MINUTES OF THE MEETING OF THE BOARD OF STUDIES IN MATHEMATICS \& STATISTICS HELD ON OCTOBER 13, 2003 AT 3.00 P.M. IN AIM\&ACT, Room No. 209, BANASTHALI VIDYAPITH

Present:

1.	Prof. Aditya Shastri	$:$	Director
2.	Prof. Rekha Govil	$:$	Dean
3.	Prof. D. Pandey	$:$	External Member
4.	Prof. G.N. Purohit	$:$	Special Invitee
5.	Dr. Sarla Pareek	$:$	Member
6.	Mrs. Rekha Choudhary	$:$	Member
7.	Dr. Ranjita Mishra	$:$	Member
8.	Smt. Amla Olkha	$:$	Member
9.	Dr. V.K. Bhatt	$:$	Member
10.	Sh. Om Prakash	$:$	Member

NOTE : Prof. R.N.Gupta (External Member) and Prof. Ashok Bansal (External Member), could not attend the meeting.

1. The board confirmed the minutes of the last meeting of the Board of Studies held on March 8, 2003.
2. The Board examined the panel of examiners and updated it as per the list enclosed.
3. The Board considered the reports of various examiners of examination 2003 and found them satisfactory. It was felt by the members that it would be more appropriate if the reports are considered by the faculty alongwith the grievances in the beginning of the session so that necessary measures could be taken if needed in any unit/section of a course.
4. The board considered the curricula and scheme of examination for the following PG and UG courses :

I M.Sc. Mathematical Sciences (Pure/Theoretical Computer Science / Operation Research/Statistics) :
The courses of M.Sc. (Mathematical Sciences) have been restructured in the last meeting of the board, hence no change was required to be made in them. However, the scheme was modified for the following :
(a) For each course the marks distribution is made contact hours based, having about one third marks allocation for continuous assessment.
(b) In M.Sc.III Sem 'seminar' component is introduced with an aim to improve the communication skills in the students.
The complete scheme is given in Annexure-I.
II B.A./B.Sc.(Pass/Hons.) (Mathematics):
The UG courses in mathematics have been reorganised and the scheme of examination modified to introduce increased weightage of continuous assessment (approx. $1 / 3 \mathrm{rd}$). The modified scheme and courses are given in Annexure-II.

It is desirable that the proposed scheme be made effective for all the three years of the undergraduate course as early as possible. Hence it was proposed that the II year course of 2004-05 be as proposed in Annexure III so that from the year 2005-06 the scheme is implemented in all the years.

III B.A/B.Sc. Statistics/Applied Statistics No change was suggested
The meeting ended with a vote of thanks to the chair.

M.Sc. MATHEMATICAL SCIENCES

I SEMESTER EXAMINATION (Pure/TCS/O.R./Statistics) December, 2004

	Course	Contact Hours/week		Cont. Ass. Marks		Ann. Ass. Marks		Total Marks		
		T	P	T	P	T	P	T	P	
1.	Abstract Algebra	5	0	25	0	50	0	75	0	
2.	Real Analysis	5	0	25	0	50	0	75	0	
3.	Discrete Mathematics	5	0	25	0	50	0	75	0	
4.	Numerical Methods	4	4*	20	15	40	35	60	50	
5.	Computer Programming	4	8**	20	30	40	70	60	100	
		23	12	115	45	230	105	345		$=495$

*	Programming in Fortran on Numerical methods
**	Programming in Pascal

II SEMESTER EXAMINATION (Pure/TCS/O.R./Statistics) May, 2005

	Course	Contact Hours/week		Cont. Ass. Marks		Ann. Ass. Marks		Total Marks	
		T	P	T	P	T	P	T	P
1.	Linear Algebra	5	0	25	0	50	0	75	0
2.	Complex Analysis	5	0	25	0	50	0	75	0
3.	(a) Differential Equation (for Pure Maths)	5	0	25	0	50	0	75	0
Systems (For TCS/O.R./Statistics).									
4.	Probability \& Statistics	4	4	20	15	40	35	60	50
5.	Data Structures \& Programming Methodology	4	8*	20	30	40	70	60	100
	Total Pure Maths	23	12	115	30	230	105	345	$150=495$
	Total TCS/OR/Statistics	22	16	110	60	220	140	330	$200=530$

[^0]| | Course | Contact Hours/week | | Cont. Ass. Marks | | Ann. Ass. Marks | | Total Marks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | T | P | T | P | T | P | T | P |
| (i) | Pure Mathematics: | | | | | | | | |
| 1. | Optimization Techniques | 5 | 0 | 25 | 0 | 50 | 0 | 75 | 0 |
| 2. | Topology | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| 3.. | Functional Analysis | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| 4. | Partial Differential Equations and Special Functions | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| 5. | Elective -I | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| 6. | Seminar \& Term Paper | 0 | 4 | 0 | 50 | 0 | 0 | 0 | 50 |
| | Total | 29 | 4 | 145 | 50 | 290 | 0 | 435 | $50=485$ |
| (ii) | Theoretical Computer Science: | | | | | | | | |
| 1. | Optimization Techniques | 5 | 0 | 25 | 0 | 50 | 0 | 75 | 0 |
| 2. | Algorithms | 4 | 8* | 20 | 30 | 40 | 70 | 60 | 100 |
| 3. | Theory of Computation | 4 | 0 | 20 | 0 | 40 | 0 | 60 | 0 |
| 4. | Operating Systems | 4 | 4** | 20 | 15 | 40 | 35 | 60 | 50 |
| 5. | Elective - I | 5 | 0 | 20 | 0 | 50 | 0 | 75 | 0 |
| 6. | Seminar | 0 | 2 | 0 | 25 | 0 | 0 | 0 | 25 |
| Total | | 22 | 14 | 105 | 70 | 220 | 105 | 330 | $175=505$ |
| * Implementing Algorithms in C++
 ** UNIX Shell Programming | | | | | | | | | |
| | | | | | | | | | | |
| (iii) Operations Research | | | | | | | | | |
| 1. | Optimization Techniques | 5 | 0 | 25 | 0 | 50 | 0 | 75 | 0 |
| 2. | Queuing Theory | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| 3. | Design of Experiments and Linear Models | 4 | 4 | 20 | 15 | 40 | 35 | 60 | 50 |
| 4.5.6. | Network Analysis | 4 | 4 | 20 | 15 | 40 | 35 | 60 | 50 |
| | Elective-I | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| | Seminar | 0 | 2 | 0 | 25 | 0 | 0 | 0 | 25 |
| 6. | Total | 25 | 10 | 125 | 55 | 250 | 70 | 375 | $125=500$ |
| (iv) | Statistics | | | | | | | | |
| 1. | Optimization Techniques | 5 | 0 | 25 | 0 | 50 | 0 | 75 | 0 |
| 2. | Measure Theory and | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| | Advanced Probability | | | | | | | | |
| 3. | Design of Experiments and Linear Models | 4 | 4 | 20 | 15 | 40 | 35 | 60 | 50 |
| 4. | Demography and Advanced Sampling | 4 | 4 | 20 | 15 | 40 | 35 | 60 | 50 |
| $\begin{aligned} & 5 . \\ & 6 . \end{aligned}$ | Elective-I | 6 | 0 | 30 | 0 | 60 | 0 | 90 | 0 |
| | Seminar | 0 | 2 | 0 | 25 | 0 | 0 | 0 | 25 |
| | Total | 25 | 10 | 125 | 55 | 250 | 70 | 375 | $125=500$ |

IV SEMESTER EXAMINATION May, 2005

	Course	Contact Hours/week		Cont. Ass. Marks		Ann. Ass. Marks		Total Marks		
		T	P	T	P	T	P	T	P	
(i)	Pure Mathematics:									
1.	Advanced Optimization Techniques	5	0	25	0	50	0	75	0	
2.	Differential Geometry	6	0	30	0	60	0	90	0	
3.	Non-linear Analysis	6	0	30	0	60	0	90	0	
4.	Elective - II	6	0	30	0	60	0	90	0	
5.	Elective - III	6	0	30	0	60	0	90	0	
6.	Research Paper	0	8	0	30	0	60	0	90	
Total		29	8	145	30	290	60	435	$90=525$	
(ii)	Theoretical Computer Science									
1.	Advanced Optimization Techniques	5	0	25	0	50	0	75	0	
2.	Emerging Programming Paradigms	4	8*	20	25	40	75	60	100	
3.	Software Engineering	4	2**	20	10	40	15	60	25	
4.	Elective - II	4	0	20	0	40	0	60	0	
5.	Project	0	8	0	30	0	50	0	90	
Total		18	18	85	65	170	140	255	$200=470$	
* Visual Computing (C++, Basic), Java \& HTML ** Hands on CASE Tools.										
(iii)	Operations Research									
1.	Advanced Optimization Techniques	5	0	25	0	50	0	75	0	
2.	Theory of Reliability	6	0	30	0	60	0	90	0	
3.	Inventory Theory	6	0	30	0	60	0	90	0	
4.	Elective-II*	6	0	30	0	60	0	90	0	
5.	Project	0	8	0	30	0	60	0	90	
6.	Seminar	0	3	0	40	0	0	0	40	
Total		23	11	115	70	230	60	345	$130=475$	
(* one of the Elective should have associated laboratory)										
(iv)	Statistics									
1.	Advanced Optimization Techniques	5	0	25	0	50	0	75	0	
2.	Theory of Reliability	6	0	30	0	60	0	90	0	
3.	Advanced Inference \& Multivariate Analysis	6	0	30	0	60	0	90	0	
4.	Elective-II*	6	0	30	0	60	0	90	0	
5.	Project	0	8	0	30	0	60	0	90	
6.	Seminar	0	3	0	40	0	0	0	40	
Total		23	11	115	70	230	60	345	$130=475$	

$$
\begin{aligned}
\text { Grand Total }: & 495+495+485+525=2000 \text { (PURE MATHS) } \\
& : 495+530+505+470=2000 \text { (TCS) } \\
& : 495+530+500+475=2000 \text { (OR) } \\
& : 495+530+500+475=2000 \text { (STATISTICS) }
\end{aligned}
$$

List of Electives

1. Pure Mathematics:-

PME-1 ------ Rings and Modules
PME-2------ Measure Theory and Advanced Probability
PME-3------ Data Base Management System
PME-4------ Modelling and Simulation
PME-5------ Time series and stochastic process
PME-6------ Theory of games
PME-7------ Theory of computation
PME-8------ Soft Computing
PME-9------ Digital signal processing

2. Theoretical Computer Science:-

TCE-1------Real Time Systems
TCE-2------Measure Theory and Advanced Probability
TCE-3------Modelling and Simulation
TCE-4------Time series and stochastic process
TCE-5------Parallel Processing
TCE-6-----Theory of games
TCE-7------Distributed Computing
TCE-8------Soft Computing
TCE-9------Digital signal processing
TCE-10---- Client Server Computing and Applications
TCE-11-----Mobile Computing

3. Operations Research:-

ORE-1------Decision Theory
ORE-2------Measure Theory and Advanced Probability
ORE-3------Modelling and Simulation
ORE-4------Time series and stochastic process
ORE-5------Emerging programming paradigms
ORE-6------Theory of games
ORE-7----- Econometrics
ORE-8------Soft Computing
ORE-9------Financial Mathematics
ORE-10------Marketing Management

4. Statistics:-

STE-1------Decision Theory
STE-2------Queuing Theory
STE-3------Modelling and Simulation
STE-4------Time series and stochastic process
STE-5------Emerging programming paradigms
STE-6------Theory of games
STE-7-------Inventory Theory
STE-8----- Econometrics
STE-9-------Network Analysis

B.A./B.Sc. (MATHEMATICS)

SCHEME OF EXAMINATION

$\left.\begin{array}{lllll}\hline \text { S.No. } & \begin{array}{l}\text { Name of } \\ \text { the Paper }\end{array} & \begin{array}{l}\text { Contact } \\ \text { Hours/ } \\ \text { Week }\end{array} & \begin{array}{l}\text { Total } \\ \text { Marks }\end{array} & \begin{array}{l}\text { Continuous } \\ \text { Assessment } \\ \text { Marks }\end{array}\end{array} \begin{array}{c}\text { Annual } \\ \text { Assessment } \\ \text { Marks }\end{array}\right]$
A. B.A./B.Sc. I Year (2004-2005)

1. Calculus 3

75	25	50
75	25	50
75	25	50

B. B.A./B.Sc. II Year (2005-2006)

1. Real Analysis 3

75
$25 \quad 50$
2. Linear Algebra and
$3 \quad 75$
25
50
Differential Equations
3. Mechanics

3
75
25
50
Honours

4. Numerical Analysis	3	75	25	50
5. Integral Transforms	3	75	25	50

C. B.A./B.Sc. III Year (2005-2006)

1. Algebra

3
75
25
50
2. Discrete Mathematics $3075 \quad 25 \quad 50$
3. Complex Analysis 3

75
25
50

Honours

4.	Differential Equations	3	75	25	50
5. Advanced Calculus	3	75	25	50	

B.A./B.Sc. I Year

MATHEMATICS

PAPER I -CALCULUS

Unit-1 Introduction to Polar Tangent, subtangent and sub-normal, Derivative of an arc (Cartesian and Polar), Pedal Equations, Curvature.

Unit-2 Partial differentiation with Euler's theorem and its applications, Maxima and Minima of two variables including method of undetermined multipliers.

Unit-3 Asymptotes, Multiple points, curve tracing (Cartesian and Polar), Envelope and Evolutes.
Unit-4 Integration of irrational algebraic and trigonometrical functions, Reduction formulae.
Unit-5 Quadrature, Rectification, Volume and surface of revolution, Double and triple integrals, Change of order of integration in double integrals.

Books Recommended:

1. Advanced Engineering Mathematics : E. Kreiszyg
2. Differential Calculus : Shanti Narayan
3. Integral Calculus : Shanti Narayan

Paper II- Geometry

Unit-1 Ellipse, Hyperbola.
Unit-2 Co-ordinates of a point in space, Projections and direction cosines, Plane, Straight line
Unit-3 Equations of two skew lines in simplest form, Line intersecting two lines, Locus of a line intersecting three given lines. Intersection of three planes, volume of a tetrahedron, Sphere.

Unit-4 Cone, Cylinder, The central conicoids (Referred to principal axes).
Unit-5 Tangent Plane, Polar Plane, Enveloping Cone, Enveloping Cylinder, Equation of the normal to an Ellipsoid, Number of normals from a given point to an ellipsoid, Cone through six normal.

Books Recommended:

1. Analytical Solid Geometry : Shanti Narayan
2. Co-ordinate Geometry : S. L. Loney

PAPER III - PROBABILITY AND STATISTICS

Unit 1. Theory of probability, Law of total and compound probability, Conditional probability, Baye's theorem, Random variable, Discrete random variable, continuous random variable, distribution function.

Unit 2. Moments; Sheppard's correction (without proof), Skewness and Kurtosis, Mathematical expectation, Moment generating functions, Cumulants and Cumulant generating functions.

Unit 3. Discrete probability distributions: Binomial and Poisson distributions with important properties, Fitting of Binomial and Poisson distributions.

Unit 4. Continuous probability distributions: Rectangular distribution, Normal distribution and its properties, fitting of normal distribution.

Unit 5. The principle of least squares and curve fitting, fitting of straight line and second degree parabola, fitting of the curves of the type ab^{x} and ax^{b}; Correlation, Linear Regression, coefficients of correlation.

Books Recommended:

1. Fundamentals of Statistics : S.C. Gupta \& V.K. Kapoor
2. Business Statistics : Gupta and Gupta

B.A./B.SC. II YEAR

PAPER- I: REAL ANALYSIS

Unit I. Description of the real number system as a complete ordered field, Bounded and unbounded sets of real numbers, Supremum and infimum of a bounded set. Real sequences and their convergence, Cauchy sequence, Cauchy's general principle of convergence.

Unit 2. Convergence of series: Comparison test, Root test, Ratio test, raabe's test for positive term series. Logarithmic and integral test, Alternating series, Leibnitz test. Real-valued functions, limit of a function, continuous functions and their properties, Characterization of continuity in terms of convergent sequence, Heine's theorem.

Unit 3. Uniform Continuity, Derivability, Rolle's Theorem, Lagrange's meanvalue theorem, Cauchy's mean value theorem, Taylor's and Maclaurin's theorem with Lagrange's and Cauchy's forms of remainder. Power series expansion of $\operatorname{Sin} x, \operatorname{Cosx}, \log (1+x)$ and $(1+x)^{n}$ and e^{x}.

Unit 4. Riemann integration of continuous functions on closed intervals, properties of Riemann integrals, Fundamental theorem of integral calculus for continuous functions.

Unit 5. Inequalities, AM, GM inequality, Cauchy Schwartz's inequality, Convex and Concave functions, Jensen's inequality, Holders inequality, Minkowski's inequality.

Text Books:

1. Principles of Mathematical Analysis	W. Rudin.
2. Mathematical Analysis	S.C. Malik
Reference Book	
1. Mathematical Analysis	T.M. Apostal
2. Analysis	Goldberg

Paper II- Linear algebra and Differential Equations

Unit 1. Matrices, Elementary transformations, Matrix inversion, Equivalent matrices, Rank of a matrix, Normal form of a matrix, Eigen values and Eigen vectors, Diagonalization.

Unit 2. Vector spaces- Algebra of vectors, vector space over a field linear dependence and independence of vectors. Properties of linearly independent and linearly dependent set of vectors, vector subspace of a vector space. Basics of a subspace, Matrix polynomials, Characteristics of a matrix polynomial, Characteristics vector. Caley Hamilton theorem, relation between characteristic roots and characteristics.

Unit 3. Linear mappings, Kernal and image of a linear mapping, singular and non-singular mappings, Linear mappings and system of linear equations. Algebra of linear operators, invertible operators.

Unit 4. Solution of differential equations of first order and first degree. Differential equations of first order and any degree. Singular solutions. Application of first order Differential Equation.

Unit 5. Linear differential equations with constant coefficients. Linear homogeneous equations of any order.

Books Recommended:

1. Advanced Engineering Mathematics : E. Kreiszyg
2. Differential Equations with Applications : George F. Simons
3. Linear Algebra : Surjeet Singh

PAPER III- MECHANICS

Unit 1. Velocity and Acceleration (Composition \& Resolution) (Radial Transverse tangential \& Normal) Rectilinear motion under uniform acceleration. Vertical motion \& motion on inclined plane under gravity.

Unit 2. Newton's laws of motion. Motion of two particles connected by a string. Projectile (horizontal plane).

Unit 3. Simple Harmonic motion, Hooke's Law motion of a Particle attached to an elastic string. Constrained Motion, Motion along a smooth vertical circle and along smooth cycloid.

Unit 4. Forces (Composition and resolution), Parallel forces, Equilibrium of forces acting on a point (Lamis Theorem, Theorem of triangle law of forces and its converse).

Unit 5. Moment, Simple problems on equilibrium of a body under the action of three forces.

Books Recommended:

1. Statics : M. Ray
2. Dynamics : M. Ray

PAPER IV: NUMERICAL ANALYSIS (FOR HONOURS)

Unit 1. Differences, relations between differences and derivatives, differences of polynomials, Newton's formula for forward and backward interpolation divided differences and simple differences, Newton's general interpolation formula Lagranges interpolation formula, Error in interpolation.

Unit 2. Error-its sources, propagation and analysis: Numerical solutions of system of linear equations Direct Method. Pivoting and scaling in Gaussian elimination. Error analysis. Iteration Method, Jacob's Method, Gauss Siedel Methods.

Unit 3. Numerical differentiation and Numerical Integration, Simpson's, Weddle's and the Trapezoidal rules, Newton-Cotes quadrature formula. Gauss quadrature formula.

Unit 4. Root finding for nonlinear equations (Transcendental and algebraic equations) Regula-Falsi method and Newton Raphson's Method, fixed point method, Chekyshow method, order of convergence.

Unit 5. Numerical solution of ordinary differential equations of first and second order and system of simultaneous equations, Euler's method Runge-Kutta's Method, Predictor Corrector method (Milne's method).

Reference Books

1. Elementary Numerical Analysis: C.D. Conte and Carle de Boor; Mc-Graw Hill (4th edition.)
2. An introduction to Numerical Analysis by Kendal E.Atkinson; John Wiley \& Sons.

PAPER V- INTEGRAL TRANSFORMS (FOR HONOURS)

Unit 1. Laplace transform- Definition, Laplace transform of elementary functions shifting theorems, change of scale property, Laplace transform of derivatives, Inverse, Laplace transform, translation theorems, change of scale property, Inverse Laplace transform of derivatives.

Unit 2. Application of Laplace transform to solutions of Differential equations: Solutions of ordinary differential equations with constant co-efficients, solutions of ordinary differential equations with variable co-efficient, solutions of simultaneous ordinary differential equations.

Unit 3. Fourier transforms, Sine and Cosine Transforms, Convolution, inverssion, relation between Fourier Transforms \& Laplace Transforms.

Unit 4. Applications of Fourier Transforms in initial boundary value problems. Definition and elementry properties of Hankel Transform.

Unit 5. Mellin Transform, properties, Mellin Transform of derivatives and integrals. Mellin inversion Theorem.

Text Books:

1. Snedon, I.N.
2. Vashishtha, A.R. and Gupta, R.K.
3. Davies, B
: The use of integral transforms.
: Integral Transforms.
: Integral Transforms and
their applications

B.A./B.Sc. III Year
 MATHEMATICS

PAPER I - ALGEBRA

Unit 1. Introduction to numbers, Prime \& Composite numbers. G.C.D, L.C.M. Eculidian algorithms, Relatively Prime Integer, Fundamental theorem of arithmetic partition of integers. Congruence relation in integers. Theorem on congruences, residue classes. Linear congruences, Farmat's Theorem, Wilson Theorem.

Unit 2. Groups - Definition and simple properties of groups and subgroups. Permutation groups, cyclic groups.

Unit 3. Cosets, Lagrange's theorem on the order of subroup of a finite group. Morphisms of groups, Cayley's theorem, Normal subgroups and quotient groups fundamental theorem of homomorphism of groups.

Unit 4. Rings: Definition and examples of rings, residue class rings, special classes of rings, integral domains, division rings, (rings, fields). Simple properties of rings. Subrings and subfields, Ring homomorphism and ring isomorphism. Field of quotients of an integral domain.

Unit 5. Ideals, Principal ideal, Principal ideal ring, quotient ring, prime ideal, maximal ideal, Euclidean ring and its properties. Unique factorization theorem, Polynomial rings.

Books Recommended:

1. Abstract Algebra : Khanna and Bambri
2. Topics in Algebra
3. University Algebra
4. MODERN ALGEBRA
5. NUMBER THEORY
I.N. Herstein
N.S. Gopala Krishnan
A.R. VASHISTHA
S.B. MALIK

PAPER II- DISCRETE MATHEMATICS

UNIT 1. Permutations, Combinations, selection with \& without replacement; Sets and multisets, permutation and combinations of multisets, enumeration of permutations and combination of sets \& multisets, Discrete probability; The rules of sum \& product, generation of permutation and combinations. Relations and functions- properties of binary relations, equivalence relations, partial order relations, chains and antichains.

UNIT $2 \& 3$. Graph theory :- Basic concepts of graph theory, \& 3 Multigraph and weighted graphs, matrix representation of graphs, paths \& circuits, shortest path in weighted graph, Adjacency matrix, Eulerian
path and circuits, Hamiltorian path and circuits, planar graphs. Chromatic number, edge colouring of graphs, Vizing's theorem, K-connected and K-edge -connected graphs. Trees and cut sets - Trees, rooted trees, path lengths in rooted trees, Spanning tree and cut set, minimum spanning tree. Flow in a graph, Max-flow min cut theorem.

UNIT 4. Pigeon hole Principle : Inclusion-Exclusion principle. Generating functions and Discrete numeric functions - manipulation of numeric functions. Asymptotic behaviour of numeric function. Recurrence relations, Linear recurrence relation with constant coefficients and their solutions, Homogeneous solution, particular solution \& total solutions. Solution by the method of generating functions.

UNIT 5. Boolean Algebra , lattices and algebraic systems, principle of duality. basic properties of algebric systems defined by lattices and Boolean Algebras. Uniqueness of finite boolean Lattices and Boolean functions and Boolean expressions, propositional Calculus.

Reference Books :

1. Elements of Discrete mathematics; C.L. Liu McGraw Hill International editions, 1985.
2. Discrete Mathematical structures for Computer Science ; Bernard Kolman \& Robert C.Busby;Prentice Hall of India Ltd, 1988
3. Discrete Mathematical structures with applications to Computer Science; J.P. Tremblay \& R.Manohar, Tata McGraw Hill, 1988.
4. Graph Theory; Narsingh Deo; Prentice Hall of India,1986.
5. Foundations of Discrete Mathematics;K.D.Joshi;Wiely Eastern Ltd., 1989.

PAPER III: COMPLEX ANALYSIS

Unit 1. Complex numbers, Analytic functions-Necessary and sufficient conditions for a function to be analytic, Polar from of Cauchy-Reimann equations, construction of analytic functions.

Unit 2. Conformal representation-conformal transformation, Bilinear transformation, transformations $\mathrm{W}=\mathrm{Z}^{2}, \mathrm{~W}=\sqrt{ } \mathrm{Z}$ W $=\mathrm{e}^{\mathrm{Z}}, \mathrm{W}=\log \mathrm{Z}$

Unit 3. Complex integration- Elementary definitions, Cauchy's Theorem, Cauchy's integral formula and its generalised form, Poisson integral formula, Morera's theorem, Liouville's Theorem, Taylor's Theorem.

Unit 4. Singularities- Zero of an analytic function, singular points, Different types of singularities, Residue at a pole, Residue at infinity, Cauchy's residue theorem, computation of residue at a finite pole.

Unit 5. Integration round the unit Circle, Integration of $f(z)$ when (i) $f(z)$ has no poles on the real line (ii) when poles lie on the real line.

Text/Reference Books:

1. Shanti Narayan: Theory of Functions of a complex variable.
2. Chaturvedi, J.C. \& Seth, S.S.: Functions of a complex variable (Student's friends \& Co., Agra)
3. Jain, R.N.: Functions of a Complex Variable.
4. Phillips, E.G.: Functions of Complex Variable with Application
5. Ahlfors, L.V.: Complex Analysis (International Student ed., Mc-Graw Hill).
6. Conway, J.W.: Functions of one Complex Variable.

PAPER IV: DIFFERENTIAL EQUATIONS (FOR HONOURS)

Unit 1. Linear Differential equations of second order with variable coefficients- Linear equations of second order. The complete solution in terms of known integral, Method of removal of the first derivative Transformation of equation by changing the independent variables, Method of variation of parameters.

Unit 2. Simultaneous ordinary differential equations, Simultaneous equations of first order, Total differential equations, conditions of integrability, Methods of solving total differential equations.

Unit 3. Exact linear differential equations of order two, Exact non linear differential equations, Riccati's equation, Non-Linear differential equations of particular forms.

Unit 4. Singular Solutions, Envelope, Cusp Locus, Nodal locus, P-discriminant, C-discriminant, Clairuats form.

Unit 5. Solution in series: Solution of the second order differential equations of the form $d^{2} y / d x^{2}+P d y / d x$ $+\mathrm{Qy}=0$, where P and Q are functions of x . Indicial equations and its roots. Legendre differential equation. Bessel's differential equation.

Books Recommended:

1. Piaggio : An elementary treatise on differential equations.
2. Arnold, V.I. : Ordinary differential equations.
3. Coddington, E.A. : An introduction to ordinary differential equations, Prentice Hall.
4. Bansal \& Dhami : Differential Equations Vol. II
5. Ray, Chaturvedi : A text book of Differential equations Student's Sharma

Friend \& Co., Agra.

PAPER V: ADVANCED CALCULUS (FOR HONOURS)

Unit 1. Limit of function of two variable, continuity, partial differentiation.
Unit 2. Partial derivatives of higher order, Schwartz theorem, Younge's Theorem Homogeneous functions of three variables.

Unit 3. Maxima and Minima, Restricted maxima and minima, Largranges multipliers, Jacobian.
Unit 4.Legendres Polynomials $\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{Q}_{\mathrm{n}}(\mathrm{x})$; Rodrigues formulae, Orthogonality of Legendre Polynomials, Recurrance formulae.

Unit 5.Bessels equation, Bessels function, Recurrance formula, Orthogonality, generating function, Trigonometric expansion involving Bessel's function Bessel's integrals.

Books Recommended:

1. Advanced Engineering Mathematics : E. Krieszyg
2. Mathematical Analysis : W. Rudin
3. Analysis : Goldberg

B.A./B.Sc. (MATHEMATICS)

SCHEME OF EXAMINATION - 2004-05

| S.No. | Name of
 the Paper | Contact
 Hours/
 Week | Total
 Marks | Continuous
 Assessment
 Marks |
| :--- | :--- | :--- | :--- | :--- | | Annual |
| :--- |
| Assessment |
| Marks |

A. B.A./B.Sc. II Year (2004-2005)

1.	Real Analysis	3	75	25	50
2.	Linear Algebra and	3	75	25	50
3.Differential Equations					
Calculus and Statistics	3	75	25	50	

Honours

4.	Numerical Analysis	3	75	25
5. Integral Transforms	3	75	25	50

B.A./B.Sc. II Year - 2004-05

PAPER III: CALCULUS AND STATISTICS

Unit 1. Mathematical expectation of sum and product of random variables, Moment generating and cumulant generating functions. Binomial, Poisson and Normal distribution with simple properties and their properties.

Unit 2. Curve fitting by the principal of least squares fitting of straight line, parabola power curve and exponential curves. Correlation and Regression, Pearson correlation coefficient, Rank correlation and Spearman's rank correlation coefficient.

Unit 3. Maxima and minima of functions of two variables. Partial derivatives, Eule's Theorem and its applications. Envelopes and evolutes. Assymptotes Integral calculus.

Unit 4. Reduction formula, Quadrature, Rectification of curves, Volume and Surface area of solids of revolution.

Unit 5. Beta and Gamma functions, double and triple integrals, change of order of integration in double integrals.

Books:

1. Differential Calculus : Shanti Narayan
2. Integral Calculus : Shanti Narayan
3. Mathematical Statistics : O.P. Gupta \& B.D. Gupta

Reference Books:

1. Advanced Engineering Mathematics : E. Kreiszyg
2. Fundamentals of Mathematics Statistics : S.C. Gupta
V.K. Kapoor

Department of Mathematics and Statistics

Banasthali Vidyapith, Banasthali

Minutes of the Board of Studies held on 26.12.2018 at 11.00 A.M in the CMS Conference Hall, Banasthali Vidyapith.

Present

1. Dr. Abhishek Singh	Internal Member
2. Dr. Amit Kumar	Internal Member
3. Mr. Ankush Goel	Internal Member
4. Ms. Anu Sirohi	Internal Member
5. Ms. Bhawna Jha	Internal Member
6. Prof. G.N. Purohit	Internal Member
7. Dr. GargiTyagi	Internal Member
8. Dr. Geetanjali Sharma	Internal Member
9. Dr. Gulab Singh	Internal Member
10. Dr. IshaSangal	Internal Member
11. Dr. Madhuri Jain	Internal Member
12. Mr. Manish Raghav	Internal Member
13. Ms. Manju Suresh Prasad	Internal Member
14. Dr. Manoj Kumar Singh	Internal Member
15. Dr. Naresh Chandra	Internal Member
16. Dr. Prashant Kushwah	Internal Member
17. Dr. Preeti Jain	Internal Member
18. Mr. Ramdayal Kushwaha	Internal Member
19. Ms. Renu Naresh	Internal Member
20. Dr. Sandeep Kumar Maurya	Internal Member
21. Prof. SarlaPareek	Internal Member
22. Prof. Shalini Chandra	Convener
23. Dr. Shanu Goyal	Internal Member
24. Dr. Shared Chand Pandey	Internal Member
25. Ms. Teena Goyal	Internal Member
26. Dr. Usha Sharma	Internal Member
27. Prof. Sharad Gore	External Member

Note:Prof. C.S. Aravinda, TIFR Mumbai, Prof. Arvind Mishra, B.H.U. Varanasi(External Members)and Dr. Narendra Singh Thakur (Internal Member)could not attend the meeting.

The meeting started with a welcome of the members, by the convener of Board of Studies for Mathematics and Statistics, Prof. Shalini Chandra, Head, Department of Mathematics and Statistics, Banasthali Vidyapith, Rajasthan

1. The board took up the minutes of its last meeting held on April, 23, 2016.

The Board resolved that the minutes to be confirmed.
2. The board reviewed the existing panel of examiners and suggested to update the address and phone numbers of the existing examiners for each examination up to and inclusive of all Master's degree examination keeping in view the by-law 15.03.02 of the Vidyapith. Updated panel is sent to the examination and secrecy section.
3. The board reviewed the Study/Curricula, scheme of examination and proposed revisions in various courses of study as follows:

3 IB.A./B.Sc. (Mathematics) Examinations:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change ${ }^{\text {a }, \mathrm{b}}$
iv.	Fourth Semester Examination, April/May, 2021	Revised c
v.	Fifth Semester Examination, December, 2021	Revisedd, e
vi.	Sixth Semester Examination, April/May, 2022	Revisedd, f

The Board reviewed the objectives, schemes, syllabi and learning outcomes of the B.A./B.Sc. (Mathematics) programmes.
(a)In B.A./ B.Sc. (Mathematics)III Semester, revision in the syllabus of Abstract Algebra(Course Code: MATH 201) was proposed. Board discussed the revision proposed and agreed upon the suggested syllabus. Board also recommended implementing the proposed revision in syllabus of Abstract Algebra by III Semester Examination, December, 2019.
(b)In B.A./B.Sc. (Statistics as a discipline)III Semester, Board reviewed the syllabus of Numerical Analysis and Sampling Distribution (Course Code: STAT 203) and Numerical Analysis and Sampling Distribution Lab (Course Code: STAT 203L). It was found that students of Statistics also study Numerical Analysis in VI semester. Board suggested removing numerical analysis portion from this course and strengthens the sampling distribution. The title of the course should be Sampling Distributions. Therefore, in B.A./B.Sc. (Statistics)III Semester, the course Numerical Analysis and Sampling Distribution (Course

Code: STAT 203) should be replaced by Sampling Distributions (Course Code: to be generated) and Numerical Analysis and Sampling Distribution Lab (Course Code: STAT 203L) should be replaced by Sampling Distributions Lab (Course Code: to be generated).Board recommended implementing the proposed revision of the III Semester Examination, December, 2020.
(c) In B.A./B.Sc. (Mathematics) IV Semester, Board suggested to replace the course Introduction to Mechanics (Course Code: MATH 203) by the course Complex Analysis (Course Code: MATH 301). Board recommended implementing the proposed change in scheme by IV Semester Examination, April, 2021.
(d) In B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) $3^{\text {rd }}$ Year, Board suggested to include discipline electives in the scheme. Following is the list of electives

B.A./B.Sc. (Mathematics) discipline electives:

Introduction to Mechanics
Linear Programing \& Its Applications
Vector Calculus
Number Theory
B.A./B.Sc.(Mathematics) discipline electives for (Statistics/ Applied Statistics):

Sampling Techniques and Design of Experiments
Applied Statistics
Financial Statistics
Health Statistics \& Population Dynamics

Board recommend the implementation of electives form Session 2021-2022.
The course Introduction to Discrete Mathematics (Course Code: MATH 302) and Introduction to Numerical Analysis (Course Code: MATH 303) are the core course in B.A./B.Sc. (Mathematics) V and VI Semester respectively with the following suggestions.
(e) The Board had a discussion on the course Introduction to Discrete Mathematics (Course Code: MATH 302) which is running in B.A./B.Sc. (Mathematics) V Semester, B.Tech. (CS) V Semester and MCA II Semester. To bring uniformity in the syllabus of the course across the various programs, board suggested revisionsin the syllabus of Introduction to Discrete Mathematics. Board also recommended implementing the proposed revision by V Semester Examination, December, 2019.
(f) In B.A./B.Sc. (Mathematics) VI Semester, revision in the syllabus and recommended books of Introduction to Numerical Analysis (Course Code: MATH 303) was proposed. Board discussed the revision and found that proposed syllabus is more elaborated and well arranged with the inclusion of some topics. It will help student to find the flow of study and understand the topics in the syllabus. Board agreed upon the revised syllabus and also recommended implementing the proposed revision in the syllabus of Introduction to Numerical Analysis by VI Semester Examination, April/May, 2020.

Programme specific outcomes and the list of disciplinary courses of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as Annexure-I.
The revised syllabus, learning outcomes and e-learning material of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as Annexure-II.

3 II. B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR) Examination:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change $^{\text {a }}$
iv.	Fourth Semester Examination, April/May, 2021	Change $^{\text {a }}$
v.	Fifth Semester Examination, December, 2021	Change $^{\mathrm{b}, \mathrm{c}}$
vi.	Sixth Semester Examination, April/May, 2022	Change $^{\mathrm{c}}$
vii.	Seventh Semester Examination, December, 2022	No Change
viii.	Eighth Semester Examination, April/May, 2023	No Change

(a) The Board discussed the various course running in B.Tech. Programme of Vidyapith by the department. Board recommended a tutorial in every course. Board suggested to revise the L-T-P-C of course Differential Equation (Course Code: MATH 208) from $4-0-0-4$ to $3-1-0-4$ and Complex Variables (Course Code: MATH 207) from 3-0-0-3 to 3-1-0-4. Board recommended implementing the proposed revision by Session 2019-2020.
(b)As discussed in 3.I (d), in B.Tech. (CS)V Semester, board recommended implementing the revised syllabus of "Introduction to Discrete Mathematics" by V Semester Examination, December, 2019.
(c)Syllabus of "Probability and Statistical Methods" and "Numerical Methods" in B.Tech. third year were proposed. Both the papers have L-T-P-C 3-1-0-4.Board discussed the syllabus and agreed upon implementing new syllabi from session 2019-2020.
(d)TheBoard reviewed all the syllabi of Mathematics and Statistics courses running in B. Tech. programme in respect of learning outcomes and suggested readings.

Learning outcomes, proposed revised/ new syllabi, suggested books and suggested e-learning material of the B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR)courses is attached and marked asAnnexure-III.

3 III. M.Sc. (Mathematical Science) Examination:

The Board discussedthe recent trends in mathematical science education at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, more weightageshould be given to self-learning and independent research activities.In the light of the above-mentioned suggestions, the board proposed revisions in the scheme of M.Sc. (Mathematical Science) with specialization in pure mathematics/statistics/operations research/theoretical computer science.

3 IIIA M.Sc. (Mathematical Science - Pure Mathematics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of Numerical Analysis (Course Code: MATH 409) and Numerical Analysis Lab (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of Numerical Analysisby II Semester Examination, April/May, 2020.
(b)TheBoard had detailed discussion on the Term Paper (MATH 528P). To improve the quality of Term Paper and to inculcate best practices in the students, formal guidelines were proposed including the evaluation scheme. The proposed guidelines are given in Annexure-IV. Board also recommended implementing the proposed guidelines by III Semester Examination, December, 2019.
(c)TheBoard also has proposed new electives in the curricula as follows:

- Coding Theory (New Course)
- Fixed Point Theory (New Course)
- Introduction to Dynamical System (New Course)
- Bio Mathematics (New Course)
- Algebraic Topology (New Course)
- Combinatorial Optimization (New Course)
- Transportation System Analysis (New Course)
- Integral Transform and Special Functions (New Course)
- Fields and Galois Theory (New Course)

Board recommended implementing the new electives by Session 2020-2021.
(d)TheBoard proposed to omit Rings and Modules (MATH 524) from the list of electives of pure mathematics. Board recommended implementing the change bySession 2020-2021.
(e)TheBoard has proposed following new reading electives in the curricula:

- Network Biology (New Course)
- Fractional Calculus (New Course)
- Quantum Graphs (New Course)
- Point set topology (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by Session 20202021.
(f) To ensure the quality of Dissertation, formal guidelines are given in Annexure-IV

3 IIIB M.Sc. (Mathematical Science - Statistics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of Numerical Analysis (Course Code: MATH 409) and Numerical Analysis Lab (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of Numerical Analysis by II Semester Examination, April/May, 2020.
(b)TheBoard had detailed discussion on the Seminar (Course Code: STAT 514S). To improve the quality of Seminar and to inculcate best practices in the students, a formal guideline was proposed including the evaluation scheme. The proposed guidelines are attached and marked as Annexure-IV. Board
also recommended implementing the proposed guideline by III Semester Examination, December, 2019.
(c) TheBoard reviewed the process of Project (Course Code: STAT 512P) and recommended formal guidelines for it. The proposed guidelines with evaluation scheme are attached and marked as Annexure-IV. Board also recommended implementing the proposed guidelines by IV Semester Examination, April/May, 2020.
(d)TheBoard reviewed the list of electives and found that the title of Econometrics Models (Course Code: MATH 510) should be replaced by Econometric Models. Board also suggested that some more models should be added. Board recommended implementing the proposed revision in syllabus of Econometric Models bySession 2019-2020.
(e)TheBoard also has proposed some new electivesin the curricula as follows:

- Stochastic Models (New Course)
- Demography (New Course)
- Actuarial Statistics (New Course)
- Survival Analysis (New Course)
- Reliability and Renewal Theory (New Course)
- Operations Research (New Course)

Board recommended implementing the new electives by Session 2020-2021.
(f)TheBoard proposed following new reading electives in the curricula:

- Step-Stress Modelling (New Course)
- Categorical Data Analysis (New Course)
- Official Statistics (New Course)
- Robust Estimation in Non-Linear Models (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by Session 20202021.

3 III M.Sc. (Mathematical Science - Operations Research) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) TheBoard reviewed the syllabi of Numerical Analysis (Course Code: MATH 409) and Numerical Analysis Lab (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in
their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of Numerical Analysis by II Semester Examination, April/May, 2020.
(b)TheBoard suggested that similar guidelines as suggested for Seminar (Course Code: STAT 514S), should be followed for Seminar (Course Code:
MATH 525S). Board also recommended implementing the proposed guidelines by III Semester Examination, December, 2019.
(c) TheBoard suggested that similar guidelines as suggestedfor Project (STAT 512P), should be followed for Project (Course Code: MATH 520P). Board also recommended implementing the proposed guidelines by IV Semester Examination, April/May, 2020.
(d)TheBoard also has proposed some electives in the curricula as follows:

- Combinatorial Optimization
- Transportation System Analysis (New Course)
- Stochastic Models (New Course)
- Fuzzy logic and Belief Theory
- Partial Differential Equations (New Course)

Board recommended implementing the new electives by theSession 20202021.
(e)TheBoard has proposed following reading electives in the curricula:

- Selected Applications of Stochastic Models
- Operational Research Applications
- Step-Stress Modelling
- Categorical Data Analysis

Board recommended implementing the reading electives by Session 20202021.

3 III D M.Sc. (Mathematical Science - Theoretical Computer Science) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) Board reviewed the syllabi of Numerical Analysis (Course Code: MATH 409) and Numerical Analysis Lab (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in
numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of Numerical Analysis by II Semester Examination, April/May, 2020.
(b) Board has proposed following reading electives in the curricula:

- Operational Research Applications (New Course)
- Categorical Data Analysis (New Course)
- Network Biology (New Course)
- Fractional Calculus
- Quantum Graphs

The Board also recommended implementing the reading electives by Session 2020-2021.
(c) To bring uniformity in the credits of elective courses, Board suggested to remove following electives form the list of electives of M.A./M.Sc. (Mathematical Sciences - Theoretical Computer Science)

Web Development and .Net Framework
Web Development and .Net Framework Lab
Advanced communication Networks
Advanced communication Networks Lab
Data Communication and Networking
Data Communication and Networking Lab
The Board also recommended implementing the suggestion by Session 20192020.

Programmeeducational objectives and outcomes and the scheme of M.A./M.Sc. (Mathematical Sciences) programmeare attached and marked as Annexure-V
The revised syllabus, learning outcomes and e-learning material of the M.A./M.Sc. (Mathematical Sciences) programme is attached and marked as Annexure-VI.

3 IV. M. Phil. (Mathematical Science)Examination

Board discussed the curriculum structure of M. Phil. (Mathematical Science) and advised to restructure the programme in the light of one-year duration.

3 V. Certificate Examinations:

(a) The board suggested minor changes in the syllabus of Certificate Course in Statistical Techniques and Applications. Board recommended implementing the revised syllabus by Examination, 2020.
(b) Board discussed the syllabus of Certificate Course in Actuarial Sciencesand suggested few changes. The revised syllabus is attached and marked asAnnexure-VII. Board recommended implementing the revised syllabus by April,2020.

3 VI.Diploma Examinations:

The board suggested minor changes in the syllabus of Diploma Course in Actuarial Sciences. The revised syllabus is attached and marked as AnnexureVII. Board recommended implementing the revised syllabus by Examination, 2020.
4. Board reviewed the curriculum for the courses running in the other programsof the Vidyapith. Following suggestions were given

Bachelor of Business Administration		
MATH 306	Mathematics for Management	No Change
STAT 108	Statistics for Management	No Change
STAT 108L	Statistics for Management Lab	No Change
Bachelor of Commerce		
MATH 109	Mathematics for Business Applications	No Change
STAT 201	Business Statistics	No Change
STAT 201L	Business Statistics Lab	No Change
Bachelor of Computer Applications		
MATH 108	Mathematics -I	No Change
MATH 204	Mathematics -II	No Change
MATH 302	Introduction to Discrete Mathematics	No Change
MATH 308	Quantitative Techniques (Math)	No Change
Bachelor of Pharmacy		
MATH 110	Remedial Mathematics	No Change
Bachelor of Science (Aviation Science)		
MATH 102	Basic Mathematics	No Change
Master of Computer Applications		
MATH 302	Introduction to Discrete Mathematics	Change ${ }^{\text {a }}$
Master of Science (Bioinformatics)		
MATH 406	Introductory Mathematics	No Change
STAT 405	Statistical Techniques	No Change
STAT 405L	Statistical Techniques Lab	No Change
Master of Science (Chemistry)		
MATH 407	Mathematics for Chemists	No Change
Master of Technology (Biotechnology)		

MATH 506	Engineering Mathematics	No Change

(a)As discussed in 3.I (c), forM.C.A.II Semester, board recommended implementing the revised syllabus of "Introduction to Discrete Mathematics" by II Semester Examination, April/May, 2019.
(b)Board reviewed all the syllabi of Mathematics and Statistics courses running in other programmesof the Vidyapithin respect of learning outcomes and suggested readings. Course outcomes, suggested books and suggested elearning material of remaining coursesis attached and marked asAnnexureVIII.
5. Board reviewed the reports received from the examiners of different examinations of 2017 and 2018. All the reports were found to be satisfactory except three. The analysis of the reports received is enclosed in Annexure-IX.
6. The board evaluated the semester examination papers and found that most of them were analytic, descriptive and application based depending on the nature of course. The analysis of question papers is enclosed in Annexure-X.
7. The Board suggested starting two new P. G. programmes in Mathematics \& Statistics along with M.Sc. (Mathematical Sciences) for the students who have interest in conventional degrees like M.Sc.(Mathematics) and M.Sc.(Statistics). The proposed schemes and courses are attached and marked as Annexure-V and Annexure VI, respectively.
8. Board suggested seeing the feasibility of beginning a certificate course on Data Science with linkage to industry which will have direct bearing on employability.
9. Board also suggested starting internship program of two months for statistics students at post graduate level to give them exposure of field surveys.

Meeting ended with vote of thanks.

Name of Programmes:B.Sc (Mathematics)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. At the undergraduate level, Vidyapith promotes the development of a balanced and harmonious personality of the students through it's 'Panchmukhi Shiksha'. Panchmukhi Shiksha attempts a balance of the five aspects of education, namely Physical, Practical, Aesthetic, Moral and Intellectual. The educational objective of the B.Sc. (Mathematics)programme is to provide high quality education in mathematics, statistics, physics, electronics and computer science in order to prepare students for professional careers or higher education in science and related fields.

The main objectives of the B.Sc. programme are:

- To develop an understanding of mathematics and related areas opt by them.
- To develop an ability to identify, formulate, analyze and solve scientific problems.
- To develop a capacity to integrate knowledge from more than one subject and to apply appropriates mathematical principles to arrive at correct and effective solutions.
- To develop communication skills which enables them to effective multidisciplinary teamwork
- To develop their skillswhich will enable them to become a multi facet personality shining in any chosen field.

ProgrammeOutcomes: B.Sc. (Mathematics)

PO1: Knowledge Domain: Demonstrate an understanding of the basic concepts in mathematics, statistics, physics, electronics and computer scienceand their importance in the solution of some real-world problems.

PO2: Technical Skills: Understand tools of appropriate laboratory and perform experiments that support the development of scientific theory.

PO3: Ethics: Applyknowledge and moral principles by using a systematic approach of rational arguments.Understand the responsibility and the way our perception of right and wrong can play a part in politics and society.

PO4: Communication: Effectively communicate information by speaking, writing, or using some other mediumwith their peer and society at large, such as, being able to comprehend and write effective reports and make effective presentations.

PO5: Life- long learning: Demonstrate the ability to read and learn on their own that encourage the continuingdevelopment of knowledge and skills throughout their lives.

Programme Specific Outcomes (Applied Statistics)

PSO1: Understand the basic concepts of sequence, series, sets, calculus, matrix theory, probability, inference, sample surveys and design of experiments and their applications.

PSO2: Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.

PSO3: Develop an understanding of importance of statistical methods and techniques.
PSO4: Learn statistical software as exploratory, visualization, and computational tools.

Programme Specific Outcomes (Mathematics)

PSO1: Understand the basic concepts of calculus, geometry, analysis, algebra and their applications. Solve arithmetic, algebraic, geometric expressions, equations, functions and problems using appropriate methods.
PSO2: Analyse the relationships among structures in mathematics (e.g. sets, functions, groups, rings, vector spaces) and their importance within and outside the discipline.

PSO3: Develop an understanding of importance of axioms, proofs and theorems.
PSO4: Recognize and appreciate the connections between theory and applications.

Programme Specific Outcomes (Statistics)

PSO1: Understand the basic concepts of probability theory, inference, sample surveys and design of experiments and their applications.

PSO2: Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.

PSO3: Develop an understanding of importance of statistical methods and techniques.
PSO4: Learn statistical software as exploratory, visualization, and computational tools.

Programme Scheme: B.A./B.Sc. (Mathematics)
/B.A-B.Ed./B.Sc.-B.Ed.
Semester - I

Applied Statistics

Existing

Course Code	Course Name	L	T	P	C
MATH 102	Basic Mathematics	4	0	0	4
STAT 101	Basic Statistics	4	0	0	4

Proposed

Course Code	Course Name	\mathbf{L}	T	P	C
MATH 102	Basic Mathematics	4	0	0	4
STAT 101	Basic Statistics	4	0	0	4

Mathematics

Existing

Course Code	Course Name	L	T	P	C	
MATH 106	Introduction Calculus	to	4	0	0	4
STAT 104	Introduction Probability Statistics	to	4	0	0	4

Proposed

Course Code	Course Name	L	T	P	C	
MATH 106	Introduction Calculus	to	4	0	0	4
STAT 104	Introduction to Probability Statistics	4	0	0	4	

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 106	Probability and Descriptive Statistics	6	0	0	6
STAT 106L	Probability and Descriptive Statistics Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
STAT 106	Probability and Descriptive Statistics	6	0	4	8

Semester - II

Applied Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 107	Statistical Methods	6	0	0	6
STAT 107L	Statistical Methods Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
STAT 107	Statistical Methods	6	0	4	8

Mathematics

Existing

Course Code	Course Name	L	T	P	C
MATH 101	Analytic Solid Geometry	4	0	0	4

Proposed

Course Code	Course Name	L	T	P	C
MATH 101	Analytic Solid Geometry	4	0	0	4

AnnexureI

STAT 104	Differential Equations	4	0	0	4

STAT 104	Differential Equations	4	0	0	4

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 105	Measures Association af Probability	6	0	0	6
Distributions					
STAT 105L	Measures of Association and Probability Distributions Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
$\begin{aligned} & \hline \text { STAT } \\ & 105 \end{aligned}$	Measures of Association and Probability Distributions	6	0	4	8

Semester - III

Applied Statistics

Existing					
Course Code Course Name L T P	C				
STAT 205	Probability Distributions and Numerical Analysis	6	0	0	6
STAT 205L	Probability Distributions and Numerical Analysis Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
STAT 205	Probability Distributions and Numerical Analysis	6	0	4	8

Mathematics

Existing

Course Code	Course Name	L	T	P	C
MATH 201	Abstract Algebra	4	0	0	4
MATH 206	Real Analysis	4	0	0	4

Proposed

Course Code	Course Name	\mathbf{L}	T	P	C
MATH 201	Abstract Algebra	4	0	0	4
MATH 206	Real Analysis	4	0	0	4

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 203	 Sampling Distribution	6	0	0	6
STAT 203L	 Sampling Distribution Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
	Sampling Distributions	6	0	4	8

Semester - IV

Applied Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 202	Inferential Statistics and Quality Control	6	0	0	6
STAT	Inferential Statistics	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
STAT 202	Inferential Statistics and Quality Control	6	0	4	8

202L	and Quality Control Lab			

Mathematics

Existing

Course Code	Course Name	L	T	P	C
MATH 202	Introduction to Linear Algebra	4	0	0	4
MATH 203	Introduction to Mechanics	4	0	0	4

Proposed

Course Code	Course Name	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
MATH 202	Introduction to Linear Algebra	4	0	0	4
MATH 301	Complex Analysis	4	0	0	4

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 207	Statistical Inference and Quality Control	6	0	0	6
STAT 207L	Statistical Inference and Quality Control Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
STAT 207	Statistical Inference and Quality Control	6	0	4	8

Semester - V

Applied Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 302	Sampling Techniques and Design of Experiments	6	0	0	6
STAT 302L	Sampling Techniques and Design of Experiments Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
	Discipline Elective I	6	0	4	8

Mathematics

Existing

Course Code	Course Name	L	T	P	C
MATH 302	Introduction to Discrete Mathematics	4	0	0	4
MATH 304	 Its Applications	4	0	0	4

Proposed

Course Code	Course Name to	L	T	P	C
MATH 302	Introduction Discrete Mathematics	0	0	4	
	Discipline Elective I	4	0	0	4

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 302	Sampling Techniques and Design of Experiments	6	0	0	6
STAT 302L	Sampling Techniques and Design of Experiments Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
	Discipline Elective I	6	0	4	8

Semester - VI

Applied Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 301	Applied Statistics	6	0	0	6
STAT 301L	Applied Statistics Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
	Discipline Elective II	6	0	4	8

Mathematics

Existing

Course Code	Course Name	L	T	P	C
MATH 301	Complex Analysis	4	0	0	4
MATH 303	Introduction to Numerical Analysis	4	0	0	4

Proposed

Course Code	Course Name to	L	T	P	C
MATH 303	Introduction Numerical Analysis	0	0	4	
	Discipline Elective II	4	0	0	4

Statistics

Existing

Course Code	Course Name	L	T	P	C
STAT 301	Applied Statistics	6	0	0	6
STAT 301L	Applied Statistics Lab	0	0	4	2

Proposed

Course Code	Course Name	L	T	P	C
	Discipline Elective II	6	0	4	8

List of Discipline Electives

Applied Statistics

Course Code	Course Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
STAT 302	Sampling Techniques and Design of Experiments	6	0	4	8
STAT 301	Applied Statistics	6	0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics \& Population Dynamics (New Course)	6	0	4	8

Mathematics

Course Code	Course Name	\mathbf{L}	T	P	C
MATH 203	Introduction to Mechanics	4	0	0	4
MATH 304	Linear Programing \& Its Applications	4	0	0	4
	Vector Calculus (New Course)	4	0	0	4
	Number Theory (New Course)	4	0	0	4

Statistics

Course Code	Course Name	L	T	P	C
STAT 302	Sampling Techniques and Design of Experiments	6	0	4	8
STAT 301	Applied Statistics	6	0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics \& Population Dynamics (New Course)	6	0	4	8

Student can opt for at most 2 additional Open (Generic) audit/credit Electives from any discipline opting at most 1 per semester from Semesters III onwards with prior permission of respective heads and time table permitting.

CourseDetails: (SeeannexureII)

Annexure II

Name of Programmes: B.A,/B.A.-B.Ed./B.Sc.(Mathematics)/B.Sc.-B.Ed.

Course Details:

FIRST SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 102 Basic Mathematics	On successful completion of the course, students will be able to, - Understand the basic rules of logic, including the role of axioms or assumptions. - Appreciate the role of mathematical proof in formal deductive reasoning. - Distinguish a coherent argument from a fallacious one, both in mathematical reasoning and in everyday life. - Understand the differences between inductive and deductive reasoning. - Proficiently construct logical arguments and rigorous proofs. - Formulate and solve abstract mathematical problems.	-	Suggested E-learning material 1. Matrix https://www.askiitians.com/iit-jee-algebra/matrices-and-determinants. 2. Sequence and Series ncert.nic.in/ncerts/1/keep209.pdf 3. Set, Function, Relation ncert.nic.in/ncerts/l/keep201.pdf 4. $L P P$ https://www.analyticsvidhya.com/.../lint roductory-guide-on-linear-programmingexplain	No change in the syllabus
2.	STAT 101 Basic Statistics	On successful completion of the course, students will be able to, - Distinguish between qualitative variables and quantitative variables. - Differentiate between discrete and	-	Suggested E-learning material 1. Probability and its concept= https://ocw.mit.edu/courses/mathematics $\angle 18$-05-introduction-to-probability-and-statistics-spring-2014/	No change in the syllabus

Subject. Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 106 Introduction to Calculus	On completion of the course, students will be able to, - Apply the concept and principles of differential and integral calculus to solve geometric and physical problems. - Evaluate various limit problems both algebraically and graphically. - Differentiate and integrate the functions which are applicable in real life situations. - Interpret the geometric meaning of differential and integral calculus. - Apply differentiation to find linear approximation, extrema, monotonicity, and concavity of functions.	- Exing	Suggested E-learning material: 1. Single Variable Calculus https://ocw.mit.edu/courses/mathematics $/ 18-01 \mathrm{sc}$-single-variable-calculus-fall-2010/ 2. Differentiation of two variables https://nptel.ac.in/courses/111104085/21 3. Multiple Integral https://nptel.ac.in/courses/111104085/29	No change in the syllabus

Annexure II

2.	STAT 104 Introductiont - Probability \& Statistics	On completion of the course, students will be able to, - Compute numerical quantities that measure the central tendency and dispersion of a set of data. - Understand basic probability axioms and rules and the moments of discrete and continuous random variables as well as be familiar with common named discrete and continuous random variables. - Apply general properties of the expectation and variance operators. - Understand the properties and fitting of the Normal, Binomial and Poisson distribution. - Fit the straight line, second degree parabola and curves of type: ab^{x} and $a x^{b}$ - Understand the concept of Correlation (Karl Pearson) and Linear Regression.		Suggested E-learning material: 1. Probability and Mathematical Statistics; Platform: http://www.math.louisville.edu/~pksaho 01/teaching/Math662TB-09S.pdf	No change in the syllabus

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 106 Probability and Descriptive Statistics	On completion of the course, students will be able to, - Understand and differentiate between population and sample, variables and attributes in any survey. - Represent the data using suitable tabular and/or graphical method. - Identify and calculate appropriate summary statistics for the data.	-	Suggested E-learning material: 1. Video lectures on Probability and Statistics: https://nptel.ac.in/ courses/111105090/ 2. Video lectures on Introduction to Data Analytics: https://nptel.ac.in/courses/110106072/	No change in the syllabus

Annexure II

		- Understand the concept of probability, probability mass and density functions. - Define a random variable and obtain its properties.			
2.	STAT 106L Probability and Descriptive Statistics Lab	On completion of the course, students will be able to, - Express raw data in terms of frequency table by using exclusive and inclusive method of classification for continuous/discrete variable. - Apply and justify the use of, various graphical representations such as Histogram, Frequency polygon etc. - Interpret and analyze the data using various averages such as arithmetic Mean, Median and Mode. - Compare different data sets using methods such as standard deviation, mean deviation, quartile deviation and coefficient of variation. - Employ and interpret the measures of Skewness and Kurtosis.	-	-	No change in the syllabus

Annexure II

SECOND SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 107 Statistical Methods	On successful completion of the course, students will be able to, - Explain the purpose of measures of dispersion, and the information they convey. - Select an appropriate measure of dispersion and correctly calculate and interpret the statistic. - Describe and explain the mathematical characteristics of the standard deviation. - Apply the definition of independence to attempt to determine whether an assumption of independence is justifiable in a given situation. - Find probabilities of single events, complementary events and the unions and intersections of collections of events. - Describe the main properties of probability distributions and random variables. - Identify the random variable(s) of interest in a given scenario.		Suggested E-learning material 1. Introduction to Probability and Statisticshttps://ocw.mit.edu/courses/mathematics 18-05-introduction-to-probability-and-statistics-spring-2014/ 2. Elementary Statisticshttps://newonlinecourses.science.psu.edu /statprogram/stat200 3. Probability and Statisticshttps://nptel.ac.in/courses/111105041/	No change in the syllabus

Annexure II

2.	STAT 107L Statistical Methods Lab	On successful completion of the course, students will be able to, - Make the frequency distribution for inclusive and exclusive type of class intervals on excel. - Construct the table for given raw data. - Draw the graphs for the given data like histogram, frequency polygon, frequency curve and ogives. - Draw the diagrams like bar diagram and pie charts etc. - Calculate the measures of central tendency and dispersion on excel for given set of observations. - Fit the curves like straight line, parabola, exponential and power curve by using excel.	No change in the syllabus	-

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 101 Analytical Solid Geometry	On completion of this course, student will be able to, - Understand the basic applications of analytic and solid geometry. - Understand geometrical terminology for planes, tetrahedron, spheres, paraboloids, hyperboloids and ellipsoids. - Visualize and represent geometric figures and classify different geometric solids.	- Existing	Suggested E-learning material: 1. Plane and solid Geometry: http://www.aproged.pt/biblioteca/planea ndsolidgeometry.pdf 2. Solid Geometry introduction: http://altairuniversity.com/wpcontent/uploads/2014/02/HM SolidGeo mintro.pdf 3. Math handbook of formulas, Process \&Trics:	No change in the syllabus

Annexure II

				http://www.mathguy.us/Handbooks/Ge ometryHandbook.pdf	
2.	MATH 104 Differential Equations	On completion of this course the student will be able to: - Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution. - Student will be able to solve first order differential equations utilizing the standard techniques for separable, exact, linear, homogeneous, or Bernoulli cases. - Create and analyze mathematical models using first order differential equations to solve application problems. - Determine solutions to the linear and nonlinear ordinary differential equations of first and second order. - Determine the complete solution of a differential equation with constant coefficients by variation of parameters - Evaluate the Laplace and Inverse Laplace transform of functions of one variable		Suggested E-learning material: 1. Separable, homogeneous, exact, Linear differential equations, Laplace transformhttps://nptel.ac.in/courses/1221 04018/7 2. Open course in Differential Equations (All topics)https://nptel.ac.in/courses/1111061 001 3. Open course in Differential Equations (All topics)https://swayam.gov.in/ course/378 7-differential-equations 4. Second order linear differential equation with constant coefficient thttps: / / ocw.mit.edu/courses/mathematic s/18-03sc-differential-equations-fall-2011/ 5. Laplace transformhttps://www.math.ust.hk/~mac has/differential-equations.pdf	No change in the syllabus

Annexure II

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 105 Measures of Association and Probability Distributions	On completion of the course, students will be able to, - Fit the linear regression equation for real data sets arising in various fields of the populations. - Understand the concept of multiple and partial correlation. - Apply selected probability distributions to solve problems - Understand how to check the independence of attributes. - Fit the Binomial, Poisson and Normal distribution for real life data.	- Exising Syllab	Suggested E-learning material: 1. Probability and Random variables. MIT Open Course. https://ocw.mit.edu/courses/mathematics 18-440-probability-and-random-variables-spring-2014/lecture-notes/ 2. Probability and Statistics, NPTEL. https://nptel.ac.in/courses/111105041/27	No change in the syllabus
2.	STAT 105L Measures of Association and Probability Distributions Lab	On completion of the course, students will be able to, - Apply and use fitting of various curves such as Straight line, parabola, exponential curve etc. - Effectively distinguish between and compute, correlation and rank correlation, Partial and Multiple correlations. - Understand and perform the fitting of Binomial, Poisson and Normal distribution	$-$	-	No change in the syllabus

Annexure II

THIRD SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 205 Probability Distributions and Numerical Analysis	On successful completion of the course, students will be able to: - Understand the basic principles of Probability, sample space, conditional probability. - Differentiate between basic discrete \& continuous distributions \& how to work with them. - Understand cumulative distribution function, expectation and distributions for functions of random variables. - Work with bivariate distributions \& basic two variable statistics. - Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations and apply them to obtain approximate solutions to mathematical problems.	- Exisins	Suggested E-learning material 1. Introduction to Numerical Analysis» Lecture notes. https://ocw.mit.edu/courses/mathematic s/18-330-introduction-to-numerical-analysis-spring-2004/lecture-notes/ 2. Probability and Random Variables https://ocw.mit.edu/courses/mathematic s/18-440-probability-and-random-variables-spring-2014/ 3. Numerical Analysishttps://nptel.ac.in/courses/111107062/ 4. Probability https://nptel.ac.in/courses/111104032/ 5. Probability distributionshttps://nptel.ac.in/courses/111105041/8	No change in the syllabus
2.	STAT 205L Probability Distributions and Numerical Analysis Lab	On successful completion of the course, students will be able to: - Fit the probability distributions by using Excel. - Find out the missing values using interpolation - Get the approximate values of	-	-	No change in the syllabus

Annexure II

| | differentiation and integration by using
 excel.
 - Obtain the solution of linear and nonlinear
 equations and the solution of differential
 equations and apply them to obtain
 approximate solutions to mathematical
 problems. | | |
| :--- | :--- | :--- | :--- | :--- |

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 201 Abstract Algebra	On completing the course, students are able to, - Demonstrate the mathematical maturity of understanding the proof. - Understand the definition of a group and be able to test a set with binary operation to determine if it is a group. - Find the order of elements of groups. - Identify subgroups of a given group, cycle groups, normal groups. - Understand permutation groups and be able to decompose permutations into 2 cycles. - Grasp the significance of the concepts of homomorphism, isomorphism, and automorphism and be able to check a given function is one of these.	Unit $1[$ Set, Relations, Fwnctions and] Binary operations [Binary operntions in contrast to Definition, examples and simple properties of group andsubgroup. Unit 2 Permutation group, Cyclic group, Cosets, Lagrange's theorem. Homomorphism and Isomorphism of group, Cayley's theorem. Unit 3 Normal subgroup and [Qurtient] group, Fundamental theorem of homomorphism of group (First, Second and third theorem of isomorphism). Unit 4 Rings: Definition, and example, [Resitue classes niny specinl classes of ring Integral Domain, , Ring homomorphism and ring isomorphism. Unit 5 Ideal, Principal ideal, Principal ideal [finc, Eutientl ring, Prime ideal, Maximal ideal, Furlidean- ring and its properties, Polynomial	Unit 1 Divisibility in Z, division algorithm, greatest common divisor, Euclidean Algorithm, modular arithmetic, Binary Operations, Group: Definition, examples and properties of group. Unit 2 Subgroups, Cyclic groups, Permutation group, symmetric and alternating groups of degree n, external direct products of groups. Unit 3 Cosets, Lagrange's theorem Homomorphism and Isomorphism of group, Cayley's theorem,Normal subgroups and Factor groups. Unit 4Fundamental theorem of homomorphism of group (First, Second and third theorem of isomorphism). Rings: Definition and examples, Integral Domain, Division ring, fields Unit 5 Ideal, Principal ideal, Principal ideal domain, Factor ring, Prime ideal, Maximal	1. Studen t learn the concep ts of sets, relatio ns and functio ns in the real analysi s course. 2. To better unders tand the examp les of

Annexure II

Annexure II

				Suggested E-learning material: 1. Lecture Notes: https://ocw.mit.edu/courses/mathematics /18-703-modern-algebra-spring- 2013/related-resources/ 2. Video Lectures: https://www.extension.harvard.edu/open -learning-initiative/abstract-algebra	advan ced topics such as Euclid ean ring and polyno mial rings are remov ed from Unit V.
2.	MATH 206 Real Analysis	On completion of the course, students will be able to, - Think about basic proof techniques and fundamental definitions related to the real number system. - Understand the concept of real-valued functions, limit, continuity, and differentiability. - Find expansions of real functions in series forms. - Demonstrate some of the fundamental theorems of analysis. - Develop the capacity to solve real integral while understanding of integrable		Suggested E-learning material 1. Real Analysis;NPTEL: https://nptel.ac.in/courses/111106053/	No change in the syllabus

Annexure II

| | functions. | | |
| :--- | :--- | :--- | :--- | :--- |

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT (to be generated) Sampling Distributions	On completion of the course, students will be able to, - Understand the difference between probability distribution and sampling distribution. - Understand the sampling distribution of the mean of a sample from a Normal Population. - Understand the properties of the sampling distribution of the sample mean in general situations, using the Central Limit Theorem. - Understand the concepts of the t, F and x 2 distributions. - Apply t, F and x2 tests on real life data.	-	Unit 1Limit laws: convergence in probability, almost sure convergence, convergence in mean square and convergence in distribution and their inter relations, Chebyshev's inequality, W.L.L.N., S.L.L.N. and their applications, DeMoivre Laplace theorem, Central Limit Theorem (C.L.T.) for i.i.d. variates, applications of C.L.T. and Liapunov Theorem (without proof). Unit 2Basic concept of Sampling and sampling distribution, sampling distribution of sample mean for Binomial, Poisson and Normal populations, standard errors of sample mean, sample variance and sample proportion. Null and alternative hypotheses, level of significance, Type I and Type II errors, their probabilities and critical region. Concept of p values. Unit 3Large sample tests of significance: Sampling for attributes and variables, Tests of significance and confidence intervals for proportion, difference of	This paper is a replace ment of the paper STAT 203 Numeric al Analysis and Samplin g Distribu tion.

Annexure II

Annexure II

				Gupta.(1968). Fundamental of Statistics. (Vol. I). The World Press Pvt. Ltd. Kolkata. Reference Books: 1. Mood, A. M., Graybill, F. A., \&\&Boes, D. C. (1974). Introduction to Theory of Statistics. McGraw- Hill International. 2. Gupta, S. C., \& Kapoor, V. K. (2013). Fundamental of Mathematical Statistics (11 thed.). New Delhi: Sultan Chand Publication. 3. Gupta, S.P. (2014). Statistical Methods (44th. ed.). Sultan Chand ${ }^{\circ}$ Sons. 4. Fround, J. E. (2004). Modern Elementary Statistics (12th. ed.). New Jersey: Pearson Prentice Hall. Suggested E-learning material 1. Sampling distribution and central limit; Platform: Colorado State University https://www.stat.colostate.edu//~vollmer /stat307pdfs/L,N5 2017.pdf	
2.	generated) Sampling Distributions Lab	able to, - Effectively compute and understand testing of significance and confidence intervals in various contexts such as, for single proportion, difference of two proportions for large sample, for single mean, difference of two means for large sample.		List of Practicals 1. Testing of significance and confidence intervals for single proportion and difference of two proportions for large sample. 2. Testing of significance and confidence intervals for single mean and difference of two means for large sample. 3. Testing of significance and confidence for mean and difference of means	This paper is replace ment of the paper STAT 203L Nu

Annexure II

$\left.\begin{array}{|l|l|l|}\hline \text { • Proficiently test for goodness of fit, } \\ \text { independence of attributes. } \\ \text { • Understand how and when to use testing } \\ \text { for equality of two population variances }\end{array}\right\}$
(paired and unpaired cases) and for merical correlation coefficient
4. Testing of significance and confidence intervals for difference of two standard deviations
5. Testing if the population variance has a specific value and its confidence intervals.
6. Testing of goodness of fit.
7. Testing of independence of attributes.
8. Testing based on 2×2 contingency table without and with Yates' corrections.
9. Testing of significance and confidence intervals of an observed sample correlation coefficient.
10.Testing and confidence intervals of equality of two population variances
Note: (i) The above list is only for the guidance of the students.
(ii) Whenever it is feasible, students should be asked to collect the required data themselves to use it in their practical.
(iii) Where it is feasible practical practice should be done through spreadsheet, package or programming.

Annexure II

FOURTH SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 202 Inferential Statistics and Quality Control	On successful completion of the course, students will be able to, - Define estimator, its unbiasedness and efficiency. - Obtain maximum likelihood estimates of parameters of some simple distributions. - Perform testing of significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. - Understand the concept of non-parametric testing. - Apply the non-parametric methods to test for single population and two populations. - Understand the concept of statistical quality control. - Construct control charts for variables and attributes.	-	Suggested E-learning material: 1. Lecture notes and video on "Parameters, Statistics, and Sampling Error": http://www.statisticslectures.com/topics/ parametersstatistics/ 2. Video lectures on Introduction to Data Analytics: https://nptel.ac.in/courses/110106064/ 3. Lecture notes and video on "Quality Control in Textile Industry": https://nptel.ac.in/courses/116102019/	No change in the syllabus
2.	STAT 202L Inferential Statistics and Quality Control Lab	On successful completion of the course, students will be able to, - Test the significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. - Understand when and how to use various non-parametric tests such as Sign	-	-	No change

Annexure II

| | test, Run test, Median test etc. for single
 population and two populations.
 Plot various control charts for variables and
 attributes such as X, R, and s charts and
 determine whether the given procedure is
 in statistical control or out of statistical
 control. | | |
| :--- | :--- | :--- | :--- | :--- |

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 202 Introduction to Linear Algebra	After completing this course, students will be able to - Understand vector spaces over a field and subspaces and apply their properties. - Understand linear independence and dependence. - Find basis and dimension of a vector space, and understand change of basis. - Compute linear transformations, kernel and range, and inverse linear transformations, and find matrices of general linear transformations. - Find eigenvalues and eigenvectors of a matrix and of linear transformation. - Understand inner product on a vector space.	- Ex	Suggested E-learning Material: 1. Video Lectures:https://www.edx.org/learn/linea r-algebra 2. Video Lectures:https://ocw.mit.edu/courses/ma thematics $/ 18$ - 06 -linear-algebra-spring2010 / 3. Video Lectures:https:// onlinecourses.nptel.ac.in/ noc17 ma04/preview	No change in the syllabus

Annexure II

		- Understand the concept of orthogonality in inner product spaces. - Create orthogonal and orthonormal bases: Gram-Schmidt process.			
2.	MATH 301 Complex Analysis	On completion of the course, students will be able to, - Demonstrate understanding of the basic concepts and fundamental definitions underlying complex analysis. - Investigate complex functions, concept of limit, continuity and differentiability of complex functions. - Demonstrate capacity for mathematical reasoning through analyzing analytic functions. - Prove and explain concepts of series and integration complex functions. - Understand problem-solving using complex analysis techniques. - Enjoy the roll of complex functions today's mathematics and applied contexts.	-	Suggested E-learning material 1. Complex Analysis; NPTEL https://nptel.ac.in/courses/111103070/	No change in the syllabus Shifted from VI Semeste r to IV Semeste r.

Subject: Statistics

| S.N. | Course List | Learning Outcomes | Existing Syllabus | Suggested Syllabus |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | STAT 207
 Statistical
 Inference and | On completion of the course, students will be
 able to,
 \bullet Apply various basic parametric, non- | - | Suggested E-learning material
 1. Statistical Inference; Platform: |

Annexure II

	Quality Control	parametric and sequential estimation techniques and testing procedures to deal with real life problems. - Understand the concept of confidence interval in case of normal distribution, Neyman-Pearson fundamental lemma, UMP test. - Understand SPRT, OC and ASN function. - Understand the non-parametric techniques such as sign, median and run test.		MITOPENCOURSEWARE https://ocw.mit.edu/index.htm 2. Statistical Inference; Platform: Coursera https://www.coursera.org 3. Statistical Inference: Platform: e-PG Pathshalahttps://epop.inflibnet.ac.in	syllabus
2.	STAT 207L Statistical Inference and Quality Control Lab	On completion of the course, students will be able to, - Understand when and how to use various control charts such as X, R, and s charts. - Effectively understand and determine the AOQ and AOQL plots. - Understand when and how to use various non - parametric tests such as Sign test, Run test, Median test etc.		-	No change

Subject: Mathematics (Core Course)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 302 Introduction to Discrete Mathematics	On completion of the course, students will be able to, - Write an argument using logical notation and determine if the argument is or is not valid. - Demonstrate the ability to write and evaluate a proof or outline the basic structure of and give examples of each proof technique described. - Understand the basic principles of sets and operations in sets. - Prove basic set equalities. - Apply counting principles to determine probabilities. - Demonstrate an understanding of relations and functions and be able to determine their properties. - Determine when a function is $1-1$ and "onto". - Demonstrate different traversal methods for trees and graphs. - Model problems in Computer Science using graphs and trees.	Unit 1 Sets and Multisets, Relations and Functions, Equivalence relations, Partial order relations, Chains and Antichains. Permutations, Combinations, selection with \& without replacement, Permutation and Combinations of multisets. Discrete probability. The rules of sum and product. Unit 2 Basic concepts of graph theory, Multigraphs, weighted graphs, Paths \& Circuits. Matrix representation of graphs, Eulerian path and circuits, Hamiltonian path and circuits. Shortest path in weighted graph, Planar graphs. Unit 3 KK-emmected and Kedge comnected gmants. Chrmatic mber,] Edge coloring of graphs, Vizing's theorem. Trees and cut sets- Trees, Rooted tree, Path lengths in rooted trees, Spanning tree and cut set, Minimum spanning tree. Unit 4 Pigeon hole principle, Inclusion-exclusion principle. Discrete numeric functionsmanipulation of numeric functions. Asymptotic behavior of numeric functions. Generating functions and recurrence relations. Linear recurrence relation with constant coefficients and their solutions.	Unit 1 Sets and Multisets, Relations and Functions, Equivalence relations, Partial order relations, Chains and Antichains. Permutations, Combinations, selection with \& without replacement, Permutation and Combinations of multisets. Discrete probability. The rules of sum and product. Unit 2 Basic concepts of graph theory, Multigraphs, Paths \& Circuits, Eulerian path and circuits, Hamiltonian path and circuits, weighted graphs, Shortest path in weighted graph, Planar graphs, Vertex connectivity and edge connectivity of graphs. Unit 3 Vertex coloring and edge coloring of graphs, Vizing's theorem, Trees and cut sets- Trees, Rooted tree, Path lengths in rooted trees, Spanning tree and cut set, Minimum spanning tree, Matrix representation of graphs. Unit 4Pigeon hole principle, Inclusionexclusion principle. Discrete numeric	Conventi onal terminol ogies necessary for the concerne d unitare included.

Annexure II

Annexure II

SIXTH SEMESTER

Subject: Mathematics (Core Course)

Annexure II

Annexure II

Discipline Electives

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 203 Introduction to Mechanics	On completion of the course, students will be able to, - Explain the geometry of the motion of particle in plane curve, i.e. position, velocity, and acceleration, and how those quantities are related through calculus. - Learn Newton's laws of motion and examines their application to a wide variety of problems. - Learn the basic concept of composition and resolution of forces and friction. - Understand and visualize the real physical problem in terms of Mathematics. - Learn one-dimensional (SHM), multidimensional (Projectile motion), and constrained motion, motion of particle with or without connecting with string.	-	Suggested E-learning material: 1. Engineering Mechanics: Statics \& Dynamics; Platform: cosmolearning, https://cosmolearning.org/courses/engin eering-mechanics-statics-dynamics/ 2. Engineering Mechanics: Statics \& Dynamics; Platform: nptel https://nptel.ac.in/courses/112106180/ 3. Engineering Dynamics; Platform: MIT Open courseware, https://ocw.mit.edu/courses/mechanicalengineering / 2-003sc-engineering-dynamics-fall-2011/	No change in the syllabus
2.	MATH 304 Linear Programming \& Its Applications	On completion of the course, students will be able to, - Formulate the LPP. - Conceptualize the feasible region.	-	Suggested E-learning material 1.Linear Programming, a CPLEX tutorialhttps://ibmdecisionoptimization.gith ub.io/tutorials/html/Linear Programming.	No change in the syllabus

Annexure II

		- Solve the LPP with two variables using graphical method. - Solve the L.PP using simplex method. - Formulate the dual problem from primal. - Solve Transportation and Assignment problems - Solve the problems of competitive situations between two competitors.	2.Linear Programming Tutorial \| Sophia Learning https://www.sophia.org/tutorials/linear- programming--5 3.Lectures - nptel: https://nptel.ac.in/courses/111102012/	
3.	MATH (code to be generated) Vector Calculus	On completion of the course, students will be able to, - Manipulate vectors to perform geometrical calculations in three dimensions. - Use Green's theorem and the Divergence theorem to compute integrals. Explain how Green's Theorem is a generalization of the Fundamental Theorem of Calculus. - Communicate Calculus and other mathematical ideas effectively in speech and in writing. - Recognize when it is appropriate to use a scalar and when to use a vector in problem solving.	Unit I Definition and examples of vector and scalar; Basic operations: addition, subtraction, multiplication and scalar product of vectors, geometric representation of vectors, magnitude and direction, dot product and cross product. Unit II Scalar and vector product of three vectors, product of four vectors, vector-valued function; Scalar-valued function, limit, Continuity, differentiability and Integration of vector-valued functions of one variable. Unit III Partial derivatives: chain rule, exact differentials, Del Applied to scalar valued Function (gradient), Del applied to vector point function (Divergence, Curl), Physical interpretation of divergence, Physical interpretation of curl, Trrotational and Solenoidal vector-valued function. Unit IV Directional derivative tangent planes and	New Course

Annexure II

				normal lines, Tangential line integral, Circulation, Work, Independence of path, Conservative fields, Normal Surface integral, Flux across a surface. Unit V Vector fields, characterization of Irrotational and Solenoidal vector fields, Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem, Simple applications. TEXT/ REFERENCE BOOKS 1. Thomas, G.B., Weir, M.D., \&Hass, J. (2011). Thomas' Calculus($\mathbf{1 1}^{\text {th }}$ edition). Pearson Education. 2. Grewal ,B.S., \& Grewal, J.S. (2005).Higher Engineering Mathematics(37 hedition).New Delhi: Khanna Publishers. 3. Davis, H. F., \&Snider, A. D. (1998).Introduction to Vector Analysis(7thedition). William C Brown Publication. 4. Matthews, P. C. (1998).Vector Calculus Springer-Verlag. Suggested E-learning material https://www.brightstorm.com/tag/scalar/	
4.	MATH (code to be generated) Number Theory	On completion of the course, students will be able to, - Understand the concept of divisibility and able to find greatest common divisor of large integers using Euclidean algorithm. - Appreciate the importance of prime		Unit I Integers, well-ordering principle, induction, Fibonacci numbers, divisibility, Greatest Common Divisor, least common multiple, Euclidean algorithm, prime numbers, distribution of primes, fundamental theorem of arithmetic.	New Course

Annexure II

Annexure II

| | | | 2. Lecture Notes: MIT OPFN COURSE WARE:
 https://ocw.mit.edu/courses/mathematic |
| :--- | :--- | :--- | :--- | :--- |
| $\frac{s / 18-781-\text { theory-of-numbers-spring- }}{}$ | | | |

Subject: Statistics/Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 302 Sampling Techniques and Design of Experiments	On completion of the course, students will be able to, - Understand the methods for designing and selecting a sample from a population. - Estimate finite population parameters e.g. totals and means, for some standard sampling schemes. - Analyze the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. - Describe how the analysis of the data from the experiment should be carried out. - Develop understanding of the principles and methods used to design survey sampling schemes focusing on methodology for survey-based estimation for population totals and related quantities for some standard sample designs and statistical sampling techniques that are	-	Suggested E-learning material 1. Sampling Theory, NPTEL. https://nptel.ac.in/courses/111104073/ 2. Biostatistics and Design of Experiments, NPTEL, https://nptel.ac.in/courses/102106051/ 3. Design of Experiments and sample Survey. ePATHSHALA. https://epgp.inflibnet.ac.in/ahl.php?csrno= 34	No change in the syllabus

Annexure II

		used to make inferences about a population. - Understand why the sampling design is essential for data collection and to determine how we choose to graph the data, estimate certain parameters, and quantify the uncertainty in these estimates with a margin of error.			
2.	STAT 302L Sampling Techniques and Design of Experiments Lab	On successful completion of the course, students will be able to, - Comprehend the basic principles underlying survey design and estimation. - Describe how to draw a random sample by using with and with replacement sampling technique in excel. - Calculate the sampling mean and sampling variance in case of SRSWR and SRSWOR. - Draw a random sample from stratified and systematic sampling and also to compare the efficiencies of these sampling techniques with respect to each other. - Analyze the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. - Compare several means by using the technique of one way and twoway ANOVA.	$=$	-	No change

Annexure II

		- Compare the three designs named CRD, RBD and ISD in terms of their efficiencies.			
3.	STAT 301 Applied Statistics	On completion of the course, students will be able to, - Understand the concept of time series data and its application in various fields. - Identify principle sources of demographic data and assess their strengths and weaknesses.	-	-	No change
4.	STAT 301L Applied Statistics Lab	On completion of the course, students will be able to, - Measure trend and seasonal fluctuations, based on real life data. - Compute and interpret different death and birth rates such as $C D R, C B R$, etc. - Compute and differentiate between different index numbers such as Laspeyre's index, Pasche's index and Fisher's index. - Compute and understand different scores, reliability of test scores and IQ.	-	-	No change
5.	STAT (code to be generated) Financial Statistics	On completion of the course, the students will be able to, - Understand acquisition of financial data - Describe financial data using distributions - Find relation between two or more financial series	-	UNIT I Essential practical familiarization with financial data. Typical challenges with real financial data. Basics on data acquisition, manipulation, filtering,graphicalrepresentation and plotting. UNIT II Statistical distribution of returns. Moments of	

Annexure II

| - Understand the concept of stochastic |
| :--- | :--- |
| process |
| Apply basic stochastic models in |
| financial data. |$|$

the distribution. Non-Normal distributions and fat-tails. Large fluctuations and tail risk. Stable distributions. Generalized extreme value distribution. Estimation methods to characterize the tails of the distributions. Calibration and validation. Applications to measures of risk.

UNIT III

Measures of dependency: linear and nonlinear correlations. Lagged correlations and causality. Information theoretic perspective: mutual information, transfer entrophy. Spurious correlations. Correlation filtering through networks. Calibration, validation and application issues.

UNIT IV

Stochastic Process: Concept, types, properties. Discrete Stochastic Processes, Binomial processes, Gaussian Process. Random walk, General random walks, Geometric random walks, Binomial models with state dependent increments.

UNIT V

Stochastic Models in Finance: Discrete time process- binomial model with period one. Stochastic Models in Finance: Continuous time process- geometric Brownian motion.

Annexure II

				Suggested Books: 1. Franke, J., Hardle, W.K. And Hafner, C.M. (2011): Statistics of Financial Markets: An Introduction, $3^{\text {rd }}$ Edition, Springer Publications. 2. Stanley L. S. (2012): A Course on Statistics for Finance, Chapman and Hall/CRC. 3. Casella G. \& Berger R. L. (2002). Statistical Inference, Brooks/Coles. 4. Bouchaud, J.- P. \& Potters, M. (2003). Theory of Financial Risk and Derivative Pricing: from Statistical Physics to Risk Management, Cambridge University Press. 5. Lehmann, E. L. \& Romano, J. P. (2006). Testing Statistical Hypotheses, Springer, 2006. Reference Books 1. Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer. 2. Gumbel, E. J. (2013). Statistics of Extremes, Echo Point Books \& Media.	
6.	STAT (code to be gencrated) Financial Statistics Lab	On completion of this course, the students will be able to, - Understand the behavior of financial data through graphs - Describe the nature of financial data - Calculate risk through financial data		(Using spreadsheet/R) 1. Graphical representation of financial data 2. Fit non-normal distributions to financial data 3. Obtain characteristics of the distribution	

Annexure II

		- Find relationship between financial series - Model financial data using some simple stochastic models.		4. Find measures of risk 5. Measure relationships between financial series. 6. Apply stochastic processes for a financial data
7.	STAT (code to be generated) Health Statistics And Population Dynamics	On completion of this course, the students will be able to, - Understand different measures related to health statistic, - Able to calculate morbidity measures, - Identify principle sources of demographic data and assess their strengths and weaknesses. - Discuss the demographic significance of age and sex structures and the implications of variations in age \& sex structure. - Construct and interpret life tables. - Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. - Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. - Estimate and project the population by different methods.		Unit 1 Health statistics: Introduction, utilization of basic data, sources of health statistics, problems in the collection of sickness data, measurement of sickness, hospital statistics and the international classification of diseases, different measures: incidence rates, prevalence rate, attack rate, case fatality rate. Measures of accuracy or validity, sensitivity index, specificity index. Unit 2 Sources of demographic data in India: census, vital events, registration, survey, extent of under registration, Population pyramids and its use. Population growth rates: arithmetic, geometric and exponential growth rates, population estimation and projection. Unit 3 Mortality and its measures: Crude, direct and indirect standardization of death rates, age specific death rate, infant mortality rate, neonatal mortality rate, definitions and their evaluation. Fertility and its measures: CBR, $A S B R$, measures of reproduction: GFR, TFR,GRR, NRR, cohort fertility analysis.

			Unit 4 Measures of migration crude, specific and standardized rates survival ratio and national growth rate method. Urbanization - Growth and distribution of rural - urban population in developed and developing countries. Unit 5 Life tables and their application: construction of complete and abridged life tables and their interrelationship, force of mortality, evaluation of probabilities of survival and death from life table. Text Books 1. Rao, P.S.S.Sundar, \& Richard, J. (2004). An introduction to Biostatistics (A manual for students in health sciences), Prentice Hall of India, Pvt. Ltd. 2. Misra, B.D. (2004). An introduction to the study of population, South Asian Publishers Pvt. Ltd. 3. Ramkumar, R. (2006). Technical Demography. New Age International. 4. Pathak, K.B.\& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House. Reference Books 1. Keyfitz.N. (2013). Applied Mathematical

Annexure II

				Demography, New York: John Wiley. 2. Bhinde, A. A. \& Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E- Learning Material 1. Demographic data; Platform: National Family Health Survey, India http://rchiips.org 2. Population Studies; Platform; e-PG Pathshala https://epgp.inflibnet.ac.in 3. Demography; Platform: University Library - The University of Adelaide https://www.adelaide.edu.au/library/ 4. Demography; Platform: MITOPENCOURSEWARE https:/ / ocw.mit.edu/index.htm	
8	STAT (code to be generated) Health Statistics And Population Dynamics Lab	On completion of this course, the students will be able to, - Calculate various measures of morbidity and their accuracy - Construct population pyramid and identify its features - Estimate population growth rates and project for future - Calculate measures of mortality and fertility for a given population		(Using spreadsheet/R) 1. Measures of morbidity 2. Measures of accuracy or validity, sensitivity index, specificity index 3. Construction of population pyramid 4. Population growth rate 5. Measures based on mortality	

Annexure II

| | Calculate simple measures of life table
 and analyze it. | 6. Measures based based on fertility
 7. Construction of Life table |
| :--- | :--- | :--- | :--- | :--- | :--- |

Name of the Programme: M.Sc. (Mathematical Science)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. Mathematical Sciencesis the most important discipline in today's world which open doors in engineering, business, finance, computing, data science, health sciences and environmental sciences. The educational objective of the M.Sc. Mathematical Sciencesprogramme is to provide high quality education in mathematics, statistics, operations research and theoretical computer science in order to prepare students for professional careers in mathematical sciences and related fields.

The aim of the programme is to equip students with mathematical and statistical knowledge to define mathematical concepts, calculate quantities, estimate solutions, design data collection, analyze data appropriately and interpret to draw conclusions from these data.It emphasizes on both theory and applications of mathematics and statistics and is structured to provide knowledge and skills in depth necessary for the employability of students in industry, other organizations, as well as in academics.

The main objectives of the M.Sc. (Mathematical Sciences) programme are:

- To develop an understanding of the mathematics, statistics, operations research and theoretical computer science as a unifying language of science.
- To use mathematical and statistical techniques to solve well-defined real-world problems and understand the limitations.
- To provide exposure to various mathematical and statistical software packages, including analysis and programming.
- To develop communication and technical writing skills which enables them to present mathematical and statistical ideas clearly in oral and written forms using appropriate technical terms and deliver data analysis results.
- To nurture skills in effective multidisciplinary teamwork and adherence to principles of professional accountability and ethics.

Programme Outcomes:

PO1: Knowledge Domain:Demonstrate an understanding of the basic concepts in mathematics, statistics, operations research and theoretical computer science and their importance in the solution of some real-world problems.

PO2: Problem Analysis:Analyze and solve the well-defined problems in mathematics statistics, operations research and theoretical computer science. Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, while solving problems and making decision. Find, analyze, evaluate and apply information systematically and shall make defensible decisions.

PO3:Presentation and Interpretation of Data: Demonstrate the ability to manipulate and visualize data and to compute standard statistical summaries.

PO4: Modern tool usage: Learn, select, and apply appropriate methods and procedures, resources, and computing tools such as Excel, MATLAB, MATHEMATICA, SPSS, R etc. with an understanding of the limitations.

PO5: Technical Skills: Understand tools of modeling, simulation, and data analysis to bear on real-world problems, producing solutions with the power to predict and explain complex phenomena.

PO6: Ethics:Analyze relevant academic, professional and research ethical problems and commit to professional ethics and responsibilities with applicable norms of the data analysis and research practices.

PO7: Communication:Effectively communicate about their field of expertise on their activities, with their peer and society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations.

PO8: Project Management: Apply knowledge and understanding of principles of mathematics and statistics effectively as an individual, and as a member or leader in diverse teams to manage projects in multidisciplinary environment.

PO9: Research Proposal:Define, design and deliver a significant piece of research work that is clear and concise. Demonstrate the necessary skills and knowledge of deeper understanding of their chosen research area. Understand the philosophy of research in mathematical sciences and appreciate the value of its development.

PO10: Life- long learning:Demonstrate the ability to read and learn mathematical and statistical tools on their own that encourage independent exploration in the specific area of mathematics, statistics, operations research and theoretical computer science. Continue to acquire mathematical and statistical knowledge and skills appropriate to professional activities in the context of technological change.

Programme Scheme: (With specialization in pure mathematics)

Semester I

Existing										
Course Code	Course Name	L	T	P	C					
MATH 401	Algebra-I	6	0	0	6					
MATH 403	Analysis-I	6	0	0	6					
MATH 405	Discrete Mathematics	6	0	0	6					
STAT 402	Probability and Statistics	4	0	0	4					
CS 415	Computer Programming	4	0	0	4					
STAT 402L	Probability and Statistics Lab	0	0	4	2					
CS 415L	Computer Programming Lab	0	0	4	2					
Total:							$\mathbf{2 6}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3 0}$

Proposed					
Course Code	CourseName	L	T	P	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
$\begin{aligned} & \text { STAT } \\ & 402 \end{aligned}$	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
$\begin{aligned} & \hline \mathrm{CS} \\ & 415 \mathrm{~L} \end{aligned}$	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing					
Course Code	Course Name	L	T	\mathbf{P}	C
MATH 402	Algebra-II	6	0	0	6
MATH 404	Analysis-II	6	0	0	6
MATH 410	Ordinary Equations	Differential	6	0	0
MATH 411	Topology	6	0	0	6
MATH 409	Numerical Analysis	4	0	0	4
MATH 409 L	Numerical Analysis Lab	0	0	4	2
	Total:	28	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3 0}$

Proposed					
Course Code	CourseName	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
	Topology	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
MATH 409 L	Numerical Analysis Lab	0	0	4	2
	Computational Lab-II	0	0	4	2
		Total:	$\mathbf{2 2}$	$\mathbf{0}$	$\mathbf{8}$

Semester III

Existing					
Course Code	Course Name	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
MATH 502	Advanced Calculus	6	0	0	6
MATH 508	Functional Analysis	6	0	0	6
MATH 511	Integral Transform and Special Functions	6	0	0	6
MATH 515	Mathematical Programming	6	0	0	6
	Elective-I	4	0	0	4
MATH $528 P$	Term Paper	0	0	4	2
	Total:	$\mathbf{2 8}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3 0}$

Proposed					
Course Code	CourseName	L	T	\mathbf{P}	C
	Advanced Calculus	4	0	0	4
	Functional Analysis	4	0	0	4
	Operations Research	4	0	0	4
	Discipline Elective-I	4	0	0	4
	DisciplineElective-II	4	0	0	4
	Reading Elective-I	0	0	0	2
MATH $528 P$	Term Paper	0	0	8	4
		20	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2 6}$

Semester IV

Existing					
Course Code	Course Name	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
MATH 518	Operations Research	6	0	0	6
MATH 505	Differential Geometry	6	0	0	6
MATH 519	Partial differential Equations	6	0	0	6
	Elective-II	4	0	0	4
	Elective-III	4	0	0	4
MATH $523 P$	Research Paper	0	0	8	4
	Total:		$\mathbf{2 6}$	$\mathbf{0}$	$\mathbf{8}$

Proposed					
Course Code	CourseName	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
	Differential Geometry	4	0	0	4
	Partial Equations	Differential	4	0	0
	DisciplineElective-III	4	0	0	4
	Open Elective	4	0	0	4
	Reading Elective-II	0	0	0	2
	Dissertation	0	0	16	8
		Total:	$\mathbf{1 6}$	$\mathbf{0}$	$\mathbf{1 6}$

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Discipline Electives

CourseCode	Course	L	T	P	C
CS 315	Theory of Computation	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 501	Advanced Analysis (Analysis on abstract spaces)	4	0	0	4
MATH 503	Advanced Functional Analysis	4	0	0	4
MATH 504	Analytic and Algebraic Number Theory	4	0	0	4
MATH 510	Integral equations and Calculus of Variations	4	0	0	4
MATH 517	Number Theory and Cryptography	4	0	0	4
MATH 527	Tensor Analysis and Geometry of Manifolds	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
MATH 530	Viscous Fluid Dynamics	4	0	0	4
	Fuzzy Logic and Belief Theory	4	0	0	4
	Inventory Theory	4	0	0	4
	Queuing Theory	4	0	0	4
	Integral Transforms and Special Functions	4	0	0	4
	Measure Theory and Advanced Probability	4	0	0	4
	Time series and Stochastic Process	4	0	0	4
	Coding Theory	4	0	0	4
	Fixed Point Theory	4	0	0	4
	Introduction to Dynamical System	4	0	0	4
	Bio Mathematics	4	0	0	4
	Algebraic Topology	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Fields and Galois Theory	4	0	0	4
		4	4	4	4

List of Reading Electives

CourseCode	Course	L	T	P	C
	Network Biology	0	0	0	2
	Fractional Calculus	0	0	0	2
	Quantum Graphs	0	0	0	2
	Point set topology	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in Statistics)

Semester I

Existing										
Course Code	Course Name	L	T	P	C					
MATH 401	Algebra-I	6	0	0	6					
MATH 403	Analysis-I	6	0	0	6					
MATH 405	Discrete Mathematics	6	0	0	6					
STAT 402	Probability and Statistics	4	0	0	4					
CS 415	Computer Programming	4	0	0	4					
STAT 402L	Probability and Statistics Lab	0	0	4	2					
CS 415L	Computer Programming Lab	0	0	4	2					
Total:							26	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3 0}$

Proposed					
Course Code	CourseName	L	T	P	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
$\begin{aligned} & \hline \text { STAT } \\ & 402 \end{aligned}$	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
$\begin{aligned} & \hline \mathrm{CS} \\ & 415 \mathrm{~L} \end{aligned}$	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing					
Course Code	Course Name	L	T	P	C
MATH 402	Algebra-II	6	0	0	6
STAT 403	Statistical Inference	6	0	0	6
STAT 401	Measure Theory Advanced Probability	6	0	0	6
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:		$\mathbf{2 6}$	$\mathbf{0}$	$\mathbf{8}$
$\mathbf{3 0}$					

Proposed					
Course Code	CourseName	L	T	P	C
	Analysis-II	5	0	0	5
	Statistical Inference	5	0	0	5
	Measure Theory \& Advanced Probability	4	0	0	4
$\begin{aligned} & \text { MATH } \\ & 409 \end{aligned}$	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
$\begin{array}{\|l\|} \hline \text { MATH } \\ \text { 409L } \end{array}$	Numerical Analysis Lab	0	0	4	2
$\begin{array}{\|l\|} \hline \text { CS } \\ 417 \mathrm{~L} \end{array}$	$\begin{array}{ll} \hline \text { Database } & \text { Management } \\ \text { Systems Lab } \end{array}$	0	0	4	2
	Total:	22	0	8	26

Semester III

Existing						
Course Code	Course Name	L	T	\mathbf{P}	\mathbf{C}	
MATH 515	Mathematical Programming	6	0	0	6	
STAT 517	Time Series and Stochastic Process	6	0	0	6	
STAT 507	Design of Experiments and Linear Models	4	0	0	4	
STAT 506	Demography Advanced Sampling	4	0	0	4	
STAT 507L	Design of Experiments and Linear ModelsLab	0	0	4	2	
STAT 506L	Demography Advanced Sampling Lab	0	0	4	2	
	Elective-I Total:	$\mathbf{2 4}$	$\mathbf{0}$	$\mathbf{1 2}$	$\mathbf{3 0}$	
STAT 514S	Seminar	0	0	4		
		0	0	4	2	

Proposed					
Course Code	CourseName	L	T	\mathbf{P}	C
	Survey Sampling	4	0	0	4
	Time Series and Stochastic Process	4	0	0	4
STAT 507	Design of Experiments and Linear Models	4	0	0	4
	Computational Lab-III	0	0	4	2
	DisciplineElective-I	4	0	0	4
	DisciplineElective-II	4	0	0	4
	Reading Elective-I	0	0	0	2
	Seminar	0	0	4	2
		Total:	20	$\mathbf{0}$	$\mathbf{8}$

Semester IV

Existing					
Course Code	Course Name	L	T	\mathbf{P}	C
MATH 518	Operations Research	6	0	0	6
STAT 501	Advanced Inference	6	0	0	6
STAT 502	Bayesian \& Multivariate Analysis	4	0	0	4
STAT 502 L	Bayesian \& Multivariate Analysis Lab	0	0	4	2
	Elective-II	4	0	0	4
	Elective-III	4	0	0	4
STAT 512P	Project	0	0	8	4
	Total:		$\mathbf{2 4}$	$\mathbf{0}$	$\mathbf{8}$

Proposed					
Course Code	CourseName	L	T	\mathbf{P}	C
	Advanced Inference	4	0	0	4
STAT 502	Bayesian and Multivariate Analysis	4	0	0	4
STAT 502 L	Bayesian \& Multivariate Analysis Lab	0	0	4	2
	DisciplineElective-III	4	0	0	4
	Open Elective	4	0	0	4
	Reading Elective-I	0	0	0	2
	Project	0	0	12	6
		Total:	$\mathbf{1 6}$	$\mathbf{0}$	$\mathbf{1 6}$
$\mathbf{2 6}$					

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of DisciplineElectives

Course Code	Course Name	L	T	P	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 516	Network Analysis and Goal Programming	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 504	Clinical Trials	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 508	Distribution Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 511	Non-Parametric Inference and Sequential Analysis	4	0	0	4
STAT 513	Regression Analysis	4	0	0	4
STAT 515	Statistical Computing	4	0	0	4
	Queuing Theory	4	0	0	4
	Stochastic Models	4	0	0	4
	Demography	4	0	0	4
	Actuarial Statistics	4	0	0	4
	Survival Analysis	4	0	0	4
	Reliability and Renewal Theory	4	0	0	4
	Operations Research	4	0	0	4
	Inventory Theory	4	0	0	4

List of ReadingElectives

Course Code	Course Name	L	T	\mathbf{P}	C
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2
	Official Statistics	0	0	0	2
	Robust Estimation in Non-Linear Models	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in operations research)

Semester I

Existing					
Course Code	Course Name	L	T	P	C
MATH 401	Algebra-I	6	0	0	6
$\begin{aligned} & \text { MATH } \\ & 403 \\ & \hline \end{aligned}$	Analysis-I	6	0	0	6
$\begin{aligned} & \text { MATH } \\ & 405 \end{aligned}$	Discrete Mathematics	6	0	0	6
$\begin{aligned} & \text { STAT } \\ & 402 \end{aligned}$	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
$\begin{aligned} & \text { STAT } \\ & 402 \mathrm{~L} \end{aligned}$	Probability and Statistics Lab	0	0	4	2
$\begin{aligned} & \text { CS } \\ & 415 \mathrm{~L} \end{aligned}$	Computer Programming Lab	0	0	4	2
	Total:	26	0	8	30

Proposed					
Course Code	Course Name	L	T	\mathbf{P}	\mathbf{C}
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
CS $415 L$	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2

Semester II

Existing					
Course Code	Course Name	L	T	P	C
MATH 402	Algebra-II	6	0	0	6
MATH 404	Analysis-II	6	0	0	6
CS 209	Data Structures	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	$\mathbf{2 4}$	$\mathbf{0}$	$\mathbf{1 2}$	$\mathbf{3 0}$

Proposed					
Course Code	CourseName	L	T	P	C
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
$\begin{aligned} & \text { MATH } \\ & 409 \end{aligned}$	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
$\begin{aligned} & \hline \text { MATH } \\ & \text { 409L } \end{aligned}$	Numerical Analysis Lab	0	0	4	2
$\begin{aligned} & \hline \mathrm{CS} \\ & 417 \mathrm{~L} \end{aligned}$	Database Management Systems Lab	0	0	4	2
	Total:	22	0	8	26

Semester III

Existing					
Course Code	Course Name	L	T	\mathbf{P}	C
MATH 509	Fuzzy logic and Belief Theory	6	0	0	6
MATH 522	Queuing Theory	6	0	0	6
STAT 507	Design of Experiments and Linear Models	4	0	0	4
MATH 515	Mathematical Programming	6	0	0	6
STAT $507 L$	Design of Experiments andLinear Models Lab	0	0	4	2
	Elective-I	4	0	0	4
MATH $525 S$	Seminar	0	0	4	2
	Total:	26	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3 0}$

Proposed			L	T	\mathbf{P}
Course Code	Course				
	Queuing Theory	4	0	0	4
CS 209	Data Structures	4	0	0	4
	Inventory Theory	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
	DisciplineElective-I	4	0	0	4
	DisciplineElective-II	4	0	0	4
	Reading Elective-I	0	0	0	2
	Seminar	0	0	4	2
		20	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2 6}$

Semester IV

Existing					
Course Code	Course Name	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
STAT 516	Theory of Reliability	6	0	0	6
MATH 512	Inventory Theory	6	0	0	6
MATH 516	 Goal Programming	4	0	0	4
MATH 516L	 Goal ProgrammingLab	0	0	4	2
	Elective-II	4	0	0	4
	Elective-III	4	0	0	4
MATH 520P	Project	0	0	8	4
		$\mathbf{2 4}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3 0}$

Proposed					
Course Code	Course	L	T	P	C
	Reliability and Renewal Theory	4	0	0	4
MATH 516	Network Analysis \& Goal Programming	4	0	0	4
MATH 516 L	Network Analysis \& Goal Programming Lab	0	0	4	2
	DisciplineElective-III	4	0	0	4
	Open Elective	4	0	0	4
	Reading Elective-II	0	0	0	2
	Project	0	0	12	6
		$\mathbf{1 6}$	$\mathbf{0}$	$\mathbf{1 6}$	$\mathbf{2 6}$

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Electives

Course Code	Course Name	L	T	P	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 507	Financial Mathematics	4	0	0	4
MATH 513	Marketing Management	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 517	Time Series and Stochastic Process	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Stochastic Models	4	0	0	4
	Fuzzy logic and Belief Theory	4	0	0	4
	Partial Differential Equations	4	0	0	4

List of Reading Electives

CourseCode	Course Name	L	T	P	C
	Selected Applications of Stochastic Models	0	0	0	2
	Operational Research Applications	0	0	0	2
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2

Programme Scheme: (With specialization in theoretical computer science)
Semester I

Existing					
Course Code	Course Name	L	T	P	C
MATH 401	Algebra-I	6	0	0	6
MATH 403	Analysis-I	6	0	0	6
MATH 405	Discrete Mathematics	6	0	0	6
STAT 402	Probability Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
STAT 402L	Probability Statistics Lab	0	0	4	2
CS 415L	Computer Programming Lab	0	0	4	2
	Total:				$\mathbf{2 6}$
$\mathbf{0}$	$\mathbf{8}$	$\mathbf{3 0}$			

Proposed					
Course Code	Course	L	T	P	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
$\begin{aligned} & \hline \text { STAT } \\ & 402 \end{aligned}$	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
$\begin{aligned} & \hline \mathrm{CS} \\ & 415 \mathrm{~L} \end{aligned}$	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing					
Course Code	Course Name	L	T	\mathbf{P}	C
MATH 402	Algebra-II	6	0	0	6
MATH 404	Analysis-II	6	0	0	6
CS 209	Data Structures	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:		$\mathbf{2 4}$	$\mathbf{0}$	$\mathbf{1 2}$
$\mathbf{3 0}$					

Proposed					
Course Code	Course	L	T	P	C
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
$\begin{aligned} & \text { MATH } \\ & 409 \end{aligned}$	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
$\begin{aligned} & \hline \text { MATH } \\ & 409 \mathrm{~L} \\ & \hline \end{aligned}$	Numerical Analysis Lab	0	0	4	2
$\begin{aligned} & \hline \text { CS } \\ & 417 \mathrm{~L} \\ & \hline \end{aligned}$	Database Management Systems Lab	0	0	4	2
	Total:	22	0	8	26

Semester III

Existing					
Course Code	Course Name	L	T	\mathbf{P}	C
MATH 515	Mathematical Programming	6	0	0	6
CS 315	Theory of Computation	4	0	0	4
CS 213	Design and Analysis of Algorithms	4	0	0	4
CS 308	Operating Systems	4	0	0	4
CS 213L	Design and Analysis of Algorithms Lab	0	0	4	2
CS 308L	Operating Systems Lab	0	0	2	1
	Elective-I	4	0	0	4
MATH 526S	Seminar	0	0	4	2
	Total:		$\mathbf{2 2}$	$\mathbf{0}$	$\mathbf{1 0}$

Proposed					
Course Code	Course	\mathbf{L}	T	\mathbf{P}	\mathbf{C}
CS 315	Theory of Computation	4	0	0	4
CS 209	Data Structures	4	0	0	4
CS 308	Operating Systems	4	0	0	4
CS 528	Modeling Simulation	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
	DisciplineElective-I	4	0	0	4
	Reading Elective-I	0	0	0	2
MATH 526S	Seminar	0	0	4	2
		$\mathbf{2 0}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2 6}$

Semester IV

Existing					
Course Code	Course Name and	4	0	0	4
CS 313	Software Engineering	4	0	0	4
CS 528	Modeling Simulation	\mathbf{P}	C		
MATH 518	Operations Research	6	0	0	6
	Elective-II	4	0	0	4
	Elective-III	4	0	0	4
MATH 521P	Project	0	0	8	4
		$\mathbf{2 2}$	$\mathbf{0}$	$\mathbf{8}$	$\mathbf{2 6}$

Proposed					
Course Code	Course	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
CS 315	Software Engineering	4	0	0	4
CS 213	Design and Analysis of Algorithms	4	0	0	4
CS 213 L	Design and Analysis of Algorithms Lab	0	0	4	2
	DisciplineElective-II	4	0	0	4
	Open Elective	4	0	0	4
	Reading Elective-II	0	0	0	2
	Project	0	0	12	6
		$\mathbf{1 6}$	$\mathbf{0}$	$\mathbf{1 6}$	$\mathbf{2 6}$

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Electives

CourseCode	Course Name	L	T	P	C

CS 419	Distributed Computing	4	0	0	4
CS 427	Parallel Computing	4	0	0	4
CS 431	Real Time Systems	4	0	0	4
CS 433	Soft Computing	4	0	0	4
CS 436	Web Development and .Net Framework	4	0	0	4
CS 436L	Web Development and .Net Framework Lab	4	0	0	4
CS 502	Advanced Communications and Networks	4	0	0	4
CS 502L	Advanced Communications and Networks Lab	0	0	4	2
CS 507	Artificial Intelligence	4	0	0	4
CS 510	Client-Server Computing and Applications	4	0	0	4
CS 517	Data Communication and Networking	4	0	0	4
CS 517L	Data Communication and Networking Lab	0	0	4	2
CS 527	Mobile Computing	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 517	Time series and Stochastic Process	4	0	0	4

List of Reading Electives

CourseCode	Course Name	L	T	\mathbf{P}	C
	Operational Research Applications	0	0	0	2
	Categorical Data Analysis	0	0	0	2
	Network Biology	0	0	0	2
	Fractional Calculus	0	0	0	2
	Quantum Graphs	0	0	0	2

First Semester

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (To be generated) Algebra-I	Oncompletion of the course, students will be able to - Analyze finite and infinite dimensional vector spaces and subspaces over a field and their properties, including the basis structure of vector spaces. - Understand the properties of linear transformations, matrices of linear transformations and change of basis, including kernel, range and isomorphism. - Compute inner products and determine orthogonality on vector spaces, including Gram-Schmidt orthogonalization. - Identify operators in inner product spaces. - Identify bilinear forms, canonical forms for symmetric and skewsymmetric forms.		Section A Vector spaces, subspaces, linear span, bases, quotient spaces, coordinate vectors, change of basis, linear transformations, isomorphism, range and kernel of a linear transformation, matrix of a linear transformation, algebra of $\mathrm{L}(\mathrm{U}, \mathrm{V})$, invertible transformations and matrices, Linear functionals and dual spaces. Section B Linear operator, annihilating polynomials, invariant subspaces of linear operator, direct sum decomposition, cyclic operator, maximal vector, indecomposable linear operators, invariant factors, canonical forms, operators on real and complex vector spaces. Section C Inner Product Spaces, Orthonormal Sets, Gram-Schmidt Process, Orthogonal Complements and Projections, Adjoints, self-adjoints and normal operators, unitary and orthogonal operators, Forms on inner product spaces, Bilinear forms, symmetric bilinear forms and quadratic form. Suggested Books: 1. Hoffman, K., \& Kunze, R. A. (2010). Linear algebra. New Delhi: PHI Learning. 2. Cooperstein, B. N. (2015). Advanced linear algebra. (Advanced Linear Algebra, Second Edition.) Boca	Shaded part in Black from section A and B is shifted in Algebra II and from section C is shifted in Fields and Galois Theory. Change in Credit

			Text Book: 1. Dummit, D. S. and Foote, R. M.: Abstract Algebra, $3^{\text {rd }}$ Ed., Wiley, 2004. Reference Books: 1. Herstein, I. N.: Topics in Algebra, 2nd Ed., Wiley Eastern, New Delhi, 1991. 2. Gallian, J. A.: Contemporary Abstract Algebra, $8^{\text {th }}$ Ed. Cengage Learning, 2006. 3. Jacobson, N.: Lectures in Abstract Algebra, D. Van Nostrand, New York, 1964. 4. Jacobson, N.: Basic Algebra-I, Hindustan Publishing, Delhi, 1984. 5. Bhattacharya; P. B. Jain S.K. and Nagpal S.R. Basic Abstract Algebra. 2nd Ed. Cambridge University Prees, 1990.	Raton: CRC Press. 3. Lang, S. (2011). Linear algebra. (3rd Ed.). New York: Springer. 4. Halmos, P. R. (2013). Finite dimensional vector spaces. (2nd Ed.). S.1.: Literary Licensing, LLC. 5. Yang, Y. (2015) Adoanced linear algebra. Cambridge : Cambridge University Press. Suggested F-learning Material: 1. Lecture Notes: https://nptel.ac.in/downloads/111102011/\# 2. Video Lectures \& Notes: https://onlinecourses.nptel.ac.in/noc17_ma0 4/preview	
2.	MATH (To be generated) Analysis-I	On completion of the course, the student will be able to, - understand modern theory of set and real numbers. - investigate different metric spaces and their properties. - master the technique of calculating the Lebesgue integral and understand the applications measurable functions. - explain construction and investigate properties of Lebesgue measure. - derive the Fourier series of integrable functions. - discuss the point-wise and uniform	Section A Countable \& Uncountable Sets, of Choice, Well Ordering Principle, Zorn's Lemma, Franfinite Tndurion. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Farlor's Theorem. Section B Construction \& Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration \& its Properties, Dominated \& Monotone Convergence Theorems, Fatou's Lemma. Section C Fourier Series of Integrable Functions. Discussion of Pointwise \& Uniform Convergence of Series,	Section A Countable \& Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction \& Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration \& its properties, Dominated \& Monotone convergence theorems, Fatou's Lemma. Section C Fourier series of integrable functions. Discussion of pointwise \& uniform convergence of series, Fejer's Theorem for continuous periodic functions,	Change in Credit

		convergence of series.	Fejer'sTheorem for Continuous Periodic Functions, Orthogonality, Parseval's Theorem. Riesz Fischer theorem. Suggested Text Books: 1. H. L. Royden, Real Analysis, $3^{\text {rd }}$ Ed., Pearson Education Pvt. Limited, Singapore, 2003. (for Sec. A \&B) 2. G. D. Barra, Measure Theory \&Integration, $2^{\text {nd }}$ Ed. Wiley Eastern Limited, New Delhi, 1991. (for Sec. B) 3. H. S. Carslaw, An Introduction to the Theory of Fourier Series and Integrals, $3^{\text {rd }}$ Revised Edition Dover Pub., New York, 1950. (for Sec. C) Suggested Reference Books: 1. W. Rudin, Principles of Mathematical Analysis, $3^{\text {rd }}$ Ed. McGraw- Hill, Auckland, 1985. 2. T.M. Apostol, Mathematical Analysis, $2^{\text {nd }} \mathrm{Ed}$, Narosa Publishing House, New Delhi, 1974. 3. E.C. Tichmarch, Theory of Functions, Oxford University Prees, 1962. 4. E. Hewitt and K. Stromberg, Real and Abstract Analysis: A modern treatment of the theory of functions of a real variable,Narosa Publishing House, New Delhi, 1978. 5. G. Das and S. Pattanaik, Fundamentals of Mathematical Analysis, T.M.H,New Delhi, 1989. 6. Richard R. Goldberg, Methods of Real Analysis, Oxford \& IBH, New Delhi, 1970.	Orthogonality, Parseval's Theorem. Riez Fischer theorem. Suggested Text Books: 1. Royden, H. L. (2011). Real analysis. (3rd Ed.). New Delhi: Prentice hall of India. 2. Barra, G. D. (2008). Measure theory and integration. New Delhi: New Age International. 3. Carslaw, H. S. (1959). Introduction to the theory of Fourier's series and integrals. New York: Dover Publications. Suggested Reference Books: 1. Rudin, W. (2017). Principles of mathematical analysis. (3rd Ed.). Chennai: McGraw Education (india) Private Limited. 2. Apostol, T. M. (1974) Mathematical analysis. (2nd Ed.). New Delhi: Narosa Publishing House. 3. Titchmarsh, E. C. (1968). The theory of functions. London: Oxford Univ. Press. 4. Hewitt, E., \& Stromberg, K. R. (2009). Real and abstract analysis: A modern treatment of the theory of functions of a real variable. New York: Springer. 5. Goldberg, R. R. (2019). Methods of real analysis. New Delhi: Blaisdell Pub. Co.; Oxford and IBH. Suggested E-learning material 1. A Basic Course in Real Analysis; NPTL:https:// nptel.ac.in/courses/111105069/ 2. Fourier Series Part-1;NPTL: https://nptel.ac.in/courses/122107037/24
3.	MATH (To be generated)	After completing the course, students will be able to	Section A Sets and Multisets, Partial Order Relations, Chains	Section A Logic, Propositional Equivalences, Predicates and

	Discrete Mathematics

- Understand logical arguments and logical constructs. Have a better understanding of sets, functions and relations.
- Apply logical reasoning to solve a variety of mathematical problems.
- Understand and apply the fundamental concepts in graph theory.
- Acquire ability to apply graph theory-based tools in solving practical problems
- Improve the proof writing skills and able to develop mathematical maturity.

Discrete Numeric Functions, Generating Functions,
Recurrence Relations, linear Recurrence Relation with
Constant Coefficients and their Solutions, Solution by the
method of Genevating Functions,
Boolean Algebra, Lattices, Uniqueness of Finite Boolean Lattices, Boolean Functions and Boolean Expression. ProperimalCateulus.

Section B
Basic Concepts of Graph Theory. Directed Graph. Fuler Graph. Hamililonian Graph. Matrix Representalion o Graphs. Shortest Path in a Weighted Graph F and K-edge-connected Graphs. Planai Graphs. Colering of Gaphs, Vertex Coloring of Graphs Edge Coloring of Guphs, Vizing's Theorem. Trees: Rooted Trees, Svanning Tree and Cut Set Minimum Syanning Tree. Flow Network in -Graph,
Max-Flow-Min Cut Theorem.

Section C

Types of Entmeration, Counting Labeled Trees, Burnside's Lemma, Polyu's Counting Theorem, Groph Finmeration with Polyu's Theorem.
Matthings in Bipartite Graphs, Hall's Matehing
Theorem, Min Max Therrm, Indepentent Eets,
Factorization, 1-Factorization, 2-Factorization, Arborieity.
Suggested Text/Reference Books:

1. C.L. Liu, Elements of Discrete Mathematics, McGraw Hill, International Edition, 1985.

Quantifiers, Nested Quantifiers, Methods of Proof, Multi-set, Relations and Functions, Introduction to Algorithms, The growth of functions, Complexity of Algorithms. Partially ordered sets, Chains and Antichains, Lattices, Complete lattices, Distributive lattices, Complements, Boolean Algebra, Uniqueness of Finite Boolean Algebras, Boolean expressions and Boolean functions, Normal forms.

Section B

Basic counting Principles, Permutations and Combinations, Permutations and Combinations on multi-sets, Generation of permutations and Combinations, Pigeon-hole principle, Principle of inclusion and exclusion. Discrete numeric functions, Generating Functions, Combinatorial problems. Recurrence relations, linear recurrence relation with constant coefficients and their solutions, Solution by the method of generating Functions.

Section C

Graphs, Vertices of graphs, degrees, Sub-graphs, Paths, Walks and cycles, Connected graphs, Connected components, Weighted graphs, Directed graphs. Matrix representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Fuler graphs Hamiltonian paths, Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees, Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,

			2. N. Deo, Graph Theory, Prentice Hall of India, 2002. 3. K.H. Rosen, Discrete Mathematics and it's Applications, $7^{\text {th }}$ Ed. Mc-Graw Hill, 2013. 4. K.D. Joshi, Foundation of Discrete Mathematics, Wiely Eastern Ltd., 1989. 5. D.B. West, Introduction to Graph Theory, $2^{\text {nd }}$ Ed. Pretince Hall of India, 2001.	Partitions, Cut edges - Cut vertices, Spanning tree and minimum Spanning tree. Suggested Books: 1. Liu, C. L. (1985) Elements of discrete mathematics. McGraw Hill, International edition. 2. Deo, N. (2012). Graph theory: With applications to engineering and computer science. New Delhi: PHI Learning Private Limited.. 3. Rosen, K. H. (2013). Discrete mathematics and its applications: Seventh edition. New York: McGrawHill. 4. Joshi, K. D. (1089) Foundation of discrete mathematics. Wiely Eastern Ltd. Suggested E-learning Material: 1. Lecture notes: https://nptel.ac.in/downloads/111104026/ 2. Lecture notes: http://home.iitk.ac.in/~arlal/book/mth202.pdf 3. Lecture notes: https://ocw.mit.edu/high-chool/mathematics/combinatorics-the-fine-art-of-counting/lecturenotes/MITHFH lecturenotes 8.pdf 4. Lecture notes: http:// www.math.kit.edu/iag6/lehre/graphtheo20 $15 \mathrm{w} / \mathrm{media} /$ lecture notes.pdf 5. Online Course: https://swayam.gov.in/courses/4926-discretemathematics 6. Online Course: https://swayam.gov.in/course/3795-grapl-theory

4.	STAT 402 Probability and Statistics	On completion of the course, the student will be able to: - Understand the meaning of probability and probabilistic experiment and all approaches to probability theory and particularly, the axiomatic approach. - Understanding the meaning of conditional probability,conditioning, reduced sample space. - Understand the concepts of random variables, sigma-fields generated by random variables, probability distributions and independence of random variables related to measurable functions. - Distinguish between independent and uncorrelated random variables. - Distinguish between discrete, continuous, and mixed random variables and be able to represent them using probability mass, probability density, and cumulative distribution function. - Understand the concepts of sampling distributions and use of sampling distribution in hypothesis testing.	-	Suggested F-learning material: 1. Probability and Statistics; Platform: NPTEL nptel.ac.in/courses/111105041/. 2. Probability; Platform: $\mathbf{e}-$ PGPathshalahttps://epgp.inflibnet.ac.in/ahl.ph p?csrno=34. 3. Introduction to Probability-https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018/	No change in the syllabus

5.	CS 415 Computer Programming	On successful completion of the course students will be able to - Understanding the concepts of computer basics and programming. - Understanding of organization and operations of a computer system. - Understanding of Binary logic in design of electronic circuits. - Students would have logical thinking for Analyzing problems, designing and implementing algorithmic solutions. - Students would get the skills for the use of the C programming language to implement the real world applications.	-	Suggested F-learning material: 1. Introduction to Programming in C https://nptel.ac.in/courses/106104128/ 2. Introduction to Programming in C Specialization by Duke University https://www.coursera.org/specializations/cprogramming 3. Computer Fundamentals by P. K. Sinha https://www.edutechlearners.com/computer-fundamentals-p-k-sinha-free-pdf/	No change in the syllabus
6.	MATH (To be generated) Computational Lab-I	On completion of the course, the student will be able to, - Perform basic mathematical operations in MATLAB. - Create vectors, arrays, matrices and perform fundamental matrix operations. - Visualize basic mathematical functions. - Solve linear equations and	-	1. Introduction to MATLAB 2. Defining Vectors, Array, Matrices and their mathematical operations 3. Special variables and Numeric display formats 4. Matrix Functions: Norm, rank, determinant, transpose, inverse, g-inverse, diagonal, trace, etc. 5. Finding roots of a polynomial, characteristic equation, eigen values and eigen vectors 6. Solving system of linear equations: Gauss elimination Method, Matrix Decomposition:	New Course

		system of linear equations. - Import/export data, summarize and visualize the data. - Fit some standard distributions and test hypothesis.		Cholesky, LU, and QR factorizations, diagonal forms, singular value decomposition. 7. 2D plots for Cartesian, parametric and polar curves 8. Evaluating and plotting: Trigonometric functions, hyperbolic functions, complex functions, Logarithms, exponentials, etc. 9. 3D plots: surfaces, contour plot, mesh 10. Data import and export 11. Building frequency tables: Univariate, Bivariate. 12. Finding descriptive statistics: averages, dispersion, skewness, kurtosis. 13. Data visualization: Dot plots, Histogram, Box plots, bar diagram, pie diagrams, etc. 14. Fitting and visualization of Probability distributions: Binomial, Poisson and Normal. 15. Empirical cumulative distribution function plot, Histogram based on empirical cumulative distribution function, Histogram with a distribution fit,Normal probability plot, Probability plots, Quantile-quantile plot. 16. Hypothesis Tests: \mathbf{t}-test, F-test, chi-square goodness-of-fit test 17. Introduction to M-files and programming in MATLAB, Suggested Books: 1. D. Duffy, Advanced Engineering mathematics with MATLAB, $3^{\text {rd }}$ Ed, Taylor \& Francis, 2010 2. A. Knight, Basics of Matlab and beyond, CRC Press, 1999	

| | | | | Suggested F-learning material:
 1. PDF Documentation for MATLAB:
 https://in.mathworks.com/help/pdf doc/matl |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ab/index.html | | | | |

SECOND SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be generated) Algebra-II	After completing the course, students will be able - To demonstrate the mathematical maturity of understanding the proof. - To understand the algebraic structures groups, rings, modules. - To grasp the significance of the concepts of homomorphism \& isomorphism and be able to check a given function is one of these. - To understand the class equation for a finite group and its applications in Sylows theorems. - To classify groups up to isomorphism. - To really understand the special types of rings and be	SectionA Vector spaces, subspaces, quotient spaces, span and independence, bases (finite and infinite), coordinate vectors, linear transformations, projection map, range and kernel of a linear transformation isomorphism somoryhimtheorems, matrix of a linean transformation, algebra of L(U, V), singuiar ant nonsingular muppinge, Linear functionals and dua spaces, franspose of a linear mappings. SectionB Determinant function,Properties of determinamt, medules, multilinerr fumetions, characteristic values, annihilating polynomials, invariant subspaces, direct sum, invariant direct sum, primary decomposition theorem, cyclic operator, Cyclic Decomposition TheoremGeneralized Galey Hamilton theorem, indecomposable linear operator, invariant factors, Jovilan form, Normal form. SectionC Inner product, orthogonal sets, orthogona complement and projections, adjoints, self adjoints,	Section A Review of groups, direct product of groups, normal subgroups, quotient groups, isomorphism theorems, Conjugates, Conjugacy in S_{n}, Class equation for a Group, Sylow's Theorems, Applications of Sylow's theorem, Simplicity of Alternating Group A_{n} for $n>5$, Section B Rings, Ring homomorphism and quotient rings, Ideals: Prime and Maximal, fields of fractions, Divisibility, Euclidean and Principal Tdeal Domains, Unique Factorization Domains, Polynomial Rings over fields, irreducibility criteria. Section C Modules, Quotient modules, module homomorphisms, generation of modules, direct sums, free modules, modules over PID's, Chain condlitions, Artinian modules, Northerian modules, Composition series, Modules of finite length, Jordan Holder Theorem, Artinian rings, Northerian rings, Hilbert Basis Theorem, I.S.Cohen's Theorem, Introduction of Nil radical and Jacobson radical. Suggested Books:	Shaded in Black from section A, B and C is shifted in Algebra I. Shaded in Grey is added. Change in Credit

able to construct new
examples from the old ones.

- To check a subset of a ring is an ideal or not and be able to identify proper and maximal ideal.
- To understand the concept of unique factorization domain and able to write a polynomial as the product of irreducible factors
- To describe as a generalization of vector space and able to understand types of modules.
- To grasp the concept of Artinian modules, Northerian modules, Artinian rings and Northerian rings
spectral theorems, nomal operators, unilary and
orthogonal operators, polar and singular values deemposition, Bilinear maps, symmetric bilinear maps and quadratic form.
Text Books:

1. Hoffman and Kunze: Linear Algebra, $2^{\text {nd }}$ Ed. Pearson, 1998.
2. Bruce N. Cooperstein: Advanced Linear Algebra, 2nd Ed., CRC Press,2015
Reference Books:
3. S. Lang: Linear Algebra, $3^{\text {rd }}$ Ed., Springer Verlag, New York, 1987.
4. P.R. Halmos: Finite Dimensional Vector Spaces, $2^{\text {nd }}$ Ed., Van Nostrand, New York, 1965.
5. Yisong Yang: Advanced linear algebra, Cambridge University Press, 2015
6. Gallian, J. A. (2013). Contemporary abstract aloebra. (84 Ed.). Boston, MA: Brooks/Cole Cengage Learning.
7. Dummit, D. S. \& Foote, R. M. (2004) Abstract algebra (3rd ${ }^{\text {rd }}$.). New Jersey: Wiley.
8. Musili, C. (1994) Introduction to Rings and Modutes (2ndEd.). New Delhi:.Narosa Publishing House.
9. Hungerford, T. W. (2014) Abstract algebra: An introduction (3rd Ed.). Australia: Brooks/Cole Cengage Learning.
10. Hillman A. P. \&Alexandersor, G. L. (2015) Abstract algebra: A first undergraduate course ($5^{\text {th }}$ Ed.). CBS Publishers \& Distributors Pvt. Ltd.
11. Fraleigh, J. B. (2003) A first course in abstract aloebra ($7^{\text {th }}$ Ed.). Harlow: Pearson.
12. Sen, M. K., Ghosh, S., Mukhopadhyay, P. \&Maity, S. K. (2019) Topics in abstract algebra (3 ${ }^{\text {rd }}$ Ed.). University Press.
13. Herstein, I. N. (1991) Topics in algebra (2nd Ed.). New Delhi: Wiley Eastern.

Suggested F-learning Material:

1. Lecture Notes on Groups and Rings: https://ocw.mit.edu/courses/mathematics/18-703-modern-algebra-spring-2013/relatedresources/
2. Video Lectures on Algebra https://www.extension.harvard.edu/open-

				learning-initiative/abstract-algebra Open Source Book Abstract algebra: Theory and applications by Thomas W. Judson http://abstract.ups.edu/download/aata-20110810.pdf	
2.	MATH (To be generated) Analysis-II	On completion of the course, the student will be able to, - demonstrate understanding of the basic and advanced concepts underlying complex analysis. - demonstrate familiarity with a range of examples of these concepts. - prove advanced results/theorems in complex analysis. - apply the methods of complex function theory to evaluate integrals and infinite series of complex functions. - demonstrate understanding and appreciation of a deeper aspects of complex function theory. - demonstrate skills in communicating mathematics orally and in writing.		Suggested F-learning material 1. Complex Analysis; NPTL: https://nptel.ac.in/courses/111103070/	No change in syllabus. Change in Credit.
3.	MATH (To be generated) Ordinary Differential Equations	On completion of the course, students will be able to - Understand the existence and uniqueness of IVPs and their solution	Section A First order differential equations: Method of successive approximation, Iipschitz condition, convergence of successive approximation, selutions.	Sections A Existence and Uniqueness of solutions: Introduction, Picard's Successive Approximations, Picard's theorem, Continuation and dependence of initial conditions, Existence of solutions in the large, Existence and	

- Understand method of successive approximations, variation of constants, annihilator method, and reduction of order of a homogeneous equation.
- Solve linear differential equations of higher order with variable coefficients.
- Solve boundary value problems for second order equations.
- Solve Boundary Value problems for second order equations by Green's function, Strum-Liouville Boundary Value problem.
- Grasp the concept of the stability of system of differential equations
- Solve system of linear differential equations and study the qualitative behavior of these systems.

System of differmatial eguations: solution by general
method and matrix exponentials, Two Dimensional
4utonomous Systems and Phase Space Analysis: critical points, proper and improper nodes spiral points and saddle noints

Section B

Linear Differential Equations: Existence and uniqueness theorems constantand variable coefficients (2nd order and $n^{\text {th }}$ order), Linear dependence and independence of solutions, Wronskian, variation of constants, annihilater methed, reduction of the order of a homogeneous equation.

Section C

Homogeneous equation with analytic coefficients, Legendre equation, Euler equation, method of Frobenius, Bessel's equation, Boundary Value Problems for Second Order Equations: Green's function, Sturm-Liouville boundary value problem, eigenvalue Problem.
Text Books:

1. E. A. Coddington: An Introduction to Ordinary Differential Equations, Dover Publication Inc., 1961.
2. S. Ahmad and A. Ambrosetti: A text book on Ordinary Differential Equations, $2^{\text {nd }}$ Ed. Springer 2015.
Reference Books:
3. S. A. Wirkus and R. J. Swift: Ordinary Differential Equation, $2^{\text {nd }}$ Ed., CRC Press, 2015.

Uniqueness for systems, fixed point technique for nonlinear differential equations.

Section B

Linear Differential equations of higher order with variable coefficients: Introduction, Existence and Uniqueness theorem, linear dependence and Wronskian. Solution; Method of variation of parameters, Method of undetermined coefficients, Reduction of order. Boundary Value Problems for second order equations: Introduction, Green's function, Sturm Liouville problem. Applications of BVPs.

Section C

System of linear differential equations: Introduction, Existence and Uniqueness theorem, Solution of the system; Eigenvalue-Eigenvector Method and Fundamental Matrix Method. Matrix Exponential Function, Non-homogeneous linear systems. Phase Portrait in R 2. Plane Autonomous Systems: critical points and types of critical points and stability.

Text Books:

1. Deo, S. G., Raghavendra, V., Kar, R. \&Lakshmikantham, V. (2015) Textbook of ordinary differential equations (3rd Ed.). New Delhi: Mc Graw Hill Education.
2. Ahmad, S. \&Ambrosetti, A. (2015). A Textbook on Ordinary Differential Equations (2nd Ed.). Switzerland: Springer.
Reference Books:
3. Wirkus, S.A. \& Swift, R.J. (2015). Ordinary Differential Equations, (2nd Ed.). USA: CRC

			\&Modern Analysis, McGraw Hill, Auckland, 1963. 5. James Dugundji, Topology, Universal Book Stall, New Delhi, 1990.	https://nptel.ac.in/courses/111106054/	
5.	MATH 409 Numerical Analysis	On completion of the course, the student will be able to, - Demonstrate numerical methods to obtain approximate solutions to mathematical problems. - Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of ordinary differential equations. - Analyze the appropriate numerical method to find the Eigen values and corresponding eigenvectors of a system. - Use rational approximation of a function like Padé approximant for power series. - Solve the boundary value problems using shooting method and finite difference method. - Define and use the concepts accuracy, consistence, stability and convergence.	Section A Accuracy and approximate calculations: Different types of errors and their computations; Finite differences: forward, backward and divide differe thlespropigntion of ervin-lifferenee table, missing data caleulation, erroms in polynomitul interpolation Newton-Gregory forward and backward interpolationeentral differences: entral difference table, Gatus formula, Stirling's formula, Bespel's formula. Tnterpolation with unequth intervelstagrange's formula, dided diferes and their properties, Newton's general Interpolation mationverse interpolation, computation errors in these formulae and analysis of errors. Section B Numerical solutions of algebraic and transcendental equations: polynomial, transcendental equations, intermediate value theorem, Bisection method, Iterative method, methed of false-position, recant methed, Newton-Raphson method, Stability and Convergence analysis of these methods, fillimg (method of least squares, cubic splines interpolation), upporimation of functions: Chebysecher'spolynomials.Taylor's series	Section A Accuracy and approximate calculations: Different types of errors and their computations. Numerical solution of system of linear equations: Direct methods: Gauss elimination method and Crout's (factorization) methods, Iterative methods: Jacobi method, Gauss-Seidel method, Vector and matrix norm, Condition number and ill-conditioning, condition of convergence in iterative methods. Eigen values and Eigen vectors: Singular value decomposition, Power method, Aitken's acceleration, Inverse Power method. Section B Numerical solutions of algebraic and transcendental equations: Polynomial and transcendental equations, intermediate value theorem, Bisection method, Iterative method, Newton-Raphson method, Convergence analysis of these methods. Interpolation: Newton-Gregory forward and backward interpolation, Lagrange's formula, inverse interpolation, computation errors in these formulae and analysis of errors, Approximation of function: Padé approximation. Numerical Differentiation: Maximum and minimum value of a tabulated function, Solution of difference	1. Shufflin g of the topics has been done to maintain the flow of syllabus. 2. Some advance d topics and numeric al methods have been added to benefit the students

Pa		

			$3^{\text {rd }}$ ed., McGraw Hill, Auckland, 1981. 3. M. K. Jain, S. R. K. Tyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computations, $4^{\text {th }}$ ed., New Age International, New Delhi, 2003. 4. Kendall E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 2"d ed., 2001. 5. G.M. Phillips and Peter J. Taylor, Theory and Applications of Numerical Analysis, $2^{\text {nd }}$ ed.,Elsevier, 1996. 6. John R. Rice, Numerical Methods, Software and Analysis, MGH, Auckland, 1983. 7. P.K. De, Computer Based Numerical Methods and Statistical Techniques, CBS Publication, New Delhi, $1^{\text {st }}$ ed., 2006.	House. 3. Rao, K. S. (2005), Numerical methods for scientists and engineers (2nd ed.). New Delhi: Prentice-Hall of India. 4. Phillips, G. M., \& Taylor, P. J. (1996). Theory and applications of numerical analysis ($2^{\text {nd }}$ ed.). Elsevier. Suggested F-learning material: 1. Introduction to Numerical Analysis for Engineering, Platform: MIT open courseware https://ocw.mit.edu/courses/mechanical-engineering/2-993j-introduction-to-numerical-analysis-for-engineering-13-002j-spring2005/index.htm 2. Numerical Analysis, Platform: nptelhttps://nptel.ac.in/courses/111107062/ 3. Elementary Numerical Analysis, Platform: nptel https://nptel.ac.in/courses/111101003/	
6.	MATH 409L Numerical Analysis Lab	On completion of the course, the student will be able to, - Implement numerical methods in MATLAB to solve systems of linear equations, compute quadrature, solve ordinary differential equations and various computational problems. - Write efficient, well-documented MATLAB code and present numerical results in an informative way.	Using MATLAB: Command window computations, M-files, Programming in MATLAB, Basic Mathematical Operations in MATLAB: Scalar addition and multiplication, Matrix addition and multiplication etc. 1. An M-file to implement the bisection method 2. MATLAB M-file to implement Newton-Raphson method for nonlinear systems of equations 3. Using MATLAB to Manipulate Polynominto and	1. A review of basic MATLAB functions on command window. 2. Writing Scripts and functions in MATLAB (mfiles). 3. Flow control commands (If-else, for, while, switch). 4. An M-file to implement Gauss elimination method with partial pivoting for solving system of linear equations. 5. An M-file to implement Gauss-Seidel method.	List of Practicals is revised according to the syllabus of Computati onal lab-1 (New Course)

				MATLAB Programming for Engineers, Platform: Ohio University; http://www.ohiouniversity faculty.com/youngt LntNumMeth/ 2. Using numeric approximations to solve continuous problems, Platform: MathWorks; https://in.mathworks.com/discovery/numerica lanalysis.html	
7.	MATH (code to be generated) Computation al Lab-II	On successful completion of the course, the students will be able to, - Understand the fundaments of procedural and functional programming with Mathematica software; - Efficiently use these technical computing systems in one's studies and research. - Set up simple engineering problems such that they can be solved and visualized using basic codes.	-	1. Introduction to Wolfram Mathematica: Entering input, variables, assignment, execution, and evaluation of mathematical functions, rules and replacement, Notebooks in Mathematica. 2. Basic commands of Mathematica, Trigonometry. 3. Calculus: Roots of polynomials, partial fractions, differentiation, limits and expansions, integration, Optimization. 4. Lists and Matrices: Matrix Operations, transpose, determinant, inverse of a matrix, Index Notation. 5. Linear Algebra: Characteristic equation, Eigen values and Eigenvectors, Row reduced echelon form and normal form, Vector Spaces, Linear Transformations, Solutions to system of linear equations. 6. Graphics: Plotting of simple functions, Two- and Three-dimensional Plotting (Cartesian, parametric and polar equations, Vector plots), Graphics Primitives, and Formatting. 7. Differential equations: analytic and numerical solutions of ODEs, Plotting of second order	New Course

				solution family of differential equation, System of ODEs (critical points, phase portrait diagrams and time series plots). 8. Plotting of recursive sequences. 9. Study the convergence of sequences through plotting. 10. Verify Bolzano-Weierstrass theorem through plotting of sequences and hence identify convergent subsequences from the plot. 11. Study the convergence/divergence of infinite series by plotting their sequences of partial sum. Cauchy's root test by plotting nth roots. 12. Ratio test by plotting the ratio of $n^{\text {th }}$ and $(n+1)^{\text {th }}$ term. Suggested Readings: 1. The Mathematica Book, Fifth Edition by Stephen Wolfram; https://www.wolfram.com/language/elementary -introduction/2nd-ed/ 2. Lecture Notes on Mathematics for Materials Scientists and Engineers; https://ocw.mit.edu/courses/materials-science-and-engineering/3-016-mathematics-for-materials-scientists-and-engincers-fall-2005/lecture-notes/	
8.	STAT (To be generated) Statistical Inference	After successful completion of this course, student will be able to: - Apply various parametric, nonparametric and sequential estimation techniques and testing procedures to deal with real life	-	Suggested F-Learning Material: 1. Statistical Inference; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm 2. Statistical Inference; Platform: Coursera https://www.coursera.org	No change in syllabus. Change in credit.

		problems. - Understand confidence interval, Neyman-Pearson fundamental lemma, UMP test, Interval estimation. - Understand SPRT, OC and ASN function. - Understand non-parametric methods, U-statistic.		3. Statistical Inference: Platform: e-PG Pathshalahttps://epgp.inflibnet.ac.in	
9.	STAT (To be generated) Measure Theory \& Advanced Probability	On successful completion of this unit, students will be able to: - Understand the basic concepts of measure and integration theory. - Understand of the theory on the basis of examples of application. - Use abstract methods to solve problems and to use a wide range of references and critical thinking. - Use weak and strong law of large numbers in statistical theory.	Section A Measure Theory - Fields, Sigma Fields, Monotone Classes, Set Functions, Measure, Outer Measure, Carotheodory's Extension Theorem. Probability Measure, Lebesgue Measure, Lebesgue Stieljes Measure. Measurable Functions, Monotone and Dominated Convergence Theorem. Product Spaces, Fubini's Theorem (without proof), Signed Measure, Section B Inequalities-Cauchy-Schwartz Inequalities, Holden Inequalities, Minkowski Inequality, Jensen Inequality Hajek Penyi Inequality. Sequences of Distribution Function, Helly Bray Theorem. Almost sure Convergence, Convergence in Probability, Convergence in Mean Square. Borel-Cantelli Lemma and Zero One Law. Characteristics Function. Inversion and Continuity Theorem. Section C Weak and Strong Law of Large NumbersKhintchine, Kolmogorov Theorem. One Dimensional	Section A Measure Theory-Fields, Sigma Fields, Monotone Classes, Set Functions, Measure, Outer Measure, Carotheodory's Extension Theorem. Probability Measure, Lebesgue Stieljes Measure. Measurable Functions, Monotone and Dominated Convergence Theorem. Product Spaces, Fubini's Theorem (without proof). Section B Sequences of Distribution Function, convergence: convergence in distribution, convergence in probability, almost sure convergence, convergence in Mean Square. Helly Bray theorem, BorelCantelli lemma and zero one law. Characteristics function, inversion and continuity theorem. Section C Inequalities: Cauchy-Schwartz inequality, Chebychev's inequality, Holder Inequality, Minkowski Inequality, Jensen Inequality. Weak and strong Law of Large Numbers-Khintchine, Kolmogorov theorem. One Dimensional Central Limit theorem- Lindeberg Levy, Lyapunov, Lindeberg Feller theorem.	Change in credit.

			Central Limit Theorem- Lindeberg Levy, Lyapunov, Lindeberg Feller Theorem. Reprention of Pistribution Function as a mixture of Piscrete and Contineus Distribution Function, Convolutions, Distributions. Suggested Text/ Reference Books: 1. W. Feller, An introduction to Probability Theory and Applications, Vol I \& Vol II, John Wiley \& Sons. 2. K.L. Chung, A Course in Probability Theory, Academic Press. 3. B.R. Bhatt, Modern Probability Theory. 4. V.K. Rohtagi, An Introduction to Probability Theory and its Applications, John Wiley \& Sons. 5. P.R. Halmos, Measure Theory, Springer-Verlag. 6. H. Bater, Probability Theory and Elements of Measure Theory, Academic press.	Suggested Text/ Reference Books: 1. Feller, W. (2008). An Introduction to probability theory a applications (Vol. I \& Vol. I). John Wiley \& Sons. 2. Chung, K. L. (2011). A Course in Probability Theory (3 ed.). San Diego, Academic Press. 3. Bhatt, B. R. (2019). Modern Probability Theory (4th es London, UK : New Academic Science. 4. Rohatgi, V. K. (2000). An Introduction to probability the and mathematical statistics (2nd ed.). Wiley series probability and statistics. 5. Halmos, P. R. (2013). Measure Theory (Vol. 18). N York: Springer. 6. Bauer, H. (1981). Probability theory and element of meas theory (2nd ed.).London: Academic Press. Suggested F-Learnings Material: 1. Measure www.math.tifr.res.in $/ \sim$ publ $/ \ln /$ tifr12.pdf 2. Measure Theory and probability: https://www.math.ucdavis.edu/~hunter/meas ure theory/ 3. and applications: https:// newonlinecourses.science.psu.edu/stat4 14/node/133/
10.	CS 417 Database Management Systems	On successful completion of the course students will be able to - Describe data models and schemas in DBMS - Understand the features of database management system and Relational databases.	-	Suggested F-Learnings Material: 1. Data Base Management System https://nptel.ac.in/courses/106105175/ 2. Database Management Essentials by University of Colorado https://www.coursera.org/learn/databasemanagement

THIRD SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be generated) Advanced Calculus	On completion of the course, the student will be able to, - Analyze vector functions to find derivatives, tangent lines, integrals, and arc length. - Evaluate integrals of functions or vector-related quantities over curves, surfaces, and domains in two- and three-dimensional space. - Use the Lagrange multiplier method to find extrema of functions with constraints. - Solve problems involving tangent planes and normal lines.	Section A Euclidean Space R^{n}, Basic Topology on R^{n}, Functions on Euclidean spaces, continuity Uniform Continuity, Differentiability; Partial and directional derivatives. Affine functions, First order approximation of Real Valued functions, quadratic Functions Hessian Matrices, second order approximation and second derivative test. Section B Linear mappings and Matrices, The Derivative matrix, First order approximation Theorem for mappings, Chain Rule, Inverse Function Theorem, Implicit Function Theorem, Lagrange Multipliers. Section C Riemann Integral of real-valued functions on Integration of functions on Jordan Domains, Fubini's Theorem, Change of Variables,	Section A Euclidean Space K^{n}, Basic Topology on K^{n}, Functions on Euclidean spaces, continuity, Uniform Continuity, differentiability; partial and directional derivatives. Affine functions, First order approximation of Real valued functions, quadratic functions, Hessian Matrices, second order approximation and second derivative test. Section B Linear mappings and Matrices, The derivative matrix, First order approximation Theorem for mappings, Chain Rule, Inverse Function Theorem, Implicit Function Theorem, Lagrange Multipliers. Section C Riemann Integral of realvalued functions on Generalized rectangles, Continuity and integrability, Integration of functions on Jordan Domains, Fubini's Theorem, Change of Variables. Suggested Text Book:	Change in credit.

			Line and Strface Integrals, Green and Stokes Text Book : 1. Patrick M. Fitzpatrick, Advanced Calculus, Second edition, AMS. Suggested Text/Reference Books: 1. J.R. Munkres, Analysis on Manifolds, AddisonWesley, 1991. 2. GB Folland, Advanced Calculus, Pearson. 3. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall Inc., Englewood Cliffe, New Jersery, 1974. 4. W. Fleming, Funcetions of Several variables, 2nd Edition, Springer-Verlag, 1977. 5. W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, 1984. 6. M. Spivak, Calculus on Manifolds, A Modern Approach to Classsical Theorems of Advanced Calculus, W.A. Benjamin, Inc., 1965.	1. Fitzpatrick, P. (2009). Adoanced calculus. Providence, R.I: American Mathematical Society. Suggested Reference Books: 1. Munkres, J. R. (2018). Analysis on manifolds. Boca Raton, FL: CRC Press/Taylor \& Francis Group/Advanced Book Program. 2. Folland, G. B. (2009). A guide to adoanced real analysis. Washington, D.C.: Mathematical Association of America. 3. Rudin, W. (2017). Principles of mathematical analysis. Chennai: McGraw Education (India) Private Limited. Suggested F-learning material 1. Lecture Notes on Multivariable Calculus; Platform: https://nptel.ac.in/courses/111107108/	
2.	MATH (to be generated) Functional Analysis	On completion of the course, the student will be able to, - explain the basic concepts of Functional Analysis, including the study of operator theory and the study of topological function spaces. - describe how to illustrate the abstract notions in functional analysis via examples.	-	Suggested F-learning material 1. Introduction to Functional Analysis; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/courses/mathematics/18-102-introduction-to-functionalanalysis-spring2009/ 2. Functional Analysis; Platform; NPTEL https://nptel.ac.in/courses/111105037/ 3. Functional Analysis; Platform: Free video lectureshttps://freevideolectures.com/course/3	No change in Syllabus. Change in credit.

		- apply Hilbert space-theory, including Riesz' representation theorem and weak convergence, and methods in problem solving. - solve the problems appear in PDEs via the powerful tools from functional analysis, - study in a range of other fields, e.g. Quantum Theory, Stochastic calculus and Harmonic analysis.		145/functional-analysis	
3.	MATH (to be generated) Operations Research	On completion of the course, the student will be able to, - Build a mathematical programming model of a reallife situation - Write a report that describes the formulation of a linear and nonlinear programming problem, and presents and interprets the solutions. - Understand the basic theory in linear and nonlinear programming - Apply a suitable method in research to develop the theories which will be applicable in the real-life problems. - Understand the concepts of		Section ALinear Programming: Simplex method, Theory of simplex method, Duality in linear programming. Dual simplex method. Assignment and Transportation Problem. Section B Dynamic Programming: Introduction, characleristics of dynamic programming, dynamic programming algorithm, solution of discrete dynamic programing problem. Sequencing Problem: Introduction, processing n jobsthrough two machines, processing n jobs through kmachines, processing two jobs through k machines.Network, Analysis, Introduction of Network analysis, shortest path problem PERT \& CPM. Updating of PERT charts.Queuing Theory, Probability description of arrivals and	Change in Credit.

dynamic programming,
sequencing, network analysis.

- Understand the basic concepts and need of inventory theory and queuing theory.
independent and time dependent with and without tendime.

Suggested Text/ Reference Books:

1. J.C. Pant, Introduction to Optimization: Operations Research, 2nd ed., Jain brothers, New Delhi, 1988.
2. Hamdy A. Taha, Operalions Research, Machmillan\& Co, ${ }^{\text {th }}$ ed., New York, 2010.
3. Frederick S. Hiller \& Gerald J. Lieberman, Operations Research, 2nd ed., Holden-San Francisco, 1974.
4. Kanti Swaroop, Operations Research, S.Chand, New Delhi, 1977.
5. S.D. Sharma, Operations Research, Kedarnath Ramnath, Meerut, 1994.
6. Nirmal Singh Kambo, Mathematical Programming Techniques, Affiliated East-West, New Delhi, 1991.
service times, objectives and different characteristics of a queuing system, deterministic queuing system, steadystate behaviour of Markovian and Earlangian Models (M/M/1, M/M/C, M/Ek/l).
Inventory Theory, Deterministic economic lot size models and their extensions, models with lost sales and partially backlogged, continuous production with varying demand rates.

Suggested Books:

1. Swarup, K., Gupta, P. K., \& Mohan, M. (1977). Operations Research (Answers to problems). New Delhi: Sultan Chand \& Sons.
2. Pant, J. C. (2004). Introduction to optimization: Operations Research. New Delhi: Jain Brothers.
3. Taha, H. A., \& Pearson Education. (2017). Operations research: An introduction. Harlow [i 21 pozostalych: Pearson.
4. Hillier, F. S., \& Lieberman, G. J. (1972). Introduction to operation research. San Francisco: Holden-Day.
5. Sinha, S. M. (2006). Mathematical programming: Theory and methods. New Delhi: Elsevier.

Suggested E-learning material:

1. Tutorial: https://ibmdecisionoptimization.github.io/tutor ials/html/Linear Programming.html
2. Tutorial: Sophia Learning: https://www.sophia.org/tutorials/linear-programming-5
3. Lectures -

NPTEL:

				https://nptel.ac.in/courses/111102012/ 4. Nonlinear Programming - MIT http://web.mit.edu/6.252/www/. 5. Nonlinear Programming: https://ocw.mit.edu/courses/sloan-schoolof- management/15-084j-nonlineal-programming- spring-2004/lecture-notes/	
4.	STAT (to be generated) Survey Sampling	On completion of the course, the student will be able to, - Understand the distinctive features of sampling schemes and its related estimation problems. - Learn about various approaches (design based and model-based) to estimate admissible parameters; with and without replacement sampling scheme, sampling with varying probability of selection. - Learn about the methods of poststratification (stratified sampling) and controlled sampling and also double sampling procedure with unequal probability of selection. - Learn about the applications of sampling methods; systematic, stratified and cluster sampling. - Understand the cluster and two stages sampling with varying sizes of clusters/first stage units. - Understand the super population	-	Review of Simple $\begin{gathered}\text { Section A } \\ \text { random Sampling, Stratified }\end{gathered}$ Sampling, Cluster sampling with equal/unequal sample sizes, double sampling, Post and deep stratification, Sampling with varying probability of selection with replacement and without replacement, Midzuno Sen and Narain methods of sampling. Section B Horwitz-Thompson estimates, Desraj ordered estimator, Lahiri's method and cumulative total, Yates and Grandy estimate of variance its non-negativity. Auxiliary variable: Ratio, product and regression method of estimation, Quenouille's techniques of bias reduction,Hortley and Ross unbiased ratio type estimator. Ratio and Regression estimators with combined and separate type estimates, two phase sampling (double sampling) in Ratio and Regression estimation. Section C Non-sampling errors: Incomplete samples effect of non response, Hensen and Hurvitz technique, Politz Simmon's "not at home" method, Interpenetrating samples. Randomized response techniques - both qualitative and quantitative.	New Course

				5. Survey Sampling; Platform: University Library - The University of Adelaide https://www.adelaide.edu.au/library/ 6. Survey Sampling; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm	
5.	STAT (to be generated) Time Series and Stochastic Process	On the successful completion of the course the students should be able to - Plot a time series and interpret the components. - Identify and estimate cyclical fluctuations in the time series. - Examine the relationship between the lagged values of the series. - Test for the stationarity of the series. - Estimate ARIMA($\mathrm{p}, \mathrm{d}, \mathrm{q})$ model for the series. - Define stochastic process and identify its type. - Understand the concept of Markov chain and its basic properties using some theorems. - Define and understand the concept and application martingale. - Define Poisson process and understand its properties with some applications. - Apply gamblers ruin problem for	Section A Time series as a stationary or non stationary stochastic process, Time domain analysis based on correlogram, Sample autocovariance function and autocorrelation function at lag K, Lag correlation. Measurement of cyclic fluctuations: Periodogram and its relation with acvf, Harmonic analysis. Measurement of irregular component: Variate difference method. $A R(p)$ process, $M A(q)$ process, mixed ARMA(p, q) process, Stationarity and inevitability conditions, ARIMA (p, d, q) model, Estimation of parameters, Tests for stationarity Stochastic - Process. Section B Markov Chain having two states, n-step transition probabilities, Classification of states, Recurrent and transient states, Chapman-Kolmogorov equations, Stationary probability theorems and limit theorem for ergodic chains, Martingales. Section C Poisson process, birth and death process, Random walk and Gambler's Ruin problem, Wiener process, Renewal theory and its application, Branching chains: Discrete Process (Galton-Watson),	Section A Time series as a stationary or non stationary stochastic process, Time domain analysis based on correlogram, Sample autocovariance function and autocorrelation function at lag K, Lag correlation. Measurement of cyclic fluctuations: Periodogram and its relation with acvf, Harmonic analysis. Measurement of irregular component: Variate difference method. $A R(p)$ process, $M A(q)$ process, mixed ARMA(p, q) process, Stationarity and inevitability conditions, ARIMA (p, d, q) model, Estimation of parameters, Tests for stationarity Stochastic - Process. Section B Markov Chain having two states, n-step transition probabilities, Classification of states, Recurrent and transient states, Chapmar-Kolmogorov equations, Stationary probability theorems and limit theorem for ergodic chains, Martingales. Section C Poisson process, birth and death process, Random walk and Gambler's Ruin problem, Wiener process, Renewal theory and its application, Branching chains: Discrete	Change in Credit.

some problems.

- Understand the basic concept and applications of Weiner process, Renewal theory and branching process.

Contintous process (Markov Branching),
 Fundamental theorem of Extinction.

Suggested Text/ Reference Books:

1. P.G.Hoel, S.C. Port, C.J. Stone, Introduction to Stochastic Processes, Universal Book Store, New Delhi
2. S.K. Srinivasan, K.M. Mehata, Stochastic Processes, Tata McGraw-Hill Publishing Company limited, New Delhi, 1988.
3. J. Medhi, Stochastic Processes.New Age international, 1982.
4. G.E.P. Box, G.M. Jenkins, and Gregory C. Reinset Time Series Analysis: Forecasting and Control, John Wiley 4th edn 2008.
5. C. Chatfield, The Analysis of Time Series: Theory and Practice, Chapman and Hall in 1975.

Process (Galton-Watson).
Suggested Text/Reference Books

1. Hoel, P. G., Port, S. C., \& Stone, C. J
(1971). Introduction to probability theory, Universal Book Store, New Delhi.
2. Srinivasan, S. K., \&Mehata, K. M. (1988). Stochastic Processes. New Delhi: Tata McGraw Hill.
3. J. Medhi, J. (1994). Stochastic processes. New Age International Publications
4. Box, G. E. P., Jenkins, G. M., \&Reinsel, G. C (2008). Time series analysis: Forecasting and control. Hoboken: Wiley.
5. Chatfield, C. (1975). The Analysis of Time Series: Theory and Practice. Boston, MA: Springer US.

Suggested F-learning material:

1. Lecture Notes and Videos on "Stochastic Hydrology":
https://nptel.ac.in/courses/105108079/
2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343
3. Lecture Notes on "Tntroduction to Stochastic Processes":
https://ocw.mit.edu/courses/mathematics/18-
445-introduction-to-stochastic-processes-spring-2015/lecture-notes/
4. Lecture Notes on "Discrete Stochastic Processes":
https:// ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-262-

				discrete-stochastic-processes-spring-2011/course-notes/	
6.	STAT 507 Design of Experiments and Linear Models	After successful completion of this course, student will be able to: - Identify what design was followed and its features, describe what assumptions are appropriate in modelling the data. - Analyse the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. - Interpret statistical results from an experiment and report them in non-technical language. - Compare efficiency of the experimental designs.	-	Suggested F-learning Resources 1. Lecture notes on Design of Experiments http://www.iasri.res.in/ebook/EB SMAR/ebook pdf\% 20files/Manual\% 20 2II/2Basic $\% 20$ Fxperiments.pdf	No change in Syllabus.
7.	STAT (to be generated) Computation al Lab-III	On completion of the course, the student will be able to, - Analyze 2^{n} - factorial experiments. - Apply ANCOVA with one and two concomitant variable - Execute analysis and understanding of Split-plot designs and strip-plot design - Appraise Narain, Horwitz-Thompson estimator, Des Raj's ordered estimator. - Employ AR (p) process,MA (q)	-	Design of Experiment and Linear Models. 1. Analysis of Completely randomized design (CRD) and Randomised block design (RBD). 2. 2-square factorial experiment. 3. 2-cube factorial experiment without confounding. 4. 2-cube factorial experiment with partial confounding. 5. 2-cube factorial experiment with complete confounding. 6. Split-plot designs 7. Strip plot designs. 8. ANCOVA with one concomitant variable.	New Course

				R:https://bit.ly/30deSj5	
8.	MATH (To be generated) Queuing Theory	On completion of the course, the student will be able to - Understand the principles and objectives of model building based on Markov chains. - A nalyze the queueing situations. - Understand the mathematical tools that are needed to solve queueing problems. - Identify and develop queueing models from the verbal description of the real system.	Section A Concept of stochastic processes. Markov Chains discrete and continuous time parameter. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian Models (M/M/1, M/M/c, M/Ek/1, Ek/M/1. Section B Analytical method and use of rundomization technique to find the transient solution of $M / \mathrm{M} / 1 \mathrm{M} / \mathrm{M} / \mathrm{c}$ and $\mathrm{M} / \mathrm{M} / \neq$ queuing models including busy period distribution. Section C Imbedded markov chain technique and its use to the queueing models: $M / G / 1, G I / M / 1$ and $M / D / \mathrm{C}$, Bulk queuing models. Different design and control policies ((O, N) and vacation policies) for Markovian Queuing models. Intion to dime Simulation procedures: Data generation and Bookkeeping aspects. Suggested Text Books: 1. D. Gross and C.M. Harris, Fundamentals of Queueing Theory, 2nd Ed., John Wiley, 1985. 2. Michel E. Woodward, Communication and Computer Networks Modeling with Discrete Time Queues, IEEE Computer Society Press, 1994. (Chapter 4)	Section A Introduction of stochastic processes, Markov process, Markov Chain, Poisson process with its properties and related distributions (without proof) and birth-death process. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian queueing models: $\mathrm{M} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{M} / \mathrm{c}$. and their performance measures. Section B Steady State solution of $\mathrm{M} / \mathrm{F}_{\mathrm{k}} / 1$ and $\mathrm{E}_{\mathrm{k}} / \mathrm{M} / 1$ queueing models with their performance of measures. The transient solution of $M / M / 1$ and $M / M / \propto$ Queueing models including busy period distribution. Section C Imbedded Markov chain technique and its use to solve the Queueing models: $M / G / 1$ and $\mathrm{GI} / \mathrm{M} / 1$. Bulk queuing models: $\mathrm{M}^{[\mathrm{X}} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{MP]} / 1$. Different design and control policies for Markovian Queueing models. Simulation procedures: Data generation and Book- keeping aspects. Suggested Text Books: 1. Gross, D., \& Harris, C. M. (1985). Fundamental of Queueing Theory. ($2^{\text {nd }}$ ed.). John Wiley. 2. Michel, E. W. (1994). Communication and Computer Networks Modeling with discrete Time queues. IEEE Computer Society Press. (Chapter 4) Suggested Reference Books: 1. Cooper, R. B. (1981). Introduction to Queuing	Change in Credit.

			Suggested Reference Books: 1. R.B. Cooper, Introduction to Queuing Theory, $2^{\text {nd }}$ Ed., North Holland, 1981 2. D.R. Cox and W.L. Smith, Queues, Mathuen, 1961. 3. L. Kleinrock, Queuing Systems, Vol. I, John Wiley, 1975. 4. J. Medhi, Stochastic Model in Queuing theory, Academic Press, 1991. 5. T.L. Satty, Elements of Queuing Theory with Applications, Mc-Graw Hill, 1961.	Theory. (2 ${ }^{\text {nd }}$ ed.). North Holland, Elsevier. 2. Cox, D. R. \& Smith, W. 1. (1961). Queues. Mathuen\& Co. Ltd. 3. Kleinrock, L. (1975). Queuing System. (Vol. 1). John Wiley. 4. Medhi, J. (1991). Stochastic Models in queuing Theory. Academic Press. 5. Satty, T. L. (1961). Elements of Queuing Theory with Applications. Tata McGraw Hill. Suggested F-learning Material: 1. Queuing Systems, NPTEL https://nptel.ac.in/courses/117103017/1 2. Introduction to stochastic process and applications, NPTEL https://nptel.ac.in/courses/110104024/1 3. Stochastic Process and Time series, ePATHSHALAhttps://epgp.inflibnet.ac.in/ahl.p hp?csrno=34	
9.	CS 209 Data Structures	On successful completion of the course students will be able to - Develop knowledge of basic data structures for storage and retrieval of ordered or unordered data. Data structures include: arrays, linked lists, stacks, queues, binary trees, heaps. - Develop knowledge of applications of data structures including the ability to implement algorithms for the creation,	-	Suggested F-learning material: 1. Programming and Data Structures https://swayam.gov.in/course/1407-programming-and-data-structures 2. Data Structures and Program Methodology https://nptel.ac.in/courses/106103069/	

		insertion, deletion, searching, and sorting of each data structure. - Learn to analyze and compare algorithms for efficiency using Big-O notation. - Understand the concept of Dynamic memory management, data types, algorithms, Big O notation. - Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data			
10.	MATH (to be generated) Inventory Theory	On completion of this course, students will be able to: - Comprehend the dynamics of inventory management's principles, concepts, and techniques as they relate to the entire supply chain (customer demand, distribution, and product transformation processes), - Understand the methods used by organizations to obtain the right quantities of stock or inventory, - Familiarize themselves with inventory management practices. - Optimize different case studies requires efficient methods and practices to address inventory management problems.	Section A Analytical structure of production and Inventory problems, Inventory related costs, properties of inventory systems, Factors infuencing inventories. Deterministic inventory models and extensions without and with lead time, Inventory models with partial backlogging and sales, Models with contimuous production and non-constant demand with known production capacity. Inventory models with constraints, Quantity discounts; All units and incromental, Sensitivity of the lot size system, Aproducts and M-Machines model. Section B Stochastic Inventory Models and Extensions without and with lead time, Ure of tran time dependent for continuous and distrete demand, Power demand pattern Inventory Model, Sofety	Section A Concepts of Inventory, Classification of inventory models, EOQ model, EPQ model, EOQ model with shortages, EPQ model with shortages, EOQ model with constraints: Quantity discounts, Floor Constraints, Investment Constraint. Sensitivity analysis in inventory models. Section B Stochastic Inventory Models and Extensions without and with lead time. Power demand pattern inventory model, Introduction to Just In Time (JIT) and Vendor Managed Inventory (VMI). Section C Simulation in Inventory system, Classification of items viz: ABC, VED, FNSD, HML, SDE, XYZ,Case studies in inventory control. Suggested Books: 1. Hadley, G., Whitin, T. M.. (1963). Analysis of inventory systems. Englewood Cliffs, N.J.: Prentice-Hall. 2. Naddor, E. (1984). Inventory systems. Malabar, Fla:	Change in Credits

		- Understand the behavior of the inventory parameters after some time using simulation techniques.	Section C Simulation in Inventory system, Production scheduling, Classification of items viz: ABC, VED, (FNSD, HML, SDE, XYZ), Case studies. Books Recommended: Text Books: 1. Kanti Swarup, Operation Research, Sultan Chand \& Sons, 2010. 2. Sharma S.D., Operations Research, Kedarnath Ramnath, Meerut, 1972. Reference Books: 1. G. Hadley, T. Whitin, Analysis of Inventory Systems, Prentice Hall, 1963. 2. E.Naddor, Inventory System, John Wiley, New York, 1966.	R.E. Krieger. 3. Waters, D. (2008). Inventory Control And Managenent, 2Nd Ed. Wiley India Pvt. Limited. Suggested E-learning material: 1. Inventory Models costs, EOQ model(Lecture PDF) https://nptel.ac.in/courses/110106045/9 2. Inventory management(PDF) https://ocw.mit.edu/courses/engineering-svstems-division/esd-260j-logistics-systems-fall 2006/lecture-notes/	
11.	CS315 Theory of Computation	On successful completion of the course students will be able to - Explain basic concepts in formal language theory, grammars, automata theory, computability theory, and complexity theory. - Understand abstract models of computing, including deterministic (DFA), nondeterministic (NFA), Push Down Automata(PDA) andTuring (TM) machine models and their power to recognize the languages. - Understand the application of	-	Suggested E-learning material: 1. Theory of Computation https://nptel.ac.in/courses/106104028/ 2. An Introduction to Formal Languages and Automataby Peter Linz http://almuhammadi.com/sultan/books/Linz.5ed. pdf	No Change

		machine models and descriptors to compiler theory and parsing. - Relate practical problems to languages, automata, computability, and complexity. - Apply mathematical and formal techniques for solving problems in computer science. - Understand the relationship among language classes and grammars with the help of Chomsky Hierarchy.			
12.	CS 308 Operating Systems	On successful completion of the course students will be able to - Learn the fundamentals of Operating Systems. - Learn the mechanisms of OS to handle processes and threads and their communication - Learn the mechanisms involved in memory management in contemporary OS - Gain knowledge on Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols - Know the components and management aspects of concurrency management - Learn Case study of Unix OS.	-	Suggested E-learning material: 1. Operating Systems https://nptel.ac.in/courses/106108101/ 2. Linux for Developers by The Linux Foundation https://www.coursera.org/learn/linux-fordevelopers	No Change

13.	CS 528 Modeling and Simulation	On successful completion of the course students will be able to - Define basic concepts in modeling and simulation (M\&S). - Classify various simulation models and give practical examples for each category. - Construct a model for a given set of data and perform its validity. - Generate and test random number and apply them to develop simulation models. - Analyze output data produced by a model and test validity of the model. - Explain parallel and distributed simulation methods. - Know how to simulate any discrete system using queuing systems.	-	Suggested F-learning material: 1. Modelling and Simulation of Descrete Event System https://nptel.ac.in/courses/112107220/ 2. Simulation and modeling of natural processes by University of Geneva https://www.coursera.org/lecture/modeling-simulation-natural-processes/modeling-and-simulation-F7vas	No Change
14.	MATH (to be generated) Fields and Galois Theory	On completion of this course, students will be able to - Understand the concepts of field extension and appreciate its importance. - Understand different types of extensions. - Find the Galois group for some extension fields. - Know the link between field theory	-	Section A Fields, prime subfields, Extension fields, algebraic extensions, simple extensions, transcendental extension, minimal polynomial, Kronecker's Theorem, splitting fields, uniqueness of splitting fields and algebraic closures. Section B Finite fields, existence and uniqueness of finite fields, Normal and separable extensions, perfect fields, Automorphisms of field, fixed fields, Galois group, F-	New Course

FOURTH SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be generated) Differential Geometry	On completion of the course, the student will be able to - Compute Reparameterization, Curvature and Torsion of smooth curves of curves. - Discuss about Osculating circle, Osculating sphere, Involutes and Evaluates, Bertrand curves, and Helices. - Compute quantities of geometric interest such as curvature, as well as develop a facility to compute in various specialized systems, such as semi geodesic coordinates or ones representing asymptotic lines or principal curvatures. - Develop arguments in the geometric description of curves and surfaces in order to establish basic properties of geodesics.	Section A Curves in Plane and Space : Parameterized curves, Tangent vector, Arc length, Reparametrization, Regular curves, Curvature and Torsion of smooth curves, Frenet-Serret formulae, arbitrary speed curves, Frenet approximation of a space curve. Osculating circle, Osculating sphere, Involutes and Evolutes, Bertrand curves, Spherical indicatrices, Helices, Imtrinsic extations of spectives, Section B Surfaces in R^{3} : Smooth surfaces, Tangents, Normals and Orientability. Examples of surfaces: Generalized cylinder and cone, Ruled surfaces and Surface of revolution.Inverse function theorem and its applications, First fundamental form, Isometry of surfaces, Conformal mapping of surfaces, Surface Area, Equiareal maps and a Theorem of Archemedes, Second fundamental form, Curvature of curves on a surface, Normal and Principal curvatures, Meusnier's theorem, Euler's theorem, Classification of points on a surface, Geometric interpretation of principal curvatures, Umbilical points. Section C	Section A Curves in Plane and Space: Parameterized curves, Tangent vector, Arc length, Reparametrization, Regular curves, Curvature and Torsion of smooth curves, FrenetSerret formulae, Osculating circle, Osculating sphere, Involutes and Evolutes, Bertrand curves, Spherical indicatrices, Helices. Section B Surfaces in R3: Smooth surfaces, Tangent, Normal and Orientability. Examples of surfaces: Generalized cylinder and cone, ruled surfaces, Surface of revolution, First fundamental form, Isometries of surfaces, Conformal mapping of surfaces, Surface Area, Equiareal maps and Theorem of Archemedes, Second fundamental form, Curvature of curves on a surface, Normal and Principal curvatures, Meusnier's theorem, Euler's theorem, Classification of point on surface, Geometric interpretation of principal curvatures, Umbilical points. Section C Gaussian and Mean curvature, Pseudo sphere, Flat surfaces, Surfaces of constant mean curvature, Gaussian curvature of compact surfaces, Gauss map. Geodesics: Definition and basic properties, Geodesic equations, Geodesics on a surface of revolution, Clairaut's theorem, Geodesics as shortest paths, Geodesic coordinates,	Change in Credit.

2.	MATH (to be generated) Partial differential Equations	On completion of the course, the student will be able to - apply the techniques for solving partial differential equations. - describe the most common partial differential equations that appear in problems concerning e.g. heat conduction, flow, elasticity and wave propagation - solve simple first order equations using the method of characteristics and classify second order equations. - describe, compute and analyse wave propagation and heat conduction in mathematical terms - formulate maximum principles for various equations and derive consequences. - evaluate and assess the results of various problems in other subjects based on these concepts.	Section A Mathematical classification of Partial Differential Equation. Illustrative examples of elliptic, parabolic and hyperbolic equations. Physical examples of elliptic parabolic and hyperbolic partial differential equations, Fomulation of partial differential equations. Partial Differential equation of the first order, Lagrange's linear equation, different forms of non-linear partial differential equations, Charpit's method. Linear partial differential equations with constant coefficients. Homogeneous equations, Nonhomogeneous equation. Section B Partial Differential equations of second order with variable coefficients, Monge's Methods, Separation of variables, canonical forms, Cauchy's problem. The Wave equation (one and two dimensional) Fourier series solutions of the Wave equations (homogeneous and non-homogeneous), Numerical solution of the wave equation. meng d'Alembert's solution. Normal modes of Vibration of a cireular elastic membrane and reetangular membrane: Section C Heat equations (homogeneous and nonhomogeneous). Numerical approximation of solution ofstandard heat condition problem.	Section A Mathematical classification and Formulation of partial differential equations, Partial Differential equation of the first order, Lagrange's linear equation, different forms of non-linear partial differential equations, Charpit's method. Linear partial differential equations with constant coefficients. Homogeneous equations, Nonhomogeneous equation. Section B Partial Differential equations of second order with variable coefficients, Monge's Methods, Separation of variables, The Wave equation (one and two dimensional) Fourier series solutions of the Wave equations (homogeneous and non-homogeneous), Numerical solution of the wave equation. Section C Heat equations (homogeneous and non-homogeneous), Numerical approximation of solution of standard heat condition problem, Harmonic Functions and Dirichlet Problem, Green's Functions and Properties. Existence theorem by Perron's Method. Suggested Text Books: 1. John, F. (1991). Partial differential equations. New York: Springer. 2. Bansal, J. L., \&Dhami, H. S. (2004). Differential equations Vol II. Jaipur: JPH.	Change in Credit.

			Bartlett Learning, 2009 7. J N Sharma and K Singh: Partial Differential Equations for engineers and scientists.Narosa New-Delhi, India. 2014.	3. Video Lectures for Partial Differential Equations; Platform: LAMAR http://www.math.lamar.edu/faculty/maesumi \angle PDE1.html\#pdeRFSOURCES	
3.	STAT (to be generated) Advanced Inference	After successful completion of this course, student will be able to - Apply various estimation and testing procedures to deal with real life problems. - Understand Fisher Information, Lower bounds to variance of estimators, MVUE. - Understand consistency, CAN estimator, MLE. - Understand Neyman-Pearson fundamental lemma, UMP test. - Apply Likelihood Ratio test in real life testing problems. - Understand invariant and similar test.	Section A Consistency and asymptotic relative efficiency of estimators, Consistent asymptotic normal (CAN) estimator, Method of MLE and its large sample properties, Best Asymptotic normal (BAN) for one parameter, MIF in Pitman family and exponential of dintrilution. Section B Best critical region $(B C R)$, Generalized Peyman Pearson lemma, UMP tests for distribution with monotone likelihood ratio (MLR), Unbiased tests, Locally most powerful test, Similar regions and test of Neymann structure. Section C Invariance tests and UMP invariant tests, Asymptotic distribution of Likelihood ratio test (LRT) statistics, Asymptotic distribution of log likelihood rutio Consinteney of harge sumple test, Anymptotic Text Book: 1. Ferguson, T.S. (1996) : A Course in Large Sample Theory, Chapman \& Hall, London. 2. Goon, A.M. Gupta, M.K. Dasgupta, B. (1973). An Outline of Statistical Theory, vol. 2, World Press. Reference Books: 1. Gupta, A.D. (2008), Asymptotic Theory of	Section A Consistency and asymptotic relative efficiency of estimators, Consistent asymptotic normal (CAN) estimator, Best asymptotic normal (BAN) for one parameter, Method of MLE and its large sample properties. Section B Generalized Neyman- Pearson lemma, UMP tests for distribution with monotone likelihood ratio (MLR), Unbiased tests, Similar regions and test of Neyman structure. Section C Invariance tests and UMP invariant tests, Likelihood ratio test. Consistency of Likelihood ratio test. Asymptotic properties of likelihood ratio test. Text Books 1. Ferguson, T. S. (1996). A course in Iarge sample Theory. London, Chapman and Hill. 2. Goon, A. M., Gupta, M. K. \& Gupta, B. D. (1973). Fundamental of Statistics (Vol. I), The world Press Pvt. Itd. Reference Books: 1. Gupta, A. D. (2008). Asymptotic Theory of Statistics and Probability. New York, Springer. 2. Kale, B. K. (1999). A first course on parametric inference. Narosa Publication.	Change in Credit.

			Statistics and Probability, Springer, NewYork. 2. Kale, B.K. (1999), A First Course in Parametric Inference, Narosa, Publication. 3. Lehmann, E.L. and Casella, G. (1998), Theory of Point Estimation, Springer, New York. 4. Rao, C.R. (1995), Linear Statistical Inference and its Applications, Wiley, New York. 5. Lehman, E. (1986), Theory of Point Estimation, John Wiley \& Sons. 6. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley \& Sons.	3. Lehman, E. L. \&Cesella, G. (1998). Theory of Point estimation.New York, Springer. 4. Rao, C. R. (1995). Linear Statistical Inference and Its Applications. Wiley Eastern Ltd. 5. Lehman, E. L. (1986). Testing of Point Estimation, John Wiley \& Wiley eastern. 6. Lehman, E. L.(1986). Testing of Statistical Hypothesis, John Wiley \& Wiley eastern. Suggested E-learning Resources 1. Statistical Inference, NPTEL, https://nptel.ac.in/courses/111105043/ 2. Statistical Inference, ePATHSHALAhttps://epop.inflibnet.ac.in/ahl.p hp?csrno=34	
4.	STAT 502 Bayesian and Multivariate Analysis	On the successful completion of the course, student will be able to, - Find posterior distribution of a parameter. - Identify the nature of the prior. - Understand various types of loss functions and their nature. - Use Bayesian theory to draw inferences in simple problems. - Define multivariate normal distribution and understand its properties. - Estimate the mean vector and covariance matrix of the multivariate normal population.	-	Suggested E-learning material: 1. Video lecture on 'Bayesian statistics without tears' https:// podcasts.ox.ac.uk/bayesian-statistics-without-tears	No Change in Syllabus.

		- Test the significance of single mean vector and difference in the two mean vectors. - Perform PCA and factor analysis on real data set. - Classify and discriminate the observations in tivo populations. - Perform correlation analysis between two multivariate populations.			
5.	STAT 502L Multivariate Analysis Lab	On completion of this course, the student will be able to - Differentiate between the nature of prior and posterior densities by means of their plots - Find Bayes estimator, Bayes Risk and perform Bayes testing - Estimate mean vector and covariance matrix of given data set - Perform testing of significance of single mean vector and difference of two mean vectors - Reduce dimension of the data using principal component analysis and factor analysis - Classify and discriminate observations in two or more populations - Observe correlation between two	-	Suggested E-learning Material 1. Using R for Multivariate Analysis https://little-book-of-r-for-multivariateanalysis.readthedocs.io/en/latest/src/multivari ateanalysis.html	No Change in Syllabus

		sets of multivariate data sets.			
6.	STAT (to be generated) Reliability and Renewal Theory	On successful completion of the course, the students will be able to: - Understand the importance of validity and reliability assessment and the link between the two. - Estimate the reliability function and mean time to failure for different types of systems - Analyze statistical experiments leading to reliability modeling. - Estimate life length distributions, using complete or censored data. - Identify reliability testing components. - Apply reliability theory to assessment of reliability in engineering design. - A nalyze non-repairable systems of independent components, with and without redundancy - First look at what a random process is and then explain what renewal processes are. - Describe, derive, and prove important theorems and formulas for renewal theory - Use renewal theory to solve problems where Poisson is not a	-	Section A Concept of Reliability. Classes of Life time distributions. Evaluation of Reliability function, Shape of Reliability function. System, Reliability Evaluation : Series \& Parallel system, partially redundant system, standby system with perfect switching/imperfect switching, (k, n) system, Bridge Structure. Availability theory and its molding for various configurations. Introduction to Software Reliability. Section B Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies Age, Block, Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging. Section C Renewal Theory, Distribution of number of renewals \& moments, Recurrence time \& its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability. Text Books 1. Sinha, S. K. (1986). Reliability and life testing. New York: Wiley. 2. Gert s bakh, I. B. (2009). Reliability theory. With appliations to preventive maintenance. New Delhi: Springer.	New Course

		realistic process		3. Cox, D. R. (1982). Renewal theory. London: Chapman and Hall. 4. Lewis, E. E. (1996). Introduction to reliability engineering. New York, NY: Wiley. Reference Books 1. Barlow, R. E., \&Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Rinehart and Winston. 2. Jardine, A.K.S. (1973). Maintenance, Replacement andReliability. UK: Pitman Publication. 3. Medhi, J. (2009). Stochastic Process (3rd Ed.). New Age International, 2009. Suggested F-learning material: 1. 2011 Lecture 17: Modules, Systems, and Reliability: https://ocw.mit.edu/courses/mechanicalengineering/ 2-627-fundamentals-of-photovoltaics-fall-2013/lecture-videos-slides/2011-lecture-17-modules-systems-andreliability/ 2. Probability Theory and Applications: Lecture $40-$ Reliability of Systems: https://nptel.ac.in/courses/111104079/40	
7.	MATH 516 Network Goal Programmin g	On completion of this course, students will be able to: - Plan and structure a project. - Understand basic techniques for quality improvement, - Apply the PERT \& CPM techniques	-	Suggested F-learning material: 1.Critical path method (PDF) htp://textofvideo.nptel.ac.in/112106131/lec34. pdf 2.Project https://nptel.ac.in/courses/110104073/21	No Change in Syllabus.

		to optimize the project goals. - Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. - Understand how to model and solve problems using Goal Programming			
8.	MATH 516L Network Goal Programmin g Lab	On completion of the course, the student will be able to, - Implement optimization methods in software to solve shortest path problem, spanning tree problem, programming problems etc. - The science learning goals of laboratory experiences include enhancing mastery of science subject matter, developing scientific reasoning abilities, increasing understanding of the complexity and ambiguity of empirical work, developing practical skills, increasing understanding of the nature of science, cultivating interest in science and science learning. - Write efficient, well-documented code and present numerical results in an informative way.	-	Practical/Lab to be performed on a computer using OR (TORA, LINGO, MATLAB etc.)/Statistical packages. 1. Determines the Flow of commodity in a network 2. Solution of Shortest path problem as a L.PP 3. Shortest Path Problem using Dijkstra's algorithm 4. Problem based on Minimal Spanning Tree 5. Project planning (Deterministic case-CPM) 6. Project planning (Probabilistic case-PERT) 7. Problem based on Project management with Crashing 8. Solution of Flow Shop Problem 9. Solution of Job Shop Problem 10. To solve Goal Programming Problem using Graphical Method 11. Graphical solution of weighted Goal programming 12. Graphical solution of pre-emptive Goal programming 13. Solution of Goal Programming Problem with simplex method	List of Practical is added.

				Text Books/Reference Books: 1. Winston, W. L. (2009). Operations research: Applications and algorithms. Belmont, Calif: Brooks/Cole, Cengage Learning. 2. Hillier, F. S., \& Lieberman, G. J. (2016). Introduction to Operations Research. Boston: McGraw-Hill. Suggested F-learning material: 1. Optimization Toolbox https://in.mathworks.com/help/optim/index.h tml 2. LINGO hitp://swmath.org/software/4942	
9.	CS313 Software Engineering	On successful completion of the course students will be able to - Understand the system development lifecycle. - Understand the softwaredevelopment process, including requirements analysis, design, programming, testing and maintenance. - Model object-oriented software systems. - Investigate and improve the specification of a software system. - Specify, design and construct CASE tools and application software. - Develop and apply testing	-	Suggested F-learning material: 1. Software Engineering https://nptel.ac.in/courses/106101061/ 2. Software Engineering by Roger S. Pressman http://qiau.ac.ir/teacher/files/911610/13-11-1387-17-31-03.pdf	No Change

		strategies for software applications. - Identify some of the main risks of softivare development and use. - Effectively participate in teambased activities.			
10.	CS 213 Design and Analysis of Algorithms	On successful completion of the course students will be able to - Analyze the performance of various algorithms in terms of time and space. - Solve recurrence relation using various methods. - Compute complexity of various iterative and recursive algorithm. - Understand the concept and design algorithm using data structures including threaded binary tree, B-Tree and hashing techniques. - Understand numerous algorithm design techniques including divide\& conquer, greedy, dynamic programming, backtracking and branch \& bound. - Choose appropriate algorithm design techniques for solving real world problems. - Understand how the choice of the algorithm design methods impact	-	Suggested E-learning material: 1. Design and Analysis of Algorithms https://nptel.ac.in/courses/106101060/ 2. Algorithms Specialization by Stanford University https://www.coursera.org/specializations/algorith ms 3. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein https://mcdtu.files.wordpress.com/2017/03/introd uction-to-algorithms-3rd-edition-sep-2010.pdf	No Change

THIRD/FOURTH SEMESTER (Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 501 Advanced Analysis (Analysis on Abstract Spaces)	On completion of the course, students will be able to, - Explain when Normed space become Banach space. - Define the Hilbert spaces. - Define multi linear mappings. - Check whether the function is bounded or not? - What is directional derivative? - Explain the difference between partial derivative and directional derivative. - Tell about the Lipschitz's constant and conditions - Related the analysis and differential equation	-	Suggested F-learning material 1. Normed space, Banach space and Hilbert spaces and its properties; Platform: https://nptel.ac.in/courses/111105037/	No change in the syllabus
2.	MATH 503 Advanced Functional Analysis	On completion of the course, students will be able to, - Check whether a sequence of operators convergence or divergences? - Explain how continuous function on a closed and bounded interval can be	-	Suggested F-learning material 1. Normed space, Banach space and Hilbert spaces and its properties; Platform: https://nptel.ac.in/courses/111105037/	No change in the syllabus

		uniformly approximated on that interval by polynomials to any degree of accuracy. - Explain how you will apply the Banach fixed point theorem. - Relate the fixed point with solution of differential and Integral equation. - Check the spectral properties of bounded linear operators - Check whether the operator is compact or not? - Explain and use of the properties of compact linear operators.			
3.	MATH 504 Analytic and Algebraic Number Theory	On completion of the course, students will be able to, - Demonstrate the knowledge of arithmetic functions and their property. - Know the prime number theorem and its analytic proof. - Understand basic concepts of algebraic number theory such as conjugates, discriminants, algebraic integers, integral basis, norms and traces. - Understand prime factorization of ideal and unique factorization. - Know some important theorem in algebraic number theory.	-	-	No change in the syllabus
4.	MATH 510	On completion of the course, students	-	Suggested F-learning material	No change

	Integral Equations and Calculus of Variations	will be able to, - Acquire ability to recognize difference between Volterra and Fredholm Integral Equations, First kind and Second kind, homogeneous and inhomogeneous. - Be thorough with different types of integral equations and apply these methods to solve Integral Equations. - Students will have much better and deeper understanding of the fundamental concepts of the space of admissible variations and concepts of a weak and a strong relative minimum of an integral. - Solve isoperimetric problems of standard type. - Solve simple initial and boundary value problems by using several variable calculus.		1. Open course in Integral equations, calculus of variation and its applications (all Topics) https://nptel.ac.in/courses/111107103/ 2. Volterra and Fredholm Integral Equations http://staff.ul.ie/mitchells/Final notes.pdf 3. Green's Functions http://www.maths.manchester.ac.uk/~wparnell/ MT34032/34032 IntEquns.pdf 4. Neumann series, resolvent kernels and variational problem https://swayam.gov.in/courses/4824-july-2018-integral-equations-calculus-of-variations-and-itsapplicati 5. Open course in integral equations: https://ocw.mit.edu/courses/mathematics/18-307-integralequations-spring-2006/	in the syllabus
5.	MATH 517 Number Theory and Cryptograph y	On completion of the course, students will be able to, - Understand the basic concepts of number theorem and their applications in cryptography. - Know the need of security of digital data. - Demonstrate the application of mathematics in computer science. - Appreciate the historical	${ }_{-}^{-}$	Suggested F-learning material: 1. Lecture Notes on Number Theory: https://nptel.ac.in/courses/111103020/ 2. Video Lecture on Number Theory: https://bit.ly/2ToTdjz 3. Video Lecture on Cryptography: https://nptel.ac.in/courses/106105031/	No change in the syllabus

		cryptosystems and the development of modern cryptography. - Demonstrate the knowledge of mathematics behind RSA cryptosystem, ElGamal Cryptosystem and secrete sharing schemes.			
6.	MATH 527 Tensor Analysis and Geometry of Manifolds	On completion of the course, students will be able to, - Discuss different kinds of surfaces, connection and covariant derivatives. - Understand the concepts of manifold and illustrate some examples of manifolds. - Understand the Ricci identity and enable to use it in proving different theorems. - Define and illustrate some examples of Lie group.	-	Suggested F-learning material: 1. NOC: Differential Calculus in Several Variables: https://nptel.ac.in/courses/111104092/ 2. NOC: Multivariable Calculus: https://nptel.ac.in/courses/111107108/ 3. NOC: Calculus of One Real Variable: https://nptel.ac.in/courses/109104124/	No change in the syllabus
7.	MATH 529 Theory of Games	On completion of the course, students will be able to, - Understand all the basic concepts and results of game theory. - Understand terms like Nash equilibrium, the extensive form (which computer scientists call game trees), Bayesian games (modelling things like auctions), repeated and dynamic games. - Recognize and model strategic	-	Suggested F-learning material: 1. Game Theory: Lecture notes(PDF)https://ocw.mit.edu/courses/econo mics/14-126-game-theory-spring,2016/ 2. Game Theory and Economics: Lecture notes(PDF)https://nptel.ac.in/courses/1091030 21.	No change in the syllabus

		situations, to predict when and how your actions will influence the decisions of others and to exploit strategic situations for your own benefit. - Understand the game theoretic tools for modelling and solving problems in operations management.			
8.	MATH 530 Viscous Fluid Dynamics	On completion of the course, students will be able to, - Understand the fundamental concepts of fluid dynamics. - Derive the fundamental equations governing the flow of a viscous fluid. - Demonstrate the analytical solutions of Navier-Stokes equations by making certain assumptions for certain geometries. - Identify, formulate and solve engineering problems.	-	Suggested F-learning material 1. Viscous Fluid Flow, Platform: The University of Manchester; http://www.maths.man.ac.uk/~mheil/Lectures/ Fluids/index.html 2. Fluid Mechanics, Platform: nptel; https://nptel.ac.in/courses/112105171// 3. Introduction to Fluid Mechanics and Fluid Engineering, Platform: FreeVideoLectures; https://freevideolectures.com/course/3513/intro duction-to-fluid-mechanics-and-fluidengineering/28	No change in the syllabus
9.	MATH 507 Financial Mathematics	On completion of the course, students will be able to, - Understand financial analysis and planning. - Know the cost of capital, capital structure and dividend policies. - Apply technique of Goal Programming to profit planning and	-	-	No change in the syllabus

		financial budgeting. - Make financing decision onproblem of determining optimal capital structure - Understand the concept of leasing, debt management, analysis of commitment of funds and risk of cash insolvency.			
10	MATH513 Marketing Managemen t	On completion of the course, students will be able to, - Understand the concept of marketing and its role in business and public organization. - Understand the need for scientific marketing analysis. - To uses Mathematical models in Marketing and understand their limitations. - Understand the concept of promotional decisions in the presence of competition. - Use game theory models for promotional effort. - Make channels of distribution and transportation decision.	-	-	No change in the syllabus

				transportation problemsFuzzy System: Introduction to fuzzy system.Defuzzification methods: centre of area (or centre of gravity or centroid), centre of maxima, mean of maxima.Fuzzy controllers: an overview of fuzzy controller.Fuzzy Systems and Neural Network: Introduction to neural network, fuzzy neural networks. Section C Probability, Uncertainty and Fuzzy Measures: Probability verses Possibility, Fuzzy event, Crisp probability of fuzzy event and fuzzy probability of fuzzy event, Level of uncertainty, Measure of fuzziness: (i) using Shannon's entropy formula and (ii) using metric distance. Belief Theory: Evidence Theory- Mathematical Theory of evidence, Introduction to Shafer's Belief Theory, Belief representation: mass of belief, belief measure, plausibility measure, properties of belief functionrelation between belief and plausibility measure, Dempster's Rule of Combination, Applications of Fuzzy logic and fuzzy set theory in Operations Research, Computer Science and Engineering fields. Suggested Text Books: 1. Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag 2. Klir, G. J., \& Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India. Suggested Reference Books: 1. Klir, G. J., \& Folger, T. A. (2010). Fuzzy sets,

				uncertainity and information. New Delhi: PHI Learning Private Ltd. 2. Yen, J., \&Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. 3. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. 4. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. 5. Nguyen, H. T., \& Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman \& Hall/CRC. Suggested E-learning material: 1. Introduction to Fuzzy Logic(Videos) https://nptel.ac.in/courses/106105173/2 2. Fuzzy Logic: Introduction (PDF) http://cse.iitkgp.ac.in/~dsamanta/courses/sca/resou rces/slides/FL-01\%201ntroduction.pdf	
12.	MATH (to be generated) Coding Theory	On successful completion of this course students will be able to, - Understand the need of coding theory. - Appreciate the applications of abstract and linear algebra in coding theory. - Find the generator and parity check matrix of linear codes. - Understand the main coding		Section A Communication channels, maximum likelihood decoding, Hamming distance, minimum distance decoding, distance of a code,finite fields, structure of finite fields, minimal polynomial, linear codes, Hamming weight, bases of linear codes, generator matrix and parity check matrix, encodingand decoding of linear codes, syndrome decoding. Section B The coding theory problem, lower bounds, Hamming	New elective

theory problem.

- Derive classical bounds of codes and the distance of the code.
- Understand cyclic codes and their decoding.
bounds and perfect codes, singleton bound and MDS
codes, nonlinear codes, Reed-Muller codes, subfields codes.
Section C
Cyclic codes: definitions, generator polynomials, generator and parity check matrices, decoding of cyclic codes, Burst-error-correcting codes, BCH codes: definitions, parameters of BCH codes, Decoding of BCH codes. Reed-Solomon codes, generalized ReedSolomon codes, Goppa codes.
Suggested Text Book:

1. Ling, S., \& Xing, C. (2004). Coding Theory: A first Course. Cambridge: Cambridge University Press.

Suggested Reference Books:

1. MacWilliams, F. J., \& Sloane, N. J. A. (2007). The theory of error-correcting codes. Amsterdam: North-Holland.
2. Peterson, W. W., \& Weldon, E. J. (2008). Errorcorrecting codes. ($2^{\text {ma }}$ Ed.). Cambridge, Mass: MIT Press.
3. Berlekamp, E. R. (2015). Algebruic coding theory. (Algebraic Coding Theory.) Singapore: World Scientific.
4. Huffman, W. C., \&Pless, V. (2010). Fundamentals of error-correcting codes. Cambridge: Cambridge Univ. Press.
5. Hill, R. (2001). A first course in coding theory. Oxford: Clarendon Press.
6. Rhee, M. Y. (1989). Error-correcting coding theory.

				Singapore: McGraw-Hill. Suggested F-learning Material: 1. Online Course on Coding Theory:https://onlinecourses.nptel.ac.in/noc17 ee07 2. Lecture https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-895-essential-coding-theory-fall-2004/	
13	MATH (to be generated) Fixed Point Theory	On successful completion of this course students will be able to: - Understand various concepts in metric spaces such as completeness. - Demonstrate standard examples of metric spaces and prove simple results related to them. - Understand the proof of open mapping theorem and Closed graph theorem. - Check the conditions for expansive and Nonexpansive Mappings, contractive and contraction mappings. - Understand standard fixed-point theorems. - To present the basic ideas of the theory, and illustrate them with a wealth of examples and		Section A Metrics space, Complete metric space, Convergence, Cauchy sequence and Completeness, Various concept in metric space, Normed linear space, Banach space, normed space and Hilbert space, open mapping theorem and Closed graph theorem, linear operator. Section B Lipschitz mapings,expansive and Nonexpansive Mappings, contractive and contraction mappings, Upper and lower semi continuity of maps, contractive and nonexpansive multivalued maps, Banach's contraction principle, Fixed point theorem of Schauder's and Kirk, Tarsiki's Fixed point theorem. Section C Banach Fixed point theorem for multivalued maps, Generalized Schauder Fixed point theorem. Existence of solutions of ordinary equations and systems of linear equations in several unknowns, applications in the theory of differential and integral equations. Suggested Books: 1. Zeidler, E. (2000). Nonlinear functional analysis	New elective

		applications in differential and integral equations.		and its applications: Vol 1. New York: Springer. 2. Khamsi, M. A., \& Kirk, W. A. (2001). An introduction to metric spaces and fixed point theory. New York: John Wiley \& Sons. 3. Smart, D. R. (1980). Fixed point theorems. Cambridge: Cambridge University Press. 4. Istra tescu, V. I. (1981). Fixed point theory: An introduction. Dordrecht, Holland: D. Reidel Pub. 5. Agarwal, R. P., Meehan, M., \&O'Regan, D. (2009). Fixed point theory and applications. Cambridge, UK: Cambridge University Press. E-Resources 1. National Programme for Technology Enhanced Learning (NPTEL) https://nptel.ac.in/courses/111105037/	
14.	MATH (to be generated) An Introduction to Dynamical Systems	On successful completion of this course students will be able to, - Describe the main features of dynamical systems and their realisation as systems of ordinary differential equations. - Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability. - Use a range of specialised analytical techniques which are required in the study of dynamical systems.	-	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems and global existence theorem, Limit sets and Attractors, Periodic orbits, Limit Cycles, and Seperatrix cycles, the Poincare map, the stable manifold theorem for periodic orbits, the Poincare-Bendixon theory in R2,	New Elective

		- Describe dynamical systems geometrically and represent them graphically via phase plane analysis. - Find fixed points and period orbits of discrete dynamical systems, and find their stability. - Do graphical analysis of 1D discrete dynamical systems. - Understand the basic properties of a chaotic dynamical system.		LineardSystems, Bendixon's Criteria. Section C Discrete dynamical systems: finite dimensional maps, limit sets, Stability, Invariant manifolds, Runge-Kutta methods: the framework, linear decay, Lipschitz conditions, Dissipative systems, Generalized dissipative systems, Gradient system. Suggested Books: 1. Perko, L. (2009). Differential equations and dynamical systems. (3rd Ed.). New York, NY: Springer. 2. Stuart, A. M., \& Humphries, A. R. (1998). Dynamical systems and numerical analysis. Cambridge: Cambridge University Press. 3. Lynch, S. (2014). Dynamical systems with applications using MATLAB. (2 ${ }^{\text {nd }}$ Ed.). Cham: Birkhäuser.	
15.	MATH (to be generated) Bio Mathematics	On completion of the course, the student will be able to, - model the single species and two species systems. - study the stability of these systems. - Apply harvesting of the species. - to model epidemics and analyse the dynamics		Section A Continuous population Models for single species: Basic concepts. Exponential growth model, formulation, solution, interpretation, and limitations. Compensation and depensation. Logistic growth model, Continuous Growth Models, Insect out break Model: Spruce Budworm, Delay models, Linear Analysis of Delay Population Models: Periodic solutions. Harvesting a single Natural Population. Section B Continuous Models for interacting Population:Interaction between species: two species models, definition of stability, community matrix	New elective

				approach, Qualitative behavior of the community matrix, Competition: Lotka-Volterra models, Extension to Lotka-Volterra models, Competition in field experiments, Competition for space, Models for Mutualism. Predator-Prey interaction: Lotka-Volterra Models, dynamic of the simple Lotka-Volterra models, Role of density dependent in the Prey, Classic laboratory experiment on predator, predation in natural system. Some predator-prey models. Section C Mathematical modeling of epidemics: Basic concepts. Simple epidemic model, formulation, solution, interpretation, and limitations. General epidemic model, formulation, solution, interpretation, and limitations Suggested Text Books: 1. Murray, J. D. (2013). Mathematical Biology. Berlin: Springer Berlin. 2. Freedman, H. I. (1987). Deterministic mathematical models in population ecology. (2nd Ed.). Edmonton, Alta., Canada: HIFR Consulting. Suggested Reference Books: 1. Hastings, A. (2010). Population biology. New York: Springer. 2. Meerschaert, M. M. (2013). Mathematical modeling. (4th Ed.). Amsterdam: Elsevier Academic Press. 3. Meyer, W. J. (1984). Concepts of mathematical modeling. New York, N.Y.

				4. May, R. (1976). Theoretical ecology. Principles and applications. United States. 5. Bailey, N. T. J., \& Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. Suggested E-learning material 1. NPTEL: https://nptel.ac.in/courses/102101003/ and https://nptel.ac.in/courses/102101003/\# 2. Biomathematics Lectures - UBC Zoology: www.zoology.ubc.ca/~bio301/Bio301/Lectures html	
16	MATH (to be generated) Algebraic Topology	On completion of the course, the student will be able to, - Generate original solutions to a variety of mathematical problems related to the fundamental group and covering spaces. - Recall all definitions and theorems in this course and use them to construct original proofs and/or counterexamples, even on demand (e.g. in exams or discussions). - Use algebraic invariants of topological spaces to distinguish spaces which otherwise seem similar. - Apply computational algorithms		Section A Homotopy, Straight line homotopy, Null homotopy. Contractible spaces and Homotopy type. Retract, Deformation Retract and Strong Deformation Retract. No-Retraction theorem. Fundamental Group and its properties. The Degree map, path homotopy, homotopy class. Simply connected spaces. Section B Calculation of Fundamental Groups of Circle, The Cylinder, The Torus, the Punctured Plane And the nsphere Sn. Brouwer's Fixed-Point Theorem for the Discs, The Fundamental Theorem of Algebra. Covering projections, Properties of covering projection. Section C The Path Lifting Property, Homotopy Lifting Property, Applications of Homotopy Lifting Theorem, The	New elective

		to compute algebraic invariants of simple topological spaces.		Monodromy Theorem. The Right Action of the fundamental group. Lifting of an arbitrary map. Lifting theorem. Covering homomorphism. Group of Deck transformation. Universal covering space, The Covering theorem. Borsuk-Ulam theorem. Suggested Text books: 1. Deo, Satya. 2003. Algebraic topology: a primer. New Delhi: Hindustan Book Agency. 2. Munkres, J. R. (1978). Topology, a first course. New Delhi: Prentice-Hall of India. Suggested Reference books: 1. Singh, T. B. (2013). Elements of topology. CRC Press. 2. Hatcher, Allen. 2002. Algebraic topology. New York: Cambridge University Press. 3. Bredon, Glen E. 2006. Topology and geometry. New York: Springer. Suggested F-learning material 1. Algebraic Topology; Platform: NPTEL hltps://nptel.ac.in/courses/111101002/	
17.	MATH (to be generated) Combinatori al Optimization	On completion of the course, the student will be able to, - define the concept of combinatorial (optimisation or satisfaction) problem - recognize many types of combinatorial optimization problems; - formulate linear and integer	-	Section A Combinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory - Matchings and alternating paths-Tutte-Berge formula- Maximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity.	New elective

		programs, and identify when a problem can be viewed in terms of various "standard" combinatorial optimization problems; understand the mathematical concepts underlying these problems and their solutions; - solve combinatorial optimization problems using suitable algorithms - analyze the performance of simple algorithms, understand and interpret computational complexity, and reduce one problem to another.		Single Source Shortest path algorithms-Bellman Ford algorithm, all pair shortest path algorithms - Floyd Warshall algorithm. Section B Algorithmic Perspective to Simplex Method: Introduction to Linear Optimization, Equivalence of optimization and separation, LP Formulation, Geometry of Linear Programs, Theory of Simplex Algorithm, Geometric interpretation of Degeneracy, Avoiding cycles, Methods for obtaining initial Basic Feasible Solutions, Linear Programming formulations of shortest path problem. Section C Integer Programing: Integrality gap, Branch and Bound algorithm, Cutting-plane algorithm, Applications of these algorithms on Travelling Salesman Problem Prima-Dual Algorithms: Interpretation of Dual, Optimality conditions for primal and dual, primal-dual algorithms based on complementary slackness, Primaldual algorithms for shortest path problem, vertex cover and set cover. Suggested Text Books: 1. Papadimitriou, C. H., \&Steiglitz, K. (2006). Combinatorial optimization: Algorithms and complexity. New Delhi: Prentice-Hall of India. 2. Hillier, F. S., \& Lieberman, G. J. (1995). Introduction to mathematical programming: 2nded. New York: McGraw-Hill. 3. Cook, W. J. (2011). Combinatorial optimization. New York: Wiley.

				Transportation Engineers. 4. Levin, R. T., \& Rubin, D. S. (2008). Statistics for management. New Delhi: Prentice Hall of India. 5. Walpole, R. E. (2014). Essentials of probability and statistics for engineers and scientists. Pearson. 6. Mohapatra, P. K. J., Mandal, P., \& Bora, M. C. (1994). Introduction to system dynamics modelling. London: Sangam. 7. Roberts, N. (1998). Introduction to computer simulation: A system dynamics modeling approach. Portland, Or: Productivity Press.	
19	MATH (to be generated) Integral Transform and Special Functions	On completion of the course, the student will be able to, - understand transformations, and their conditions of existence. - carry out integral transformations and inverse transformation of different special functions, including some most useful special functions. - demonstrate understanding of the concepts of recurrence relations, generating functions, series representations pertaining to different special functions and polynomials. - determine some significant properties of special functions and integral transformations. - discuss the nature of special	-	Section A Laplace Transform: Definition, Transform of some elementary functions, rules of manipulation of Laplace Transform, Transform of Derivatives, relation involving Integrals, the error function, Transform of Bessel functions, Periodic functions, convolution of two functions, Inverse Laplace Transform of simple function, Tauberian Theorems. Applications of Laplace Transform to solve ordinary differential equations with constant and variable coefficients, initial and boundary value problems. Section B Fourier series, Fourier integral Theorem, Fourier Transform, Fourier Cosine Transform, Fourier Sine Transform, Transforms of Derivatives, Fourier transforms of simple Functions, Fourier transforms of Rational Functions, Convolution Integral, Parseval's Theorem for Cosine and Sine Transforms, Inversion	New elective

				functions. Cambridge: Cambridge University Press. 3. Mathai, A. M., \&Haubold, H. J. (2011). Special functions for applied scientists. New York: Springer. Suggested F-learning material 1. Advanced Engineering Mathematics; NPTL: https://nptel.ac.in/courses/111105035/22	
20.	STAT 505 Decision Theory	On completion of the course, students will be able to, - Understand a decision theoretic approach to the problem, evaluate a utility function, propose a conjugate family of prior distributions, evaluate Bayes and posterior risks and find the optimal solution. - Solve Multilevel Decision Problems, Decision Process with sampling information - Understand Basic Concept of the sampling time Markov decision process, telecommunication and queuing theory.		Suggested F-learning Resources 1. Decision Theory; platform: http://www.utdallas.edu/~mbaron/7330/	No change in syllabus.
21.	STAT 508 Distribution Theory	On completion of the course, students will be able to, - Formulate the statistical models for real data sets arising in various fields in order to analyze in respect of various useful	-	Suggested F-learning Resources 1. Probability Distributionnptel.ac.in/courses/111105041/ 2. Distribution Functionshttps://epgp.inflibnet.ac.in/ahl.php?csrno= 34	No change in syllabus.

		characteristics of the populations - Develop problem-solving techniques needed to accurately calculate probabilities. - Identify the distribution of random variable under various discrete and continuous distributions. - Calculate probabilities, moments and other related quantities based on given distributions. - Determine the probability distribution after transformation. - Understand how to use noncentral distributions in real life problems.		3. Introduction to Probability-https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018	
22.	STAT 510 Econometric Models	On completion of this course, students will be able to, - Construct econometric models from economic models. - Detect influential observations and perform robust regression. - Estimate regression models when the dependent variable is nominal, ordinal or a quantile. - Fit distributed lag model when the data is time series. - Diagnose the identifiability of a simultaneous equation model.	Section A Review of multiple linear regression models, Polynomial Regression, Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Section B Distributed lag models: Finite polynomial lage determination of the degree of polynomial Infinite distributed lags, adaptive expectations and partial adjustment models, determination of lag	Section A Nature of Econometrics, Review of linear regression models, polynomial regression model. Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Influential observations: Standardized and studentized residuals, Cook's distance, DFFITS, DFBETAS, COVRATIO. Robust regression techniques: I.AD and LMS regression. Section B Logit and Probit models: binary response model, multinomial choice models: ordered and unordered	The existing syllabus is a bit short, so some new topics are added which have good application in analyzing an

				6. Wooldridge, J. M. (2008). Introductory Econometrics: A Modern Approach. Cengage Learning. 7. William H. Greene (2012). Econometric Analysis (7th Ed.). Pearson Education limited. Suggested E-learning material: 1. Lecture Notes on Regression Analysis by Shalabh, ПTK: http://home.iitk.ac.in/~shalab/course5.htm 2. An article on "Understanding logistic regression analysis" by Sandro Sperandei :https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/ 3. Lecture Notes on "Econometrics": https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-notes/	
23.	STAT 504 Clinical Trials	On completion of this course, students will be able to, - Identify and classify different types of trial designs when reading a trial report. - Understand the essential design issues of randomized clinical trials. - Appreciate three possible sources of errors that could lead to erroneous trial results. - Understand the basic statistical principles, concepts, and methods for clinical data analysis and reporting; and		Suggested F-learning Resources 1. Clinical Trials http://www.esourceresearch.org/eSourceBook/Cli nicalTrials/1Learningobjectives/tabid/192/Defaul t.aspx 2. Clinical Trials as Research https://newonlinecourses.science.psu.edu/stat509 /node/6/	No change in the syllabus.

		- Understand some frequently used terms in clinical trials. - Understand the relative contributions of clinical judgment and clinical trials in evaluating new medical therapies.			
24.	STAT 511 Non ParametricIn ference and Sequential Analysis	On completion of this course, student will be able to, - Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled. - Build non-parametric density estimates. - The application of sequential statistical techniques. - Critically examining sequential procedures for appropriate statistical analyses.		Suggested F-learning Resources 1. Statistical Methods for Scientists and EngineersNon Parametric Methods: https://nptel.ac.in/courses/111105077/29. 2. Statistics for Applications: https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016	No change in the syllabus.
25.	STAT 508 Distribution Theory	On successful completion of the course, the students will be able to: - Formulate the statistical models for real data sets arising in various fields in order to analyze in respect of various useful characteristics of the populations - Develop problem-solving techniques needed to accurately calculate probabilities.		Suggested F-learning Resources 1. Probability Distributionnptel.ac.in/courses/111105041/ 2. Distribution Functionshttps://epgp.inflibnet.ac.in/ahl.php?csr $\underline{n o}=34$ 3. Introduction to Probability-https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring$\underline{2018}$	No change in the syllabus.

		- Identify the distribution of random variable under various discrete and continuous distributions. - Calculate probabilities, moments and other related quantities based on given distributions. - Determine the probability distribution after transformation. - Understand how to use non-central distributions in real life problems.			
26.	STAT 513 Regression Analysis	On completion of the course, the students should be ableto, - Understand the concept of regression and the underlying assumptions. - Estimate least squares estimate of regression coefficients. - Perform testing of complete regression model and subset of regression model. - Measure the goodness of the model. - Check the validity of the assumptions for a real data. - Find a suitable remedy to reduce the effect of violation of any assumption. - Include a qualitative variable as regressors in a regression model		Suggested F-learning Resources 1. The resources site for the book 'Introductory Econometrics for Finance, 3rd edition' by Chris Brooks https://www.cambridge.org/us/academic/tex tbooks/introductory-econometrics 2. Lecture Notes on "Econometric Theory": https://nptel.ac.in/courses/111104072/ 3. Course material on "Econometrics": https://ocw.mit.edu/courses/economics/14 32-econometrics-spring-2007	No change in the syllabus.

		using dummy variables. - Check the model for specification errors and its testing. - Understand the concept of outlier, leverages and influential observations. - Understand the concept of a simple logistic regression and make interpretations.			
27.	STAT 515 Statistical Computing	On successful completion of this course, student will be able to: - Generate random numbers from a given distribution. - Perform MCMC simulation. - Understand the basic concepts of statistical theories in depth. - Handle real world problems with large scale data.		Suggested F-learning Resources 1. Statistical computing Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm 2. Statistics: Platform: e-PG Pathshalahttps://epgp.inflibnet.ac.in 3. Exploratory Data analysis; Platform: Coursera https://www.coursera.org 4. https://ocw.mit.edu/index.htm	No change in the syllabus.
28.	STAT (to be generated) Stochastic Models	On completion of this course, the students will be able to: - Acquire skills in handling situations involving more than one random variables. - Understand to a a alyze the performance of reliability models. - Learn how to analyze a network of queues with Poisson arrivals and exponential service requirements. - Learn how to analyze a network of	-	Section A Review of Stochastic processes, Markov process, Markov chain, Poisson Process. Birth and Death process. Expression for mean and variance of a birth and death process. Introduction of queues, Queueing system. Components of a queueing system, Measures of effectiveness and Notations. Steady state solution of $M / M / 1$ and $M / M / 1 / N$ Queueing Models and their measures of effectiveness. Section B Steady state solution of $M / M / C$ Queueing Models and	New elective introduced

		queues with Poisson arrivals and general service requirements. - Understand the concept of switching in reliability modeling.		their measures of effectiveness. The transient solution of $\mathrm{M} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{M} / \infty$ Queueing models including busy period distribution. Imbedded Markov chain technique and its use to solve the $\mathrm{M} / \mathrm{G} / 1$ queueing models. Measures of Effectiveness of $\mathrm{M} / \mathrm{G} / 1$ queueing model. Section C Reliability Models: Concept of reliability, early age failures, wearout failures and chance failures. Derivation of general reliability function failure rate, failure density functions and mean time between failures (MTBF). System reliability evaluation: series system, parallel system, partially redundant system, standby system with perfect switching / imperfect switching. Effect of spare components (identical / nonidentical) on the system reliability. Text/References books: 1. Cox, D. R., \& Miller, H. D. (1972). The theory of stochastic processes. London: Chapman and Hall. 2. Billinton, R., \& Allan, R. N. (2013). Reliability eoaluation of engineering systems: Concepts and technigues. New Delhi: Springer (India). 3. J. Medhi, J. (1994). Stochastic processes. New Age International Publications. 4. Bazovsky, I. (2013). Reliability Theory and Practice. Dover Publications. 5. Gross, D., \&Harris C.M (2002). Fundamentals of Queueing Theory. John Wiley \& Sons. 6. Allen, A. O. (2014). Probability, Statistics, and Queueing Theory with Computer Science Applications.

				Academic Press. Suggested F-learning Resources 1. Introduction to Stochastic Processes and its Applications https://nptel.ac.in/courses/110104024/ 2. Statistics e-PG-pathshala: https://epgp.inflibnet.ac.in/ahl.php?csrno=34 3. Reliability Engineering, NPTEL: https://nptel.ac.in/courses/105108128/	
29	STAT (to be generated) Demography	On completion of the course, students will be able to, - Identify principle sources of demographic data and assess their strengths and weaknesses. - Discuss the demographic significance of age and sex structures and the implications of variations in age \& sex structure. - Construct and interpret life tables. - Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. - Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. - Understand the concept of		Section A Meaning and scope of demography; Sources of demographic data; Census; Population composition and its basic demographic measures: Ratios, Proportions and Percentages; Population pyramids; Quality of demographic data: Population growth rate; Rates of natural increase; Doubling time; Stochastic models for population growth; Intrinsic growth rate models for population growth and their fitting to population data; Coverage and content errors in demographic data; Balancing equations;Chandrasekharan - Deming formula to check completenessof registration data; Adjustment of age data- use of Whipple, Myer and UN indices; Population transitiontheory. Section B Mortality: Rates and Ratios; Crude and age-specific death rates;Infant mortality rate (IMR); Child death rate (CDR); Under five, neo-natal and post neo-natal	New elective introduced

[^1]mortality rate; Maternal mortality rate and Maternal mortality ratio (MMR); Direct and Indirect Standardization; Factors for decline in mortality in recent past; Life tables and their applications; Increment-decrement life tables; Construction of complete and abridged life tables; Model life table.
Natality:Fecundity and fertility; Measure of fertility: Cohort fertility; Children ever born (CFB); Current family size (CFS); Age specific martial fertility rate;Birth order and parity; Parity progression ratio; Length of generation, Measures of reproduction: Total fertility rate; Gross reproduction rate; Net reproduction rate; Replacement index; General fertility models; Fertility schedules; Differential fertility; Levels and trends of fertility.

Section C
Migration - Concepts and types; Its effect on population growth and pattern; Differentials of migration; Measures of migration: Migration rates; Volume of migration and its estimation; Migration component; Migration streams; Hamilton's rate; Migration models; Concept of international migration; Concept of morbidity and its measures.
Urbanization - Growth and distribution of rural-urban population in developed and developing countries. Nuptiality - Concept and analysis of marital status; Singulate mean age at marriage.
Stationary and Stable population theory; Uses of Lotka's stable population theory in estimation of

				demographic parameters; Population estimates; Population projections and forecasting; Methods of Inter-censal and Post-censal estimation; Methods of population projection. Suggested Text Books: 1. Ramkumar, R.(2006). Technical Demography. New Age International. 2. Pathak, K.B.\& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House. 3. Srinivasan, K., Saxena, P. C., \&Kanitkar, T. (1979). Demognaphic and Socioeconomic Aspects of the Child in India. Himalaya Publishing House. Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., \& Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. \&Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources 1. Demographic data; Platform: National Family Health Survey, India http://rchiips.org 2. Population Studies; Platform; e-PG Pathshalahttps://epgp.inflibnet.ac.in/loaddata. php?action=loadpaperlist1\&maincat $=453$ 3. Demography ;Platform: University Library -

				The University of Adelaide https://www.adelaide.edu.au/library/ 4. Demography; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm	
30.	STAT (to be generated) Actuarial Statistics	On completion of this course, the students will be able to: - Understand the applications of Actuarial Statistics in insurance sector. - Understand the concept of utility theory and premium principles. - Construct life tables with various factors. - Understand the concept of compound interest. - Apply various life Insurance models in real life situations.		Section A Actuarial science: an overview, Introductory Statistics and Insurance Applications: Discrete, continuous and mixed probability distributions, risk and insurance, insurance products, reinsurance and its different types. Utility theory: Utility functions, expected value principle, expected utility criterion, types of utility function, insurance and utility theory. Principles of Premium Calculation: Properties of premium principles. Section B Survival Distribution and Life Tables: Age at death random variable, survival function, time until-death for a person, curate future lifetime, force of mortality, life tables, relation of life table functions to the survival function, deterministic and random survivorship group, life table characteristics, recursion formulas, assumptions for fractional age, analytical laws of mortality, select and ultimate tables. Section C Principles of compound interest: Nominal and effective rates of interest and discount, force of interest and discount, compound interest, accumulation factor, continuous compounding, present value of a future payment. Life Insurance models: Models for insurance	New elective introduced

				payable at the moment of death and at the end of the year of death - level benefit insurance, endowment insurance, deferred insurance and varying benefit insurance. Text/Reference Books: 1. Dickson, C. M. D. (2005). Insurance Risk and Ruin (International Series no. 1 Actuarial Science), Cambridge University Press. 2. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. and Nesbitt, C.J. (1997). Actuarial Mathematics. Society of Actuaries, Itasca, Illinois, U.S.A. 3. Rotar, V.I. (2015). Actuarial Models: The Mathematics of Insurance, 2nd ed., CRC Press, New York. 4. Deshmukh, S.R. (2009). Actuarial Statistics: An Introduction Using R, University Press, India. Suggested F-learning Resources 1. Winkel, M. (2003). Actuarial Science http://www.stats.ox.ac.uk/~winkel/o13.pdf	
31.	STAT (to be generated) Survival Analysis	On completion of the course, the student will be able to, - Identify characteristics of survival data and problems in their correct analysis - Define and understand the relationship between the survival function, distribution function, hazard function, relative hazard, and		Section A Characteristics of survival data and problems, censoring and its types, likelihood and inference of life distributions, relationship between the survival function, distribution function, hazard function, relative hazard, and cumulative hazard, univariate analyses of survival data using the Kaplan-Meier estimator and actuarial estimator, estimation under the assumption of IFR/DFR, tests of exponentiality against non-	New elective introduced

cumulative hazard
Perform and interpret one-sample and two-sample analyses of survival data using common statistical procedures such as the log rank test and KaplanMeier estimator

- Formulate research questions involving survival data as regression problems
- Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients
- Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated
- Use time-dependent covariates in the proportional hazards model and interpret the coefficients
- Understand and use methods for analyzing correlated survival data
- Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts
parametric classes, total time on test. Section B
Two-sample analyses of survival data using common statistical procedures such as the \log rank test and Gehan test, Parametric and semi-parametric regression model to survival data and assess the estimation, scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated,

Section C

Time-dependent covariates in the proportional hazards model and estimate and interpret the coefficients, methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric inference for this model.

Text Books

1. Collet, D. (2003). Modeling Survival Data in Medical Research. London: Chapman and Hall.
2. Hosmer, D. and Lemeshow S. (1999). Applied Suroival Analysis: Regression Modeling of Time to Event Data. New York: Wiley.

Reference Books

1. Breslow, N. and Day, N. (1987). Statistical Methods in Cancer Research, 0. 2: The Design and Analysis of Cohort Studies. Lyon: IARC.
2. Therneau T, and Grambsch, P. (2000). Modeling Suroival Data: Extending the Cox Model. New

THIRD/FOURTH SEMESTER

(Reading Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1	MATH (to be generated) Network Biology	On completion of the course, the student will be able to, - Understand the use of graph theory in biology - Build and analyse network of biological systems.	-	Networks in Biology, Graph Theory, Global Network Properties, Network Centralities, Network of Clustering, Network Motifs, Petri Nets, Signal Transduction and Gene Regulation Networks, Protein Interaction Networks, Metabolic Networks, Phylogenetic Networks, Ecological networks, Correlation Network, Network Construction. Suggested Readings: 1. Junker, B. H., \& Schreiber F. (2008). Analysis of Biological Networks,John Wiley \& Sons, Inc. 2. Zhang, W. (2013). Network Biology Theories, Methods and Applications, Nova Science	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
				Publishers, Inc.	
2	MATH (to be generated) Fractional Calculus	On completion of the course, the student will be able to, - Understand fractional integrals of some important functions - Understand the concepts of Fractional Derivatives - Carry out research on the topic related to fractional calculus		Origin, Significant contributions, development in different timelines, different aspects, contributors in the field, The Riemann Liouville Fractional Calculus: Fractional Integrals of some functions namely binomial function, exponential, the hyperbolic and trigonometric functions, Bessel's functions, Hyper-geometric function. Dirichlet's Formula, Derivatives of the Fractional Integral and the Fractional Integral of Derivatives. Laplace Transform of the Fractional integral, Leibniz's Formula for Fractional Integrals. Derivatives, Leibniz's Formula of Fractional Derivatives. Suggested Readings: 1. Oldham, K.B. \&Spanier, J. (2006). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitmary Order. Dover Publications Inc. 2. Machado, J.T.A., Virginia, K., \&Mainardi, F. (2011). Recent History of Fractional Calculus. Communications in Nonlinear Science and Numerical Simulation. 3. Machado, J. A. T., Kiryakova , V. \&Mainardi, F. (2010). A poster about the recent history of fractional calculus. J. Fructional Calculus and Applied Analysis.	New course proposed.
3	MATH (to be generated) Quantum Graphs	On completion of the course, the student will be able to, - Describe some basic tools in the spectral theory of Schrödinger		Introduction, Operators on graphs, Quantum Graphs, Quantum Graphs: Some Special topics, Spectra of quantum graphs, Spectra of periodic graphs, Spectra of quantum graphs, Quantum Chaos on graphs, Some	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		operator on metric graphs - Demonstrate results on the count of zeros of the eigen functions of quantum graphs. - Demonstrate key concepts of general spectral theory.		Applications and generalizations. The Spectral Form Factor for Quantum Graphs with Spin-Orbit Coupling, Approximation of Permutation-Symmetric Vertex Couplings in Quantum Graphs, Determinant of the Schrodinger Operator on a Metric Graphs, Laplacian or Metric Graphs; eigenvalues, resolvents and Semigroups. Suggested Readings: 1. Berkolaiko G. and Kuchment Peter (2016), Introduction to Quantum Graphs, Indian Edition. 2. Berkolaiko G., Carlson R., Fulling S. A. and Kuchment Peter (2006), Quantum Gaphs and Their Applications, American Mathematical Society.	
4	MATH (to be generated) Point Set Topology	Course Outcomes: On completion of the course, the student will be able to, - Express the notion of metric space, construct the topology by using the metric and using this topology identify the continuity of the functions which are defined between metric spaces. - Define the notion of topology; construct various topologies on a general set which is not empty by using different kinds of techniques. - Define the subspace topology, Construct the product topology on product spaces, and Construct the		Sets, Functions, The Real Numbers, Zorn's Lemma, Countable Sets, Metric Spaces, Sequences and completeness, Continuity, Compactness, Connectedness, The BaireCategory Theorem, Topological Spaces, Base and Subbase for a Topology, Continuous Functions, Compactness and Connectedness, Pathwiseconnectedness, Infinite Products, Nets , Quotient Topology. Suggested Readings: 1. Conway, J. B. (2014). A course in point set topology. Springer. 2. Körner, T. (2010). Metric and topological spaces. 3. Munkres, J. R. (1978). Topology, a first course. New Delhi: Prentice-Hall of India.	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		quotient topology.			
5	MATH (to be generated) Operational Research Applications	On completion of the course, the student will be able to, - To have the knowledge of role of O.R. in solving industrial problems. - To introduce the important ideas in operations research which are both fundamental and long lasting. - To prepare and motivate future specialists to continue in their study by having an insightful overview of operations research. - To demonstrate the cohesiveness of operations research methodology. - To identify the resources required for a project and generate a plan and work schedule.		Media allocation problem, Cargo Loading Problem, Production Scheduling Problem, Wood cutting problem, School bus routing problem using spanning tree, Simulation, Knapsack problem, Set Covering Problem, Fixed Charge Transportation Problem, Project Selection Problem. Suggested Readings: 1. Taha, H. A. (2010). Operations Research-An Introduction (9th Ed.), Prentice Hall. 2. Winston, W. L., \&Venkataramanan, M. (2002). Introduction to Mathematical Programming: Applications and Algorithms (4th ed.). Duxbury Press. 3. Ravindran, A., Phillips, D. T. \& Solberg, J. J. (2005). Operations Research. Principles and Practice, John Wiley \& Sons. 4. Hadley, G. (1964). Nonlinear and Dynamic Programming, Addison-Wesley.	New course proposed.
6	STAT (to be generated) Selected Applications of Stochastic Models	On completion of the course, the student will be able to, - Elucidate the power of stochastic processes and their range of applications. - Demonstrate essential stochastic modelling tools including Markov chains and queuing theory. - Use probabilistic arguments		Markov decision processes: finite and infinite horizon models. Optimality of Markov policies. Computational aspects. Examples from inventory systems, resource allocation, etc. Learning algorithms: Temporal difference methods. Methods based on approximation functions; TD(lambda); Q-learning. Stability of queuing models. Little's law and its extensions. Advanced queuing models in discrete and continuous time.	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		including conditional distributions and expectations. - Carry out basic modelling using Markov chains in discrete and continuous time. - Review and apply Markov chains methods based on stationary and asymptotic distributions.		Some classes of stochastic scheduling rules; minimizing mean sum of completion times on a single machine with and without pre-emptions and index policies. Makespan with and without pre-emptions on parallel machines; due date related objectives. Suggested Readings: 1. Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 1 \& 2). Belmont: Athena publications. 2. Wolff, R.W. (1989). Stochastic modeling and theory of queues. Englewood Cliffs: Prentice-Hall Inc. 3. Pinedo, M. (1995). Scheduing: Theory, algorithns and systems. Englewood Cliffs: Prentice-Hall Inc.	
7	STAT (to be generated) Step-Stress Modelling	On completion of the course, the student will be able to, - Understand statistical models and methods for analyzing accelerated life-test data from step-stress tests. - Understand how to use ALT methods in real life problems.		Deferent Aspects of ALT Models, Accelerated Life Test, Step Stress Test, Acceleration Model, Cumulative Exposure Model, Optimum Step-Stress Accelerated Life Test Models, Optimum Step-Stress Partially Accelerated Life Test Plans with Type-I and Type-II Censoring. Suggested Readings 1. Kundu, D. and Ganguly, A. (2017). Anahysis of StepStress Models. Elsevier. 2. Tang, L-C. (2018). Multiple-steps Step-stress Accelerated Liffe Test. Springer. 3. Accelerated Life Test; Platform: http://home.iitk.ac.in/~kundu/seminar25.pdf 4. Different aspects of ALT models; Platform: https://www.worldscientific.com/doi/pdf/10.1142/ 9789813141261 fmatter	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
8	STAT (to be generated) Categorical Data Analysis	On completing the course, the student will be able to: - Identify and understand the structure of categorical data and be able to phrase the appropriate scientific questions in terms of parameters of interest. - Understand the various assumptions needed for the various methodologies - Test for independence, and equality of proportions - Fit logistic models for binary data - Check model assumptions and analyze residuals and goodness-of-fit - Conduct inference for model parameters and interpret the output of the models		Categorical Response Data: Nominal/Ordinal scale, statistical inference for a proportion and discrete data. Probability Structures for Contingency Tables. Comparing Proportions in Two-by-Two Tables, Odds Ratio: their properties and relation with relative risk. Tests of Independence of two attributes. Testing Independence for Ordinal Data: Choice of Scores, Trend Tests for $I \times 2$ and $2 \times J$ Tables, Nominal-Ordinal Tables, Exact Inference for Small Samples. Association in ThreeWay Tables. Logistic regression model: Interpretations, inferences, model selection, model checking. Logit Models for Nominal Responses, Cumulative Logit Models for Ordinal Responses, Paired-Category Ordinal Logits. Loglinear Models for Two-Way and Three-Way Tables Suggested Readings 1. Alan Agresti, An Introduction to Categorical Data Analysis, Second Edition, Wiley Interscience, 2007. 2. Categorical Data Analysis: http://web.pdx.edu/~newsomj/cdaclass/	New course proposed.
9	STAT (to be generated) Robust estimation in Non Linear Models	On completion of this course, student will be able to - Understand the basics of fitting and inference for nonlinear regression methods when the regression function acting on the predictors is not linear in the parameters.		Non Linear Models: Introduction to non Linear models, non-linear least squares estimators, outliers, robustness of models against outliers, robust M-estimation approach, asymptotic properties of robust M-estimators, the asymptotic theoretical properties of M-estimators under different possibilities of the M-estimation function and noise distribution assumptions. It is an important and challenging problem to design	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		- Check the robustness of the fitted model. - Carry out research in the area of robust estimation.		robust order estimation techniques for nonlinear nested models and establish their asymptotic optimality properties Suggested readings: 1. Cizek, P. (2001).Robust Estimation in Nonlinear Regression Models. https://www.researchgate.net/publication/2373796 0 Robust Estimation in Nonlinear Regression Mo dels 2. Zhu, L., Li, R., \& Cui, H. (2013). Robust estimation for partially linear models with large-dimensional covariates. Science China. Mathematics, $56(10)$, 20692088. https://doi.org/10.1007/s11425-013-4675-0 3. Neugebauer, S.P. (1996). Robust Analysis of MEstimators of Nonlinear Models. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.11.25 $23 \& r e p=r e p 1 \ldots p d f$	
10	STAT (to be generated) Official Statistics	On completion of the course, the students will be able to: - Know the key aspects of Official Statistics, as distinct from other branches of statistics. - Know the legal and ethical constraints on organizations producing Official Statistics. - Know the principal methods for data collection, analysis and interpretation of health, social and economic.		Official statistics provide a picture of a country or different phenomena through data, and images such as graph and maps. Statistical System in India: Central and State Government Organizations, Functions of Central Statistical Organization (CSO), National Sample Survey Organization (NSSO). System of Collection of Agricultural Statistics - Crop forecasting and estimation Productivity, fragmentation of holdings - Support prices - Buffer stocks - Impact of irrigation projects. Statistics related to industries, foreign trade - Balance of payment - Inflation - Social statistics. National Income - Measures	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		- Know the methods for presenting and preparing commentaries on Official Statistics. Offg. Secretary Banaethali Vidyapith P.O. Banasthali Vidyapith Distt. Tonk (Raj.)-304022		of national income - Income, expenditure and production approaches - Applications in various sectors in India. Measurement of income inequality: Gini's coefficient, Lorenz curves, Application of Pareto and Lognormal as income distribution. Suggested readings: 1. Bhaduri, A. (1990). Macroeconomics: The Dynamics of Commodity Production, Macmillan India Limited, New Delhi. 2. Branson, W. H. (1992). Macroeconomic Theory and Policy.(3rd ed.). Harper Collins Publishers India (P) Ltd., New Delhi. 3. C. S. O. (1990). Basic Statistics Relating to the Indian Economy. 4. C.S.O. (1995). Statistical System in India. 5. C. S. O. (1999). Guide to Official Statistics. 6. Panse, V. G. (1964). Estimation of Crop Yields (FAO). Food and Agriculture Organization of the United Nations. 7. Central Statistical Organization: http://www.mospi.gov.in/central-statistics-office-cso-0 8. National Sample Survey Office (NSSO) http://www.mospi.gov.in/national-sample-survey-office-nsso 9. Agriculture Survey Reports: https://eands.dacnet.nic.in/	

Name of Programme: M.Phil (Mathematical Science)

Course Details: (To be provided in the below mentioned table)

Note: 1. Black Shaded part is shifted. 2. Strikeout is deleted.
3. Italic and Underline is rewritten.
4. Grey shaded part is added.

First Semester

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be generated) Research Methodology				New Course
2.	MATH 602 Advanced Analysis	On completion of the course, students will be able to, - Tell what is Normed spaces - Explain when Normed space become Banach space - Define the Hilbert spaces - Define multi linear mappings - Check whether the function is bounded or not? - What is directional derivative? - Explain the difference between partial derivative and directional derivative - Tell about the fixed point - Tell about the Lipschitz's constant and conditions - Related the analysis and differential equation - Explain the fixed point using graph theory		Suggested F-learning material: 1. Normed space Banach space and Hilbert spaces and its properties; Platform:https://nptel.ac.in/courses/11110503/	No change in the syllabus
3.	MATH 504 Analytic and	On completion of the course, students will be able to,		--	No change in the

Electives					
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 507 Financial Mathematics	On completion of the course, students will be able to, - Understand financial analysis and planning. - Know the cost of capital, capital structure and dividend policies. - Apply technique of Goal Programming to profit planning and financial budgeting. - Make financing decision onproblem of determining optimal capital structure - Understand the concept of leasing, debt management, analysis of			No change in the syllabus

		commitment of funds and risk of cash insolvency.			
2.	MATH 527 Tensor Analysis and Geometry of Manifolds	On completion of the course, students will be able to, - Discuss different kinds of surfaces, connection and covariant derivatives. - Understand the concepts of manifold and illustrate some examples of manifolds. - Understand the Ricci identity and enable to use it in proving different theorems. - Define and illustrate some examples of Lie group.	--	Suggested F-learning material: 1. NOC: Differential Calculus in Several Variables: https://nptel.ac.in/courses/111104092/ 2. NOC: Multivariable Calculus: https://nptel.ac.in/courses/111107108/ 3. NOC: Calculus of One Real Variable: https://nptel.ac.in/courses/109104124/	No change in the syllabus
3.	MATH 601 Advanced Graph Theory	On completion of the course, the student will be able to, - To understand and apply the fundamental concepts in graph theory. - To recognize and express the mathematical ideas graphically. - Acquire ability to apply graph theory based tools in solving practical problems. - To improve the proof writing skills. - To develop mathematical maturity. - Understand some applications of graph theory to practical problems and other areas.		Suggested E-learning material 1. Basic concepts in graph theoryhttps://nptel.ac.in/downloads/111104026/ 2. Basic concepts in graph theory http://home.iitk.ac.in/~arlal/book/mth202.pdf 3. Euler graph, Hamiltonian graph, connectivity and coloring http://www.math.kit.edu/iag6/lehre/graphtheo2015w/ media/lecture notes.pdf 4. Ramsey theoryhttp://math.mit.edu/~fox/MAT307lecture05.pdf 5. Matchinghttp://wwwmath.mit.edu/ $\sim \mathrm{djk} / 18.310 /$ LectureNotes/MatchingProblem.pdf 6. Open course in graph theory (All topics) a. https://swayam.gov.in/course/3795-graphtheory b. https://swayam.gov.in/course/4403-advanced-graph-theory	No change in the syllabus

4.	MATH 614 Finsler Geometry	On completion of the course, the student will be able to - Make use of purely metric methods in the investigation of various Finsler metrics that appear naturally in geometry, topology and convexity theory.		Suggested E-learning material 1. Lectures on Differential Geometry: https://www.math.iupui.edu/~zshen/Research/pap ers/lecture.pdf 2. Lectures on Differential Geometry: https://www.worldscientific.com/worldscibooks/1 0.1142/4619\#t=toc	No change in the syllabus
5.	MATH 619 Mathematical Cryptography	On completion of the course, students will be able to, - Understand the necessary concepts of number theory and complexity theory. - Understand the need of cryptography and its impact on the society. - Demonstrate the knowledge of one way functions and its concrete examples such as integer factorization and discrete logarithm. - Understand the public key cryptosystems such as RSA and ElGamal. - Know the concept of digital signature.		Suggested E-learning material: 1. Lecture Notes on Number Theory: https://nptel.ac.in/courses/111103020/ 2. Video Lecture on Number Theory: https://bit.ly/2ToTdjZ 3. Video Lecture on Cryptography: https://nptel.ac.in/courses/106105031/	No change in the syllabus
6.	STAT 504 Clinical Trials	On completion of this course, students will be able to, - Identify and classify different types of trial designs when reading a trial report.		Suggested F-learning Resources 1. Clinical Trials http://www.esourceresearch.org/eSourceBook/Cli nicalTrials/1Learningolojectives/tabid/192/Default. aspx	No change in the syllabus.

		- Understand the essential design issues of randomized clinical trials. - Appreciate three possible sources of errors that could lead to erroneous trial results. - Understand the basic statistical principles, concepts, and methods for clinical data analysis and reporting; and - Understand some frequently used terms in clinical trials. - Understand the relative contributions of clinical judgment and clinical trials in evaluating new medical therapies.		2. Clinical Trials as Research https://newonlinecourses.science.psu.edu/stat509/ node/6/	
7.	STAT 505 Decision Theory	On completion of the course, students will be able to, - Understand a decision theoretic approach to the problem, evaluate a utility function, propose a conjugate family of prior distributions, evaluate Bayes and posterior risks and find the optimal solution. - Solve Multilevel Decision Problems, Decision Process with sampling information - Understand Basic Concept of the sampling time Markov decision process, telecommunication and		Suggested F-learning Resources 1. Decision Theory; platform: http://www.utdallas.edu/~mbaron/7330/	No change in syllabus.

		queuing theory.			
8.	STAT 508 Distribution Theory	On successful completion of the course, the students will be able to: - Formulate the statistical models for real data sets arising in various fields in order to analyze in respect of various useful characteristics of the populations - Develop problem-solving techniques needed to accurately calculate probabilities. - Identify the distribution of random variable under various discrete and continuous distributions. - Calculate probabilities, moments and other related quantities based on given distributions. - Determine the probability distribution after transformation. - Understand how to use norrcentral distributions in real life problems.		Suggested E-learning Resources 1. Probability Distributionnptel.ac.in/courses/111105041/ 2. Distribution Functionshttps://epgp.inflibnet.ac.in/ahl.php?csrno=34 3. Introduction to Probability-https://ocw.mit.edu/resources/res- $6-012$ -introduction-to-probability-spring-2018	No change in syllabus.
9.	STAT 510 Econometric Models	On completion of this course, students will be able to, - Construct econometric models from economic models. - Detect influential observations and perform robust regression. - Estimate regression models when the dependent variable is nominal, ordinal or a quantile. - Fit distributed lag model when the data is time series.	Section A Review of multiple linear regression models, Polynomial Regression, Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Section B	Section A Nature of Econometrics, Review of linear regression models, polynomial regression model. Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods. Influential observations: Standardized and studentized residuals, Cook's distance, DFFITS, DFBETAS, COVRATIO. Robust regression techniques: LAD and LMS regression.	The existing syllabus is a bit short, so some new topics are added which have good application in

				5. Rawlings, J. O., Pantula, S. G., \& Dickey, D. A. (1998). Appited Regression Analysis: A Research Tool (2nd Ed.). New York: Springer-Verlag. 6. Wooldridge, J. M. (2008). Introductory Econometrics: A Modern Approach. Cengage Learning. 7. William H. Greene (2012). Econometric Aralysis (7th Ed.). Pearson Education limited. Suggested F-learning material: 1. Lecture Notes on Regression Analysis by Shalabh, IITK: http://home.iitk.ac.in/~shalab/course5.htm 2. An article on "Understanding logistic regression analysis" by Sandro Sperandei :https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/ 3. Lecture Notes on "Econometrics": https://ocw.mit.edu/courses/economics/14-382-econometrics-spring-2017/lecture-notes/	
10.	STAT 511 Non-Parametric Inference and Sequential Analysis	On completion of this course, student will be able to, - Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled. - Build nor-parametric density estimates. - The application of sequential statistical techniques. - Critically examining sequential procedures for appropriate statistical analyses.		Suggested F-learning Resources 1. Statistical Methods for Scientists and EngineersNon Parametric Methods: https://nptel.ac.in/courses/111105077/29. 2. Statistics for Applications: https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016/	No change in the syllabus.

		evaluation and assessment. - Demonstrate the necessary skills to: fit hierarchical models, provide thorough technical specifications for these models. - Demonstrate how Bayesian Methods can be used to solve real world problems. - Communicate complex statistical ideas to a diverse audience.			
13.	STAT 609 Population Sciences	On completion of the course, students will be able to: - Identify principle sources of population data and assess their strengths and weaknesses. - Able to evaluate of human development index. - Construct and interpret life tables. - Aware various population policies and programs. - Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. - Understand the significance of age- sex structures and their implications on population		Suggested E-learning material 1. Demographic data; Platform: National Family Health Survey, India http://rchiips.org 2. Population Studies; Platform; e-PG Pathshala https://epgp.inflibnet.ac.in/loaddata.php?action=1 oadpaperlist1 \&maincat=453 3. Demography ; Platform: University Library - The University of Adelaide https://www.adelaide.edu.au/library/ 4. Demography; Platform: MIT OPENCOURSEWARE https://ocw.mit.edu/index.htm	No change in the syllabus.

		change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. - Understand the concept of urbanization on the economic growth of the contrary. - Estimate and project the population by different methods.			
14.	STAT 613 Time Series Modeling	On completion of this course, the students will be able to, - Estimate and eliminate trend and seasonality in a time series - Fit stationary and nonstationary time series model to a series - Understand the concept of testing for parameter stability of a time series model - Demonstrate fitting of multivariate ARMA model to series - Understand the concept of cointegration analysis and procedure for two variable models. - Understand the concept of Vector autoregression and		Suggested E-learning material 1. Econometric Modeling. Platform: https://nptel.ac.in/courses/110105053/29 2. Video lectures on Econometric Modeling: https://nptel.ac.in/courses/110105030/37 3. Video lectures on e-PG- Pathshala, Subject: Statistics, Paper Name: P-14. Econometrics and Financial Time Series https://epgp.inflibnet.ac.in/ahl.php?csrno=34	No change in the syllabus.

		causality. - Understand the concept of volatility in a series and related models.			
15.	MATH (to be generated) Fuzzy Logic and Belief Theory	On completion of the course, students will be able to, - Learn crips and fuzzy set theory. - Decide the difference between crips set and fuzzy set theory. - Make calculation on fuzy set theory. - Recognize fuzzy logic membership function. - Recognize fuzzy logic fuzzy inference systems - Make applications on Fuzzy logic membership function and fuzzy inference systems. - Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. - Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios - Apply defuzzification methods.	-	Section A Basic concept of Fuzzy Logic: Introduction to fuzzy set, membership function, Various forms of membership functions, type of fuzzy sets, LR- representations of fuzzy sets, properties of fuzzy sets (support, cardinality, alpha-cut set, convexity).Operations on Fuzzy sets: Union, Intersection, complement, combinations of operations. Fuzzy extension principle, Fuzzy Relations: fuzzy cartesian product and composition, Crisp versus fuzzy relations, binary fuzzy relation, fuzzy equivalence relations, fuzzy compatibility relations, fuzzy ordering relations. Fuzzy graphs, Fuzzy morphism (homomorphism), Fuzzy relation equations.Fuzzy Numbers: Definitions and types of fuzzy numbers, interval analysis in arithmetic, triangular and trapezoidal types, Arithmetic operations on fuzzy numbers. Fuzzy Function: Introduction to fuzzy function, type of fuzzy function, fuzzy extrema of function, differentiation and integration of fuzzy function. Section B Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy ifthen rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making:	New elective

				Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy transportation problemsFuzzy System: Introduction to fuzzy system. Defuzzification methods: centre of area (or centre of gravity or centroid), centre of maxima, mean of maxima.Fuzzy controllers: an overview of fuzzy controller.Fuzzy Systems and Neural Network: Introduction to neural network, fuzzy neural networks. Section C Probability, Uncertainty and Fuzzy Measures: Probability verses Possibility, Fuzzy event, Crisp probability of fuzzy event and fuzzy probability of fuzzy event, Level of uncertainty, Measure of fuzziness: (i) using Shannon's entropy formula and (ii) using metric distance. Belief Theory: Evidence Theory-Mathematical Theory of evidence, Introduction to Shafer's Belief Theory, Belief representation: mass of belief, belief measure, plausibility measure, properties of belief functionrelation between belief and plausibility measure, Dempster's Rule of Combination, Applications of Fuzzy logic and fuzzy set theory in Operations Research, Computer Science and Engineering fields. Suggested Text Books: 1. Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag 2. Klir, G. J., \& Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India. Suggested Reference Books: 1. Klir, G. J., \& Folger, T. A. (2010). Fuzzy sets,

				uncertainity and information. New Delhi: PHI Learning Private Ltd. 2. Yen, J., \&Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. 3. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. 4. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. 5. Nguyen, H. T., \& Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman \& Hall/CRC. Suggested F-learning material: 1. Introduction to Fuzzy Logic(Videos) https://nptel.ac.in/courses/106105173/2/ 2. Fuzzy Logic: Introduction (PDF) http://cse.iitkgp.ac.in/~dsamanta/courses/sca/resour ces/slides/FL-01\%20Introduction.pdf
16.	MATH (to be generated) Inventory Theory	On completion of this course, students will be able to: - Comprehend the dynamics of inventory management's principles, concepts, and techniques as they relate to the entire supply chain (customer demand, distribution, and product transformation processes), - Understand the methods used by organizations to obtain the	Section A Analytical structure of production and Inventory problems, Inventory related costs, properties of inventory systems, Factors influencing inventories, Deterninistic inventory models and extensions without and with lead time, Inventory models with partial backlogging and sales, Models with continuous production and non-constant demand with known production capacity. Inventory models with constraints, Quantity discounts; All units and incremental, Sensitivity of the lot size system, N-products and M- Machimes moder. Section B	Section A Concepts of Inventory, Classification of inventory models, EOQ model, EPQ model, EOQ model with shortages, EPQ model with shortages, EOQ model with constraints: Quantity discounts, Floor Constraints, Investment Constraint. Sensitivity analysis in inventory models. Section B Stochastic Inventory Models and Extensions without and with lead time. Power demand pattern inventory model, Introduction to Just In Time (JIT) and Vendor Managed

		right quantities of stock or inventory, - Familiarize themselves with inventory management practices. - Optimize different case studies requires efficient methods and practices to address inventory management problems. - Understand the behavior of the inventory parameters after some time using simulation techniques.	Stochastic Inventory Models and Extensions without and with lead time, Use of transformation from time- Power demand pattern Inventory Model, Safety stock and Buffer stork. Section C Simulation in Inventory system, Production scheduling, Classification of items viz: ABC, VED, (FNSD, HML, SDE, XYZ), Case studies. Books Recommended: Text Books: 1. Kanti Swarup, Operation Research, Sultan Chand \& Sons, 2010. 2. Sharma S.D., Operations Research, Kedarnath Ramnath, Meerut, 1972. Reference Books: 1. G. Hadley, T. Whitin, Analysis of Inventory Systems, Prentice Hall, 1963. 2. E.Naddor, Inventory System, John Wiley, New York, 1966.	Inventory (VMI). Section C Simulation in Inventory system, Classification of items viz: ABC, VED, FNSD, HML, SDE, XYZ, Case studies in inventory control. Suggested Books: 1. Hadley, G., Whitin, T. M.. (1963). Analysis of inventory systems. Englewood Cliffs, N.J. Prentice-Hall. 2. Naddor, E. (1984). Inventory systems. Malabar, Fla: R.E. Krieger. 3. Waters, D. (2008). Inventory Control And Maragement, 2Nd Ed. Wiley India Pvt. Limited. Suggested F-learning material: 1. Inventory Models costs, EOQ model(Lecture PDF) https://nptel.ac.in/courses/110106045/9 2. Inventory management(PDF) https://ocw.mit.edu/courses/engineering-systems-division/esd-260j-logistics-systems-fall-2006/lecture-notes/	
17.	MATH (to be generated) Queuing Theory	On completion of the course, the student will be able to - Understand the principles and objectives of model building based on Markov chains. - Analyze the queueing situations. - Understand the mathematical tools that are needed to solve queueing problems.	Section A Concept of stochastic processes. Markov Chains discrete and continuous time parameter. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian Models (M/M/1, M/M/c, \square Section B Analytical method and use of randomization technique to find the transient solution of $M / M / 1, M / M / C$ and	Section A Introduction of stochastic processes, Markov process, Markov Chain, Poisson process with its properties and related distributions (without proof) and birth-death process. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian queueing models: $\mathrm{M} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{M} / \mathrm{c}$. and their performance measures. Section B	Change in Credit.

				https://nptel.ac.in/courses/117103017/1 2. Introduction to stochastic process and applications, NPTEL https://nptel.ac.in/courses/110104024/1 3. Stochastic Process and Time series, ePATHSHALAhttps://epgp.inflibnet.ac.in/ahl. php?csrno=34	
18.	STAT (to be generated) Reliability and Renewal Theory	On successful completion of the course, the students will be able to: - Understand the importance of validity and reliability assessment and the link between the two. - Estimate the reliability function and mean time to failure for different types of systems - Analyze statistical experiments leading to reliability modeling. - Estimate life length distributions, using complete or censored data. - Identify reliability testing components. - Apply reliability theory to assessment of reliability in engincering design. - Analyze non-repairable systems of independent components, with and without redundancy - First look at what a random process is and then explain what renewal processes are.	-	Section A Concept of Reliability. Classes of Life time distributions. Evaluation of Reliability function, Shape of Reliability function. System, Reliability Evaluation: Series \& Parallel system, partially redundant system, standby system with perfect switching/imperfect switching, (k, n) system, Bridge Structure. Availability theory and its molding for various configurations. Introduction to Software Reliability. Section B Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies: Age, Block, Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging. Section C Renewal Theory, Distribution of number of renewals \& moments, Recurrence time \& its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability. Text Books 1. Sinha, S. K. (1986). Retiability and life testing. New York: Wiley.	New Course

		- Describe, derive, and prove important theorems and formulas for renewal theory - Use renewal theory to solve problems where Poisson is not a realistic process		2. Gert s bakh, I. B. (2009). Reliability theory: With applications to preventive maintenance. New Delhi: Springer. 3. Cox, D. R. (1982). Renewal theory. London: Chapman and Hall. 4. Lewis, E. E. (1996). Introduction to reliability engineering. New York, NY: Wiley. Reference Books 1. Barlow, R. E., \&Proschan, F. (1975). Statistical theory of reliability and life testing. New York: Holt, Rinehart and Winston. 2. Jardine, A.K.S. (1973). Mainterance, Replacement andReliubility. UK: Pitman Publication. 3. Medhi, J. (2009). Stochastic Process (3rd Ed.). New Age International, 2009. Suggested E-learning material: 1. 2011 Lecture 17 : Modules, Systems, and Reliability: https://ocw.mit.edu/courses/mechanicalengineering/ 2-627-fundamentals-of-photovoltaics-fall-2013/lecture-videos-slides/2011-lecture-17-modules-systems-andreliability/ 2. Probability Theory and Applications: Lecture 40Reliability of Systems: https://nptel.ac.in/courses/111104079/40	
19.	MATH (to be generated) Fields and Galois Theory	On completion of this course, students will be able to - Understand the concepts of field extension and appreciate its importance.	-	Section A Fields, prime subfields, Extension fields, algebraic extensions, simple extensions, transcendental extension, minimal polynomial, Kronecker's Theorem, splitting fields, uniqueness of splitting fields and algebraic	New Course

		- Understand different types of extensions. - Find the Galois group for some extension fields. - Know the link between field theory and group theory. - Demonstrate the solvability of quadratic, cubic and quartic equations by radicals.		closures. Section B Finite fields, existence and uniqueness of finite fields, Normal and separable extensions, perfect fields, Automorphisms of field, fixed fields, Galois group, Fconjugate, Frobenius map, character, linear independence of characters. Section C Fundamental theorem of Galois theory, cyclotomic extensions and abelian extensions, cyclotomic polynomials, cyclic extension, radical extension, solution of quadratic, cubic and quartic equations by radicals. Suggested Books: 1. Howie, J. M. (2006). Fields and Galois theory. London: Springer. 2. Escofier, J.-P. (2001). Galois theory. New York: Springer. 3. Gallian, J. A. (2013). Contemporary abstract algebra. ($8^{\text {th }}$ Ed.). Boston, MA: Brooks/Cole Cengage Learning. 4. Dummit, D. S. \& Foote, R. M. (2004) Abstract algebra (${ }^{\text {rd }}$ Ed.). New Jersey: Wiley. 5. Sen, M. K., Ghosh, S., Mukhopadhyay, P. \&Maity, S. K. (2019) Topics in abstract algebra (3rd Ed.). University Press. 6. Morandi, P. J. (2003). Field and Galois theory. Beijing: Beijing World Pub. Suggested F-learning Material: 1. Notes on Galois Theory: www.math.iitb.ac.in/~srg/Lecnotes/galois.pdf

				2. Lecture https://nptel.ac.in/courses/111101001/ Notes:	
20.	MATH (to be generated) Coding Theory	On successful completion of this course students will be able to, - Understand the need of coding theory. - Appreciate the applications of abstract and linear algebra in coding theory. - Find the generator and parity check matrix of linear codes. - Understand the main coding theory problem. - Derive classical bounds of codes and the distance of the code. - Understand cyclic codes and their decoding.		Section A Communication channels, maximum likelihood decoding, Hamming distance, minimum distance decoding distance of a code, finite fields, structure of finite fields, minimal polynomial, linear codes, Hamming weight, bases of linear codes, generator matrix and parity check matrix, encoding and decoding of linear codes, syndrome decoding. Section B The coding theory problem, lower bounds, Hamming bounds and perfect codes, singleton bound and MDS codes, nonlinear codes, Reed-Muller codes, subfields codes. Section C Cyclic codes: definitions, generator polynomials, generator and parity check matrices, decoding of cyclic codes, Burst-error-correcting codes, BCH codes: definitions, parameters of BCH codes, Decoding of BCH codes. Reed-Solomon codes, generalized Reed-Solomon codes, Goppa codes. Suggested Text Book: 1. Ling, S., \& Xing, C. (2004). Coding Theory: A first Course. Cambridge: Cambridge University Press. Suggested Reference Books: 1. MacWilliams, F. J., \& Sloane, N. J. A. (2007). The theory of error-correcting codes. Amsterdam: NorthHolland.	New elective

				2. Peterson, W. W., \& Weldon, E. J. (2008). Errorcorrecting codes. (2nd Ed.). Cambridge, Mass: MIT Press. 3. Berlekamp, E. R. (2015). Algebraic coding theory. (Algebraic Coding Theory.) Singapore: World Scientific. 4. Huffman, W. C., \&Pless, V. (2010). Fundamentals of error-correcting codes. Cambridge: Cambridge Univ. Press. 5. Hill, R. (2001). A first course in coding theory. Oxford: Clarendon Press. 6. Rhee, M. Y. (1989). Error-correcting coding theory. Singapore: McGraw-Hill. Suggested E-learning Material: 1. Online Course on Coding Theory:https://onlinecourses.nptel.ac.in/noc17 ee07 2. Lecture https://ocw.mit.edu/courses/electrical engineering-and-computer-science/6-895-essential-coding-theory-fall-2004/	
21.	MATH (to be generated) Fixed Point Theory	On successful completion of this course students will be able to: - Understand various concepts in metric spaces such as completeness. - Demonstrate standard examples of metric spaces and prove simple results related to them. - Understand the proof of open mapping theorem and Closed graph theorem.		Section A Metrics space, Complete metric space, Convergence, Cauchy sequence and Completeness, Various concept in metric space, Normed linear space, Banach space, normed space and Hilbert space, open mapping theorem and Closed graph theorem, linear operator. Section B Lipschitz mapings,expansive and Nonexpansive Mappings, contractive and contraction mappings, Upper and lower semi continuity of maps, contractive and	New elective

		- Check the conditions for expansive and Nonexpansive Mappings, contractive and contraction mappings. - Understand standard fixedpoint theorems. - To present the basic ideas of the theory, and illustrate them with a wealth of examples and applications in differential and integral equations.		nonexpansive multivalued maps, Banach's contraction principle, Fixed point theorem of Schauder's and Kirk, Tarsiki's Fixed point theorem. Section C Banach Fixed point theorem for multivalued maps, Generalized Schauder Fixed point theorem. Existence of solutions of ordinary equations and systems of linear equations in several unknowns, applications in the theory of differential and integral equations. Suggested Books: 1. Zeidler, E. (2000). Nonlinear functional analysis and its applications: Vol 1. New York: Springer. 2. Khamsi, M. A., \& Kirk, W. A. (2001). An introduction to metric spaces and fixed point theory. New York: John Wiley \& Sons. 3. Smart, D. R. (1980). Fixed point theorems. Cambridge: Cambridge University Press. 4. Istra tescu, V. I. (1981). Fixed point theory: An introduction. Dordrecht, Holland: D. Reidel Pub. 5. Agarwal, R. P., Meehan, M., \&O'Regan, D. (2009). Fixed point theory and applications. Cambridge, UK: Cambridge University Press. F-Resources 1. National Programme for Technology Enhanced Learning (NPTEL) https://nptel.ac.in/courses/111105037/	
22.	MATH (to be generated) Introduction to Dynamical	On successful completion of this course students will be able to, - Describe the main features of dynamical systems and their	-	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sels.	New Elective

	System	realisation as systems of ordinary differential equations. - Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability. - Use a range of specialised analytical techniques which are required in the study of dynamical systems. - Describe dynamical systems geometrically and represent them graphically via phase plane analysis. - Find fixed points and period orbits of discrete dynamical systems, and find their stability. - Do graphical analysis of 1D discrete dynamical systems. - Understand the basic properties of a chaotic dynamical system.		Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems and global existence theorem, Limit sets and Attractors, Periodic orbits, Limit Cycles, and Seperatrix cycles, the Poincare map, the stable manifold theorem for periodic orbits, the Poincare-Bendixon theory in R2, Lineard Systems, Bendixon's Criteria. Section C Discrete dynamical systems: finite dimensional maps, limit sets, Stability, Invariant manifolds, Runge-Kutta methods: the framework, linear decay, Lipschitz conditions, Dissipative systems, Generalized dissipative systems, Gradient system. Suggested Books: 1. Perko, L. (2009). Differential equations and dynamical systems. (3rd Ed.). New York, NY: Springer. 2. Stuart, A. M., \& Humphries, A. R. (1998). Dynamical systems and numerical analysis. Cambridge: Cambridge University Press. 3. Lynch, S. (2014). Dynamical systems with applications using MATLAB. (2nd Ed.). Cham: Birkhäuser.	
23.	MATH (to be generated)	On completion of the course, the student will be able to,		Section A Continuous population Models for single species: Basic	New elective

				Alta., Canada: HIFR Consulting. Suggested Reference Books: 1. Hastings, A. (2010). Population biology. New York: Springer. 2. Meerschaert, M. M. (2013). Mathemalical modeling. ($4^{\mathrm{Ld}} \mathrm{Ed}$.). Amsterdam: Elsevier Academic Press. 3. Meyer, W. J. (1984). Concepts of mathematical modeling. New York, N.Y. 4. May, R. (1976). Theoretical ecology. Principles and applications. United States. 5. Bailey, N. T. J., \& Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. Suggested E-learning material 1. NPTEL: https://nptel.ac.in/courses/102101003/ and https://nptel.ac.in/courses/102101003/\# 2. Biomathematics Lectures - UBC Zoology: www.zoology.ubc.ca/~bio301/Bio301/Lectures. html	
24.	MATH (to be generated) Combinatorial Optimization	On completion of the course, the student will be able to, - define the concept of combinatorial (optimisation or satisfaction) problem - recognize many types of combinatorial optimization problems; - formulate linear and integer programs, and identify when a problem can be viewed in terms of various "standard"		Section A Combinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory Matchings and alternating paths-Tutte-Berge formulaMaximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity. Single Source Shortest path algorithms-Bellman Ford algorithm, all pair shortest path algorithms - Floyd	New elective

			Suggested References Books: 1. Lange, K. (2004). Optimization. New York: Springer. 2. Bazaraa, M. S., Jarvis, J. J., \&Sherali, H. D. (2013). Linear Programming and Network Flows. Hoboken: Wiley. 3. Taha, H. A., \& Pearson Education. (2017). Operations research: An introduction. Harlow: Pearson. 4. Korte, B., \&Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg. 5. Ahuja, R. K., Magnanti, T. L., \& Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, N.J: PrenticeHall. Suggested F-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 2. Optimization -Introduction(Video Lecture) https://nptel.ac.in/courses/111105039/	
25.	MATH (to be generated) Transportation System Analysis	On completion of the course, the student will be able to, - Use optimal transportation decision-making schemes based on transportation data analysis by establishing, testing and solving transportation models. - Perform simple statistical analysis on transportation field data, sample estimation and hypothesis testing in	Section A Introduction of transportation system analysis; characteristics, goal and role of transportation system analysis; applications and methodologies of transportation system analysis; Scope of transportation system analysis; TAF system; Impact of TAF system Section B Random variables, applications of probability	New elective

		transportation system. - Design suitable sampling and experimental methods for transportation system analysis and realize error sources.		distributions in transportation system analysis, sample distributions and means in transportation system analysis, Central Limit Theorem, Bayesian Theorem, significance and hypothesis testing in transportation systems. Use of transportation field data and data gathering techniques, sources of errors, considerations of transportation system sample size; experiment design for transportation system demand forecasting and transportation operations analysis. Section C Intelligent Transportation System (ITS), components of ITS; Causal Loop Diagramming (CLD) system dynamics approach, conceptualization and development in transportation system policy and scenario analysis; Transportation system scenario generation models and techniques: Delphi technique; Seth Harva model; Multi criteria decision making model. Suggested Books: 1. Papacostas,C. (1987)Fundamentals transportation system analysis, PHI. 2. Cascetta, Ennio. (2012). Transportation Systems Analysis: Models and Applications. Springer Verlag. 3. Edwards, J. D., \& Institute of Transportation Engineers. (1999). Transportation planning handbook. (2 $2^{\text {nd }} \mathrm{Ed}$.). Washington: Institute of Transportation Engineers. 4. Levin, R. I., \& Rubin, D. S. (2008). Statistics for management. New Delhi: Prentice Hall of India. 5. Walpole, R. E. (2014). Essentials of probability and

				statistics for engineers and scientists. Pearson. 6. Mohapatra, P. K. J., Mandal, P., \& Bora, M. C. (1994). Introduction to system dynamics modelling. London: Sangam. 7. Roberts, N. (1998). Introduction to computer simulation: A system dynamics modeling approach. Portland, Or: Productivity Press.	
26.	STAT (to be generated) Stochastic Models	On completion of this course, the students will be able to: - Acquire skills in handling situations involving more than one random variables. - Understand to analyze the performance of reliability models. - Learn how to analyze a network of queues with Poisson arrivals and exponential service requirements. - Learn how to analyze a network of queues with Poisson arrivals and general service requirements. - Understand the concept of switching in reliability modeling.	-	Section A Review of Stochastic processes, Markov process, Markov chain, Poisson Process. Birth and Death process. Expression for mean and variance of a birth and death process. Introduction of queues, Queueing system. Components of a queueing system, Measures of effectiveness and Notations. Steady state solution of $\mathrm{M} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{M} / 1 / \mathrm{N}$ Queueing Models and their measures of effectiveness. Section B Steady state solution of $M / M / C$ Queueing Models and their measures of effectiveness. The transient solution of $\mathrm{M} / \mathrm{M} / 1$ and $\mathrm{M} / \mathrm{M} / \infty$ Queueing models including busy period distribution. Imbedded Markov chain technique and its use to solve the $\mathrm{M} / \mathrm{G} / 1$ queueing models. Measures of Effectiveness of $\mathrm{M} / \mathrm{G} / 1$ queueing model. Section C Reliability Models: Concept of reliability, early age failures, wearout failures and chance failures. Derivation of general reliability function failure rate, failure density functions and mean time between failures (MTBF). System reliability evaluation: series system, parallel system, partially redundant system, standby system	New elective introduced

				with perfect switching / imperfect switching. Effect of spare components (identical / non- identical) on the system reliability. Text/References books: 1. Cox, D. R., \& Miller, H. D. (1972). The theory of stochastic processes. London: Chapman and Hall. 2. Billinton, R., \& Allan, R. N. (2013). Reliability evaluation of engineering systems: Concepts and techniques. New Delhi: Springer (India). 3. J. Medhi, J. (1994). Stochastic processes. New Age International Publications. 4. Bazovsky, I. (2013). Reliability Theory and Practice. Dover Publications. 5. Gross, D., \&Harris C.M (2002). Fundamentals of Queucing Theory. John Wiley \& Sons. 6. Allen, A. O. (2014). Probability, Statistics, and Queueing Theory with Computer Science Applications. Academic Press. Suggested F-learning Resources 1. Introduction to Stochastic Processes and its Applications https://nptel.ac.in/courses/110104024/ 2. Statistics e-PG-pathshala: https://epgp.inflibnet.ac.in/ahl.php?csrno=34 3. Reliability Engineering, NPTEL: https://nptel.ac.in/courses/105108128/	
27.	STAT (to be generated) Demography	On completion of the course, students will be able to, - Identify principle sources of demographic data and assess their strengths and weaknesses.		Section A Meaning and scope of demography; Sources of demographic data; Census; Population composition and its basic demographic measures: Ratios, Proportions and Percentages; Population pyramids; Quality of	New elective introduced

				its estimation; Migration component; Migration streams; Hamilton's rate; Migration models; Concept of international migration; Concept of morbidity and its measures. Urbanization - Growth and distribution of rural-urban population in developed and developing countries. Nuptiality - Concept and analysis of marital status; Singulate mean age at marriage. Stationary and Stable population theory; Uses of Lotka's stable population theory in estimation of demographic parameters; Population estimates; Population projections and forecasting; Methods of Inter-censal and Post-censal estimation; Methods of population projection. Suggested Text Books: 1. Ramkumar, R.(2006). Technical Demography. New Age International. 2. Pathak, K.B.\& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House. 3. Srinivasan, K., Saxena, P. C., \&Kanitkar, T. (1979). Demographic and Socio-economic Aspects of the Child in India. Himalaya Publishing House. Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., \& Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. \&Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya

Reading Electives

| S.N. | Course List | Learning Outcomes | Existing Syllabus | Remark |
| :--- | :--- | :--- | :--- | :--- | :--- |

1.	MATH 603R Advanced Cryptography	On completion of this course, students should be able to, - Understand digital signatures in detail. - Understand the concept of signcryption and its security requirements. - Understand the identity based cryptography.	-		No change in syllabus.
2.	MATH 604R Advanced Queueing Models	On completion of this course, students should be able to, - Understand the principles and objectives of model building based on Markov chains. - Analyze the queueing situations. - Understand the mathematical tools that are needed to solve queueing problems. - Identify and develop queueing models from the verbal description of the real system. - Understand the various NorMarkovian queueing models.	-	Suggested F-learning Resources 1. Queuing Systems, NPTEL https://nptel.ac.in/courses/117103017/1 2. Transient solution of an $\mathrm{M} / \mathrm{M} / 1$ queue with catastrophes. https://core.ac.uk/download/pdf/81115439.pdf 3. On the $M / M / 1$ queue with catastrophes and its continuous approximation. Source: Queueing Systems journal. https://link.springer.com/article/10.1023/A:10232618 30362 4. Some new results for the M/M/1 queue, Source: Management Science journal. https://pubsonline.informs.org/doi/10.1287/mnsc. 28.7 .821	
3.	MATH 605R Algebraic Aspects of Cryptography	On completion of this course, students should be able to, - Understand the finite field arithmetic and what are the efficient algorithms for theme? - Know the group law of elliptic curves and able to perform computation on the elliptic			

		strategies. - Explain the game theoretic concepts of uncertainty, information and strategic moves. - Explain the characteristics and application of repeated games and associated trigger strategies. - Apply decision making models in interaction situations. - Gain a proper understanding of game theoretic concepts and modeling: covering equilibrium in static and dynamic games, with varying information structures.			
6.	MATH 612R Finite Element Methods	On completion of the course, the student will be able to, - Understand global, local, and natural coordinates. - Understand the significance of shape functions (linear, quadratic, cubic) in finite element formulations and can formulate one and two-dimensional elements like triangular and rectangular elements. - Understand the concepts behind variational methods and weighted residual methods in FEM and - implement the Galerkin residual		Suggested F-learning Resources 1. PDF of Lectures on Finite Element Method by C. Mercier; Platform: The Tata Institute of Fundamental Research, Bombay http://www.math.tifr.res.in/~publ/ln/tifr49.pdf	

		weak formulation into the Finite Element Method for the solution of Ordinary and Partial Differential Equations.			
7.	MATH 613R Finite Field Theory	On completion of this course, students should be able to - Understand finite fields and their extension in detail. - Find primitive polynomial, factorization of polynomials. - Understand Gauss, Jacobi, and Kloosterman sums, character sums and their applications.			
8.	MATH 616R Intelligent Transport System	On completion of this course, students should be able to - understand the sensor and communication technologies. - differentiate different ITS user services - define the significance of ITS under Indian conditions - select appropriate ITS technology depending upon site specific conditions. - design and implement ITS components		Suggested F-learning Resources 1. Benefits of Intelligent Transportation System; Platform: https://www.its.dot.gov/factsheets/benefits factsheet . htm 2. Intelligent Transportation System; Platform NPTEL: https://nptel.ac.in/courses/105101008/48 3. Intelligent Transportation System; https://www.wsp.com/en-US/services/intelligent-transportation-systems-its	
9.	MATH 617R	On completion of this course, the		Suggested F-learning Resources	

	Inventory and Production Management	students will be able to, - Demonstrate what inventory is and where we find it within the supply chain. - Demonstrate the types of demand patterns common in real inventory problems. - Prepare appropriate inventory planning models for differing demand patterns. - Recognize the importance of inventory management. - Understand Production management basics and its history. - Formulation of aggregate planning problems; their objectives, constraints and applicable solution techniques. - Understand the terms Trade credit, Inflation, VMI etc. and learn how to use these policies in inventory modeling.		1. Basic Inventory Principles \quad (PDF): https://nptel.ac.in/courses/112102106/38 2. Supply Chain Management \&Vendor-managed Inventory (PDF): https://ocw.mit.edu/courses/sloan-school-of- management/15-760a-operations management- spring-2002/lecture-notes/ 	
10.	MATH 618R Marketing Management				
11.	MATH 621R Numerical Solutions of Partial Differential	On completion of the course, students will be able to, - Solve mathematical models represented by initial or boundary value problems		Suggested F-learning Resources 1. Lecture notes on Numerical Methods for Partial Differential Equations; Platform: MIT open course ware; https://ocw.mit.edu/courses/aeronautics-and-	

	Equations	involving partial differential equations that cannot be solved directly using standard mathematical techniques but are amenable to a computational approach. - Select appropriate numerical methods based on the characteristics of a PDE problem. - Introduce the discretization methodologies, with particular emphasis on the finite difference method that allows the construction of accurate and stable numerical schemes. - Discuss about the stability and convergence of the numerical methods.		astronautics/16-920j-numerical-methods-for-partial- differential-equations-sma-5212-spring- 2003/lecture-notes/ 2. Lecture notes on Numerical Solution of Partial Differential Equations; Platform: nptel; https://nptel.ac.in/courses/111107063/2 1
12.	MATH 622R Operator Theory	On completion of this course, the students will be able to, - Tell what is operators - Define several standard examples of linear operators, self-adjoint operators and prove simple results related to them. - Spectral representation of compact self-adjoint operators in Hilbert spaces. - Applications of spectral Theorem for compact operators. - Some recent results and open problems in operator theory		

		- Estimate life length distributions, using complete or censored data. - Identify reliability testing components. - Apply reliability theory to assessment of reliability in engineering design. - Know Bayesian reliability concept. - Determine Life table and KaplanMeier approach. - Understand MCMC technique for simulation.		photovoltaics-fall-2013/lecture-videos- slides/2011-lecture-17-modules-systems-andreliability/	
15.	STAT 604R Bio-statistics				
16.	STAT 608R Generalized Linear Models	On completion of the course, the student will be able to, - Understand the concept of logistic regression, its estimation and testing. - Understand the procedure to regression analysis for dependent count variable using Poisson regression. - Broaden their understanding of regression model to generalized linear models and their application.			
17.	STAT 610R	After successful completion of this		Suggested E-learning Resources	

	Statistical Computing	course, student will be able to: - Simulate and generate statistical data by different techniques. - Estimate the unknown parameter of population via different methods. - Understand the basic concepts of statistical theories besides developing their ability to - handle real world problems with large scale data.		1. Statistical computing Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm 2. Statistics: Platform: e-PG Pathshala https://epgp.inflibnet.ac.in
18.	STAT 611R Supply Chain Management	On completion of the course, the student will be able to: - Understand the structure of supply chains and the different ways through which supply chains can become competitive in the realistic problems. - Understand fundamental supply chain management concepts. - Apply knowledge to evaluate and manage an effective supply chain. - How to align the management of a supply chain with corporate goals and strategies. - Analyze and improve supply chain processes. - Identify the principles of		Suggested F-learning Resources 1. Introduction to Supply chain management (PDF): https://nptel.ac.in/courses/110106045/35

		customer and supplier relationship management in supply chains.			
19.	STAT 612R Survival Analysis	On completion of the course, students will be able to: - Identify characteristics of survival data and problems in their correct analysis - Define and understand the relationship between the survival function, distribution function, Hazard function, relative hazard, and cumulative hazard - Perform and interpret univariate analyses of survival data using the Kaplan-Meier estimator - Perform and interpret two-sample analyses of survival data using common statistical procedures such as the log rank test - Formulate research questions involving survival data as regression problems - Fit the proportional hazards regression model to survival data and assess the scientific significance, precision, and interpretation of regression coefficients - Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated.	Veritied Offg. Secretary Banaethali Vidyapith P.O. Banesthali Vidyapith Distt. Tonk (Raj.)-304022	Suggested F-learning Material: 1. http://www.stat.columbia.edu/~madigan/W20 25/notes/survival.pdf	

[^0]: * Programming in C
 ** Practice on SQL

[^1]: urbanization on the economic growth of the contrary.

 - Estimate and project the population by different methods.
 - Understand the concept of stable and stationary population.

