes.	
			Suggested Text Book:	
			1. Ling, S., & Xing, C. (2004). Coding Theory: A first Course. Cambridge: Cambridge University Press.	
1			Suggested Reference Books:	
			1. MacWilliams, F. J., & Sloane, N. J. A. (2007). The theory of error-correcting codes. Amsterdam: North-Holland.	

			 Peterson, W. W., & Weldon, E. J. (2008). Error- correcting codes. (2nd Ed.). Cambridge, Mass: MIT Press. Berlekamp, E. R. (2015). Algebraic coding theory. (Algebraic Coding Theory.) Singapore: World Scientific. Huffman, W. C., &Pless, V. (2010). Fundamentals of error-correcting codes. Cambridge: Cambridge Univ. Press. Hill, R. (2001). A first course in coding theory. Oxford: Clarendon Press. Rhee, M. Y. (1989). Error-correcting coding theory. Singapore: McGraw-Hill. Suggested E-learning Material: Online Course on Coding Theory:https://onlinecourses.nptel.ac.in/noc17 ee07 Lecture Notes: https://ocw.mit.edu/course/electrical- engineering-and-computer-science/6-895- essential-coding-theory-fall-2004/ 	
21.	MATH (to be	On successful completion of this course	Section A	New
	generated) Fixed Point Theory	 students will be able to: Understand various concepts in metric spaces such as completeness. Demonstrate standard examples of metric spaces and prove simple results related to them. Understand the proof of open mapping theorem and Closed graph theorem. 	Metrics space, Complete metric space, Convergence, Cauchy sequence and Completeness, Various concept in metric space, Normed linear space, Banach space, normed space and Hilbert space, open mapping theorem and Closed graph theorem, linear operator. Section B Lipschitz mapings,expansive and Nonexpansive Mappings, contractive and contraction mappings, Upper and lower semi continuity of maps, contractive and	elective

		Check the conditions for	nonexpansive multivalued maps, Banach's contraction	
		expansive and Nonexpansive	principle, Fixed point theorem of Schauder's and Kirk,	
		Mappings, contractive and	Tarsiki's Fixed point theorem.	
		contraction mappings.	Castlan C	
		 Understand standard fixed- 	Section C	
		point theorems.	Banach Fixed point theorem for multivalued maps,	
		• To present the basic ideas of the	Generalized Schauder Fixed point theorem. Existence of	
		theory, and illustrate them with	solutions of ordinary equations and systems of linear	
		a wealth of examples and	equations in several unknowns, applications in the	
		applications in differential and	theory of differential and integral equations.	
		integral equations.		
		81	Suggested Books:	
			1. Zeidler, E. (2000). Nonlinear functional analysis and	
			its applications: Vol 1. New York: Springer.	
			2. Khamsi, M. A., & Kirk, W. A. (2001). An	
			introduction to metric spaces and fixed point theory.	
			New York: John Wiley & Sons.	
			3. Smart, D. R. (1980). Fixed point theorems.	
			Cambridge: Cambridge University Press.	
			4. Istra tescu, V. I. (1981). Fixed point theory. An	
			introduction. Dordrecht, Holland: D. Reidel Pub.	
			5. Agarwal, R. P., Meehan, M., &O'Regan, D. (2009).	
			Fixed point theory and applications. Cambridge,	
			UK: Cambridge University Press.	
			r n	
			E-Kesources	
			1. National Programme for Technology Enhanced	
			Learning (NPTEL)	
			https://nptel.ac.in/courses/111105037/	
22.	MATH (to be	On successful completion of this course	- Section A	New
	generated)	students will be able to,	Introduction to Dynamical Systems: Background and	Elective
	Introduction to	Describe the main features of	avamplae dynamical systems, background and	
	Dynamical	Describe the main features of dynamical systems and their	examples, uynamical systems, auractors and invariant	
	- · · · ·	uynamical systems and their	505.	

	System	 realisation as systems of ordinary differential equations. Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability. Use a range of specialised analytical techniques which are required in the study of dynamical systems. Describe dynamical systems geometrically and represent them graphically via phase plane analysis. Find fixed points and period orbits of discrete dynamical systems, and find their stability. Do graphical analysis of 1D discrete dynamical systems. Understand the basic properties of a chaotic dynamical system. 	Non-linearSystems-localanalysis:thefundamentalexistence-uniquenesstheorem, The flowdefinedby adifferentialequation, Linearization, The stable manifoldtheorem, The Hartman-Grobmantheorem, Stability andLiapunovfunctions, Saddles, Nodes, Foci, and Centers.Section BNon-linearSystems-globalandglobalexistencetheorem, Limitsets andAttractors,Periodicorbits, LimitCycles, andSeptartixcycles, thePoincaremanifoldtheorem for periodicorbits, thePoincare-BendixontheorySystems, Bendixon's Criteria.Section CDiscretedynamicalsystems:Initi sets,Stability, Invariantmanifolds, Runge-Kuttamethods:theframework, lineardecay, Lipschitzconditions,Dissipative systems, Generalizeddissipativesystems,Gradientsystems.	
		 orbits of discrete dynamical systems, and find their stability. Do graphical analysis of 1D discrete dynamical systems. Understand the basic properties of a chaotic dynamical system. 	 mint sets, the framework, linear decay, Lipschitz conditions, Dissipative systems, Generalized dissipative systems, Gradient system. Suggested Books: Perko, L. (2009). Differential equations and dynamical systems. (3rd Ed.). New York, NY: Springer. Stuart, A. M., & Humphries, A. R. (1998). Dynamical systems and numerical analysis. Cambridge University Press. Lynch, S. (2014). Dynamical systems with applications using MATLAB. (2nd Ed.). Cham: Birkhäuser. 	
23.	MATH (to be generated)	On completion of the course, the student will be able to,	Section A Continuous population Models for single species: Basic	New elective

Bio	 model the single species and two 	concepts. Exponential growth model, formulation,
Mathematics	species systems.	solution, interpretation, and limitations. Compensation
	 study the stability of these 	and depensation. Logistic growth model, Continuous
	systems.	Growth Models, Insect out break Model: Spruce
	 Apply harvesting of the species. 	Budworm, Delay models, Linear Analysis of Delay
	 to model epidemics and analyse 	Population Models: Periodic solutions. Harvesting a
	the dynamics	single Natural Population.
		Section B
		Continuous Models for interacting
		Population:Interaction between species: two species
		models, definition of stability, community matrix
		approach, Qualitative behavior of the community
		matrix, Competition: Lotka-Volterra models, Extension
		to Lotka-Volterra models, Competition in field
		experiments, Competition for space, Models for
		Mutualism. Predator-Prey interaction: Lotka-Volterra
		Models, dynamic of the simple Lotka-Volterra models,
		Role of density dependent in the Prey, Classic laboratory
		experiment on predator, predation in natural system.
		Some predator-prey models.
		Section C
		Mathematical modeling of epidemics: Basic concepts.
		Simple epidemic model, formulation, solution,
		interpretation, and limitations. General epidemic model,
		formulation, solution, interpretation, and limitations
		Suggested Text Books:
		1. Murray, J. D. (2013). Mathematical Biology. Berlin:
		Springer Berlin.
		2. Freedman, H. I. (1987). Deterministic mathematical
		models in population ecology. (2 nd Ed.). Edmonton,

			Alta., Canada: HIFR Consulting.	i i
			Suggested Reference Books:	I
			 Hastings, A. (2010). Fopulation biology. New York: Springer. Meerschaert, M. M. (2013). Mathematical modeling. (4th Ed.). Amsterdam: Elsevier Academic Press. Meyer, W. J. (1984). Concepts of mathematical modeling. New York, N.Y. May, R. (1976). Theoretical ecology. Principles and applications. United States. Bailey, N. T. J., & Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. 	
			Suggested E-learning material	1
			 NPTEL: <u>https://nptel.ac.in/courses/102101003/</u> and <u>https://nptel.ac.in/courses/102101003/#</u> Biomathematics Lectures - UBC Zoology: <u>www.zoology.ubc.ca/~bio301/Bio301/Lectures.</u> <u>html</u> 	l
24.	MATH (to be generated) Combinatorial Optimization	 On completion of the course, the student will be able to, define the concept of combinatorial (optimisation or satisfaction) problem recognize many types of combinatorial optimization problems; formulate linear and integer programs, and identify when a problem can be viewed in terms of various "standard" 	- Section A Combinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory - Matchings and alternating paths-Tutte-Berge formula- Maximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity. Single Source Shortest path algorithms-Bellman Ford algorithm, all pair shortest path algorithms - Floyd	New elective

Warshall algorithm.
Section B
Algorithmic Perspective to Simplex Method:
Introduction to Linear Optimization, Equivalence of
optimization and separation, LP Formulation, Geometry
of Linear Programs, Theory of Simplex Algorithm,
Geometric interpretation of Degeneracy, Avoiding
cycles, Methods for obtaining initial Basic Feasible
Solutions, Linear Programming formulations of shortest
path problem.
Section C
Integer Programing: Integrality gap, Branch and Bound algorithm, Cutting-plane algorithm, Applications of these algorithms on Travelling Salesman Problem
Primal-Dual Algorithms: Interpretation of Dual, Optimality conditions for primal and dual, primal-dual algorithms based on complementary slackness, Primal- dual algorithms for shortest path problem, vertex cover and set cover.
Suggested Text Books:
 Papadimitriou, C. H., &Steiglitz, K. (2006). Combinatorial optimization: Algorithms and complexity. New Delhi: Prentice-Hall of India. Hillier, F. S., & Lieberman, G. J. (1995). Introduction to mathematical programming: 2nd ed. New York: McGraw-Hill. Cook, W. J. (2011). Combinatorial optimization. New York: Wiley.

		Suggested References Books:	
		 Lange, K. (2004). Optimization. New York: Springer. Bazaraa, M. S., Jarvis, J. J., &Sherali, H. D. (2013). Linear Programming and Network Flows. Hoboken: Wiley. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow: Pearson. Korte, B., &Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, N.J: Prentice- Hall. 	
		Suggested E-learning material	
		 Topics in Combinatorial Optimization: Lecture Notes(PDF): <u>https://bit.ly/2MY9MB3</u> Optimization –Introduction(Video Lecture) <u>https://nptel.ac.in/courses/111105039/</u> 	
25. MATH (to be generated) Transportation System Analysis	 On completion of the course, the student will be able to, Use optimal transportation decision-making schemes based on transportation data analysis by establishing, testing and solving transportation models. Perform simple statistical analysis on transportation field data, sample estimation and 	Section A Introduction of transportation system analysis; characteristics, goal and role of transportation system analysis; applications and methodologies of transportation system analysis; Scope of transportation system analysis; TAF system; Impact of TAF system Section B Random variables, applications of probability	New elective

transportation system. • Design suitable sampling and experimental methods for transportation system analysis and realize error sources.	distributions in transportation system analysis, sample distributions and means in transportation system analysis, Central Limit Theorem, Bayesian Theorem, significance and hypothesis testing in transportation systems. Use of transportation field data and data gathering techniques, sources of errors, considerations of transportation system sample size; experiment design
	transportation operations analysis. Section C Intelligent Transportation System (ITS) components of
	ITC: Causal Loop Diagramming (CLD) system dynamics approach, conceptualization and development in transportation system policy and scenario analysis; Transportation system scenario generation models and techniques: Delphi technique; Seth Harva model; Multi criteria decision making model.
	Suggested Books:
	 Papacostas,C.S. (1987)Fundamentals of transportation system analysis, PHI. Cascetta, Ennio. (2012). Transportation Systems Analysis: Models and Applications. Springer Verlag. Edwards, J. D., & Institute of Transportation Engineers. (1999). Transportation planning
	handbook. (2 nd Ed.). Washington: Institute of Transportation Engineers.
	4. Levin, R. I., & Rubin, D. S. (2008). Statistics for
	<i>management.</i> New Delhi: Prentice Hall of India. 5. Walpole, R. E. (2014). Essentials of probability and

			statistics for engineers and scientists. Pearson.	
			6. Mohapatra, P. K. J., Mandal, P., & Bora, M. C.	
			(1994). Introduction to system dynamics modelling.	
			London: Sangam.	
			7. Roberts, N. (1998). Introduction to computer	
			simulation: A system dynamics modeling approach.	
			Portland, Or: Productivity Press.	
26.	STAT (to be	On completion of this course, the	- Section A	New
	generated)	students will be able to:	Parian of Stachastic processor Markon process Markon	elective
	Stochastic		chain Poisson Process Birth and Death process	introduced
	Models	Acquire skills in handling situations	Chail, Foisson Flocess, blitt and Death process.	•
		involving more than one random		
		variables.	process. Introduction of queues, Queueing system.	
		Understand to analyze the	Components of a queueing system, Measures of	
		performance of reliability models.	effectiveness and Notations. Steady state solution of $M(M(t)) = M(M(t))$	
		Learn how to analyze a network of	M/M/1 and M/M/1/N Queueing Models and their	
		queues with Poisson arrivals and	measures of effectiveness.	
		exponential service requirements.	Section B	
		Learn how to analyze a network of		
		queues with Poisson arrivals and	Steady state solution of M/M/C Queueing Models and	
		general service requirements.	their measures of effectiveness. The transient solution of $M(2)$	
		 Understand the concept of 	M/M/1 and M/M/∞ Queuemg models including busy	
		switching in reliability modeling.	period distribution. Imbedded Markov chain technique	
			and its use to solve the M/G/1 queueing models.	
			Measures of Effectiveness of M/G/1 queueing model.	
			Section	
			Reliability Models: Concept of reliability, early age	
			failures, wearout failures and chance failures. Derivation	
			of general reliability function failure rate, failure density	
			functions and mean time between failures (MTBF).	
			System reliability evaluation: series system, parallel	
			system, partially redundant system, standby system	

			with perfect switching / imperfect switching. Effect of spare components (identical / non- identical) on the system reliability. Text/References books:	
			 Cox, D. R., & Miller, H. D. (1972). The theory of stochastic processes. London: Chapman and Hall. Billinton, R., & Allan, R. N. (2013). Reliability evaluation of engineering systems: Concepts and techniques. New Delhi: Springer (India). J. Medhi, J. (1994). Stochastic processes. New Age International Publications. Bazovsky, I. (2013). Reliability Theory and Practice. Dover Publications. Gross, D., &Harris C.M (2002). Fundamentals of Queueing Theory. John Wiley & Sons. Allen, A. O. (2014). Probability, Statistics, and Queueing Theory with Computer Science Applications. Academic Press. Suggested E-learning Resources Introduction to Stochastic Processes and its Applications <u>https://nptel.ac.in/courses/110104024/</u> Statistics e-PG-pathshala: https://ptel.ac.in/abl.php?csrno=34 	
			3. Reliability Engineering, NPTEL: https://nptel.ac.in/courses/105108128/	
27.	STAT (to be generated) Demography	 On completion of the course, students will be able to, Identify principle sources of demographic data and assess their strengths and weaknesses. 	Section A Meaning and scope of demography; Sources of demographic data; Census; Population composition and its basic demographic measures: Ratios, Proportions and Percentages; Population pyramids; Quality of	New elective introduced

 Discuss the demographic significance of age and sex structures and the implications of variations in age & sex structure. Construct and interpret life tables. Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Understand the concept of urbanization on the economic growth of the contrary. Estimate and project the population by different methods. Understand the concept of stable and stationary population. 	demographic data: Population growth rate; Rates of natural increase; Doubling time; Stochastic models for population growth; Intrinsic growth rate models for population growth and their fitting to population data; Coverage and content errors in demographic data; Balancing equations;Chandrasekharan - Deming formula to check completenessof registration data; Adjustment of age data- use of Whipple, Myer and UN indices; Population transitiontheory. Section B Mortality: Rates and Ratios; Crude and age-specific death rates;Infant mortality rate (IMR); Child death rate (CDR); Under five, neo-natal and post neo-natal mortality rate; Maternal mortality rate and Maternal mortality rate; Maternal mortality in recent past; Life tables and their applications; Increment- decrement life tables; Construction of complete and abridged life tables; Model life table. Natality:Fecundity and fertility; Measure of fertility: Cohort fertility; Children ever born (CEB); Current family size (CFS); Age specific martial fertility rate;Birth order and parity; Parity progression ratio; Length of generation, Measures of reproduction: Total fertility rate; Gross reproduction rate; Net reproduction rate; Replacement index; General fertility models; Fertility schedules; Differential fertility; Levels and trends of fertility.
	Section C Migration - Concepts and types: Its effect on population
	growth and pattern; Differentials of migration; Measures of migration: Migration rates; Volume of migration and

	its estimation; Migration component; Migration streams; Hamilton's rate; Migration models; Concept of international migration; Concept of morbidity and its measures.	
	Urbanization - Growth and distribution of rural - urban population in developed and developing countries. Nuptiality - Concept and analysis of marital status; Singulate mean age at marriage.	
	Stationary and Stable population theory; Uses of Lotka's stable population theory in estimation of demographic parameters; Population estimates; Population projections and forecasting; Methods of Inter-censal and Post-censal estimation; Methods of population projection.	
	Suggested Text Books:	
	1. Ramkumar, R.(2006). <i>Technical Demography</i> . New Age International.	
	2. Pathak, K.B.& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House.	
	 Srinivasan, K., Saxena, P. C., &Kanitkar, T. (1979). Demographic and Socio-economic Aspects of the Child in India. Himalaya Publishing House. 	
	Suggested Reference Books:	
	 Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. Bhinde, A. A. & Kanitker, T. (2018). Principles of 	

	Publishing House.	
	Suggested E-learning Resources	
	 Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata.</u> <u>php?action=loadpaperlist1&maincat=453</u> Demography ; Platform: University Library - The University of Adelaide <u>https://www.adelaide.edu.au/library/</u> Demography; Platform: <u>MIT</u>OPENCOURSEWARE <u>https://ocw.mit.edu/index.htm</u> 	

	Reading Electives					
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark	

1.	MATH 603R Advanced Cryptography	 On completion of this course, students should be able to, Understand digital signatures in detail. Understand the concept of signcryption and its security requirements. Understand the identity based cryptography. 	-		No change in syllabus.
2.	MATH 604R Advanced Queueing Models	 On completion of this course, students should be able to, Understand the principles and objectives of model building based on Markov chains. Analyze the queueing situations. Understand the mathematical tools that are needed to solve queueing problems. Identify and develop queueing models from the verbal description of the real system. Understand the various Non-Markovian queueing models. 	-	 Suggested E-learning Resources 1. Queuing Systems, NPTEL https://nptel.ac.in/courses/117103017/1 2. Transient solution of an M/M/1 queue with catastrophes. https://core.ac.uk/download/pdf/81115439.pdf 3. On the M/M/1 queue with catastrophes and its continuous approximation. Source: Queueing Systems journal. https://link.springer.com/article/10.1023/A:10232618 30362 4. Some new results for the M/M/1 queue, Source: Management Science journal. https://pubsonline.informs.org/doi/10.1287/mnsc.28.7 .821 	
3.	MATH 605R Algebraic Aspects of Cryptography	 On completion of this course, students should be able to, Understand the finite field arithmetic and what are the efficient algorithms for theme ? Know the group law of elliptic curves and able to perform computation on the elliptic 			

		 curves. Grasp the concepts of lattices and their applications in cryptography. 		
4.	MATH 606R Algebraic Geometry	 On completion of this course, students should be able to, have knowledge of the basic affine and projective geometries. Be familiar with explicit examples including plane curves, quadrics, cubic surfaces, Segre and Veronese embedding. increased their knowledge of finitely generated commutative rings and their fields of fractions. learn how to formulate and prove basic statements about algebraic varieties. precise abstract algebraic language. 	Suggested E-learning Resources 1. Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity, NPTEL course: https://nptel.ac.in/downloads/111106097.	
5.	MATH 607R Decision and Game Theory	 On completion of this course, students should be able to, Understand and explain the framework of Decision Theory, its intrinsic limitations and broad goals, and how it leads to Game Theory. Demonstrate an understanding of games in pure and mixed 	Suggested E-learning Resources 1. Economic Applications of Game Theory (Lecture notes PDF): <u>https://ocw.mit.edu/courses/economics/14-12- economic-applications-of-game-theory-fall- 2012/index.htm</u>	

	 strategies. Explain the game theoretic concepts of uncertainty, information and strategic moves. Explain the characteristics and application of repeated games and associated trigger strategies. Apply decision making models in interaction situations. Gain a proper understanding of game theoretic concepts and 		
	modeling: covering equilibrium in static and dynamic games, with varying information		
	suucures.		
6. MATH Finite Metho	 H 612R On completion of the course, the student will be able to, Understand global, local, and natural coordinates. Understand the significance of shape functions (linear, quadratic, cubic) in finite element formulations and can formulate one and two-dimensional elements like triangular and rectangular elements. Understand the concepts behind variational methods and weighted residual methods in FEM and implement the Galerkin residual 	 Suggested E-learning Resources PDF of Lectures on Finite Element Method by C. Mercier; Platform: The Tata Institute of Fundamental Research, Bombay <u>http://www.math.tifr.res.in/~publ/ln/tifr49.pdf</u> 	

		weak formulation into the Finite Element Method for the solution of Ordinary and Partial Differential Equations.		
7.	MATH 613R Finite Field Theory	 On completion of this course, students should be able to Understand finite fields and their extension in detail. Find primitive polynomial, factorization of polynomials. Understand Gauss, Jacobi, and Kloosterman sums, character sums and their applications. 		
8.	MATH 616R Intelligent Transport System	 On completion of this course, students should be able to understand the sensor and communication technologies. differentiate different ITS user services define the significance of ITS under Indian conditions select appropriate ITS technology depending upon site specific conditions. design and implement ITS components 	 Suggested E-learning Resources Benefits of Intelligent Transportation System; Platform: <u>https://www.its.dot.gov/factsheets/benefits_factsheet_htm</u> Intelligent Transportation System; Platform NPTEL: <u>https://nptel.ac.in/courses/105101008/48</u> Intelligent Transportation System; <u>https://www.wsp.com/en-US/services/intelligent-transportation-systems-its</u> 	
9.	MATH 617R	On completion of this course, the	Suggested E-learning Resources	

	Towns of a second state	. 1	1	
	Inventory and Production	students will be able to,	1.	Basic inventory Principles (PDF): https://pntol.ac.in/courses/112102106/28
	Management	 Demonstrate what inventory is 	2	Supply Chain Management & Vendor-managed
	e -	and where we find it within the	∠.	Inventory (PDF).
		supply chain.		https://ocw.mit.edu/courses/sloan-school-of-
		Domonotrate the types of		management/15-760a-operations management-
		Demonstrate the types of		spring-2002/lecture-notes/
1		uemand patterns common in		r o
1		real liventory problems.		
		Prepare appropriate inventory		
1		planning models for differing		
		demand patterns.		
1		Recognize the importance of		
1		inventory management		
1		inventory management.		
1		 Understand Production 		
1		management basics and its		
1		history.		
1		Formulation of aggregate		
		planning problems; their		
		objectives, constraints and		
		applicable solution techniques.		
		Understand the terms Trade		
		credit, Inflation, VMI etc. and		
		learn how to use these policies		
		in inventory modeling.		
10.	MATH 618R			
1	Marketing			
	Management			
11.	MATH 621R	On completion of the course, students	Sus	ggested E-learning Resources
	NT	will be able to,	1.	Lecture notes on Numerical Methods for Partial
	Numerical Solutions of	• Solve mathematical models		Differential Equations;
	Partial	represented by initial or		Platform: MIT open course ware;
1	Differential	boundary value problems		https://ocw.mit.edu/courses/aeronautics-and-

	Equations	involving partial differential	astronautics/16-920j-numerical-methods-for-partial-	
	1	equations that cannot be solved	differential_equations_sma_5212_spring_	
		directly using standard	2002/lasters astas/	
		mathematical techniques but are	2003/lecture-notes/	
		amenable to a computational	2. Lecture notes on Numerical Solution of Partial	
		approach	Differential Equations;	
		 Select appropriate numerical 	Platform: nptel;	
		methods based on the	https://nptel.ac.in/courses/111107063/21	
		characteristics of a PDF		
		problem.		
		• Introduce the discretization		
		methodologies, with particular		
		emphasis on the finite difference		
		method that allows the		
		construction of accurate and		
		stable numerical schemes.		
		• Discuss about the stability and		
		convergence of the numerical		
		methods.		
12.	MATH 622R	On completion of this course, the		
	Operator	students will be able to,		
	Theory			
	Theory	 Tell what is operators 		
		 Define several standard 		
		examples of linear operators.		
		self-adjoint operators and prove		
		simple results related to them		
		simple results related to them.		
		 Spectral representation of 		
		compact self-adjoint operators in		
		Hilbert spaces.		
		 Applications of spectral 		
		Theorem for compact operators.		
		 Some recent results and open 		
		problems in operator theory		
		Freetonic molecture actual		

13.	MATH 624R	On completion of the course, the	Suggested E-learning Resources	
	Special	student will be able to,	1. Special Functions and Their	
	Functions		Symmetries:www.maths.leeds.ac.uk/~kisilv/courses/	
		understand various types of special	special.html	
		functions, and their conditions of		
		existence.		
		 carry out relations between 		
		different special functions,		
		including some of the most useful		
		special functions.		
		 domonstrate understanding of the 		
		concepts of recurrence relations		
		generating functions, series		
		representations pertaining to		
		different special functions and		
		polynomials.		
		- datamaina aguna significant		
		determine some significant properties of operiol functions and		
		their integral forms		
		then mugiariornis.		
		 discuss the nature of various 		
		special functions in different		
		domains.		
14.	STAT 602R	On completing the course, the student	Suggested E-learning Resources	
	Advanced	will be able to,	1. Reliability Theory, Platform: NPTEL	
	Reliability	. Teting to the active little for sting	https://nptel.ac.in/courses/114106041/15	
	Theory	 Estimate the reliability function and mean time to failure for 		
		different types of systems	2. MLE and Bayesian Estimation-1, Platform:	
		unterent types of systems.		
		 Understand major concepts of 	https://nptel.ac.in/courses/pdf_link/103106123/le	
		reliability prediction.	2 Module Systems and Deliability Distforms	
		Analyze statistical experiments	5. Module, Sysylenis and Kenaonity, Flationit. MIT Open Course ware	
		leading to reliability modeling.	https://ocw.mit.edu/courses/mechanical-	
		<i>o jb</i> .	engineering/2-627-findamentals-of-	
L	1		engineering 2-62 (-rundalitettais-01-	

		 Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. Know Bayesian reliability concept. Determine Life table and Kaplan-Meier approach. Understand MCMC technique for simulation. 	photovoltaics-fall-2013/lecture-videos- slides/2011-lecture-17-modules-systems-and- reliability/	
15.	STAT 604R			
	Bio-statistics			
16.	STAT 608R Generalized Linear Models	 On completion of the course, the student will be able to, Understand the concept of logistic regression, its estimation and testing. Understand the procedure to regression analysis for dependent count variable using Poisson regression. Broaden their understanding of regression model to generalized linear models and their application. 		
17.	STAT 610R	After successful completion of this	Suggested E-learning Resources	

	Statistical Computing	 course, student will be able to: Simulate and generate statistical data by different techniques. Estimate the unknown parameter of population via different methods. Understand the basic concepts of statistical theories besides developing their ability to handle real world problems with large scale data. 	 Statistical computing Platform: <u>MIT</u>OPENCOURSEWARE <u>https://ocw.mit.edu/index.htm</u> Statistics: Platform: e-PG Pathshala <u>https://epgp.inflibnet.ac.in</u> 	
18.	STAT 611R Supply Chain Management	 On completion of the course, the student will be able to: Understand the structure of supply chains and the different ways through which supply chains can become competitive in the realistic problems. Understand fundamental supply chain management concepts. Apply knowledge to evaluate and manage an effective supply chain. How to align the management of a supply chain with corporate goals and strategies. Analyze and improve supply chain processes. Identify the principles of 	Suggested E-learning Resources 1. Introduction to Supply chain management (PDF): https://nptel.ac.in/courses/110106045/35	

		customer and supplier relationship management in supply chains.			
19.	STAT 612R Survival Analysis	 On completion of the course, students will be able to: Identify characteristics of survival data and problems in their correct analysis Define and understand the relationship between the survival function, distribution function, Hazard function, relative hazard, and cumulative hazard Perform and interpret univariate analyses of survival data using the Kaplan-Meier estimator Perform and interpret two-sample analyses of survival data using common statistical procedures such as the log rank test Formulate research questions involving survival data as regression problems Fit the proportional hazards regression model to survival data and assess the scientific significance, precision, and interpretation of regression coefficients Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated. 	Verifiel Offg. Secretary Banasthali Vidyapith P.O. Banesthali Vidyapith Disti. Tonk (Rej.)-304022	Suggested E-learning Material: 1. http://www.stat.columbia.edu/~madigan/W20 25/notes/survival.pdf	