Minutes of the meeting of the Board of Studies in Physics held on 8th September, 2004 at 10.30 A.M. in the Department of Physics, Vigyan Mandir, Banasthali Vidyapith.

PRESENT

- 1. Prof. N.S. Saxena : External Member
- 2. Prof. Rekha Govil : Member
- 3. Ms. Neeta Khare : Member
- 4. Mr. Arun Kumar : Member
- 5. Dr. Yashvir : Convener

Note:- Dr. Seema Verma (Member) could not attend the meeting.

- 1. The Board confirmed the minutes of its last meeting held on 13th October, 2003.
- 2. The Board scrutinized the existing panel of examiners in the subject of Physics.
- 3. The Board considered the reports of the examiners in the subject of Physics of various examinations of 2004 and noted their suggestions.
- 4. The Board considered the courses of study curricula and scheme of examination keeping in view the course structure approved by academic council for the following examinations:-
 - (i) B.Sc. First Year Examination, 2006
 - (ii) B.Sc. Second Year Examination,2007
 - (iii) B.Sc. Third Year Examination,2008
- There is no change in the above mentioned course.
- 5. Banasthali Vidyapith is having PostGraduate courses in Science in the subjects Chemistry, Computer Science, Mathematical Sciences, Biological Science, Electronics, Biotechnology (noted in chronological order) and now recently Pharmaceutical Chemistry, Bioinformatics and Applied Microbiology. Not having a Post-Graduate course in Physics, which is one of the basic science courses, makes it incomplete. Moreover, M. Sc. in Physics is desirable for the completeness in core subjects of science and for the growth of the science faculties, as many of the higher institute of learning such as IITs, Tata Institute of Fundamental Research, Indian Institute of Science, National Center for Radio Astrophysics, Inter-University Center for Astronomy and Astrophysics etc. and bodies like National Board for Higher Mathematics offer so many research and higher learning opportunities in Physics as well as in interdisciplinary fields (See Enclosed). Starting a P. G. Course in Physics will open doors for our students to all these schemes, which will strengthen the academic standard of the institute in faculty of Science. Hence the Board strongly recommends starting of M. Sc. (Physics) with specialization in Electronics. Specialization in Electronics gives the advantage to utilize the existing expertise in subject in the institute, so that we do not require any additional infrastructure and faculty to start the course and the existing resourses of the institute in the faculty of Mathematical Sciences can be utilized for the benefit and upliftment of academic standard in the other departments. By starting P. G. course in Physics, research

interest in the faculty will be encouraged and facility of research project may be availed for delivering in depth knowledge to the students.

A suggestive course structure is enclosed herewith in Annexure – I. One can see that not more than 50% of the courses are common with M. Sc. (Electronics)/M.C.A./M.Tech. but also the course can offer electives like Nanotechnology, C-Mos Technology, leading to the research in the emerging areas.

The meeting ended with a vote of thanks to the Chair.

Annexure - I

M.Sc. (Physics) Detailed Syllabus

I. SEMESTER

1. Mathematical Physics

Total Contact Hours: 45

SECTION-A

Tensor: Introduction, Rank and number of components of a Tensor, contravariant and covariant Tensors, Transformation of covariant, contravariant and mixed Tensor, Addition, Multiplication and contraction of Tensor.

Complex Analysis: Function of Complex Variable, Derivative and the Cauchy-Riemann differential equations, Analytic function, Line integral of complex function, Cauchy's integral theorem, Cauchy's integral formula, Taylor's and Laurent series, Cauchy's Residues theorem, Singular points of an analytic function, evaluation of Residues, Liouville's theorem, Evaluation of definite integrals.

SECTION-B

Ordinary Differential Equations: Second-order Homogeneous and Nonhomogeneous equations with constant and variable coefficients, Laplace and Poisson equations.

Special Functions: Series solution method, Solutions and basic properties like orthogonality, recurrence relations, graphical representation and generating functions of Bessel's, Hermite's Legendere's and Laguerre's and Associated Legender functions(Detail Study).

Second-order partial differential equations: Laplace, Helmholtz, Wave and Diffusion eqs.

SECTION-C

Integral transforms: Laplace transforms, First and second shifting theorems, Inverse Laplace transform-first and second shifting theorems, Laplace transform and Inverse Laplace transform of derivative and integral of function, Convolution theorem.

Fourier series, F S of arbitrary period, Summation of the F S.

Fourier Transform: Fourier sine and cosine transform, Inversion formula for Fourier sine and cosine transform, Change of scale property, Shifting theorem, Multiple FT, Convolution theorem, FT of the derivatives of a function.

- 1) Introduction to Mathematical Physics by Charlie Harper (PHI)
- Applied Mathematics for Engineers and Physicists by Louis A. Pipes and Lawrence R. Harvill, (Third Edition, McGraw-Hill Book Company)
- 3) Advanced Engineering Mathematics by E Kreyszig
- 4) Mathematical Physics by B.D. Gupta (Vikas Publishing House Pvt. Ltd., 1978)
- 5) Mathematical Physics by Eygene Butkov (Addison-Wesley Publishing Company)

2. Classical Mechanics

SECTION-A

System of particles: Conservation laws, Constrained motion, Constraints, Degree of freedom, Generalised co-ordinates.

Variational principle and Lagrangian Formulation: Calculus of variations, Euler-Lagrange differential equation, Hamilton's principle, Deduction of Lagrange's equations of motion by different method, D'Alembert's principle, Rayleigh's dissipation function, Lagrangian for a charged particle in an electromagnetic field. Applications of Lagrange's equations of motion, Non-holonomic system: Lagrange's method of undetermined multipliers, Conservation theorems(first integrals of equations of motion), Routhian function.

SECTION-B

Hamiltonian Formulation of Mechanics: Phase space and the motion of the system, Hamiltonian, Hamilton's canonical equations of motion, Physical significance of H, Hamilton canonical equations of motion in different co-ordinate system, Applications of Hamiltonian's equation of motion, Hamiltonian for a charged particle in an ectromagnetic field, Principle of least action, Canonical transformations, Infinitesimal contact transformation, Hamilton-Jacobi method, H-J equation for Hamilton's characteristic function, Application of H-J method, Action and angle variable, Poisson brackets, Jacobi's identity, Infinitesimal contact transformations interpretation in terms of Poisson brackets, The angular momentum and Poisson brackets, Poisson bracket in Quantum Mechanics, Lagrange' brackets, Liouville's theorem.

SECTION-C

Motion under Central Force: Two-Body Problem:

Equivalent one body problem, General features of central force motion, Equivalent one dimensional problem-features of orbits, Inverse square law-Kepler problem, Virial theorem, Rutherford scattering, Center of mass and Laboratory co-ordinates, Transformation of scattering problem to laboratory co-ordinates.

Relativistic Mechanics:

Basic postulates of Relativity, Lorentz transformation, Relativistic generalization of Newton's law, Lagrangian, and Hamiltonian formulation of relativistic mechanics, A covariant Lagrangian and Hamiltonian formulation.

- 1) Classical Mechanics by H Goldstein (Addison Wesley, 1980)
- 2) Mechanics by A Sommerfeld (Academic Press, 1952)
- 3) Classical Mechanics by Dr. S.L. Gupta, Dr. V. Kumar, Dr. R.C. Sharma (Pragati Prakashan, 1988)
- 4) Classical Mechanics by J.C. Upadhyaya (Himalaya Publishing House, 2003)

3. Quantum Mechanics – I

Total Contact Hours: 45

SECTION-A

Why Quantum Mechanics? The quantum concept, Postulates of quantum mechanics Schroedinger equation: Derivation and Solution, Physical interpretation of wave function, Expectation values, Probability current density, Ehrenefest's theorem, Uncertainty principle, Complementarity principle.

One-dimensional problems: Wells and barriers, Harmonic by Schroedinger's equation, Applications of Schroedinger equation in Spherical Symmetric System: Rigid Rotator and Hydrogen Atom, Degeneracy.

SECTION-B

Operators in QM: Orthogonal sets, Completeness, Different type of operator, Eigen values and Eigen functions, Operator formalism in QM, Commutation Algebra, Commutativity and simultaneous eigen functions.

Hilbert space, Operators as matrix, Matrix form of wave function, Schroedinger, Heisenberg and Interaction matrix representation, Dirac's Bra and Ket vectors, Direct sum and product of Hilbert space, Co-ordinate and momentum representation.

Identical particles, Symmetric and anti-symmetric wave functions, Particle exchange operator, Pauli exclusion principle, Spin angular momentum, Stern-Gerlach experiment, Spin matrices for electron, Commutation relations.

SECTION-C

Angular momentum operator, Spin angular momentum, Total angular momentum operators, Commutation relations of total angular momentum, Eigen values of J^2 and J_z , J_+ and J_- , J_x and J_y , Eigen functions of J^2 and J_z , Addition of angular momenta, CG coefficients, Wigner-Eckart theorem.

Approximate method- Time independent perturbation theory, Non-degenerate and degenerate cases, Applications – such as normal He atom, Perturb harmonic oscillator, Zeeman effect, and Stark effect.

- 1) Quantum Mechanics by L I Schiff (Mcgraw-Hill)
- 2) Quantum Mechanics Theory and Applications by A. K. Ghatak and S. Lokanathan (Third Edition, 1997, Mcmillan India Limited)
- 3) Quantum Mechanics An Introduction by Walter Grenier (Third ed., 1994, Springer)
- 4) Advanced Quantum Mechanics by Satya Prakash (Kedar Nath Ram Nath, Meerut)

4.COMPUTER PROGRAMMING*

SECTION-A

Total Contact Hours: 45

Simple model of a computer system : CPU, Memory, Input/Output devices. Hardware and software. Booting process and DOS commands. The steps involved in computer programming, problem analysis, algorithms & flow charts. Computer Programming(in PASCAL): various data types (simple and structured) and their representation (BCD,ASCII and EBCDIC), constants and variables, arithmatic and logical expressions, data assignments, input and output statements. Program header & declarations. High level and low level programming languages.

SECTION-B

Further Computer programming : Control statements -sequencing, conditional and unconditional branching and looping. Single and multi-dimensional arrays. Searching (linear, binary), sorting (exchange, bubble, selection and insertion) and merging. User defined data types.

SECTION-C

Stepwise refinement. Subroutines : Functions and Procedures. Parameter passing, call by value & call by reference. Functions and procedures as parameters, recursion. Further data structures : Records (simple, hierarchical and variant), sets, files (text and binary files).

- 1. Pascal Programming by Pearlman, Mc-Graw Hill.
- 2. Introduction to Pascal & Structural Design by Dale, Orshalick, Tata Mc-Graw Hill.
- 3. Fundamental Algorithms by D.E.Knuth.
- 4. An Introduction to Data Structures in Pascal by Trembley. Galgotia Publications 1985.
- 5. PASCAL MEIN COMPUTER PROGRAMAN : Aditya Shastri, Tata Mc-Graw Hill, 1990.

5. Digital Electronics

Total Contact Hours: 45

SECTION-A

Number system (binary, octal, decimal, hexadecimal) bits & bytes, representation of integers, real, positive and negative numbers. Binary Arithmetic, Simple concept of theorems of Boolean Algebra.

Representation of characters : BCD, ASCII, EBCDIC Codes. Weighted codes, self complementary codes, Error detecting codes and error correcting codes (Parity, Gray, Hamming codes).

Logic Gates : Logic Gates and Boolean Algebra Representation and Simplification of functions by Karnaugh Maps. Combinational Circuits design. Combinational circuits - adder, subtractor, decoder, demultiplexer, encoder, multiplexer, comparator.

SECTION B

Sequential Logic Circuit & Design - flip flop, shift register, asynchronous and synchronous counters.

Digital Logic Families and Their Charactersistic : RTL, DTL, TTL, Schotlky TTL, ECL, MOS and CMOs, Fan in, Fan out.

SECTION C

Semiconductor Memories : RAM, ROM, PROM, EPROM, BJTRAM Cell, MOS RAM Cell, Organization of RAM, Charge Coupled devices (CCD), storage of charge and transfer of charge in CCD.

D/A Converter : Weighted resistance D/A, R-2R Ladder Converter. DAC 0800 D/A Chip, D/A Converter specification.

A/D Converter : Analog to Digital Converter, Parallel Comparator Converter, Counting Converter, Successive Approximation Converter, Dual Slop converter A/D converter specification, sampling and hold circuit, ADC 0804 Converter chip.

- 1. Digital Principles and Applications by Malvino C.P., Leach D.P.; Tata Mc-Graw Hill, 1985.
- 2. Digital Computer Fundamentals:Bartee, T.C.
- 3. Computer System Architecture : Mano, M.M., Prentice Hall, 1988
- 4. Computer Architecture and Organization : Hayes John P., Mc- Graw Hill 1988 (International Edition)
- 5. Introduction to Computer Architecture Stone s., Galgotia Publications 1986.
- 6. Microprocessors, Architecture, Programming & Applications R. Gaonkar, Wiley Eastern 1987.

II. SEMESTER

1. Statistical Mechanics

Total Contact Hours: 45

SECTION-A

Foundations of Statistical Mechanics, Specification of states of system, Contact between statistics and thermodynamics, Classical ideal gas, Entropy of mixing and Gibb's paradox.

Microcanonical ensemble, Phase space, Trajectories and density of states, Liouville's theorem, Canonical and grand canonical ensembles, partition function, calculation of statistical quantities, Energy and Density fluctuations.

SECTION-B

Density matrix, Statistics of ensembles, Statistics of indistinguishable particles, Maxwell-Boltzman, Fermi-Dirac and Bose-Einstein statistics, Properties of ideal Bose and Fermi gases, Bose-Einstein condensation.

Expansion of classical gas, Virial equation of state, Ising model, mean-field theories of ising model in three, two and one dimensions, Exact solutions in one-dimension.

SECTION-C

Landau theory of phase transition, Critical indices, Scale transformation and dimensional analysis.

Correlation of space-time dependent fluctuations, Fluctuations and transport phenomena, Brownian motion, Langevin theory, fluctuation dissipation theorem, The Fokker-Planck equation.

- 1) Fundamentals of Statistical and Thermal Physics by F. Reif (McGraw-Hill Kogakusha)
- 2) Statistical Physics by Landau and Lifshitz
- 3) Statistical Physics by K Huang
- 4) Statistical Mechanics by Gupta and Kumar (Pragati Prakashan, Meerut)

2. Quantum Mechanics – II

SECTION-A

Variational method, WKB approximation, Applications of Variational and WKB method, Time dependent perturbation theory, Harmonic perturbation, Fermi's golden rule, Transition probabilities, Adiabatic and Sudden approximation, Semiclassical treatment of radiation.

SECTION-B

Quantum Theory of Scattering:

Collision in 3-D and scattering, Laboratory and CM reference frames, Scattering amplitude, Differential scattering cross section and total scattering cross section, General formulation of scattering theory, Born approximation, Applications of Born approximation, Partial Wave Analysis and Phase Shift, Applications of PWA, The Lippmam-Schwinger equation.

SECTION-C

Relativistic wave equations:

Klein-Gordan equation, Solution of Klein-Gordan equation, Dirac's relativistic equation, Solution of Dirac's equation.

Quantisation of Fields: Classical approach to field theory, Second quantisation, Quantum equation of field, Quantisation of non-relativistic Schroedinger equation, Creation, Annihilation and Number Operators, Quantisation of Klein-Gordan equation.

- 1) Quantum Mechanics by L I Schiff (Mcgraw-Hill)
- 2) Quantum Mechanics Theory and Applications by A. K. Ghatak and S. Lokanathan (Third Edition, 1997, Mcmillan India Limited)
- 3) Quantum Mechanics An Introduction by Walter Grenier (Third ed., 1994, Springer)
- 4) Advanced Quantum Mechanics by Satya Prakash (Kedar Nath Ram Nath, Meerut)

3. Physics of Lasers and Laser Applications

SECTION-A

Total Contact Hours: 45

Spontaneous and Stimulated emission, Population inversion, Idea of laser. Gaussian beam and its properties, Stable and Unstable Optical Resonators, Longitudinal and Transverse modes of laser cavity, Gain in a regenerative laser cavity, Threshold for 3 and 4 level laser systems, Q-switching and mode locking – Pulse shorting – nano, pico and femtosecond operation.

SECTION-B

Ruby laser, He-Ne laser, carbon Oxide laser, Excimer laser, X-ray laser, Dye laser, Neodymium YAG and glass laser, Fiber laser, Semiconductor laser, Quantum-well laser, Diode – Pumped solid state laser.

SECTION-C

Laser fluorescence and Raman scattering, Laser induced miltiphoton process, Ultrahigh resolution spectroscopy with lasers and its applications, Optical Fibers, Light wave communication, Holography: Construction of hologram and reconstruction of the image, Types of Hologram. Medical and Engineering applications of lasers, Potential of lasers in defense applications.

- 1) Laser Fundamentals by William T. Silfvast (Cambridge University Press, 1998)
- 2) Optical Electronics by Ajoy Ghatak and K. Thyagarajan (Cambridge University Press, 1994)
- 3) Lasers by Svelto
- 4) Laser Spectroscopy: Demtroder

4. Computer Oriented Numerical & Statistical Methods

Total Contact Hours: 45

SECTION-A

Errors and Approximations in Digital Computers, Number representation, Floating point Arithmetic. Solution of systems of linear equations - direct method, Gauss Jordan & Gauss Elimination methods, Pivoting, Iterative methods - Jacobi & Gauss Seidel method.

Solution of Nonlinear equations in n variable : Localization of the roots, Bisection and Regula - Falsi methods, Newton-Raphson method, successive Approximation method, Rate of convergence and Aitkin's process.

SECTION-B

Interpolation: Newton's Interpolation formulae - Forward and Backward difference formulae, Derivatives & tabulated functions, Lagrange's Interpolation formula.

Numerical Integration and Differentiation: Newton-Cotes formulae - Trapezoidal & Simpson's rule, change of interval of integration, Numerical Differentiation, derivatives from Newton-Goegory Forward Polynomial.

Numerical solution of ordinary Differential equations: ODE's as a system of first order ODE's, Euler's, Picards and Taylor series methods of real functions - Introduction and Polynomial Approximations, Least squares approximation.

SECTION-C

Statistical Methods: Treatment of data, Frequency Distribution, measures of central tendency, dispersion & partition values.

Probability distribution - Binomial, Poisson & Normal.

Curve fitting by principle of least square, Correlation and regression.

Inference- Tests of significance for mean, variance, proportion, and correlation coefficient, Test of goodness of fit and independence of attributes. Analysis of variance for one way classified data.

- 1. Computer Oriented Numerical Methods: Raja Raman V., Prentice Hall 1988.
- 2. Computer Based Numerical Algorithms: Krishnamurthy E.V.; East West Press
- 4. Elementary Numerical Analysis : Conte de Boor.
- 5. Statistical Analysis: A Computer Oriented Approach: Affi A.A.; Academic Press,
- 6. Introduction to Data Analysis and Statistical Inference : Morris C., Rolpn J.; Prentice Hall, 1981.
- 8. Introduction to Numerical Analysis: Atkinson E., John Wiley 1978.
- 9. Elementary Computer Assisted Statistics : Scalzo F.; Von Nostrand Reinhod Co. Ltd.1978.
- 10. Essential Computer Mathematics : Seymour Lipshutz; Schaum's Outline Series, McGraw Hill

5. Analog and Digital Communication

Total Contact Hours: 45

SECTION-A

Spectrum Analysis: Fourier series, Sampling, functions. Normalized power, Fourier transform. Parsevals theorem, Convolution, Signal transmission through linear time invariant systems, correlation and power spectrum, Random signals and noise, Basic information theory.

Analog Modulation Systems: Amplitude modulation, depth of modulation, spectrum of an A.M. signal, square law modulator, Balanced modulator, D.S.B.S.C. modulation, S.S.B. modulation, vestigial sideband modulation.

SECTION-B

Frequency modulation, phase modulation, relationship between phase and frequency modulation. Spectrum of F.M. Signal, generation and detection of F.M. signal. Comparision of AM & FM. Digital modulation systems: Sampling theorem, PAM, PWM, PPM, quantization od signals, quantization error, Pulse-code modulation, companding, DPCM, Delta modulation, adaptive delta modulation, ASK, FSK, PSK, DPSK.

SECTION-C

Satellite Communication - History of orbital satellites, Geostationary Satellites, Orbital patterns, Look Angles, Orbital spacing and Frequency allocation, Radiation Patterns: Footprint, Satellite System link models, Satellite system parameters, FDM/FM satellite systems. Introduction to Communication systems: Radio, T.V., Telegraph & Telex, EPABX, FAX, Cellulor telephones, Telemetry.

- 1) Principles of Communication Systems by Taub. Schilling, McGraw Hill
- 2) Electronic Communication Systems by George Kennedy, Mc-Graw Hill
- 3) Radio Engineering by G.K. Mithal, Khanna Publisher
- 4) Principles of Communications- Systems, Modulation & Noise by R.E. Zimer & W.H. Tranter, Jaico Publishing House

6. Communication Skills

Types of Communication- oral communication, written communication- formal, informal, Business letters – types of letter, writing letters, business correspondence, applying for job, Resume writing, filling out employment application.

Report writing- Defining and determining reports purpose, Report Planning, collecting information, Developing an outline, sections of report, types of report, Making reports writing effective, Drafting circular, notices, agenda and Minutes of meetings.

Suggested Readings:

- 1. Lesiker : Basic Business Communication
- 2. Sharma R.C., Krishan Mohan, Business Correspondence and report writing.
- 3. A shley A : Handbook of commercial correspondence.
- 4. Effective Business Communication : Asha Kaul
- 5. Parag Diwan and L.N. Aggarwal : Business Communication.

Evaluation: The total marks allotted to the course are -25, which will be awarded based on

- A. Continuous Assessment 5 Marks
- B. Annual Assessment 20 Marks

The continuous assessment could be done in the form of Viva whereas for the annual exam the student has to answer three questions, one essay type question of 10 marks and other two short questions of 5 marks each. Each question should have internal choice. The duration of the exam be -2 Hours.

III. SEMESTER

1. Condensed Matter Physics

SECTION-A

Total Contact Hours: 45

Crystalline solids, Lattice points, Basis and crystal structure, Unit cells and lattice parameters, Two and Three-dimensional Bravais lattices, Types of crystals, Closed packed structures.

Interaction of X-rays with matter, Reciprocal lattice and its application to diffraction techniques, Bragg' law, Laue powder and rotating crystal methods.

SECTION-B

Electronic properties of Solids: Electrons in a periodic lattice, Bloch theorem, Band theory, Classifications of solids, effetcive mass, Tight-bonding, Fermi surface, de Hass von Alfen effect, Cyclotron resonance, Magnetoresistance, Quantum Hall effect, Superconductivity: critical temprature, persistent current, Meissner effect.

SECTION-C

Points defects, Line defects and planer faults, The role of dislocations in plastic deformation and crystal growth, The observation of imperfections in crystals, X-ray and electron microscopic techniques.

Weiss theory of ferromagnetism, Heisenberg model and molecular field theory, Spin waves and magnons, Curie-Weiss law for susceptibility, Ferro and antiferro-magnetic order, Domains and Bloch-wall energy.

- 1) Introduction to Solid State Physics by C. Kittel (Seventh Edition, John Wiley & Sons, Inc.)
- 2) Solid State Physics by S. O. Pillai (New Age International Publishers)
- 3) Introduction to Solids by Azaroff
- 4) Crystallography for Solid State Physics by Verma and Srivastava.

2. Solid State Electronics Devices

Total Contact Hours: 45

SECTION-A

Intrinsic and Extrinsic Semiconductors, mobility of carriers, mobility and conductivity, Hall effect, Effective mass, Direct and Indirect semiconductors, Conductivity modulation, generation and recombination of charges, diffusion, the continuity equation, Injected minority carrier charge, the potential variation within a graded semiconductor four probe method of resistivity measurement.

P-N Junction relation, types of junctions, P-N junction diode, voltage current relationship, width of depletion region, junction capacitance, junction breakdown, switching of the diode, types of diode.

SECTION B

Bipolar junction transistor; Types, Current Components, CB,CC,CE configuration, DC and AC analysis, Hybrid model, current gain, voltage gain, input and output resistances, approximation model, High frequency model (Just reference), switching of transistors, load line concept, Basic concept of thermal stability of transistor.

Junction field effect transistor and MOSFET; Types, V-I characteristics, operation methods, low and High frequency model (Just Reference)

SECTION C

Four layer diode (P-N-P-N), SCR, DIAC, Triac, light activated thyristor. SCR, Principle of operation, transistor analogy, methods of Turning On and Turning Off (Just reference), Gate characteristics, Applications of SCR in the following areas: Over voltage protection, Zero voltage switch, Logic and Digital Circuits, Pulse circuits.

- 1. Integrated Electronics by Millaman Halkias.
- 2. Electronic Devices and circuits by Malvino
- 3. Solid State Electronic Devices and Integrated Circuits(PHI) by Ben. G. Sterectman.
- 4. Physics of Semiconductors Devices by S.M.Sze (Wiley Eastern Limited).

3. Electromagnetic Theory and Plasma Physics

Total Contact Hours: 45

SECTION-A

Radiation & Propagation of Waves: Maxwell's Equations, Pointing vector, Energy flow due to a plane electromagnetic wave, Electromagnetic radiation.

Propagation of waves: Ground waves, sky wave, space waves & tropospheric scatters propagation and duct propagation.

Antennas: Basic considerations of antenna, Resonant & non-resonant antennas, Antenna gain, Antenna resistance, Bandwidth, Beamwidth, Polarization, Ungrounded & Grounded Antennas, Antenna Coupling at medium frequencies, Directional high frequency antennas, Microwave antennas, wideband & special purpose antennas (Only description not analytical).

SECTION-B

Relativistic Electrodynamics: Invariance of charge, Transformation of charge density, Electric field measured in different frames of reference, Four vectors, Transformation for charge and current densities, Transformation of electromagnetic potential A and ϕ , Invariance of Maxwell field equations in terms of four vectors, The electromagnetic field tensor, Lorentz transformations of electric and magnetic fields.

Motion of charged particles in Electromagnetic field: Uniform E and B fields, Nonuniform fields, Diffusion across magnetic fields, Time varying E and B fields, Adiabatic invariants: First, Second, Third adiabatic invariants.

SECTION-C

Elementary concepts: Derivation of momentum equations from Boltz equation, Plasma oscillations, Debye shielding, Plasma parameters, Magnetoplasma, Plasma confinement.

Hydrodynamical description of plasma: Fundamental equations, Hydromagnetic waves, Magnetosonic and Alfven waves.Wave phenomena in Magnetoplasma: Polarization, Phase velocity, Group velocity, Cut-offs, Resonance for electromagnetic wave propagating parallel and perpendicular to the magnetic field, Propagation at finite angle and CMA diagram.

- 1) Electromagnetic Waves and Radiating Systems by E. C. Jordon.
- 2) Electronic communication systems by George Kennedy.
- 3) Antennas and wave Propagation by K.D.Prasad
- 4) Classical Electrodynamics by J. D. Jackson (Second Edition, John Wiley & Sons)
- 5) Introduction to Plasma Physics by B. M. Smirnov (Mir Publishers Moscow)
- 6) Plasma Physics by Chen

4. Fiber Optics and Communication

Total Contact Hours: 45

SECTION-A

Light propagation- total internal reflection, Acceptance angle and Numerical aperture. Fiber materials and Fabrication, Mechanical properties of Fiber, Fiber cables, comparison of Fiber cables with conventional metallic cables.

Optical Fibers- step index, single and multimode, graded index. Fiber losses and dispersions.

SECTION-B

Light Emitting diodes- spontaneous emission – surface emitting LED, edge emitters, semiconductor diode LASER- stimulated emission, Double hetero structure LASER, drivers for LED and LASER, Photo conductive – photo voltaic effect, Solar cells- p-n homojunction, heterojunction and amorphous Solar cells.

Fiber end preparations, Fiber splicing, Fiber connector, connection losses, Fiber couplers.

SECTION-C

Photo detectors- characteristics of photo detectors- photoconductor, p-n photodiode, PIN photodiode Schottky barrier photodiode, Avalanche photodiode, Phototransistor.

Integrated optics, Fiber Optic communication system- applications of Fiber Optics- long haul communications, local area network, under sea communication, sensors, medical applications.

- 1. Optical Fiber communication: John M. Senior., PHI.
- 2. Fiber Optic communication: D.C. Agrawal, Wheeler Pub.
- 3. Optical Fiber communication: Gowar, PHI.
- 4. Semiconductor optoelectronics devices: Pallab Bhattacharya, P. E.
- 5. Optical Fiber communication: Gerd Keiser, McGraw Hill.

IV. SEMESTER

1. Nuclear and Particle Physics

Total Contact Hours: 45

SECTION-A

Nuclear Properties:

Radius, Mass, Binding Energy, Nucleon Separation Energy, Liquid Drop Model, Semi-Empirical Mass Formula, Mass parabolas, Beta Stability Line, Angular Momentum, Parity, Electromagnetic Moments, Theory of Nuclear forces, Nuclear model: Degenerate gas model, α -particle model, Shell model, and Collective model.

Different types of Nuclear Detectors and Particle Accelerators.

SECTION-B

Radioactive Decay: Radioactive Decay Law, Radioactive Dating. (a) Alpha Decay: Scattering of α -particles, α -decay and barrier penetration, Gamow's theory of α -decay. (b) Beta Decay: Fermi theory of β -decay, Parity, Selection rules, Neutrino. (c) Gamma Decay: Emission of γ -rays, Interaction of γ -rays with matter.

Nuclear Reactions: Conservation Laws of nuclear reactions, Classification of Nuclear Reactions, Fusion and Fission.

SECTION-C

Classification of elementary particles, Fundamental interactions, Symmetry and conservation laws, CPT theorem, Properties of elementary particles, Symmetry schemes of elementary particles, Quark model, Charm, bottom and top quarks.

- 1) Nuclear Physics by Irving Kaplan (2nd Edition, Addison-Wesley Publishing Company, Inc.)
- 2) Nuclear Physics Theory and Experiment by R. R. Roy and B. P. Nigam (New Age International (P) Limited, 1997)
- 3) Atomic Nucleus by R. D. Evans by (McGraw-Hill, Nework)
- 4) Introduction to Elementary Particles by D. Griffiths (Harper and Row, New York, 1987)
- 5) Elements of Nuclear physics by Pandey and Yadav (Seventh Edition Kedar Nath Ram Nath, Meerut)

2. Atomic and Molecular Physics

Total Contact Hours: 45

SECTION-A

One electron atom, Electron spin and Vector model, Pauli's principle, Spin orbit interaction, Hydrogen fine structure, He atom and its spectrum, Multi-electron atoms – Hartree's field theory, Spectroscopic terms: L-S and j-j couplings, Normal and anomalous Zeeman effect, Paschen back effect, Stark effect.

SECTION-B

Spectra of Alkali elements, Spestra of Alkaline earth elements, Hyperfine structure of spectral lines, Line broadening mechanism (general idea), X-ray spectra, Kossel's explanation of characteristic of X-ray spectra, Mosley law, Absorption spectra, Fine structure and doublets in X-ray spectra.

SECTION-C

Molecular energy states and molecular spectra, Types of molecular spectra, Rigid rotator, Rotational energy levels of diatomic molecules, Rotational spectra, Vibrational energy levels of diatomic molecules, Pure rotational spectra, Vibrational-Rotational spectra, Electronic spectra: Frank-Condon Principle, Raman spectra.

- 1) Introduction to Atomic Spectra by H. E. White
- 2) Spectra of diatomic molecules by Herzberz
- Atomic & Molecular spectra by Raj Kumar (Kedar Nath Ram Nath Publication, 1997)
- 4) Spectroscopy Vol. I, II, & III by Walker & Straughen

Digital Signal Processing

Total Contact Hours: 45

SECTION-A

Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of Digital over Analog Singnal processing, Signal Models -Continuous Time versus Discrete time signals, Periodic and Aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series- Exponential Fourier Series-Symmetry Properties of the Fourier Coefficients.

Fourier Integral, Energy Spectral Density, Fourier Transforms in the Limit, Fourier Transform Theorems and Pairs, System Analysis with Fourier Transform, Laplace Transform Theorems, Network Analysis using the Laplace Transform.

SECTION-B

Discrete Time Signals and Systems - Review of Sampled Data Systems, Time Domain Representations of Discrete Time Signals, Frequency Domain Representation of Discrete Time Signals, Discrete Time Signals obtained by sampling, Discrete Fourier Transform. Z-Transform - Definition and Examples, Inverse Z-Transform, Properties of the Z-Transform,Introduction to Realization of Digital Systems - Block Diagrams and Signal Flow Graphs. Introduction to Realization of an IIR and FIR systems, Discrete Fourier Transforms (DFT) and Fast Fourier Transform (FFT)

SECTION-C

Design of Digital Filters : Introduction to Filters, A comparision of IIR and FIR Digital Filters.Design of IIR Digital Filters - Impulse Invariant Transformation, Bilinear Transformation, Design of Digital Butterworth and Chebyshev Filters.Design of FIR Digital Filters - Windowing and Rectangular Window, Filter Designs using Windows, Frequency Sampling Technique. DSP tools and DSP techniques in various applications.

- 1. Digital Signal Processing by Alan. V. Oppenheim, Ronald W. Schafer, Prentice Hall of India
- 2. Digital Signal Processing by J. Defatta, John Willey & Sons
- 3. Digital Signal Processing by prokians ,PHI

Microprocessors & Microcomputer Applications

Total Contact Hours: 45

SECTION-A

Introduction: Microcomputers, Microprocessors, Bus structure of Microprocessor System. Microprocessor Architecture and Microcomputer systems: Microprocessor architecture & operation with example of 8085 Microprocessor, architecture, timing and sequencing, memory, I/O Memory and I/O synchronization, memory speed requirements, interfacing devices, logic levels, loading and buffering.

8085/8080 - A Based Microcomputer systems: 8085 Microprocessor, Bus timings, Demultiplexing the Bus (AD7-AD8), Generating control signals, 8080 - A Microprocessor, Instructions and timing, instructions (8 bit & 16 bit), Data transfer operations, arithmetic operations, logic operations, Branch operations, counter & timing delays, stack & subroutines.

SECTION-B

Interfacing peripherals, I/O, Memory and Applications: Interfacing output display, input keyboard, memory, memory mapped I/O, Interrupts and DMA : 8085/8080 - A interrupts structure types and masking, priority interrupt structure, real time clock and internal times, consideration for using interrupts, DMA & 8257 DMA controller. Programmable interface devices. Programmable peripheral devices. Parallel communication, 8255 Programmable Peripheral Interface, Serial Communication, RS-232-C interface, Data communication with TTY using SOD & SID lines.

SECTION-C

Software model of the 8086/8088 microprocessor, Memory address space & data organisation, Segment registers & Memory segmentation, Dedicated & general use of memory, Instruction pointer, Data registers, Status register, Generating a memory address, stack, I/O address space, Addressing modes of 8088. The 8086/8088 instruction set, Data transfer instructions, Arithmetic instructions, Logical instruction, Shift instructions, Rotate instructions, Flag control instructions, Compare instruction, Jump instructions, Subroutine & the subroutine handling instructions. Loop & loop handling instructions.

- 1. Microprocessor architechture, Programming & applications with the 8085/8080-A, R.S. Gaonker; Wiley Eastern Limited ISBN 085226, 2973, 1988.
- 2. Microprocessor and Programmed Logic, K.L. Short; Prentice Hall of India Pvt. Ltd. 1988. 2nd edition ISBN-0-87692-515-8.
- 3. Microprocessor and Interfacing, Douglas V. Hall, Mc-Graw Hill Book Company, 1987 ISBN-0-07-100462-9.

Nanotechnology

SECTION-A

Definition and properties of nanostructured materials, Methods of synthesis of nanostructured materials, Special experimental techniques for characterization of nanostructured materials, Quantum size effect and its applications.

Electron confinement in infinitely deep square well, Confinement in two and one dimensional well, Idea of quantum well structure, Quantum dots, Quantum wires.

SECTION-B

Determination of particle size, Increase in width of XRD peaks of nanomaterials, Shift in photoluminescence peaks, variations in Raman spectra of nanomaterials.

Different methods of preparation of nanomaterials, Bottom top: Cluster beam evaporation, Ion beam deposition, chemical bath deposition with capping techniques and Top down: Ball Milling.

SECTION-C

Applications of quantum devices: quantum well and quantum dot lasers, ultra-fast switching devices, high density memories, dc and rf squids, multi-state logic circuits, long wavelength detectors, photonic integrated circuits.

- 1) Handbook of Nanostructured Materials and Nanotechnology (Vol. 1 to 4) Ed. Hari Singh Nalwa
- 2) Nanotechnology Molecular designed materials by Gan-Moog Chow, Kenneth E. Gonsalvas, American Chemical Society
- Quantum Dot heterostructures by D. M. Grundmann and N. N. Ledentsov (John Willey & Sons, 1998)
- 4) Nano particles and nano structured films, Preparation characterization and applications Ed. J. H. Fendler (John Willey & Sons, 1996)
- 5) Physics of semiconductor nano structures by K. P. Jain (Narosa 1997)

Embedded System

Total Contact Hours: 45

SECTION-A

Introduction to Embedded Systems, Architectural issues : CISC, RISC, DSP architectures, memory, Component Interfacing : Interrupts, DMA, I/O Bus Structure, I/O devices. OS for Embedded systems, Real Time issues.

SECTION-B

Designing Embedded Systems : Design issues, Hardware-Software Co-design, specification languages, use of UML, software design – Programming Embedded System, optimization and testing.

SECTION-C

Networked Embedded Systems : Distributed embedded architectures, protocol design issues, wireless network, Introduction to embedded multimedia and telecommunication applications like Digital camera, Digital TV etc.

- 1. Embedded Systems Design, Arnold S. Berger
- 2. An Embedded Software Primer, david E. Sinon
- 3. Real Time Concepts for Embedded Systems, Qing Li with Caroline Yao
- 4. Designing Embedded Hardware, John Catsoles
- 5. Specification and Design of Embedded Systems, D. Gajski, F. Vahid, S. Narayan and J. Gong, Prentice Hall.
- 6. Hardware Software Co-Design : Principals and Practice, Kluwer Academic Publishers, Jorgan Syaunstrup and W. Wolf.
- 7. Embedded System Design, A unified Hardware/Software Introduction, Frank Vahid, Tony Givaris, John Wiley & Sons, Inc., 2003

Microwave Electronics

SECTION-A

Transmission Lines : Introduction to Microwaves & its applications.

Transmission Lines : General equation, input independence characteristic independence, Reflection & reflection coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart & its applications, coaxial, twin, strip & microstrip lines & baluns.

SECTION-B

Wave Guides :Wave propagation in rectangular & circular wave guides, wave guide modes, Q of wave guides, wave guide coupling. Microwave Passive Components: s-parameter representation and analysis of microwave component such as tees, two hole direction coupler atten attenuators, phase shifter, Rectangular cavity resonator, circulator & isolator.

SECTION-C

Microwave Tube Devices: Conventional Vacuum tubes at microwave, O type device-Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Travelling Wave Tubes). Microwave Semiconductor Devices IMPATT, TRAPATT & Gum Devices.

- 1. Microwave Circuits & passive devices, Sisodia-Raghuvanshi (Wiley-eastern).
- 2. Microwave devices & circuits, S.Y. Lioa (Prentice Hall).
- 3. Foundation of mocrowave engineering, Collins (Mc Graw Hill)
- 4. Basic MW techniques & lab manual, Sisodia-Raghuvanshi(Wiley-E).
- 5. Microwave Engg., P.A. Rizzi, (Prentice Hall).

Data Communication and Networks

Total Contact Hours: 45

SECTION-A

Data Communication model, tasks of a communication system, networking, analog and digital transmission, different transmission media.

Data encoding: digital data digital signals, digital data analog signals (ASK, PSK, FSK), analog data digital signals (PCM, Delta modulation), analog data analog signals (AM, FM, PM), modems, interfacing [RS-232C, ISDN physical interface], multiplexing (TDM, FDM).

SECTION-B

Principles and purpose of layered approach, OSI model, ARPANET model, protocol architecture (OSI, TCP/IP) Data link control : frame syndronization - asynchronous and synchronous ; flow control- stop and wait, sliding window, go-back-N protocols; error detection- CRC, error control - ARQ schemes.

Network switching - circuit switching, packet switching ; routing and congestion control; introduction to frame relay and ATM.

SECTION-C

Radio, Satellite and local networks, high speed LANs; network management; Internetworking, the Internet Protocol, DNS and URL; transport protocols - transport services, TCP, UDP; remote procedure call; network security - encryption and data compression, applications - virtual terminal, file transfer, email (Telnet, FTP, SMTP, HTTP); introduction to ISDN and broadbond ISDN.

- 1. Computer Networks by A.S. Tannanbaum
- 2. Data and Computer Communications by W. Stailings
- 3. Computer Networks and Distributed Processing by J. Martin

VLSI Design

Prerequisite to the course: Digital Electronics, Digital Circuit Design, Circuit Analysis, Electronics Devices, Programming and Data Structure.

SECTION-A

BJT, NMOS, PMOS, CMOS, Fabrication principle- epitaxial growth, Oxidation, Photolithography, Diffusion, Ion-Implementation, Metallization.

SECTION-B

Digital CMOS circuit, MOS devices, V-I characteristics, Design and detailed analysis of MOS inverters, enhancement load, depletion load, CMOS inverter, delay and power analysis, Design layout of simple CMOS gates.

Circuit implementation of combinational circuit. Circuit implementation of sequential circuit- FFs, SRAM, DRAM.

SECTION-C

- i) VLSI sub design- Top down design flow, Gajrki Y's Chart.
- ii) System simulation using HDL, specification of VHDL, constructs, behavioral, structural, data flow, description, sequential.
- iii) Digital logic design- optimization of combinational logic, synchronous sequential logic design- Mealy & Moore machine, FSM

- 1. Kang S. M. and Leblebici, Y. "CMOS Digital Integrated Circuit: Analysis and Design" Mc.Graw Hill
- 2. Sarrafazadeh M. and Wong C. K. " An introduction to VLSI Physical Design" Mc Graw hill
- 3. Bhasker VHDL primer, PH India
- 4. Navabi, "Introduction to VHDL", Mc. Graw Hill
- 5. Ken Martin, Digital Integrated Circuits, Oxford press
- 6. Neil H. E. Weste and Kamran Eshraghian, "Principle of CMOS VLSI Design"

Real – Time Systems

SECTION-A

Introduction to Real-time computing: Characterizing Real-time system & tasks; Performance measures of real time systems, estimation of program run time, Realtime system design: Hardware requirement, system-development cycle, data transfer techniques, synchronous & asynchronous data communication, standard interfaces.

SECTION-B

Task Assignment and Scheduling: Priority scheduling, scheduling with fixed priority dynamic priority scheduling, Real-time programming languages & Tool: desired language characteristics, data typing, control structure, run time error handling, overloading & generics, run time support, Real-time databases.

SECTION-C

Real time communication algorithms, Fault tolerence techniques: Causes of failure, fault types, fault detection, redundancy, integrated failure handling Reliability Evaluation techniques: Parameter values, reliability model for hardware redundancy, software error model, Clock synchronization.

- (1) Real Time Systems: by C.M. Krishna & K.G. Shen Mc. Graw Hill, 1997.
- (2) Real Time Microcomputer Design: An Introduction by P.D. Lawrence & K. Mauch, Mc. Graw Hill, 1988.
- (3) Real Time systems : Specification, verification & analysis by Mathai Joseph, Prentice Hall Inc., 1996.
- (4) Real Time computer control by Stuart Bennet, Prentice Hall Inc., 1988.
- (5) Real time languages by S. J. Young, John willey & sons, 1982.

Instrumentation

SECTION-A

Biomedical Instrumentation: Origin of Bioelectric signals, Biopotentials, electrodes – skin surface, needle and microelectrodes, Electrocardiography, cardiac muscle physiology, Electrocardiogram, ECG lead and wave configuration, Blood pressure measurement – Sphygmonometry method, Pacemakers – external & implantable pacemakers, keads and electrodes, Defibrillators, Sugar level measurement, Basics of X-ray machine

SECTION-B

Analytical Instrumentation: Principle of pH measurement, pH meter, electrodes of pH meter, Infrared radiation sources, types of monochromators & detectors, Infra red spectrophotometer – single & double beam, UV & visible spectrophotometers, Atomic Absorption Spectrophotometer & its applications, NMR & it's applications, Gas Chromatography, transmission and scanning electron microscope, X-ray diffractometer & flourescence.

SECTION-B

Power Electronics: Types of rectifiers – single phase rectifier, single phase controlled rectifier, three phase rectifier, three phase controlled rectifier, SMPS, UPS, Inverter Bio-Telemetry: Introduction components – Implantable units, Single channel telemetry systems, Multichannel wireless telemetry systems. Transmission of analog physiological signals over telephone lines.

Virtual Instrumentation: Introduction to data flow programming, graphical programming in data flow, advantages of VI Techniques. ISA, EISA and PCI Buses.

- 1. Handbook of Biomedical Instrumentation R. S. Khandpur
- 2. Handbook of Analytical Instrumentation R. S. Khandpur
- 3. Power Electronics Rashid
- 4. Biomedical Instrumentation Cromwell
- 5. Principles of Biomedical Instrumentation Richard Aston

MOS Device Modelling & Characterization

Total Contact Hours: 45

SECTION-A

MOS Transistor, MOS Transistor Switches, CMOS Logic, Introduction to MOS Device Design Equations, MOS capacitance, MOS Inverter: Resistive Load, n-type MOS Load, CMOS Inverters.

SECTION-B

Transmission Gate, BiCMOS (Design Rules), MOS Inverter's Switching Characteristics & Interconnect Effects: Delay Time, Interconnect Parasitics, Capacitances(Gate & routing capacitance), Resistance, RC Delay, Wire Delays, Inductances, Gate Delays, Stage Ratio, Power Disscipation, CMOS Logic Gate Design, Physical Design, Complex Gate Layout.

SECTION-C

Sequential MOS Logic Circuits: Behaviour of Bistable element, CMOS Latches & Clocked Flip-flop, Clock Skew, Clocking Strategies.

CMOS Dynamic Logic Circuit: Pass Transistor, 0,1, Transfer, Charge Leakage, Voltage Bootstrapping.

Semiconductor Memories: ROM, DRAM, SRAM, PLA, Cell, Leakage Circuit, Input/Output Circuit

- 1) N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993.
- 2) Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design ", 2nd Edition, Addision Wesley, 1998.
- 3) Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation", Prentice Hall of India, 199

Paper Tetal		Contact		Cont.Ass.		Ann.	Ass.
Total Total		Hou	Hours/week		Marks		S
Marks T+P		Т	Р	Т	Р	Т	Р
Т Р		1	1	1	1	1	1
1. Mathematical Physics		4	-	20	-	40	
60 2. Classical Mechanics		4	-	20	-	40	-
60 3. Quantum Mechanics-I 60		4	-	20	-	40	-
4. Computer Programing * 60 90		4	8	20	30	40	60
5. Digital Electronics* 60 45		4	4	20	15	40	30
 300 135 435	Total	20	12	100	45	200	90

Scheme of M.Sc.(Physics with specialization in Electronics) - 2005-06 M.Sc. I Semester (July-Dec., 2005)

* Common with M.Sc. (Elec)/MCA Isem

M.Sc. II Semester (Jan.-May, 2006)

Danar		Cont	act	Cont	Ass.	Ann	٨	
Paper Total	Total							ASS.
Marks	T+P	Hour	s/week	Mark	KS .	Marl	KS	
ТР		Т	Р	Т	Р	Т	Р	
I r								

1. Statistical Mechanics 60	4	-	20		40	-	
2. Quantum Mechanics - II	4	-	20	-	40	-	
60 3. Physics of Lasers and Laser Applications 60 45	4	4	20	15	40	30	
4. Computer Oriented Numerical 60 45	4	4	20	15	40	30	
and Statistical Method* 5. Analog and Digital Communication*	4	4	20	15	40	30	
60 45 6. Communication Skills*	2	-	10	-	20	0	
30							
Total 330 135 465	22	12	110	45	220		90

* Common with M.Sc. (Elec)/MCA II sem

Paper	Contact	Cont. A		Ann. s/week	Ass. Marks		3 6 1	Total s
Marks	T+P							
			Т	Р	Т	Р	Т	Р
Т Р								
1. Condensed Matter 60	Physics		4	-	20	-	40	-
2. Solid State Electro 60 45	onics Devices*	:	4	4	20	15	40	30
3. Electromagnetic T 60	heory		4	-	20	-	40	-
and Plasma Physics	S**							
4. Fiber Optics and C	Communication	n*	4	4	20	15	40	30
60 45					• •			• •
5 <mark>. Elective - I*</mark>			4	4	20	15	40	30
60 45 6. Seminar			2	_	30	_	_	_
30 -			-		50			
	- -		10	120		2 00	0.0	220
135	Total 465	22	12	130	45	200	90	320

M.Sc. III Semester (July-Dec. 2006)

* Common with M.Sc. (Elec)/MCA ** Common one Section with M.Sc. (Elec)

SN	Paper	Contact Hours/week			nt. Ass. Ann. Ass. Iarks Marks Total		Total N	otal Marks	
		Т	Р	Т	Р	Т	Р	Т	Р
1	Nuclear and Particle Physics	4		20		40		60	
2	Atomic and Molecular Physics	4	4	20	15	40	30	60	45
3	Elective – II*	4	4	20	15	40	30	60	45
4	Elective – III*	4		20		40		60	
5	Project		8		30		60		90
	Total	16	16	80	60	120	120	240	180

M.Sc. IV Semester (Jan.-May, 2007)

* Common with M.Sc. (Elec)/M.Tech. Grand Total = 1785

List of Electives

- Internetworking Technologies
- Digital Signal Processing •
- Microprocessors & Microcomputer Applications
- Nanotechnology
- Embedded Systems •
- Microwave Electronics •
- Data Communication Networks
- VLSI Design
- Real Time System
- Instrumentation
- MOS Device Modelling & Characterization

Verified accept

Dean Administration Banasthali Vidyapith Banasthali Vidyapith-304022 (Rajasthan)

Department of Physical Sciences Banasthali Vidyapith, Banasthali

Minutes of the meeting of Board of Studies held on 26thDecember, 2018 at 11:00 a.m. in Conference Room, Urja Mandir, Banasthali Vidyapith.

Present

1. Mr. Aavishkar Katti	:	Member
2. Dr. Ajay Singh Verma	:	Member
3. Dr. Banwarilal Chaudhari	:	Member
4. Dr. C.M.S. Negi	:	Member
5. Dr. Devendra Pratap Singh	:	Member
6. Dr. G. Savitha	:	Member
7. Mr. Hemant Kumar	:	Member
8. Mr. Kamal Kumar Jain	:	Member
9. Ms. Lajwanti Singh	:	Member
10. Dr. Madhumita Halder	:	Member
11. Dr. Manish Kumar Srivastava	:	Member
12. Mr. Nishant Singh	:	Member
13. Mr. Pardeep Lamba	:	Member
14. Dr. Parvez Ahmad Alvi	:	Member
15. Ms. Pooja Srivastava	:	Member
16. Ms. Priyanka Saxena	:	Member
17. Mr. Rajnish Kumar	:	Member
18. Dr. Ram Lal Awasthi	:	Member
19. Prof. Ritu Vijay	:	Convener
20. Dr. Sadhu Veera Bhadraiah	:	Member
21. Dr. Saral Kumar Gupta	:	Member
22. Prof. Seema Verma	:	Member
23. Ms. Shalini Jharia	:	Member
24. Mr. Shekhar Yadav	:	Member
25. Ms. Shivani Saxena	:	Member
26. Ms. Sraja	:	Member
27. Dr. Supratim Mitra	:	Member
28. Dr. Sweta Parashar	:	Member

29. Dr. Vartika Kulshreshtha	:	Member
30. Dr. Vishant Gahlaut	:	Member
31. Prof. Rajeev Gupta	:	External Member
32. Prof. Ameer Azam	:	External Member
33. Prof. Sudhish Kumar	:	External Member
34. Prof. Deepak Bhatnagar	:	External Member

Note: Prof. S.C. Bose (External), Dr. Parvendra Tyagi (Internal) could not attend the meeting.

Before proceeding to discuss the agenda of the meeting, convener accorded a cordial welcome to all members who were present in the meeting.

- 1. BOS took up the confirmation of its last meeting held on 10th March, 2012 and 24th April, 2016 and no comments were received from the members, the Board resolved that the minutes of its last meeting be confirmed.
- 2. BOS reviewed and updated the existing panel of examiners in each panel of undergraduate and postgraduate examination of Electronics in accordance to the Byelaws 15:03:2002 of the Vidyapith. The list of examiners has been sent to the secrecy.
- 3. The board reviewed the Study/Curriculum, scheme of examination and proposed revisions in various courses of study as follows:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Minor Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^a
v.	Fifth Semester Examination, December, 2021	Change ^{a, b}
vi.	Sixth Semester Examination, April/May, 2022	Change ^{a, b}

I. B.Sc. (Mathematics) Examination

The Board reviewed the objectives, learning outcomes and existing courses of Electronics running in B.Sc. (Mathematics) programme and no modification in the syllabus was suggested in I year and II year. However board recommended the up gradation in text books and reference books. The list of upgraded text books, reference books and e-resources of the

Electronics courses running in B.Sc. (Mathematics) programme have been enclosed as **annexure I** (Page No 7 -21).

- (a) The board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V & VI with prior permission of respective heads, time table permitting.
- (b) In III year board proposed to introduce electives in place of discipline courses. Microprocessors, Communication systems, Introduction to photonics and Antenna Theory and Wave Propagation have been proposed to include in the discipline electives.

i.	First Semester Examination, December, 2019	Minor Change ^a
ii.	Second Semester Examination, April/May, 2020	Minor Change ^a
iii.	Third Semester Examination, December, 2020	Minor Change ^{a, b}
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^{a, b}
v.	Fifth Semester Examination, December, 2021	Revised ^{a, c}
vi.	Sixth Semester Examination, April/May, 2022	Revised ^{a, c}
vii.	Seventh Semester Examination, December, 2022	Revised ^{d, e, f}
viii.	Eighth Semester Examination, April/May, 2023	Revised ^{g, h, i, j}

II. B. Tech. (ECE) Examination

Restructuring of the B.Tech. (ECE) scheme has been started from session 2017-18. Scheme and syllabus of I year, II year III year and IV year were presented in front of the board which are enclosed as annexure II (Page No. 22-73).

The following modifications have been recommended for approval:

- (a) The board proposed to introduce language courses in I year and incorporate more foundation and vocational courses I year, II year, III year.
- (b) The board advised to change the credit from 3 to 4 in *Complex Variables course*.
- (c) Upgradation in the syllabus of Analog Communication, Analog Electronics, Microwave Engineering, Digital Communication, Control systems for the session 2021- 2022 in the curriculum. Microwave Electronics and Analog integrated circuits have been renamed as Microwave Engineering and Analog Electronics, respectively.
- (d) Inclusion of *Antenna Analysis* instead of Antenna and Radar course from the session 2022-2023.
- (e) The UIL Project is shifted from 7th semester to 8th semester. The change will be applicable from session 2019-20.

- (f) Inclusion of *Mechatronics* and *Robotics and Automation* course as discipline electives from the session 2022-2023 in the curriculum keeping in view of interdisciplinary approach of curriculum structure.
- (g) Board proposed some new reading electives from the session 2022- 2023 in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
- (h) Board proposed inclusion of few online courses as reading elective from the session 2022-2023 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility.
- (i) 3rd year and 4th year of Session 2019 -20 and 2020-21 will be same as session 2021-22 and session 2022-23.
- (j) The board advised to introduce open elective in the VII semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V, VI, and VII with prior permission of respective heads, time table permitting.

III. M.Sc. (Electronics) Examination

i.	First Semester Examination, December, 2019	Revised ^a ,
ii.	Second Semester Examination, April/May, 2020	Revised ^{a, b, c}
iii.	Third Semester Examination, December, 2020	Revised ^{b,c}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^{d,e}

The Board reviewed the existing course of M.Sc. (Electronics) examination and recommended change in the scheme and syllabus. The board also suggested that whenever there is a change or modification in the B.Tech. (ECE) courses, which are common with the M.Sc.(Electronics) Programme, will be affected in the M.Sc. (Electronics) Programme simultaneously. The changed scheme and syllabus are enclosed as annexure III (Page No. 74-132).

The following modifications have been recommended for approval:

(a) Inclusion of *Signals, Systems and Networks, Semiconductor Devices and Circuits* courses in the curriculum.

- (b) Addition of elective course in II semester. Inclusion of Electives in the curriculum as follows:
 - Basics of Nanoelectronics
 - Mechatronics
 - Audio and Video Systems
 - Geoinformatics
 - Robotics and Automation
 - Biomedical Instrumentation
 - Fiber Optics and Communication
 - Analytical Instrumentation

- Digital Signal Processing
- Communication Networks
- Optical Network
- Satellite Communication
- Mobile Communication
- Radar Navigation
- Power Electronics
- Antenna Analysis
- (c) Addition of open elective course in III semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, and III with prior permission of respective heads, time table permitting.
 - (d) Addition of new reading electives in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
 - (e) Board proposed inclusion of few online courses as reading elective for the session 2020- 2021 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility

IV. M.Tech. (VLSI Design)

i.	First Semester Examination, December, 2019	Revised ^a
ii.	Second Semester Examination, April/May, 2020	Revised ^a
iii.	Third Semester Examination, December, 2020	Revised ^{b, c}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^{b, c}

The Board reviewed the existing course of M.Tech. (VLSI Design) and recommended few changes in the list of electives and reading electives. The Board also reviewed the text books and reference books of existing courses of M.Tech. (VLSI Design) and recommended upgradation in text books and reference books. E-resources also have been included for referencing. The board also suggested some of the online courses as reading elective for the programme. The updated syllabus, list of electives and reading electives are enclosed as **annexure IV** (Page No. 133-169).

The following modifications have been recommended for approval:

- (a) The board advised to incorporate open elective course in the II semester and include of *Photonics Integrated Circuits* in the list of discipline electives. In addition, board proposed to choose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, and II with prior permission of respective heads, time table permitting. The board also suggested to amend the list of discipline electives.
- (**b**) Addition of *Advanced Electronic Packaging and Compound Semiconductor Technology* in the list of reading electives.
- (c) Inclusion of online courses namely *Digital Image Processing and Organic Electronic Devices* as reading electives in the curriculum.

V. B.Sc. (Mathematics)/ B.Sc. (Geology)/B.Sc-B.Ed. Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	Revised ^(b,c)
v.	Fifth Semester Examination, December, 2021	Change ^(d,e,f)
vi.	Sixth Semester Examination, April/May, 2022	Change ^(f)

The Board reviewed the objectives, syllabi, learning outcomes of the B.Sc. (Mathematics) / B.Sc. (Geology)/B.Sc-B.Ed. programmes.

- (a) The board has reframed the experiment list of **Electronics Lab (PHY 104L)** and suggested to add some more experiments relevant to existing syllabus of Physics in first semester.
- (b) The board has suggested the name of the course (course code: PHY 203) as "Thermodynamics, Statistical and Mathematical Physics" instead of "Statistical and Mathematical Physics".
- (c) The board has reviewed the experiment list of physics lab (course code: PHY 202L). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (d) The board has reviewed the experiment list of physics lab (course code: 5.2). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (e) The board has suggested the name of the course (course code: PHY 203) as "Quantum Mechanics and Spectroscopy" in place of "Quantum, Atomic and

Molecular Physics" and the name of "Atomic Physics Lab" changed to "Quantum Mechanics and Spectroscopy Lab".

(f) The board has suggested to keep discipline electives and related labs in V and VI semester of the program.

The revised syllabus, course learning outcomes, list of suggested books and e-resources of the B.Sc. (Mathematics) programme is attached and marked as **Annexure-V** (Page No. 170-190).

*The corrected name of the courses as well as name of Labs and the contents changed in the revised syllabi should be implemented for the session 2019-20.

VI. B.Sc. (Aviation Science) Examinations:

The course learning outcomes of the course: Basic Physics-I (course code: PHY 102), list of suggested books and e- resources of the B.Sc. (Aviation Science) programme is attached and marked as **Annexure-VI** (Page No. 191).

VII. M.Sc. (Physics) Examinations:

The Board discussed the recent trends in physical sciences at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, board suggested to give more weight-age to self-learning and independent research activities.

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	Revised ^(b)
iii.	Third Semester Examination, December, 2020	Revised ^(c,*)
iv.	Fourth Semester Examination, April/May, 2021	Revised ^(d,*)

- (a) Board reviewed the syllabi of M.Sc. Physics I Semester and found that the courses *Classical Mechanics* (Course Code: PHY 403) and *Mathematical Physics* (Course Code: PHY 404) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the syllabi.
- (b) Board reviewed the syllabi of M.Sc. Physics II Semester and found that the courses *Classical Electrodynamics – I* (Course Code: PHY 402) and *Quantum Mechanics* (Course Code: PHY 407) must be revised. The board has suggested minor changes in the course *Classical Electrodynamics – I* (Course Code: PHY 402); while in the *Quantum Mechanics* (Course Code: PHY 407) some mathematical and conceptual details and revision of perturbation theory is required to explain the need of approximation methods.

- (c) Board reviewed the syllabi of M.Sc. Physics III Semester and found that the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520), *Condensed Matter Physics-I* (Course Code: PHY 505), *Condensed Matter Physics-II* (Course Code: PHY 506) and *Physics Lab II* (Course Code: PHY 518L) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520); while the list of the experiments has been divided into two parts: part A and part B instead of three parts. In addition to these changes, the board has also proposed to include **Reading Elective** in the third semester.
- (d) Board reviewed the syllabi of M.Sc. Physics IV Semester and no changes were suggested except laboratory practices of physics lab-III (Course code- PHY 519L). The board has suggested that the list of the experiments should be divided into two parts: part A and part B instead of three parts.

(*) Board has proposed new electives in the curricula i.e. **Bio Physics-I** and **Bio Physics-II** in M.Sc. III^{rd} and IV^{th} semester respectively.

The specific programme outcome, revised syllabus, course learning outcomes, list of suggested books and e- resources of the M.Sc. (Physics) programme is attached and marked as **Annexure-VII** (Page No. 192-230). The detailed proposed scheme of M.Sc. (Physics) programme is attached as **Annexure VII A** (Page No. 231-236).

*The content changed in the revised syllabi should be implemented for the session 2019-20.

VIII. M.Tech. (Nanotechnology) Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a,*)
ii.	Second Semester Examination, April/May, 2020	Revised ^(*)
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	No Change

(a) The board has revised the whole syllabus of M.Tech (Nanotechnology) and found that the syllabus of **Nano-photonics and Optoelectronics** course (code: ELE506) should be revised.

(*) Apart from the theory course, the board has also reframed the simulation lab-I and –II (code: NANO 502L & NANO 503L). The revised syllabus is enclosed as **Annexure–VIII** (Page No. 242-256). The detailed proposed scheme of M.Tech. (Nanotechnology) programme is attached as **Annexure VIII A** (Page No. 237-241).

4. The Board reviewed the curriculum for the courses running in the other programmes of the Vidyapith. The recommendations as follows-

Bachelor of Te	echnology (BT/CE/EC/EE/EI/CS/IT/MCTR)										
ENGG 202	Basic Electronics	No Change									
Bachelor of Te	echnology (EI)										
VLSI 401	VLSI Design	No Change									
ELE 201	201Digital ElectronicsNo Change										
ECE 302	Communication Engineering	No Change									
Bachelor of Technology (EE/EI/MCTR)											
ELE201Digital ElectronicsNo Change											
Master of Scie	ence (Physics)										
ELE 406	Principles of Digital Electronics	No Change									
Bachelor of Sc	cience (Aviation Science)										
PHY 102	Basic Physics-I	No Change									
Bachelor of Te	echnology (All Branches)										
PHY 101	Applied Optics	No Change									
PHY 105	Engineering Mechanics	No Change									
PHY 106	Modern Physics	No Change									

5. The board considered the report of examiners of different examinations. Most of the examiners found that the content of the answers were satisfactory or good. The reports are attached as **annexure IX** (Page No. 257).

The board has reviewed the reports received from the examiners of different examinations and their observations are as follows:

- reports were satisfactory
- Performance of the students in most of the papers is up to the mark.
- The numerical solving ability of the students was found less.

After observing the reports received from the examiners of different examinations the following suggestions were given:

- The numerical solving ability of the students is a major concern and therefore, it should be addressed through proper tutorial classes.
- To give equal weightage for each section (three sections course paper), the number of questions to be attempted compulsorily should be **six** instead of **five**.
- 6. BOS has thoroughly analysed the quality of the session 2017-2018 question papers keeping the following points in mind
 - Percentage of analytical based question
 - Percentage of descriptive questions
 - Percentage of numerical based questions

In most of the paper, it has been found that there has been a judicious balance of all these components in the papers.

The board has evaluated the question papers of the periodical and semester examinations and found that the quality of the question papers is maintained at UG and PG level. To improve the standard of the question paper, the board has given following suggestions :

- Include more numerical/logical problems.
- Instead of direct questions and derivations, some small conceptual questions must be put in the question paper to check the analytical ability of the student.

7. To review the degree title for the Ph.D. Scholars

Currently Ph.D. degree is awarded in various disciplines namely Electronics, Electronics Engineering, Digital Communication Engineering and many more. To remove the ambiguity it is proposed that the degree title in sciences should be Electronics or Physics and for engineering background, it should be awarded in Electronics Engineering.

The meeting ended with vote of thanks.

Annexure I

Name of Programme: B.Sc. (Mathematics)

Disciplinary Course-Electronics

Programme Educational Objectives:

- > To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- Apply knowledge of mathematics and science.
- Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- Function with multidisciplinary teams.

Annexure- I B.Sc. (Mathematics) Disciplinary Course-Electronics

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Electronics

	Existing Scheme	Proposed Scheme									
Course Code	e Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE 102	Circuits and Signals	6	0	0	6	ELE 102	Circuits and Signals	6	0	0	6
ELE 102	L Circuits and Signals Lab	0	0	4	2	ELE 102L	Circuits and Signals Lab	0	0	4	2
	Total			4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Electronics

		Existing Scheme		Proposed Scheme								
Course	e Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE	103	Principles of Electronics	6	0	0	6	ELE 103	Principles of Electronics	6	0	0	6
ELE	103L	Principles of Electronics Lab	0	0	4	2	ELE 103L	Principles of Electronics Lab	0	0	4	2
	Total			0	4	8		Total	6	0	4	8

Annexure- I B.Sc. (Mathematics) Disciplinary Course-Electronics

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Electronics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE 204	Fundamentals of Digital Electronics	6	0	0	6	ELE 204	Fundamentals of Digital Electronics	6	0	0	6
ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2	ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2
	Total			4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - IV (April/May, 2021)

Disciplinary Course-Electronics

		Existing Scheme	Proposed Scheme									
Course	e Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE	203	Electronic Instrumentation and Measurements	6	0	0	6	ELE 203	Electronic Instrumentation and Measurements	6	0	0	6
ELE	203L	Electronic Instrumentation and Measurements Lab	0	0	4	2	ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2
	Total				4	8		Total	6	0	4	8

Annexure-IB.Sc.	(Mathematics)	Disciplinary	Course-Electronics

B.Sc. (Mathematics) Semester - V (December, 2021) **Disciplinary Course-Electronics**

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE 305	Microprocessors	6	0	0	6		Discipline Elective -I	6	0	0	6
ELE 305L	Microprocessors Lab	0	0	4	2		Discipline Elective Lab-I	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022)

Disciplinary Course-Electronics

Existing Scheme					Proposed Scheme						
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
ELE 302	Communication Systems	6	0	0	6		Discipline Elective -II	6	0	0	6
ELE 303L	Communication Systems Lab and Project	0	0	4	2		Discipline Elective Lab-II	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

* L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

Annexure- I B.Sc. (Mathematics) Disciplinary Course-Electronics

	Discipline Elective									
Course Code	Name of Course	L	Т	Р	С					
ELE 305	Microprocessors	6	0	0	6					
ELE 305L	Microprocessors Lab	0	0	4	2					
Introduction to Photonics		6	0	0	6					
	Introduction to Photonics Lab		0	4	2					
ELE 302	Communication Systems	6	0	0	6					
ELE 302L	Communication Systems Lab	0	0	4	2					
	Antenna Theory and Wave Propagation		0	0	6					
	Antenna Theory and Wave Propagation Lab	0	0	4	2					

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 102, Circuits and Signals	 After completion of this course, students will be able to: Predict the behaviour of any electrical and magnetic circuits. Formulate and solve complex AC, DC circuits. Explain response of RL, RC and RLC networks. Realize the requirement of transformers in transmission and distribution of electric power and other applications. 		Recommended Books: 1. Thareja,B.L.(2005). A Text Book of Electrical Technology. New Delhi: S Chand Publication. 2. Chakrabarti, A. (2018).Circuit Theory Analysis and Synthesis. New Delhi: Dhanpat Rai & Co. 3. Mehta, V.K. (2005). Principles of	No Change in course contents. Added

2.	ELE 102L, Circuits and Signals Lab	After completion of this laboratory course, students will be able to: • Test Various Active and Passive components using Multimeter and CRO. • Understand frequency response of Resonance. • Verify different Network Theorems.		Electrical Engineering. New Delhi: S Chand Publication. Suggested e-resources: 1. Basic Electrical Circuits by Dr Nagendra Krishnapura, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106108/ 2. Basic Electrical Technology by Prof. T. K. Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105053/ 3. Fundamentals of Electrical Engineering by Prof.Debapriya Das, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105112/ 1	Learning Outcomes added. No Change in Experiment List.
3.	ELE 103, Principles of Electronics	 After completion of this course, students will be able to: Design various diodes circuits for various applications. Differentiate various biasing 	_	_	No Change in course contents.

4.	ELE 103L, Principles of Electronics Lab	 methods used in BJTs and FET's Analysed different kinds of oscillators and feedback circuits. After completion of this laboratory course, students will be able to: Identify and Test various electronics components. Understand I-V characteristics of various Electronic devices. Draw frequency response of 	Text books: 1. Millman, Halkias, "Integrated Electronics," TMH Publications 2. Robert Baylsted, "Electronics Devices," PHI Publications Reference books: 1. Malvino Leach, "Principle of Electronics," Tata Mg Hills	Recommended Books: 1. Parikh, Millman & Halkias. (2017). Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 2. Boylestad, Robert L., & Nashelsky Louis. (2015). Electronic Devices& Circuit Theory. New Delhi: Pearson Publication. 3. Malvino, Albert., & Bates, David J. (2017) Electronic Principles. New Delhi: McGraw Hill Education. Suggested E-resources: 1. Basic Electronics by Dr. Pramod Agarwal, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/	Learning Outcomes added. No Change in Experiment List.
5.	ELE 204, Fundamentals of Digital Electronics	 amplifiers. After completion of this course, students will be able to: Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation of various combinational and sequential circuits. Differentiate various logic families. Understand the operation and application of multi-vibrators. 	Text Books: 1.MANO M.M. "DIGITAL DESIGN", PHI, 2ND EDI. 2. SinghalRajul, "Pulse & Linear Integrated Circuits", Standard Publisher distributor, 1st Edition, 2002. 3. Bartee T.C., "Digital Computer	 Recommended Books: 1. Morris Mano, M., & Ciletti, Michael D. (2018).Digital Design. New Delhi: Pearson Publication. 2. Singhal, Rajul. (2003). Pulse & Linear Integrated Circuits. New Delhi:Standard Publisher distributor. 3. Floyd, Thomas L. (2014). Digital Fundamentals. New Delhi: Pearson 	No Change in course contents.

			Fundamental ", PHI, 3rd Edition Reference Books : 1. Floyd Thomas L., "Digital Fundamental", Pearson Education, 3rd Edition, 2002. 2. SchilingTaub, "Integrated circuits", TMH, 2nd Edition.	 Publication. Suggested E-resources: 1. Digital Circuits and Systems by Prof. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086 / 2. Digital System Design by Prof. D. Roy Choudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080 /3. 	
6.	ELE 204L, Fundamentals of Digital Electronics Lab	 After completion of this laboratory course, students will be able to: Understand the functioning of bread board. Implement and verify logic gates and theorems. Design combinational and sequential circuits. 			Learning Outcomes added. No Change in Experiment List.
7.	ELE 203, Electronic Instrumentation and Measurements	 After completion of this course, students will be able to: Understand and estimate various types of errors in measurements. Explain the operating principle of various measuring instruments used to detect physical quantities. Design op-amp circuits and understand SCR operation. 	Text Books : 1. Ramamoorthy M., "An Introduction to Thyristors& their Applications", 2nd Edition, ISBN-81-85336-67-9 2. SawhenyA.K., "A Course of Electrical & Electronic Instrumentation and Measurement Techniques", 11th Edition, 1995, Pub. Dhanpat Rai, New Delhi	Recommended Books: 1. Ramamoorthy, M. (1991). An Introduction to Thyristors& their Applications. New Delhi: Affiliated East-West Press (Pvt.) Ltd. 2. Sawheny, A.K.(2015). A Course in Electrical & Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co 3. Helfrick Albert D. & Cooper W.D. (2016). Modern Electronic	No Change in course contents.

	1				
			References Book:	Instrumentation and Measurement	
			1. Cooper W.D., "Modern	Techniques (1/e). New Delhi:	
			Electronic Instrumentation	Pearson Publication.	
			and Measurement	Suggested E-resources:	
			Techniques", 3rd Indian	1. Industrial Instrumentation by Prof.	
			Reprint, Prentice Hall of India	AlokBarua, Department of Electrical	
			Private Limited, 1995	Engineering Indian Institute of	
			·····, ····,	Technology, Kharagpur.	
				https://nptel.ac.in/courses/108105064/	
				7	
				2. Analog Circuits by Prof. Pramod	
				Agarwal, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Roorkee.	
				https://nptel.ac.in/courses/117107094/	
				1	
				3. Basic Electronics by Prof. T.S.	
				Natarajan, Department of Physics	
				Indian Institute of Technology,	
				Madras.	
				https://nptel.ac.in/courses/122106025/	
				39	
				4. Electrical and Electronic	
				4. Electrical and Electronic Measurements by Prof. V. Jagdeesh	
				Kumar, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Madras.	
				https://nptel.ac.in/syllabus/108106070	
8.	ELE 2021	After severalities of this laborations		/	
	ELE 203L, Electronic	After completion of this laboratory			L
		course, students will be able to:			Learning Outcomes
	Instrumentation	• Understand principle of different			added.
	and	transducers.			No Channa in
	Measurements	• Design various circuits Using Op-			No Change in
	Lab	Amp IC.			Experiment List.
		 Understand and draw V-I 			
		characteristics of SCR, DIAC and			
		TRIAC.			

9.	ELE 305, Microprocessors	 After completion of this course, students will be able to: Describe the general architecture of microcomputer system and architecture & organization of 8085 & 8086 Microprocessor and understand the difference between 8085 and advanced microprocessor. Distinguish the use of different instructions and apply them in assembly language programming. Explain and realize the interfacing of memory & various I/O devices with 8085 microprocessor. 	 Text Books GaonkerR.S., "Microprocessor Architecture, Programming & Applications with the 8085/8080", 2nd Edition, New Age International Publishers Limited, ISBN-81-224-0710-2. Douglas V. Hall, "Microprocessor and Interfacing", Mc-Graw Hill Book Company, 1987, ISBN-0- 07-100462-9 Reference Books Short K.L., "Microprocessor and Programmed Logic", 2nd Edition, Prentice Hall of India Pvt. Ltd. 1988, ISBN 0-87692-515-8. Ram B., "Fundamentals of Microcomputer", 5th rev ed., 2001, Dhanpat Rai, New Delhi. Verma Seema, "8085 Microprocessor: Programming, Interfacing and Applications", Aashirvad Publication. Jaipur, 2006 	Recommended Books: 1. Gaonker, R.S. (2013) Microprocessor Architecture, Programming & Applications with the 8085. Mumbai, Maharashtra: Penram International Publishing (India) Pvt. Ltd. 2. Douglas V. Hal., SSSP, Rao.(2012) Microprocessor and Interfacing. New Delhi: Mc-Graw Hill Publication 3. Ram B. (2018). Fundamentals of Microprocessors and Microcomputers. New Delhi: Dhanpat Rai & Co Suggested E-resources: 1. Microprocessor by Dr. Pramod Agarwal, Department of Electrical Engineering, IITRoorkee https://nptel.ac.in/courses/108107029/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	No Change in course contents. Deleted
10.	ELE 305L, Microprocessors Lab	 After completion of this laboratory course, students will be able to: Understand the different instructions of 8085 microprocessor assembly language. Coding in assembly language. Solve different real time problems. 			Learning Outcomes added. No change in Experiment List.

11.	ELE 302, Communication Systems	 After completion of this course, students will be able to: Explain the working of communication system, Analog Modulation Techniques and their comparative analysis and 	_	_	No Change in course contents.
		 applications suitability. To analyse various methods of baseband/band pass Analogue transmission and detection. To evaluate the performance of analogue communications in the presence of noise. Explain the working of AM, FM transmitter and receiver. 	 Text Books : Kennedy George "Electronics communication system", TMH, 4th edition, 1999 TMH, New Delhi. Gulati R. R. "Monochrome &colour TV", 1986, Wiley Eastern, New Delhi. Reference Books : Shilling Taub , "Communication system", TMH, 2nd Edition Lathi BP, "Analog & Digital Communication", Oxford University Press Sharma S.P. "Basic radio & TV, TMH", 1983, TMH, New Delhi. 	 Recommended Books: 1. Kennedy, George. (2017) Electronics communication System. New Delhi:Mc-Graw Hill Publication. 2. Gulati, R. R. (2011) Monochrome and colour Television. New Delhi: New Age International Publication. 3. Shilling, Taub. (2013) Principles of Communication Systems. New Delhi: Mc-Graw Hill Publication. 4. Lathi,B.P., Ding, Zhi., & Gupta, Hari Mohan. (2017) Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press. 5. Sharma S.P. (2012). Basic Radio & Television. New Delhi: Mc-Graw Hill Publication. Suggested E-resources: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, IIT Kharagpur. https://nptel.ac.in/courses/117105143/ 2. Communication Engineering by Prof. Surendra Prasad, Dept. of Electrical Engineering, IIT, Delhi. https://nptel.ac.in/courses/117102059/ 	
12.	ELE 303L, Communication Systems Lab	 After completion of this laboratory course, students will be able to: Understand modulation, demodulation waveform and measure modulation index. Understand the operation of Pulse modulation and demodulation. 	 To study the Amplitude Modulation & Demodulation and measure modulation Index. To study the Single sideband AM using Balanced Modulator. To study the PAM and its Demodulation. To study the PWM and its 	Communication Systems: 1. To study the Amplitude Modulation & Demodulation and measure modulation Index. 2. To study the Single sideband AM using Balanced Modulator. 3. To study the PAM and its Demodulation.	Learning Outcomes added. No Change in Experiment List.

	1		Dema delation	4 To state the DWA 1 's	
		Familiarized with radio and TV	Demodulation. 5. To study the PCM and its	4. To study the PWM and its Demodulation.	
		receiver.	Demodulation.	5. To study the PCM and its	
			6. To study the PPM and its	Demodulation.	
			Demodulation.	6. To study the PPM and its	
			7. Familiarization with Radio	Demodulation.	
			Receiver - Block Diagram.	7. Familiarization with Radio Receiver -	
			8. Familiarization with TV Receiver -	Block Diagram.	
			Block Diagram.	8. Familiarization with TV Receiver -	
			Project.	Block Diagram.	
13.	Antenna Theory	After completion of this course, students	Tiojeet.	UNIT I	
15.	and Wave	will be able to:		Review of Electromagnetic theory:	
	Propagation	 Analyze Maxwell's equation in 		Cartesian coordinate system, Circular	
	1 Topagation	different forms (differential and		coordinate system, Spherical coordinate	
		integral) and apply them to		system (dot product, cross product,	
		diverse engineering problems.		divergence & curl). Maxwell's equations	
		Examine the phenomena of		in differential and integral form,	
		wave propagation in different		Boundary Conditions for Electrostatics	
		media and its interfaces and in		and magnetostatics.	
		applications of microwave		UNIT II	
		engineering.		Wave equation and its solution, Poynting	
		• Recall electromagnetic plane		vector, General Transmission line	
		waves. Apply principles of		equation, input impedance, characteristic	
		electromagnetic to explain		impedance, Reflection coefficient,	
		antenna radiation. Explain		standing wave ratio, Practical problems in	
		various antenna parameters.		transmission lines.	
		 Explain dipole antennas. 		UNIT III	
		Establish mathematical		Introduction to antennas, network	
		equations for various parameters		theorems, Antenna characteristics	
		of thin linear antenna.		(Radiation pattern, Directivity, Gain,	
				Polarization, Effective aperture, Friis	
				transmission formula), Vector potentials	
				for electric and magnetic current sources.	
				UNIT IV	
				Wire antennas: Hetzian and Marconi	
				antenna, Half wave dipole, monopole and	
				loop antenna, Antenna arrays: Linear	
				array, Two element array, Uniform array, Binomial array	
				UNIT V	
1				Practical antennas: Slot antenna, Horn	
L				riacucai amennas. Siot amenna, Horn	

			antenna, Yagi-uda antenna, folded dipole
			antenna, Helical antenna.
			Recommended Books:
			1. Hyat, W. H. &. Jr. John A. Buck.
			(2018). Engineering
			Electromagnetics, Student edition.
			McGraw Hill Education.
			2. Liao, S. Y. (1989). <i>Microwave devices</i>
			and circuits. Pearson Education India.
			3. Balanis, C. A. (2016). Antenna
			theory: analysis and design. John
			wiley & sons.
			4. Sadiku, M. N., & Kulkarni, S. V.
			(2015). Principles of
			electromagnetics. Oxford University
1			Press.
			5. Kraus, J. D., Marhefka, R. J., & Khan,
			A. S. (2006). Antennas and wave
			propagation. Tata McGraw-Hill
			Education.
			6. Collin, R. E. (2007). Foundations for
			microwave engineering. John Wiley
			& Sons.
14.	Antenna Theory	After completion of this laboratory	1. To design dipole antenna in HFSS
	and Wave	course, students will be able to:	2. Design monopole antenna in HFSS
	Propagation Lab	• Use HFSS tool to design and	3. Design horn antenna in HFSS
	10	analysis of antennas.	4. To measure radiation pattern of
		 Design various type of antennas 	Horn Antenna
		 Measure and analyse radiation 	5. To measure radiation pattern of log
		pattern of antennas.	periodic Antenna
		patient of anemias.	6. To measure radiation pattern of
			micro strip patch Antenna
			7. To measure radiation pattern of
			YAGI-UDA Antenna.
15.	Introduction to	After completion of this course, students	Unit 1
	Photonics	will be able to:	Introduction, Ray theory, Optical fibers:
		• Explain the light propagation	multimode, single mode, step index,
		through optical fibers.	graded index, plastic & glass fibers.
		 Explain the various light sources 	Transmission Characteristics of Optical
		and optical detectors.	Fibers: Attenuation, Material absorption
		and optical detectors.	loss, refractive index profile, Dispersion
L			1035, Tenderive index prome, Dispersion

	 Design fiber optic transmitter and 	(intermodal & intramodal), Dispersion	
	receiver system.	Shifted Fibers, Dispersion Compensating	
	-	Fiber.	
		Unit 2	
		Emission and absorption of radiation,	
		Einstein relation, Absorption of radiation,	
		Population inversion, Optical feedback,	
		Threshold condition. Population inversion	
		and threshold, Basic idea of solid state,	
		semiconductors, gas & liquid laser. Basic	
		concept of Q-switching and mode	
		locking.	
		Unit 3	
		Fiber Structure, Material, Characteristics,	
		Power & Efficiency of Light Emitting	
		Diode.	
		Optical detection principles, quantum	
		efficiency, Responsivity, p-n and p-i-n	
		photo diode, Avalanche photo diodes.	
		Unit 4	
		Measurements of Fiber Attenuation,	
		Dispersion, Refractive Index Profile, Cut	
		off Wave Length, Numerical Aperture &	
		Diameter.	
		Optical Time Domain Reflectometry	
		(OTDR) Field measurement through	
		optical time domain reflectometry, Laser	
		Unit 5	
		Laser based systems for measurement of	
		distance, velocity, liquid level. Fibre optic	
		gyroscope, Holography: basic principle	
		and applications.	
		Recommended Books:	
		1. Senior, John.M. (2009). Optical	
		Fiber Communication Principles &	
		Practice, New Delhi: PHI	
		Publication.	
		2. Keiser, Gerd. (1991). Optical Fiber	
		<i>Communication</i> . New Delhi:	
		McGraw Hill Publication.	
		3. Ghatak, A.K. & Thyagarajan, K.	
		on ontation, mit a myagarajan, K.	

			(1981). Laser Theory and Applications, 1 edition. Springer
ntroduction to Photonics Lab	After completion of this laboratory course, students will be able to: • Understand the characteristics of an optical fiber and LED.	1. 2. 3. 4.	To study Analog Link. To study Digital link. To measure Numerical aperture. To study Propagation Loss.
	 Understand and measure the basic properties of propagation of light in dielectric Optical fibre including losses, attenuation and coupling. Explain the working of optical power meter and various sensors. 	5. 6. 7. 8.	To study Bending Loss. To study EYE Pattern. To calculate BER. To study the characteristics of optical source.

Annexure II

Name of Programme: Bachelor of Technology (ECE)

Programme Educational Objectives: The B.Tech. (ECE) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for those engineers who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics engineers develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics and Communications. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematical and engineering fundamentals required to solve engineering problems and also to pursue advanced studies. This serves
 them lifelong in their professional domain as well as higher education.
- To develop an ability to integrate fundamental knowledge of basic science, mathematics and engineering to work on complex problems in the field of Electronics and Communication.
- · To prepare engineers to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their engineering design, problem-solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- · Communicate effectively and manage resources skilfully as members and leaders of the profession.
- To prepare competent engineers at various national and international levels.

Programme Outcomes:

- POI. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and Electronics engineering to the solution of complex engineering problems.
- PO2. Problem analysis: Review, Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using principles of mathematics, natural sciences, and engineering sciences.
- PO3. Design/development of solutions: Develop solutions for complex engineering problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct investigations of complex problems: Use scientific and engineering knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Apply appropriate techniques, resources, and modern engineering tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex engineering activities with an understanding of the limitations.
- PO6. The engineer and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Annexure II B.Tech. (ECE)

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.PO10. Communication Skill: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. **P011. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply as a member and leader in a team,

to manage projects and in multidisciplinary environments. **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological

change.
Programme Scheme:

2.

1. Highlighted with gray indicates the changed subject/course/credit/modification in syllabus/ new course added.

Text in white color with black background indicates swapping of course.

B.Tech. (ECE) Semester - I (December, 2019)

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 002/ BVF 003	Environment Studies/Indian Heritage	2	0	0	2		General English /सामान्य हिन्दी	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4		Core Foundation Course - I	2	0	0	2
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	3/4	1/0	0	4	CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4
ENGG 101L /ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2
						ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3
	Semester Wise Total	18/19	4/3	10	27		Semester Wise Total	21/20	3/4	10	29

Annexure II B.Tech. (ECE)

	Existing Scheme	Name L T P Heritage/ Environment 2 0 0 Mgebra/ Calculus 3 1 0 Physics / Applied Optics 3 1 0 / Chemistry 3 1 0 ring Mechanics / dynamics 4/3 0/1 0 al Engineering / Computer entals and Programming 4 0 0 al Engineering Lab / er Fundamentals and mining Lab 0 0 4				Proposed Scheme						
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С	
BVF 003/ BVF 002	Indian Heritage/ Environment Studies	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2	
MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4		Core Foundation Course – II	2	0	0	2	
PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4	
BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4	
PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	4/3	0/1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4	
EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4	
EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4	
ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2	
						ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3	
	Semester Wise Total	19/18	3/4	10	27		Semester Wise Total	20/21	4/3	10	29	

B.Tech. (ECE) Semester - II (April/May, 2020)

Annexure II B.Tech. (ECE)

B.Tech. (ECE) Semester - III (December, 2020)

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 007R	Selected Writings for Self-Study - I	2	0	0	2		Core Foundation Course - III	2	0	0	2
MATH 207	Complex Variables/ Differential	3/4	0	0	3/4		Elective Foundation Course - I	C	0	0	2
/MATH 208	Equations	5/4	0	0	5/4		Elective Foundation Course - 1	2	0	0	2
ENGG 201/	Structure and Properties of	4	0	0	4	MATH 208/	Differential Equations / Complex	2	1	0	4
ENGG 202	Materials/ Basic Electronics	4	0	0	4	MATH 207	Variables /	3	1	0	4
MGMT 209/	Entrepreneurship/ Technical Report	2	0	0	2	ENGG 202 /	Basic Electronics/ Structure and	4	0	0	4
TSKL 203	Writing	3	0	0	3	ENGG 201	Properties of Materials	4	0	0	4
CS 209	Data Structures	4	0	0	4	CS 209	Data Structures	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	CS 209L	Data Structures Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201	Signals, Systems and Networks	4	0	0	4
ELE 201	Digital Electronics	4	0	0	4	ELE 201	Digital Electronics	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	ELE 201L	Digital Electronics Lab	0	0	2	1
	Total	24/25	0	6	27/28		Semester Wise Total	23	1	6	27

B.Tech. (ECE) Semester - IV (April/May, 2021)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 008R	Selected Writings for Self-Study - II	2	0	0	2		Core Foundation Course - IV	2	0	0	2
MATH 208/ MATH 207	Differential Equations / Complex Variables	4/3	0	0	4/3		Elective Foundation Course - II	2	0	0	2
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	MATH 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
TSKL 203/ MGMT 209	Technical Report Writing/ Entrepreneurship	3	0	0	3	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS 214	Object Oriented Programming	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4
CS 214L	Object Oriented Programming Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Seminar	0	0	2	1	ECE 201S	Seminar	0	0	2	1
ELE 202	Electrical and Electronics Measurements	3	1	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 202L	Electrical and Electronics Measurements Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1	ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Total	24/23	1	10	30/29		Semester Wise Total	23	1	10	29

Annexure II B.Tech. (ECE)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	Principles of Management / Economics for Engineers	3	0	0		Vocational Course - I	2	0	0	2
	Analog Communication	3	1	2		Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2
	Microprocessor and Microcontrollers	3	1	2		Principles of Management/ Economics	3	0	0	3
	Analog integrated Circuits	4	4 0 2 ECE 301 Analog Communication					0	0	4
	Communication Networks	4	0	0	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
	Microwave Electronics	4	0	2		Analog Electronics	4	0	0	4
	Seminar	0	0	2	ELE 202	Electromagnetic field Theory	4	0	0	4
	Women in Indian Society (WIS) / Parenthood and Family Relationship	3	0	0		Probability and Statistical Methods/ Numerical Methods	3	1	0	4
					ECE 301L	Analog Communication Lab	0	0	2	1
					ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1
						Analog Electronics Lab	0	0	2	1
	Total	24	2	10		Semester Wise Total	26	1	6	30
	Total Credits		31 Total Credits 30							

B.Tech. (ECE) Semester - V (December, 2021)

Annexure II B.Tech. (ECE)

B.Tech. (ECE) Semester - VI (April/May, 2022)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	Economics for Engineers/ Principles of Management	3	0	0		Vocational Course - II	2	0	0	2
	Mathematics IV	4	0	0		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Power Electronics	3	1	2		Economics / Principles of Management	3	0	0	3
	Control Systems	3	1	2		Microwave Engineering	4	0	0	4
	Digital Communication	4	0	2	EIE 302	Control Systems	4	0	0	4
	Digital Signal Processing	4	0	2	ECE 304	Digital Communication	4	0	0	4
	Project	0	0	8		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Parenthood and Family Relationship / Women in Indian Society (WIS)	3	0	0		Microwave Engineering Lab	0	0	2	1
					EIE 302L	Control Systems Lab	0	0	2	1
					ECE 304L	Digital Communication Lab	0	0	2	1
						Project	0	0	4	2
	Total	24	2	16		Semester Wise Total	22	1	10	28
	Total Credit		34			Total Credit		28		

B.Tech. (ECE) Semester - VII (December, 2022)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	UIL Project	20	0	0		Antenna Analysis	4	0	0	4
	Reading Elective	0	0	4	ECE 402	Fiber Optics and Communication	4	0	0	4
					VLSI 401	VLSI Design	4	0	0	4
					ECE 303	Communication Networks	4	0	0	4
						Discipline Elective	4	0	0	4
						Open Elective	4	0	0	4
						Antenna Analysis Lab	0	0	2	1
					VLSI 401L	VLSI Design Lab	0	0	2	1
					ECE 402L	Fiber Optics and				
					ECE 402L	Communication Lab	0	0	2	1
	Total	20	0	2		Semester Wise Total	24	0	6	27
	Total Credit		22			Total Credit		1	27	

Annexure II B.Tech. (ECE)

B.Tech. (ECE) Semester - VIII (April/May 2023)

	Existing Scheme				Proposed Scheme									
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С				
	Antenna & Radar	4	0	0	ECE 407P	UIL Project	0	0	48	24				
	Fiber Optics Communication	4	0	2		Reading Elective	0	0	0	2				
	VLSI Design	4	0	2										
	Elective I	4	0	0										
	Elective II	4	0	0										
	Total	20	0	2		Total	0	0	48	26				
	Total Credits			22		Total Credits				26				

Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Reading Electives
	Biomedical Instrumentation		Geoinformatics		Electronic Packaging
ECE 404	Optical Network		Analytical Instrumentation		Multimedia Compression and Communication
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems		Professional Ethics
ELE 403	Basics of Nano electronics		Robotics and Automation		Electromagnetic Compatibility
ECE 403	Mobile Communication	EEE 304	Power Electronics		Telecommunication Switching Systems and Networks
ECE 405	Radar Navigation		Mechatronics		Electric Vehicles
ELE 304	Digital Signal Processing				IoT Sensors and Devices

Annexure II B.Tech. (ECE)

					I Year)	munication					
Semester - I					,	Semester - II			_		
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	с
	General English /सामान्य हिन्दी	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
	Core Foundation Course - I	2	0	0	2		Core Foundation Course – II	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
ENGG 101L/ ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	21/20	3/4	10	29		Semester Wise Total	20/21	4/3	10	29
				(ll Year)						
Semester - III						Semester - IV	1				
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	с
	Core Foundation Course - III	2	0	0	2		Core Foundation Course - IV	2	0	0	2
	Elective Foundation Course - I	2	0	0	2		Elective Foundation Course - II	2	0	0	2
MATH 208/ Math 207	Differential Equations / Complex Variables /	3	1	0	4	Math 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS209	Data Structures	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4

Curriculum Structure B. Tech. –Electronics & Communication

Annexure II B.Tech. (ECE)

CS 209L	Data Structures Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 2015	Seminar	0	0	2	1
ELE 201	Digital Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
						ELE 205	Semiconductor Devices and Circuits	4	0	0	4
						ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Semester Wise Total	23	1	6	27		Semester Wise Total	23	1	10	29
				(1	ll Year)	Т					
Semester - V			1			Semester - V	1		1	1	-
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	С
	Vocational Course - I	2	0	0	2		Vocational Course - II	2	0	0	2
	Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Principles of Management/ Economics	3	0	0	3		Economics / Principles of Management	3	0	0	3
ECE 301	Analog Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ELE 306	Microprocessors and Microcontrollers	4	0	0	4	EIE 302	Control Systems	4	0	0	4
	Analog Electronics	4	0	0	4	ECE 304	Digital Communication	4	0	0	4
ELE 202	Electromagnetic field Theory	4	0	0	4		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Probability and Statistical Methods/ Numerical Methods	3	1	0	4		Microwave Engineering Lab	0	0	2	1
ECE 301L	Analog Communication Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	2	1
ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1	ECE 304L	Digital Communication Lab	0	0	2	1
	Analog Electronics Lab	0	0	2	1		Project	0	0	4	2
	Semester Wise Total	26	1	6	30		Semester Wise Total	22	1	10	2

				(1	V Year)						
Semester – V	/11					Semester -	VIII				
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	с
	Antenna Analysis	4	0	0	4	ECE 407P	UIL Project	0	0	48	24
ECE 402	Fiber Optics and Communication	4	0	0	4		Reading Elective	0	0	0	2
VLSI 401	VLSI Design	4	0	0	4						
ECE 303	Communication Networks	4	0	0	4						
	Discipline Elective	4	0	0	4						
	Open Elective	4	0	0	4						
	Antenna Analysis Lab	0	0	2	1						
VLSI 401L	VLSI Design Lab	0	0	2	1						
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1						
	Semester Wise Total	24	0	6	27		Semester Wise Total	0	0	48	26
Course Code	Discipline Electives					Course Code	Reading Electives				
	Biomedical Instrumentation		Geoinformatics			Electronic Packaging					
ECE 404	Optical Network		Analytical Instrumentation			Multimedia Compression and Communication					
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems			Professional Ethics					
ELE 403	Basics of Nano electronics		Robotics and Automation			Electromagnetic Compatibility					
ECE 403	Mobile Communication		Power Electronics			Telecommunication Switching Systems and Networks					
ECE 405	Radar Navigation Mechatronics			Electric Vehicles							
ELE 304	Digital Signal Processing						IoT Sensors and Devices				

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ECE 201, Signals, Systems and Networks	After the completion of course student will be able to:	_		No Change in course contents.
		 Analyze linear time invariant system in time and frequency domain Apply network theorem to analyze the electrical circuit. Explain two port parameters. 	 Suggested Books: 1. V. Oppenheim, A. V. Willsky, S. Hamid Nawab. Signal and Systems. Second Edition, Prentice Hall. 2. M.E. Van Valkenburg. Network Analysis. Third Edition, Prentice Hall India. 3. J. G. Proakis, D. G. Manolakis. Digital Signal Processing. Fourth Edition, Pearson. 4. F. F. Kuo. Network Analysis and Synthesis. Second Edition, John Wiley and Sons. 	 Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication Suggested E-resources: 1. Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ 2. Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100 	
2	ELE 201, Digital Electronics	After completion of this course, students will be able to:	_	_	No Change in course contents.
		 Students will be able to describe and minimize various digital systems. Students will understand design steps for combinational and sequential circuits. Students will understand basic 	Suggested Books: 1. M. Morris Mano. Digital Design. Third Edition. Prentice Hall. 2. Charles H. Roth, Larrry N. Kiney. Fundamentals of Logic Design. Sixth Edition, Cengage Learning. 3. D.P. Leach, A. P. Malvino, G. Saha. Digital Principles and Applications. Eighth Edition, McGraw Hill. 4. John F. Wakerly. Digital Design:	 Recommended Books: M. M. Morris R. & C. Michael D. (2013). Digital Design (5/e). Pearson Publication R. Charles H., JR. & K. Larrry N. (2010). Fundamentals of Logic Design (6/e). Stanford, USA: Cengage Learning Malvino, A. P., & Leach, D. P. & S. Goutam (2014). Digital Principles and Applications (8/e). New Delhi: Tata McGraw Hill Education Private limited. 	

Annexure II B.Tech. (ECE)

		memory architectures and their functionality.	 Principles and Practice. Fourth Edition, Pearson. 5. T. C. Bartee. Digital Computer Fundamentals. Sixth Edition. McGraw-Hill. 6. J. P. Hayes. Computer Architecture and Organization. Third Edition, McGraw Hill. 	 W. John F. (2008). Digital Design: Principles and Practices (4/e). Pearson Publication B. Thomas C. (1981). Digital Computer Fundamentals (5/e).McGraw-Hill Publication Hayes, J. P. (2002). Computer architecture and organization. New York, USA: McGraw-Hill Publication Suggested E-resources: Digital Circuits by Prof.Santanu Chattopadhyay, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc18_ee 33/preview Digital Electronic Circuitsby Prof.Goutam Saha, Dept. of Electronics and Electrical Communication Engineering at IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc19_ee 09/preview Digital Circuits and Systemsby Prof. S. 	
2	ELE 2011	After completion of this		Engineering, Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086/	Loouming
3.	ELE 201L, Digital Electronics Lab	 After completion of this laboratory course, students will be able to: Understand the basic digital circuits and to verify their operation. Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs). 			Learning Outcomes added No change in experiment list.

4.	ENGG 202, Basic Electronics	 Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers. After completion of this course, students will be able to: Understand the 			No Change in course contents.
		 Understand the fundamental of semiconductors and design semiconductor circuits Understand the different type of diode/ transistors with their responses. Analyze various types of oscillators available with their utilization. 	 Suggested Books: J. Millman, C. Halkias. Integrated Electronics. Second Edition, McGraw Hill. R. L. Boylested. Electronics Devices and Circuit Theory. Tenth Edition, Pearson. A. P. Malvino. Electronic Principles. Sixth Edition, McGraw Hill. N. B. Somanatha. Electronics Devices and Applications. First Edition, Prentice Hall India. A. S. Sedra, K. C. Smith. Microelectronics Circuits: Theory and Applications. Seventh Edition, Oxford University Press. B. G. Streetman, S. K. Banerjee. Solid State Electronic Devices. Sixth Edition, Prentice Hall India. 	 Recommended Books: Millman, J, Halkias, C, Parikh, C. (2017). Integrated Electronics. (2/e). New Delhi: TMH Publications. Boylestad,R. (2012). Electronic Devices & Circuits Theory.(6/e). New Delhi: Pearson Publications. Somanathan B. Nair. (2006). Electronics Devices and Applications. New Delhi: Prentice Hall India Learning Private Limited Smith, S.(2008). Microelectronics Circuits. (5/e). New Delhi: Oxford press, India. Streetman Ben. G. (2006). Solid State Electronic Devices (6/e). New Delhi: PHI Publications. Suggested E-resources: Basic Electronics by Prof. Pramod Agarwal, Department of Electrical Engineering, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/4 Circuits and Electronics by Anant Agarwal, Massachusetts Institute of Technology: MIT OpenCourseWare. https://oww.mit.edu/courses/electrical- engineering-and-computer-science/6-002- circuits-and-electronics-spring- 2007/video-lectures/6002_116.pdf 	Deleted

5.	Electrical and Electronics Measurements	 After completion of this course, students will be able to: Measure various electrical parameters with precision and accuracy. Select appropriate transducers for measurement of physical parameter. Use Signal Generator and CRO for appropriate measurement. Test and troubleshoot electronic circuits using various measuring instruments. 	Suggested Books: 1. A. K. Sawhney. A Course in Electrical and Electronic Measurements and Instrumentation. Eleventh Dhanpat Rai Publication. 2. R.K. Jain. Mechanical and Industrial Measurements. Twelfth Edition, Khanna Publishers. 3. B.C.Nakra, K.K. Chaudhry. Instrumentation, Measurement and Analysis. Third Edition, McGraw Edition. 4. E. 0. Doebelin.Measurement Systems:Application and Design. Fourth Edition. McGraw Hill. 5. D. 9. P. Eckmann, Industrial Instrumentation. First Edition, CBS Publications. 6. H.S. Kalsi. Electronic Instrumentation. Third Edition, Tata McGraw Hill. 7. S.K. Singh. Industrial Instrumentation and Control. Third Edition, Tata McGraw Hill. 8. C. S. Rangan, G. R. Sarma, V. S. V. Mani. Instrumentation: Devices and Systems. Second Edition, McGraw Hill. 9. D. V. S. Murthy. Transducers and Instrumentation. Second Edition, Prentice Hall India.	 Recommended Books: SawhneyA.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication Singh S.K. (2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: Industrial Instrumentation by Prof. Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064 	No Change in course contents. Deleted
6.	Electrical and Electronics Measurements Lab	After completion of this laboratory course, students will be able to: • Develop an understanding of construction and working of different measuring instruments	 To study behavior of Inductive Sensors and calculate its switching hysteresis. To study behavior of Capacitive Sensors and calculate its Reduction factor. To study behavior of Magnetic Sensors and plot its response curve. To study behaviour of Ultrasonic Sensors and calculate its switching hysteresis. 	 To study Hall Effect. To study principle of Thermocouple. To study principle of Load cell. To study principle of Thermistor. To study principle of strain guage. To study Principle of LVDT To study De sauty bridge. To study Wein AC bridge. 	Learning outcomes added. Deleted Added

7.	ELE 205,	 Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement Select appropriate passive or active transducers for measurement of physical phenomenon. 	 To study behaviour of Photo electric sensors and calculate its switching frequency. To detect level with the help of Ultrasonic, Photo electric and Capacitive sensors. Logic linking of Sensors: OR gate and AND gate. To study Wheatstone bridge and find the unknown resistance. To calculate the frequency and phase with Lissajous figure pattern using DSO. 	9. To study CRO circuitry in detail.	
	Semiconductor	course, students will be			No Change in course
	Devices and Circuits	able to:Explain the energy	—	—	contents.
	Circuits	bands, temperature	Suggested Books:	Recommended Books:	Added
		 effects, carrier transport of semiconductor devices Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences Analyze the various feedback circuits and design power amplifiers. 	 D. A. Neamen, Semiconductor Physics and Devices, fourth edition, McGraw Hill. S. M. Sze. Semiconductor Devices Physics and Technology. Second Edition, Wiley Student Edition. J. Millman, C. Halkias, C. D. Parikh. Integrated electronics. Second Edition, McGraw Hill. A. Sedra, K. Smith. Microelectronic Circuits Theory and Applications. Fifth International Edition, Oxford University Press. 	 S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication Millman, J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi: PHI Publications. Smith. S.(2008). Microelectronics Circuits. (5th ed). New Delhi: Oxford press. Suggested E-Resources: Semiconductor Devices and Circuits by Prof.SanjivSambandan, Department of 	Deleted
8.	ELE 205L,	After completion of this	1. To study the half wave and full wave	 Instrumentation and Applied Physics, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/108108112/ Analog Electronic Circuits byProf. S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/ To study the half wave and full wave 	Learning

	Semiconductor Devices and Circuits Lab	 laboratory course, students will be able to: Develop understanding of current voltage characteristics of various semiconductor devices. Design and analyze the various electronic circuits such as amplifiers and oscillators. Draw output waveforms of various clipper and clamper circuits. 	 rectifier circuit. Measurement of bipolar junction transistor (BJT) characteristics. Measurement of junction field effect transistors (JFET) characteristics. To measure input and output characteristics and calculate gain of CE amplifier circuit. To measure input and output characteristics and calculate gain of CB amplifier circuit. To study the frequency response of RC coupled amplifier. To study Wien-bridge oscillator circuit. To study Wien-bridge oscillator circuit. To study the effects of negative feedback on the amplifier characteristics. Study of class A push-pull amplifier. 	transistors (JFET) characteristics.4. To measure input and output characteristics and calculate gain of CE amplifier circuit.	outcomes added. Added
9.	ECE 201S, Seminar	 After the completion of course student will be able to: To identify promising new directions of various cutting edge technologies. Undertake a critical review of the literature. Deliver well-organized technical presentations and prepare a technical report. 			Learning Outcomes added.
10.	Analog Communication	 After completion of this course, students will be able to: Explain different blocks in communication system and how noise affects 	Section-A Introduction Communication Process, Source of Information, Channels Noise, System Noise Source, Noise & Feed back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals. Modulation Process – Need, Bandwidth, Requirements- Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication,	Section-A Introduction to signals: Size of signals, Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison- correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals:	Added Shifted Deleted

 communication using different parameters. Distinguish between different amplitude modulation schemes with their advantages and applications and analyse generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Identify different types of radio receiver circuits 	Section B Modulation: Amplitude Modulation : Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Kenter Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulators: Amplitude Modulator, Spectral Analysis of Different Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulator, Bilanced Modulator, SSB Modulator: Direct &Indirect Method, Narrow band Frequency Modulator: Direct &Indirect Method, Narrow band FM, Phase Modulator, Spectral Analysis of these Modulator, Spectral Analysis of these Modulator, Stransmitters – AM Transmitter, Low Level and High Level SB- Transmitter, Pilot Carrier – FM Transmitter – Narrow band and Wide band, FM	Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density. Section- B Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Quadrature amplitude modulation, Vestigial sideband modulation: Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulation of FM, Interference in angle modulated systems, FM receiver	Added Shifted Deleted
	Section C Receiver: Sensitivity, Selectivity,Signal to Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector – Ratio Detector — Foster — Seelay Discriminator; AM Receiver (Block Level Treatment) — TRFReceiver,Super-heterodyne Receiver,Double — Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver – FM Stereo Receiver (Block Level) Carrier Shareholding,Capture Effect.	Section-C Random Signal and Noise: Gaussian Noise, Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise. Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation. Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum preemphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two- Port Networks, Free-Space Link Calculations	Shifted Deleted

-11.	Analog Communication Lab	After completion of this laboratory course, students will be able to: • Demonstrate Amplitude modulation and demodulation techniques. • Demonstrate frequency modulation and demodulation technique. • Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. • Compare different modulations and	Text Books: I. George Kennedy: Electronic Communications Systems:McGraw Hill. 2. Taub and Schilling: Principles of communication systems:McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering.	Delhi: Oxford University Press	Added Deleted Learning outcomes added. No change in experiment list.
		 recognize the advantages and disadvantages of them. Identify different radio receiver circuits and 			

Annexure II B.Tech. (ECE)

		mala of ACC			
12.	ELE 306,	role of AGC. After completion of this			N. Cl
12.	Microprocessor	course, students will be			No Change in course
	s and	able to:	—	—	contents.
	Microcontroller	 Interface memory and 	Test Books :	Recommended Books:	contents.
	5	 different peripherals with Microprocessor and microcontroller Design and develop the system for real time applications 	 Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book : Ajay V. Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005. Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design, 2nd ed., Liu & Gibson. 	 Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication Hall, D.V. (2017). Micro Processor and Interfacing. New Delhi: McGraw-Hill Publication. Deshmukh, Ajay V. (2005). Microcontrollers – Theory and Applications. New Delhi: McGraw Hill Publication. Ray, A.K., &Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication. Kenneth, J. Ayala. (2011). The 8086 Micro Processors Architecture, Programming and Applications. New Delhi: Prentice Hall India. Liu, Yu Cheng., & Gibson, A. (1985). Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design. New Delhi: Prentice Hall India. Suggested E-Resources: Microprocessors and Microcontrollers by Prof.Santanu Chattopadhyay. 	
				 Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/ Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/ 	
12	ELE 306L,	After completion of this		https://lipter.ac.iii/courses/100108100/	
13.	ELE 306L, Microprocessor	laboratory course, students			
	s and	will be able to:			Learning
					8
	Microcontroller	• Understand the			Outcomes
	s Lab	different instructions			added.
ι		of 8086			

		 microprocessor assembly language. Coding in assembly language. Solve different real time problems. 		No Change in Experiment List.
14.	Electromagnetic Field Theory	 After completion of this course, students will be able to: Apply vector calculus to static electric-magnetic fields in different engineering situations. Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems. Examine the phenomena of wave propagation in different media and its interfaces and in applications of microwave 	Section A Elements of Vector calculus: Cartesian coordinate system, Circular-Cylindrical coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Electrostatics: Electric Flux Density, Coulomb's law, Gauss's law and their applications, Energy in electrostatic fields, capacitance of parallel plate and coaxial cable, Fields in dielectrics, Boundary conditions, dipole, Laplace's and Poisson's equations and their applications. Section B Magnetostatics: Ampere's law, Bios wart's law and their applications, Stock's theorem, Energy in magnetic field, Boundary conditions. Maxwell's Equation: - Maxwell's equations in integral & differential form (Gauss's law in electric and magnetic field, Ampere's circuital law, Faraday's law),	 Entire Course is shifted from 3 rd semester to 5 rd semester No Change in course contents
		engineering.	Maxwell's equations for time varying field. Section C	
			Uniform Plane Waves: Wave equation and its solutions, Pointing vector, propagation through various media-free space, conductor & dielectric, Reflection and Refraction in conductors & Dielectrics with normal and oblique incidence, Phase & Group velocity, Skin depth. Transmission Lines: General equation, input impedance, characteristics impedance, Reflection and reflection coefficient, Standing wave ratio, resonant and resonant line impedance matching, Smith chart and its applications, practical problems in transmission lines.	

			Suggested Book: 1. William H. Hayt. Engineering Electromagnetics. Eighth Edition, McGraw Hill. 2. E. C. Jordan, K. G. Balmain. Electromagnetic Waves and Radiating Systems. Second Edition, Prentice hall India. 3. J.D. Kraus, D. A. Fleisch. Electromagnetics with Applications. Fifth Edition, McGraw Hill.	 Recommended Books: 1. William, H. Hayt. (2017). Engineering Electromagnetics. New Delhi: McGraw- Hill Publication. 2. Sadiku, Matthew N. O. (2009). Principles of Electromagnetics. New Delhi: Oxford University Press. 3. Jordan, E. C., & Balmain, K. G. (2015). Electromagnetic Waves and Radiating Systems. New Delhi: Pearson Publication. 4. Kraus, J.D., &Fleisch, D. A. (1992) Electromagnetics with Applications, New Delhi: McGraw-Hill Publication. Suggested E- Resources: 	Added
				 Electromagnetic Fields by Prof.Harishankar Ramachandran, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/108106073/ Electromagnetic Fields by Dr RatnajitBhattacharjee, Indian Institute of Technology, Guwahati. https://nptel.ac.in/courses/117103065/ Electromagnetic Theory by Dr Pradeep Kumar K, Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104087/ 	
15.	Analog Integrated	After completion of this course, students will be	Analog Integrated Circuits Section A	Analog Electronics Section A	Added
	Circuits	 able to: Explain the operation and properties of Op- amp. Explain the design of differential amplifiers, active filters, oscillators, and other linear and non- linear circuits using linear integrated circuits. Design and analysis 	Feedback Amplifiers: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback. Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class AB, Class C, power dissipation and efficiency calculations, amplifier distortion.	Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, design of integrator and differentiator, logarithmic and anti-logarithmic amplifiers.	Deleted part is shifted to IV sem. Semiconduct or devices & Circuits paper Shifted Deleted
			Section B	Section B	Added

of single stage, multistage amplifiers and high frequency amplifiers.	High Frequency Amplifiers : Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers : frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP- AMP series voltage regulator basics, OP- AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Shifted Deleted
	Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits : Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance, Hybrid –pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	Added Shifted Deleted
	Text Books: 1. Millman and Halkias : Integrated electronics, TMH, 1991. 2. Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009. 3. GayakwadRamakant A., "OP-AMP & Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010. Reference Book : 1. Adel Sedra& Kenneth Smith, Microelectronic Circuits Theory and applications" FIFTH edition International version: Oxford University Press, 2009.	 Recommended Books: 1. Gayakwad, Ramakant A. (2010). OP- AMP & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press. 3. Parikh, Millman&Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel.,& Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resource: 	

16.	Analog Integrated Circuits Lab	 After completion of this laboratory course, students will be able to: Design, construct, and analyze the various analog circuits to compare experimental results in the laboratory with theoretical analysis. Observe the amplitude and frequency responses of common amplification circuits Construct the desired Electronic desired 	 Analog Integrated Circuits Lab To design the Astable Multivibrator using 555 To design the Monostable Multivibrator using 555 To design numer using 741 IC To design Intergrator using 741 IC To design Schmitt Trigger using 741/555 IC To design peak detector using 741 IC To design scalar using 741 IC To design voltage to frequency converter. To study phase locked loop. To study frequency shift keying using 	 Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/ Analog Electronics Lab To design the Astable Multivibrator using 555 To design the Monostable Multivibrator using 555 To design Intergrator using 741 IC To design Schmitt Trigger using 741/555 IC To design peak detector using 741 IC To design peak detector using 741 IC To design voltage to frequency converter: 11. To study active filters: LPF, HPF, BPF To design Voltage to frequency converter: 11. To study phase locked loop. L2. To study frequency shift keying 	Learning Outcomes added. No Change in Experiment List
		Electronic design to meet specific requirements.	PLL 565.	using PLL 565.	
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse Modulation and PCM Describe and analyse 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts -Code efficiency and Hamming bound, linear block codes, Cyclie	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted

mathematically the Digital Modulation Techniques-ASK, FSK, PSK	codes, Convolution codes, maximum likelihood decoding of convolution codes. Section B Pulse Modulation Systems: Sampling theorem, Generation and demodulation of PAM, PPM , Quantization of Signals, Quantization error, PCMCompanding and Multiplexing of PCM Signals, Delta and adaptive delta modulation, Bit, Word and Frame Synchronization, Matched filter detection.	Section B Digital Modulation Techniques: Various techniques of phase shift, BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of ASK, FSK& Minimum shift keying Noise in digital Communication: PCM and CompandedPCM SNR, Matched filter, Calculation of error probability for ASK, ASK, FSK. Section C	
	Section C Digital Modulation Techniques: Various techniques of phase shift, BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of ASK, FSK& Minimum shift keying, Calculation of error probability for PSK, ASK, FSK, Application of digital modulation techniques.	Section C Information Theory: The concept of amount of information, Entropy, Information rate, Huffman coding, Channel capacity of a discrete memoriless channel, Shannon's Theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth-S/N trade – off. Error control coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts -Code efficiency and Hamming bound, linear block codes, Cyclic codes, Convolution codes, maximum likelihood decoding of convolution codes.	
	Text Books: 1. Simon Haykin: Digital Communication: John Wiley and sons 2. Taub and Schilling: Principles Of Communication System: Tata McGraw Hill, Second edition. 3. JhonProakis: Digital Communications: McGraw Hill. 4. BernadShlar: Digital Communication: Pearson Education. 5. K Sam Shanmugam: Digital and Analog Communication Systems: Jhon Wiley and Sons. 6. LathiB.P.: Modern Digital And Analog Communications Systems: PRISM	 Recommended Books: 1. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007) Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., & Taub, H. (2008). Principles of Communication systems. New Delhi: Mc-Graw Hill Publication. Suggested E-Resources: 1. Digital Communication by Prof.Bikash Kumar Dey, Department of Electrical 	

			Indian Edition.	Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101051/	
18.	Digital Communication Lab	 After completion of this laboratory course, students will be able to: Understand the concept of Sampling and various Pulse Modulation techniques i.e. Pulse Amplitude Modulation and demodulation, Pulse Position Modulation and demodulation and Pulse Width Modulation. Analyze the behavior of Pulse Code Modulation. Explain the working of Digital Modulation Techniques ie: Amplitude Shift Keying, Phase Shift Keying. 			Learning Outcomes added. No Change in Experiment List.
19.	Control Systems	After completion of this course, students will be able to: • Formulate mathematical model for physical systems and simplify representation of complex systems using reduction techniques.	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback, servo components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	Added Shifted Deleted

		TT . 1 1	S (; B		
		 Use standard test signals to identify performance characteristics of first and second-order systems. Apply root locus technique for stability analysis. Analyse performance characteristics of system using Frequency response methods. 	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
			Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant- M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant- N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation of LTI systems.	Added Shifted Deleted
			Text/ReferenceBooks: 1. I.J. Nagrath and M. Gopal: Control System & Engineering 2nd Ed.: Wiley Eastern Ltd., 1985. 2. Katsushiko Ogata: Modern Control Engineering 3rd Ed.: Printice Hall of India Pvt. Ltd., 2001	 Recommended Books: Nagrath, I. J. (2006). Control systems engineering. New Delhi: New Age International. Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol. 4). India: Prentice hall. Suggested e-resource: Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/ 	
20.	Control Systems Lab	After completion of this laboratory course, students will be able to: • Understand the	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	Learning Outcomes added.

		concept of time	find out the tachometer gain.	find out the tachometer gain.	Deleted
		 concept of time response and frequency response of any physical system. Mathematical modeling of physical system to find out of transfer system. Analyze the stability of system with the help of system response. 	ind out the fachometer gam.	 To determine time domain response of a second order systems for step input and obtain performance parameters. To convert transfer function of a system into state space form and vice-versa. To plot root locus diagram of an open loop transfer function and determine range of gain 'k for stability. To plot a Bode diagram of an open loop transfer function. To draw a Nyquist plot of an open loop transfers function and examine the 	Added
21.	Communication Networks	 After completion of this course, students will be able to: Recognize and describe about the working of Computer Networks. Illustrate reference models with layers, protocols and interfaces. Combine and distinguish functionalities of different Layers. Model the LAN and WAN configuration using different media 	Section A Introduction to communication systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model. OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure- through wire-copper cable-STP, UTP, co- axial cable, optical fiber. Wireless media- wireless LAN, organization and standards. Wireless devices and topologies. Wireless communication, wireless security.	stability of the system.	Entire Course is shifted from 5 th semester to 6 th semester. No change in course contents.
		using unrerent incula	Section B Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway. Switching Networks-circuit switching, Packet Switching. Networks-Circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting. Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of Internetworking. Ethernet (CSMA/CD)		

		Token Ring and FDDI, Fast Ethernet.		
		Section C		
		Layer protocol Structure. Data link control -		
		Flow Control, Error Detection, Error Control.		
		HDLC. Network layer-ARP, RARP, ICMP.		
		Effect of Congestion and Congestion Control		
		in Network-(Back pressure, choke packet,		
		Implicit Congestion Signaling, Explicit		
		Congestion Signaling. Traffic Management-		
		Transport layer Protocols-connection oriented		
		and connectionless services, TCP, TCP		
		Congestion Control and Flow Control. UDP.		
		Application Layer Protocols – HTTP, FTP,		
		SMTP, SNMP, Telnet. Introduction to ISDN.		
		Narrow Band and Broad Band. Introduction		
		to WAN Technologies. ATM and Frame relay.		
		Text Books:	Recommended Books:	
		1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic	
		& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
			PHI Publication.	
		Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
		3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
		Communication: PHI New Delhi, 5th	Publication.	
		edition 1997.	3. Stailling, W. (1997). Data & Computer	
		4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
		Distributed Processing: PHI, 1998.	Publication.	
			4. Martin, J. (1998). Computer Networks	
			and Distributed Processing Software,	
			Techniques, Architecture. New Delhi:	
			PHI Publication.	
			Suggested E-Resources:	
			1. Computer Networks and Internet	
			Protocol by Prof.SoumyaKanti Ghosh	
			Department of Computer Science and	
			Engineering Indian Institute of	
			Technology, Kharagpur.	
			https://nptel.ac.in/courses/106105183/	
			2. Computer Networks by Prof. Sujoy	
			Ghosh, Department of Computer Science	
			and Technology, IIT KG.	
			https://nptel.ac.in/courses/106105081/	
I			3. Computer Networks by Prof. Hema A	
-	I	1		

Annexure II B.Tech. (ECE)

				Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/2278 /data-communication	
22.	Microwave Electronics	 After completion of this course, students will be able to: Understand various parameters of waveguide and use of component as per applications Design impedance matching network for any transmission line or system Analyse and find applications and limitations of microwave Semiconductor devices. Find various applications of microwave engineering in specific area 	Microwave Electronics Section A Introduction to Microwaves & its application, Transmission lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart and its applications, coaxial, twin, strip µstrip lines &baluns Section B Wave Guides: Wave propagation in rectangular & circular wave guides, wave guide modes, Q of wave guide, Wave guide coupling, Microwave passive components: S- parameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Rectangular cavity resonator, Isolators, Circulators.	Microwave Engineering Section A Introduction to Microwaves & its application Microwave Electromagnetic spectrum. Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti- resonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer, baluns, coaxial transmission line, Planar transmission line: Strip line, Microstrip line, Slot line etc. Section B Wave Guides: Wave propagation in rectangular wave guide: solution of TE and TM modes, Power Transmission and Attenuation, Excitation of modes in Rectangular waveguide, Circular Waveguide: Basic idea of TE and TM modes, Rectangular cavity resonators, Q of cavity resonators, S parameters and its conversion with Z and Y parameters. Wave guide coupling, Microwave passive Components: S- parameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Microwave propagation in ferrites: Faraday	Added Shifted —Deleted Shifted Deleted
			Section C Microwave Tube Devices: Conventional Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	rotation, Isolators, Circulators. Section C Microwave Tubes: Limitations of Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two	Added Shifted Deleted

23.	Microwave	After completion of this	Semiconductor Devices IMPATT, TRAPATT& Gunn Devices. Text Books: 1. Sisodia-Raghuvanshi: Microwave Circuits & Passive Devices: (Wiley- eastern).1st edition.1987 2. S.Y. Liao: Microwave Devices & Circuits, (Prentice Hall).1st Edition 1995, 3. Collins: Foundation Of Microwave Engineering, (Mc Graw Hill) 2nd Edition 1992 4. P.A. Rizzi: Microwave: (Prentice Hall). 1st Edition 1998	Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley theory, Mode of operations of Gunn diode, Avalanche Transit-Time devices: IMPATT, TRAPATT. Recommended Books: 1. Liao, S.Y. (1995). Microwave devices & Circuits. New Delhi: Prentice Hall Publication.	Learning
23.	wherowave	And completion of this	iviterowave Electromes Lab	Herowave Engineering Lab	Learning

Annexure II B.Tech. (ECE)

	Electronics Lab	laboratory course, students will be able to:	1. Determine the operating frequency of reflex klystron.	1. Determine the operating frequency of reflex klystron.	Outcomes added.
		 Understand the concept and working of microwave bench and different components connected on a bench. Analyze the behaviour of various microwave components. Verify properties/ characteristic of 	 Draw the V-I characteristics of Reflex klystron Draw the characteristics of attenuator To verify the wave-guide law To study the directivity and coupling coefficient of Directional Coupler. To study the properties of magic Tea and also determine isolation and coupling coefficient. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) 	 Draw the V-I characteristics of Reflex klystron Draw the characteristics of attenuator To verify the wave-guide law To study the directivity and coupling coefficient of Directional Coupler. To study the properties of magic Tea and also determine isolation and coupling coefficient. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) 	added. No Change in Experiment List
		microwave source, tees and directional coupler.	Unmatched Load. 8. To study the properties of E-plane and H- plane Tea. Determine isolation and coupling coefficient	Unmatched Load. 8. To study the properties of E-plane and H- plane Tea. Determine isolation and coupling coefficient	
24.	Project	 After completion of this course, students will be able to: Demonstrate effective project execution and control techniques that result in successful projects. Ability to identify, formulates, and solves engineering problems. Use the techniques, skills and modern engineering tools necessary for engineering practice. 			Learning Outcomes Added and this course has no prescribed syllabus
25.	Antenna and Radar	After completion of this course, students will be able to: • Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain	Antenna and Radar Section A Introduction to antennas, network theorems, directional properties of dipole antennas,travelling wave antenna& effect of point of feed on standing wave antenna, two element array, linear array, multiplication of patterns, effect of earth on vertical patterns, binomial array, antenna gain, effective area, antenna terminal impedance, antenna as	Antenna Analysis Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input	Added Shifted Deleted

 various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical equations for various parameters of thin linear antenna. Explain loop, slot, patch and horn antennas. Derive expressions for the parameters of loop and slot antennas. 	Section B Practical antennas: Hertz and Marconi antenna, antenna losses, effect of antenna height, electrically short antennas, wave antenna, half wave dipole or dipole antenna, harmonie,rhombic, V, inverted V, traveling wave antenna, loop antennas, folded dipole, yagi-uda, horn, biconical, helical, slot, notch,frequency independent and microwave antennas, Antenna measurements.	impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Electric Current Source J, The Vector Potential F for a Magnetic Current Source M, Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources, Solution of the Inhomogeneous Vector Potential Wave Equation, Far-field radiation, Duality theorem, Reciprocity and Reaction theorem, Image Theory Linear wire antennas: Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, Half-wave dipole Loop Antennas: Small circular loop, Square loop	Added Shifted Deleted
	Section C	Section C Introduction to Arrays, two-element array, N-	
	Radio-wave propagation, phenomena and problems encountered in practice: effect of	element linear array: uniform amplitude and	Added
	earth and atmosphere in radio waves. Physical	spacing, directivity,N-element linear array:	Shifted
	principles & basic equations of radar, pulsed,	uniform spacing, non-uniform amplitude	Deleted
	continuous wave and pulsed Doppler radar, antenna systems, transmitters, detection	Traveling wave antennas: Long wire antenna, V-antenna, Rhombic antenna	
	theory, waveform considerations including	Broadband antennas: Helical antenna, Folded	
	pulse compression, principle of synthetic	dipole, Yagi-uda array of linear elements	
	aperture radar, propagation clutter, and	Log-periodic antenna, Introduction to Horn	
	airborne radar	antenna: E-plane sectoral horn, H-plane sectoral horn, Pyramidal horn	
	References:	Recommended Books:	
	1. John D. Kraus: Electromagnetic:	1. Balanis, C. A. (2005). Antenna Theory	
	Mc Graw Hill.	Analysis and Design. New Delhi: John Wiley & Sons.	
	2. William, Hayt: Electromagnetic	2. Eliott, Robert S. (2003). Antenna Theory	
	Engineering: Mc Graw Hill.	and Design. New Delhi: Wiley-IEEE	
	3. Jordan & Balmain:	and Design. New Delhi: Wiley-IEEE Press.	
	5 5	and Design. New Delhi: Wiley-IEEE	

			Electromagnetic: Oxford University Press. 5. Merrill. I. Skolnik: Introduction to Radar Systems, 3rd Ed., Mc-Graw-Hill. 6. Merrill. I. Skolnik: Radar Handbook: 2nd Ed., Mc-Graw-Hill, 1990. 7. K. D. Prasad: Antenna and Wave Propagation.	 Harrington, R. F. (2001). <i>Time-Harmonic Electromagnetic Fields</i>. New Delhi: Wiley-IEEE Press. Suggested E- resources: Advanced Antenna Theory by Dr Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/ Analysis and Design Principles of Microwave Antennas by Prof. Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/ Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/ 	
26.	Antenna Analysis Lab	 After completion of this laboratory course, students will be able to: Use HFSS tool to design and analysis of antennas. Design various type of antennas Measure and analyse radiation pattern of antennas. 		 To design dipole antenna in HFSS Design monopole antenna in HFSS Design horn antenna in HFSS To measure radiation pattern of Horn Antenna To measure radiation pattern of log periodic Antenna To measure radiation pattern of micro strip patch Antenna To measure radiation pattern of YAGI- UDA Antenna. 	Addition of new Lab.
27.	VLSI Design	 After completion of this course, students will be able to: Explain the basic theory of crystal growth, wafer fabrication and IC fabrication and IC fabrication technology. Explain the different VLSI design styles, 	Section A Recapitulation of basics, semiconductor devices, orientation effect, impurities, defects, Fabrication: Crystal growth & wafer preparation, Epitaxial growth, oxidation, photo-lithography, etching technology (wet & dry), Diffusion Fick's law, chemical vapor deposition, CVD reactors, ion implantation, metallization & patterning, photo resistive material, packaging. Section B		Course is shifted from 8 th semester to 7 th semester. No change in course contents.
		overview of ICs and fabrication steps of MOS, CMOS and BJT.	Overview of VLSI methodologies, VLSI design flow, type of ICs (monolithic, thick film, thin film, hybrid), Fabrication steps involve in, different type of resisters,		

 the oupput characteristics of different MOS inverters Design combinational and sequential circuit. Design combinational and sequential circuit. Design combinational circuit. (MOS devices, V-1 (MOS devices, V-1 (MOS devices)), and (Appleton Ioda, CMOS), delay & power analysis, Design layout of simple CMOS gates. Circuit implementation of combinational circuit, eFRs, SRM, DRAM. Text Books: Sze S.M.: VLSI Technology: TMH. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design. Nex MHII. Reference Books: Booker, R.M. Kirk, VLSI Fabrication Booker, R.M. (Collectronics). Gandhi S.K.: VLSI Fabrication Botker, B.R. Microelectronics. Gandhi S.K.: VLSI Fabrication Silieon VLSI Technology: TMH. Martin Ken: Digital Integrated Circuits. Silieon VLSI Technology: TMH. Martin Ken: Digital Integrated Circuits. Silieon VLSI Technology: Tentice Hall. Silieon VLSI Design. Silieon VLSI Design. Silieon VLSI Design. Silieon VLS			T	1
MOS inverters tressitive load, enhancement load, depletion load, CMOS gates.	the output characteristics of different MOS inverters Design combinationa	fabrication, fabrication of typical circuits. Section C Digital CMOs circuit, MOS devices, V-I characteristics, Design & detailed analysis of		
 Sze S.M.: VLSI Technology:TMH. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis &Design : Mc. Graw Hill. Reference Books: Botker B.R: Microelectronics. Gandhi S.K.: VLSI Fabrication Principle. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: New Delhi: McGraw Hill Publications. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. Gandhi S.K.: VLSI Fabrication Principle. Gandhi S.K.: VLSI Fabrication Principle. Silicon VLSI Technology: Prentice Hall. Sarafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Circuits: Oxford press. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design. Ser, S.M.(2017). VLSI Technology: New Delhi: TMIP Publications. Sarrafazadeh, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: McGraw Hill Publications. Sarrafazadeh, M., & Wong, C.K. (1996). An introduction to VLSI Physical Design. New York, United State: Oxford University Press. Neil, H.E., Weste, & Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Sugested E-Resources:		MOS inverters (resistive load, enhancement load, depletion load, CMOS), delay & power analysis, Design layout of simple CMOS gates. Circuit implementation of combinational circuit, circuit implementation of sequential		
		 Sze S.M.: VLSI Technology:TMH. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis &Design : Mc. Graw Hill. Reference Books: Botker B.R.: Microelectronics. Gandhi S.K.: VLSI Fabrication Principle. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. Martin Ken: Digital Integrated Circuits: Oxford press. Neil H.E. Weste& Kamran Eshraghian: 	 Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publications. Kang, S.M., &Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. 	

28.	VLSI Design Lab	 After completion of this laboratory course, students will be able to: Use VHDL for design of digital circuits Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. Develop and simulate register-level models of hierarchical digital systems 	Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	 Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ Write a program for the implementation of half adder and Full adder. Write a program for implementing half subtractor and full subtractor. Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program to implement gray code to binary code converter and vice versa. Write a program for the implementation of S-R Flip flop and D Flip flop. Write a program for the implementation of S-R Flip flop and D Flip flop. Write a program to design JK Flip-flop and write design summary Write a program to design T Flip-flop and write design summary 	Learning Outcomes added. Added
29.	Fiber Optics and Communication	 After completion of this course, students will be able to: Explain the light propagation through optical fibers. Explain the various light sources and optical detectors. Design fiber optic transmitter and receiver system. 	Text Books: 1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optie Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication:	 Recommended Books: 1. Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. 2. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. 3. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. 4. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw 	No change in course contents. Deleted

		After completing of the	 PHI, 1995. 3. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. 4. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991. 	Hill Publication.	
30.	Fiber Optics and Communication Lab	 After completion of this laboratory course, students will be able to: Understand the characteristics of an optical fiber and LED. Understand and measure the basic properties of propagation of light in dielectric optical fibre including losses, attenuation and coupling. Explain the working of optical power meter and various sensors. 			Learning Outcomes added. No change in experiment list.
31.	UIL Project	 After completion of this course, students will be able to: Undertake problem identification, formulation and solution. Design engineering solutions to complex problems utilizing a systems approach. Demonstrate the knowledge, skills and attitudes of a professional engineer. Demonstrate effective organizational leadership and change 			Learning Outcomes Added and this course has no prescribed syllabus

		skills for managing			
		projects, project teams,			
32.	Biomedical Instrumentation	and stakeholders. After completion of this course, students will be able to:			No Change in course contents.
		 Describe the principle of interfacing of Electrode-electrolyte and different types of electrodes which are used in biomedical field. Explain different types of recorders and photometers. Describe the method of measurement of BP and blood flow. 	Text Book: 1. Leslie Cromwell: "Biomedical Instrumentation and measurement". Prentice hall of India, New Delhi, 1997. References : 2. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998. 3. KhandpurR.S, "Handbook of Biomedical Instrumentation", Tata McGraw- Hill, New Delhi, 1997. 4. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment Technology" John Wiley and sons. New York, 1970.	 Recommended Books: Cromwell L. (2007). Biomedical Instrumentation and Measurement. New Delhi: PHI Publication Webster J.G.(1998). Medical Instrumentation Application and Design. New York: John Wiley and Sons KhandpurR.S. (1997). Handbook of Biomedical Instrumentation. New Delhi: Tata McGraw-Hill Publication Carr J. J. & Brown J. M. (1997). Introduction to Biomedical Equipment Technology. New York: John Wiley and Sons 	concerts.
33.	Optical Network	After completion of this course, students will be able to:	_	_	No Change in course contents.
		 Describe the important components such as multiplexer, filters. Explain the multiplexing technique Explain the signalling and routing of WDM network elements Describe the protection technique in SONET/SDH and IP network 	Text Books: 1. Ramaswami, Rajiv &Sivarajan, Kumar N.: Optical Networks a Practical perspective: Morgan Kaufmann Publishers / 2nd Ed. 2. Black, Uyless: Optical Networks Third Generation Transport Systems: Pearson Educations. Reference Books: 1. Tanenbaum. Andrew S.: Computer Networks: Prentice Hall (India) 2. Murthy, C. Siva Ram &Gurusamy, Mohan: WDM Optical Networks Concepts, Design & Algorithms: Prentice Hall (India)	 Recommended Books: Ramaswami, Rajiv.,&Sivarajan, Kumar. N.(2009). Optical Networks: A Practical Perspective. San Francisco, California: Morgan Kaufmann Publisher. Uyless, Black. (2009). Optical Networks Third Generation Transport Systems: New Delhi: Pearson Publication. Tanenbaum, Andrew. S. (2010). Computer Networks. New Delhi: Pearson Publication. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of 	

Communication course, students will be able to: In course in course in course in course in course contents. Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other statellites. 1. Pratt, Bostian, Allnutt: Satellite Communications: John Wiley & Sons. Recommended Books: I. Mdded 0. Understand the systems required by a communications stellite to function and the trade-offs and limitations encountered in the design of a communication satellite system. 0. Understand the radio propagation channel for earth station to satellite communications for a stellite and satellite system. 0. Understand the radio propagation channel for earth station to satellite and satellite to statellite communications and the basics of designing antema systems. 0. Understand the solution to satellite and satellite to statellite communications and the needs of a particular satellite system. 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Understand how analog 0. Under					Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminars/ OptNets.pdf 2. Optical networks and Switching Systems by Prof. Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021	
and digital technologies are used for satellite communications networks and the	34.	Satellite Communication	 able to: Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites. Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system. Understand the radio propagation channel for Earth station to satellite communications links, and the basics of designing antenna systems to accommodate the needs of a particular satellite system. Understand how analog and digital technologies are used for satellite communications 	 Pratt, Bostian, Allnutt: Satellite Communications: John Wiley & Sons. Dennis Roddy: Satellite Communications: McGraw-Hill Tri T. Ha: Digital Satellite 	 Bostian, Charles.,Pratt, Timothy., & Allnutt, Jeremy. (2006). Satellite Communications. New Delhi: John Wiley & Sons. Maral G., Bousquet M., Sun Z. (2010) Satellite Communications Systems : Systems, techniques and technology, 5th edition, John Willy and sons. Roddy, Dennis. (2017). Satellite Communications. New Delhi:McGraw- Hill Publication Ha, Tri. T. (1990). Digital Satellite Communications. New Delhi: McGraw-Hill Publication Suggested e-resources: Satellite Communication Systems by Prof.Kalyan Kumar Bandyopadhyay Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. http://textofvideo.nptel.ac.in/117105131/1 ec1.pdf Satellite Link Design by Dr.Marwah Ahmed. 	contents.

Annexure II B.Tech. (ECE)

36. Mob	pelectronics	 After completion of this course, students will be able to: Explain the fundamental science and quantum mechanics behind nanoelectronics. Explain the basic concepts behind the operation of nano scale MOSFET describe the various techniques and approaches for the fabrication of nano-scale devices 	 Text books: G. W. Hanson: Fundamentals of Nanoelectronics, Pearson Education. K. K. Chattopadhyay and A. N. Banerjee: Introduction to Nanoscience and Nanotechnology, PHI Learning. References: Vlaadiniz U. Mitin: Introduction to Nanoelectronics, Cambridge University Press. M. Dragman and D. Dragman: Nanoelectronics- Principles and devices, Artech House. Karl Goser: Nanoelectronics and Nanosystems, Springer. Daniel Minoli: Nanotechnology application to telecommunication and networking, Wiley Interscience. John H. Davis: Physics of low dimension semiconductor, Cambridge Press. Carl C. Cosh: Nanostructure materials processing property and applications, Noyes Publications 	 Recommended Books: Hanson, G. W. (2008). Fundamentals of Nanoelectronics. New Delhi: Pearson Publication. Chattopadhyay, K. K., & Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press. Dragman,M., &Dragman,D. (2008). Nanoelectronics - Principles and Devices (2/e): Artech House Publishers Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication Minoli, Daniel. (2005). Nanotechnology Application toTelecommunication and Networking. Hoboken, New Jersey: Wiley Publication. Davis John H. (1997). Physics of Low Dimension Semiconductor. New Delhi: Cambridge University Press. Cosh, CarlC. (1998). Nanostructure Materials Processing Property and Applications. 	No Change in course contents.
		course, students will be	Text Book: 1. Rappaport Theodre S: Wireless	Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless	in course

37.	Radar Navigation	 basics of wireless communication To understand the concept of cellular communication Can test mobile communication equipment for the technical functionality Knowledge of GSM mobile communication standard, its architecture, logical channels, advantages and limitations After completion of this course, students will be 	edition. 2. Pandya Raj: Mobile and Personal Communication System and Services: Prentice Hall of India. Additional Reading: 1. David J. Goddman: Wireless Personal Communication System:Addision Wesley publication. 2. Joachim Tesal: GSM cellular Radio: John Wiley publication.	 Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication. Goddman, David.J. (1997). Wireless Personal Communication System:Addition Wesley Publication. Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication Suggested E-Resources: Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi. https://nptel.ac.in/courses/117102062/ 	No Change in course
		 able to: Understand the basic concept of Radar and applications of various types. Understand the different Radar Performance factors. Explain the operation of CW& FM Radar. Understand the Satellite navigation system. 	Text Books: 1. Mark A Richards: Fundamentals Of Radar Signal Processing: TMH. 2. N. S. Nagraja: Elements of Electronics Navigation: TMH. 3. Peebles Jr. P. Z: Radar Principles: Wiley, NY.	 Recommended Books: Richards, Mark. A (2014). Fundamentals of Radar Signal Processing. New Delhi:TMH Publication. Nagraja, N. S. (2009). Elements of Electronics Navigation: New Delhi:TMH Publication. Peebles Jr. P. Z. (1998). Radar Principles. New Delhi: Wiley Publication. Suggested E-Resources: Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-Il-001-introduction-to-radar-systems-spring-2007 	contents.
38.	Analytical Instrumentation	After completion of this course, students will be able to:			No Change in course contents.
		Explain majorly pH conductivity & dissolved component	Text Books: 1. Jones E.B: Instrumentation technology. 2. Jain R.K: Mechanical & Industrial	Recommended Books: 1. Willard., Merritt.Dean,& Settle. (2004). Instrumental Methods of Analysis. New	

		 analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement. Evaluate the performance of Spectro-photometers, FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometers, X-ray Spectrophotometers with their applications. 	 Measurements: Khanna Publications. 3. R.S. Khandpur, Handbook of Analytical Instruments, TMH, New Delhi Reference Books: D. A. Skoog, Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia H. H. Willard, L.L. Merrit, J. A, Dean and F. A. Settle, Instrumental methods of Analysis, CBS Publishers, Delhi D. Patranabis, Principles of Industrial Instrumentation, TMH, New Delhi 	 Delhi: CBS Publishers & Distributors. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company. Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd. Skoog. Holler, &Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication. Suggested e-resources: Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/103108100/ 	
39.	Geoinformatics	 After completion of this course, students will be able to: Describe spatial database, Co-ordinate and projection system Analyse vector and raster based analysis in Geographical Information Sciences Describe global cover based global position systems i.e. GPS, GLONASS Describes applications of remote sensing and GIS in natural resources management 	Text Books : 1. Chor Pang Lo and Albert K. W. Yeung. 2006. Concepts and Techniques-of Geographic Information Systems (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 2. Heywood, D.I. and Cornelius, S. and Carver, S. 2011. An Introduction to Geographical Information Systems. Pearson, Prentice-Hall, Inc. 3. Joseph, G. 2005. Fundamentals of remote sensing. Universities prc;s (India) Pvt Ltd., Hyderabad. 4. Jensen, John R. 2016. Introductory digital image processing: a remote sensing perspective. Upper Saddle River, N.I.: Prentice Hall. 5. Sabins, Floyd F. 1997. Remote	 Recommended Books: Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. Sabins, Floyd F. (2007). Remote Sensing: Principles and Interpretation. Long 	No Change in course contents.

Annexure II B.Tech. (ECE)

40.	Audio and Video Systems	After completion of this course, students will be able to: • Understand the	sensing: principles and interpretation. San Francisco: W.H. Freeman	Grove, Illinois: Waveland Press Suggested e-resources: 1. Geoinformatics by University of Twente. https://www.itc.nl/ilwis/applications- guide/ 2. Geographical Information System by Dr A. K. Gosain, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/105102015/1	No Change in course contents.
		 Understand under fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards. Understand different colour television systems used worldwide and its compatibility. Principles of recording and reproduction of disc and video cassette recorders. 	Recommended Books: 1. S.P. Bail & R. Bali: Audio Video systems: Khanna Book Publishing Co. Delhi. 2. Ajay Sharma: Audio and Video Systems:Dhanpat Rai & Co. 3. R.G. Gupta: Audio and Video Systems: Tata Mc-Graw Hill.	 Recommended Books: Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc- Graw Hill Suggested e-resources: Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22 	
41.	Robotics and Automation	After completion of this course, students will be able to:Develop skills of creating industrial and		SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and	Addition of as Elective

[
	mobile robot projects	control system, Dynamic stabilization of
	 Implement robots like 	Robotics.
	KUKA, PUMA in real	POWER SOURCES AND SENSORS-
	industrial world	Hydraulic, Pneumatic and electric drivers -
	Create innovative	Determination HP of motor and gearing ratio,
	robot designs using	variable speed arrangements, Path
	mathematical concepts	Determination - Machinery Vision – Ranging
	1	– Laser – Acoustic, Magnetic Fiber Optic and
	of kinematics	Tactile Sensor.
	 Develop autonomous 	
	mobile robots in	SECTION B
	surveillance, security,	MANIPULATORS- Construction of
	home and office	Manipulators, Manipulator Dynamic and
	services	Force Control, Electronic and Pneumatic
	1	manipulators.
		ACTUATORS AND GRIPPERS-
	1	Pneumatic, Hydraulic Actuators, Stepper
	1	 Motor Control Circuits, End Effecter,
	1	Various types of Grippers, Design
		consideration.
	1	Differential transformation and manipulators,
	1	Jacobians – problems .Dynamics: Lagrange –
	1	Euler and Newton – Euler formations –
		Problems.
		SECTION C
	1	
	1	KINEMATICS- Forward and Inverse
	1	Kinematic Problems, Solutions of Inverse
		Kinematic problems, Multiple Solution,
		Jacobian Work Envelop - Hill Climbing
	1	Techniques.
	1	PATH PLANNING- Trajectory planning
	1	and avoidance of obstacles, path planning,
	1	Skew motion, joint integrated motion -
		straight line motion - Robot programming,
	1	languages and software packages.
		CASE STUDY- Multiple Robots – Machine
	1	Interface – Robots in Manufacturing and
	1	Non-Manufacturing applications – Robot
	1	Cell Design Selection of a Robot.
		Recommended Books:
		1. Groover, M. P., Weiss, M., Nagel, R. N.,
		& Odrey, N. G. (2017). Industrial
	1	Robotics: Technology, programming, and
		Applications (2/e). McGraw-Hill

Annexure II B.Tech. (ECE)

42.	Power Electronics	 After completion of this course, students will be able to: To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT Analyze the various rectifiers used in power circuits and DC to DC Converters Explain the inverter operation and how harmonics are reduced and explain the basic working principle of cycloc converters 	Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors. Section B Commutation, resonant- pulse commutation, complementary commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers. Section C Inverters: Single-phase voltage source	Education Publication 2. Niku, S. (2010). Introduction to robotics. John Wiley & Sons. 3. Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGraw-Hill Education. 4. Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. 5. Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E. Pearson Education India. 6. Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons. 7. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. 	Shifted from 6 th semester to list of electives. No change in course contents.
-----	----------------------	---	---	--	---

43. Digital Signal Processing After completion of this Sugnets will be and aperiodic Signals, Systems and Signal Processing After completion of this Sugnets and provide Signals, Systems and Signal Systems, Advantages of digital over analog Systems, Advantages of digital over analog Systems, Advantages of digital over analog Systems, System Modeling Concepts, The Version of Signals, System Modeling Concepts, The Signals and Spectrate for Signals, System Signal Systems, Advantages of digital over analog Systems, System Modeling Concepts, The Signals and Spectrate for Signals, System Signal Systems, Advantages of digital over analog Systems, System Modeling Concepts, The Signals and Spectrate for Signals, System Modeling Concepts, The Signals and Spectrate for Signals, System Signal Systems, Advantages of digital over analog Systems, Advantages of digital over analog Systems, System Modeling Concepts, The Signals and Spectrate for Signals, System Signal Systems, Modeling Concepts, The Signals and Spectrate for Signals, System Modeling Concepts, The Signals and Spectrate for Signals, System Modeling Concepts, The Signals and Spectrate for Signals, Paster Signal for Event due Linear Advantages of digital over analog Signals Advantages of digital over analog Signals, System Modeling Concepts, The Signals and Spectrate for Signals and Spectrate time signals, Periodic Signals and Spectrate time signals, Periodic Signals and Spectrate time signals and Spectrate for Signals and Spectrate time signals and Spectrate for Signals and Spectrate time signals and Spectrate for Event due Linear - - - 43. Digital Signal From Signals and Spectrate for Event due Linear Section A Introduction of Signals and Spectrate Signals, System Modeling Concepts, The Signals, System Modeling Concepts, The Signals, System Modeling Concepts, The Signals, System Mod					
43. Digital Signal Processing After completion of this course, students will be able to: After completion of this course, students will be able to: Section A • Students will be familiar with the most important methods in DSP. Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Shifted from 6 th semester to list of electives. • Students will be familiar with the most important methods in DSP. Signal processing, Signal Models - Continuous • Students will be familiar with design and functioning of and aperiodic Signals, Phasor • Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The No change in course			Fourier analysis of single-phase inverter output voltage. Pulse width modulated inverters, Reduction of harmonics in the inverter output, single-phase current source inverters with ideal switch. Cyclo-converters: Step-up and step-down cyclo-converters. Text Books: 1. Rashid Muhammad H.: Power Electronics Circuits, Devices And Applications: PHI publication, 14th reprint Edition. 2. Bimbhra P.S.: Power Electronics: Khanna Publication, 3rd Edition. Reference: 1. Rama Moorthy: An Introduction To Thyristors And Their Application: 2nd	 Rashid, Mohammad. H. (2017) .Power Electronics Circuits, Devices And Applications: New Delhi: PHI Publication. Bimbhra, P.S. (2012). Power Electronics: New Delhi: Khanna Publication. Moorthy, Rama, (1991). An Introduction ToThyristors and Their Application: New Delhi: Affiliated East-West Press. Suggested E-Resources: Power Electronics by Prof.B.G. Fernandes, Department of Electrical Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101038/ Power Electronics by Prof. D. Prasad, Dr. D. Kastha, Prof.SabyasachiSengupta, Prof. N. K. De, Dept of Electrical Engineering, IIT Kharagpur. 	
Student will be able Systems, Impulse Response of a Fixed and		 course, students will be able to: Students will be familiar with the most important methods in DSP. Students will be familiar with design and functioning of digital filter design 	Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Periodic and aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear		6 th semester to list of electives. No change in course contents.

	to transform-domain	Trigonometric Series- Exponential Fourier		
	processing.	Series-Symmetry Properties of the Fourier		
	1	Coefficients. Fourier Integral, Energy		
	1	Spectral Density, Fourier Transforms in		
		the Limit, Fourier Transform Theorems and		
	1	Pairs, System Analysis with Fourier		
	1	Transform, Lap lace Transform		
	1	Theorems, Network Analysis using the Lap		
	1	lace Transform.		
		Section B		1
		Discrete Time Signals and Systems		
	1	Review of Sampled Data Systems		
	1	Time Domain Representations of		
	1	Discrete Time Signals, Frequency Domain		
	1	Representation of Discrete Time Signals,		
	1	Discrete Time Signals obtained by sampling,		
	1	Discrete Fourier Transform. Z-Transform -		
	1	Definition and Examples, Inverse Z-		
	1	Transform, Properties of the Z-Transform,		
	1	Introduction to Realization of		
	1	Digital Systems - Block Diagrams and Signal		
	1	Flow Graphs. Introduction to Realization of		
	1	an IIR and FIR systems, Discrete Fourier		
		Transforms (DFT) and Fast Fourier		
		Transforms (DFT) and Fast Fourier Transform (FFT).		
		Section C		4
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	1	Design of Digital Filters:		
	1	Introduction to Filters, A		
	1	comparison of IIR and FIR Digital Filters.		
	1	Design of IIR Digital Filters-Impulse		
	1	Invariant Transformation, Bilinear		
		Transformation, Design of Digital Butter		
	1	worth and Chebyshev Filters. Design of FIR		
	1	Digital Filters - Windowing and		
	1	Rectangular Window, Filter Designs using		
	1	Windows, Frequency Sampling Technique.		
		DSP tools and DSP techniques in various		
		applications.		
	1	Text Books:	Recommended Books:	
	1	1. Johnson Johnny R.: Introduction to	1. Johnson, Johnny. R. (1998).	
	1	Signal Processin: Prentice-Hall of India,	Introduction to Signal Processing. New	
	1	1998.	Delhi: phi Publication.	
	1	2. Oppenheim V. Alan: Signal &	2. Oppenheim, V. Alan. (1995). Signal &	
· · ·	·	· · ·		

44.	Mechatronics	After successful	Systems: Prentice-Hall of India, 1995. 3. ProakisG.John: Digital Signal Processing: Prentice-Hall of India, 3rd edition, 2002.	<ul> <li>Systems. New Delhi: PHI Publication.</li> <li>Proakis, G.John. (2002). Digital Signal Processing. New Delhi: PHI Publication.</li> <li>Suggested E-resource:         <ol> <li>Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/</li> </ol> </li> </ul>	Addition of
44.	seconatromes	<ul> <li>After successful completion of the course, student will be able to:</li> <li>Develop skills to monitor and control real world industrial systems</li> <li>Implement projects for industrial and home automations</li> <li>Analyze and create own innovative filters and signal conditioning applications</li> <li>Perform computer based controlling of industries using PLC, SCADA and HMI</li> </ul>		SECTION A Mechatronics and its scope: Basic Structure and Evolution Introduction of Transducer & Sensor: Displacement, Pressure, Flow, Level and Temperature Measurements. Signal conditioning: amplification, filtering PC based Control: Smart Sensor, Data Acquisition System, PLC, SCADA, DCS and HMI System. SECTION B Pneumatic and Hydraulic actuation systems: Directional control valves, Pressure control valves and Process control valves and cylinders. Mechanical actuation system- Kinematic chains, cams, gear-trains, Ratchet & Pawl, dampers, Bearings. Electrical actuation system: Mechanical switches- solenoid operated solid state switches- DC, AC & stepper motors. Electrical Drives: Conventional and Modern electrical drives, Classifications and Applications Closed loop Controllers: Performance Specifications, Delayed First and Second order system, PID Controller, ZN Tuning. SECTION C Case Studies of Mechatronics Systems: Industrial Robot, Automobile Engine Control, Vehicle Suspension Control, MEMS, CNC Machine, Gyro system, 3-D Printer. Recommended Books:	Addition of new elective.

45.	Professional Ethics	1. Isermann, Rolf (2005). Mechatronics         Systems. Springer Publication         2. Bolton, W. (2003). Mechatronics:         electronic control systems in mechanical         and electrical engineering. Pearson         Education.         3. Sawhney A.K. (2015). A Course in         Electrical and Electronic Measurements         and Instrumentation. Dhanpat Rai & Co         Publication         4. Nakra B.C. & Chaudhry K.K. (2013).         Instrumentation, Measurement and         Analysis. Tata McGraw Hill Publication         The course is intended to provide participants         with the ability to analyze ethical situations,         such as how they interact and what can be
		expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. <b>Suggested e-resources:</b> <b>1. Professional Ethics</b> by Rochester Institute of Technology, http://www.openculture.com/professional -ethics-a-free-online-course.] <b>2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design</b> by Prof. LeighHafrey, MIT, USA, https://ocw.mit.edu/courses/sloan-school- of-management/15-270-ethical-practice-

Annexure II B.Tech. (ECE)

		leading-through-professionalism-social- responsibility-and-system-design-spring- 2016.
46.	IoT Sensors and Devices	This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do.         Suggested e-resources: 1. foT Sensors and Devices by Curtin University
47.	Electromagnetic Compatibility	https://www.edx.org/course/sensors-and-devices-in-the-iot.       Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-of-things-sensing-actuation.       New reading         Image: the system of the system state generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to

Annexure II B.Tech. (ECE)

48.	Electric Vehicles	Daniel Mansson, KTH Royal Institute Technology, Swed https://onlinecourses.nptel.ac.in/noc19 17/preview.	of content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content content con
		turbine, and smart grui industries and servi positions in the automotive industry. The course will be a first level course on elective vehicle. Students will be able to understate the operation of battery driven elective vehicle. The course will focus on areas the come under the umbrella of electric vehicle such as vehicle dynamics, Motors, Pow Electronics, Batteries, Charging and e Students will explore the most importate aspects of this new market, including state of-the-art technology of electric vehicles are charging infrastructure         Suggested e-resources:         1. Electric Vehicles Part 1 by IIT Dell https://onlinecourses.nptel.ac.in/noc19_18/preview.         2. Electric Cars: Introduction by Del University of Technology (TU Delf https://www.edx.org/course/electric-cars)	is ic ic ic at s.s. er c. nt e- id d
49.	Electronic Packaging	introduction-0.     This course is designed to provide a bas     knowledge of the technologies and process     required for the packaging of electror     products. The focus of the course will be     the mechanical, and materials aspects whi     are often neglected in the design phase wi	ic New reading es elective ic added

Annexure II B.Tech. (ECE)

			potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18_m e54.	
50.	Multimedia Compression and Communication		The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication. The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur. https://nptel.ac.in/syllabus/117105083/.	New reading elective added
51.	Telecommunica tion switching systems and networks		The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching	New reading elective added

Annexure II B.Tech. (ECE)

systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks. Suggested e-resources:
Computer Networks by Department of CSE, IIT Kharagpur https://nptel.ac.in/courses/Webcoursecont ents/IIT%20Kharagpur/Communication% 20network/New index1.html.     Data Communication by IIT Kharagpur. https://nptel.ac.in/courses/106105082/19.

## Annexure III

#### Name of Programme: Master of Science (Electronics)

Programme Educational Objectives: The M.Sc. (Electronics) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for the technically skilled personnel who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics professionals develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematics and electronics fundamentals required to solve subject related problems and also to pursue advanced studies. This
  serves them lifelong in their professional domain as well as higher education.
- To prepare professionals to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their problem-solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

#### **Programme Outcomes:**

PO1. Knowledge: Apply the knowledge of mathematics, science and electronics fundamentals to the solution of related complex problems.

- PO2. Problem analysis: Interpret, compare and analyze following rules of scientific methodology to arrive at a defensible conclusion of a problem.
- PO3. Design/development of solutions: Develop solutions for complex electronics problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct investigations of complex problems: Use scientific knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Apply appropriate techniques, resources, and modern electronics tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex electronics activities with an understanding of the limitations.
- PO6. The electronics professional and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional electronics practice.
- PO7. Environment and sustainability: Understand the impact of the professional electronics solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the professional practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.

Annexure III M.Sc. (Electronics)

- PO10. Communication Skill: Communicate effectively on complex electronics activities with the electronics professional community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. Project management and finance: Demonstrate knowledge and understanding of the professional and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# Programme Scheme:

# M.Sc. (Electronics) I Sem (December 2019)

- 1. Highlighted with gray shade indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
CS-416	Computer Programming	4	0	0	4	CS 415	Computer Programming	4	0	0	4
CS-416L	Computer Programming Lab	0	0	8	4	CS 415L	Computer Programming Lab	0	0	8	4
ELE 301	Analog Integrated Circuits	4	0	0	4		Analog Electronics	4	0	0	4
ELE 301L	Analog Integrated Circuits Lab	0	0	2	1		Analog Electronics Lab	0	0	4	2
ELE 404	Electronics Devices	4	0	0	4	ELE 406	Principles of Digital Electronics	4	0	0	4
ELE 405	Network Theory	4	0	0	4	ELE 406L	Principles of Digital Electronics Lab	0	0	4	2
ELE 405L	Network Theory Lab	0	0	2	1	ECE 201	Signals, systems and Networks	4	0	0	4
ELE 406	Principles of Digital Electronics	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2						
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	0	16	28

Annexure III M.Sc. (Electronics)

# M.Sc.(Electronics) II Sem (April/May 2020)

Existing Sch	ieme					Proposed S	cheme				
Course Code	Course Name	L	Т	Р	C *	Course Code	Course Name	L	Т	Р	C *
ECE 402	Fiber Optics and Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1		Microwave Engineering Lab	0	0	2	1
EIE 201	Electronics Measurement and Instrumentation	3	1	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4
EIE 201L	Electronics Measurement and Instrumentation Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2
EIE 302	Control Systems	3	1	0	4	EIE 302	Control Systems	4	0	0	4
EIE 302L	Control Systems Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	4	2
ELE 304	Digital Signal Processing	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3
ELE 304L	Digital Signal Processing Lab	0	0	2	1	TSKL 403	Communication Skills	2	0	0	2
TSKL 403	Communication Skills	2	0	0	2	ELE 508S	Seminar	0	0	2	1
VLSI 401	VLSI Design	4	0	0	4		Discipline Elective	4	0	0	4
VLSI 401L	VLSI Design Lab	0	0	4	2						
	Semester Wise Total	20	2	12	28		Semester Wise Total	20	1	12	27

Annexure III M.Sc. (Electronics)

# M.Sc. (Electronics) III Sem (December 2020)

Existing Sc	heme					Proposed Sch	eme				
Course Code	Course Name	L	Т	Р	С*	Course Code	Course Name	L	Т	Р	С
ELE 307	Microwave Electronics	4	0	0	4	VLSI 401	VLSI Design	4	0	0	4
ELE 307L	Microwave Electronics Lab	0	0	2	1	VLSI 401L	VLSI Design Lab	0	0	2	1
ELE 306	Microprocessors and Microcontrollers	3	1	0	4	CS 209	Data Structures	4	0	0	4
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	2	1	CS 209L	Data Structures Lab	0	0	4	2
ECE 301	Analog Communication	4	0	0	4	ECE 301	Analog Communication	4	0	0	4
ECE 301L	Analog Communication Lab	0	0	2	1	ECE 301L	Analog Communication Lab	0	0	2	1
CS 209	Data Structures	4	0	0	4	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2
ECE 303	Communication Networks	4	0	0	4		Open Elective	4	0	0	4
ELE 308P	Project			8	4		Project	0	0	4	2
ELE 508S	Seminar			2	1						
	Semester Wise Total	19	1	20	30		Semester Wise Total	20	0	16	28

M.Sc.(Electronics) IV Sem (April/ May 2021)

	Existing Sche	me					Proposed Scheme						
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С		
	Reading Elective	0	0	4	2	ELE 507P	UIL Project	0	0	48	24		
ELE 507P	Project	0	0	40	20		Reading Elective	0	0	0	2		
	Semester Wi	se To	otal	44	22		Semester V	Wise T	otal	48	26		

Annexure III M.Sc. (Electronics)

### **Reading Electives:**

	Existing Scheme					Proposed Scheme						
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С	
IT 403R	Enterprise Resource planning	0	0	4	2		Professional Ethics	0	0	0	2	
CS 509R	Client-Server Computing and Applications	0	0	4	2		Telecommunication switching systems and networks	0	0	0	2	
IT-402R	Electronic commerce	0	0	4	2		Multimedia Compression and Communication	0	0	0	2	
CS 427R	Parallel Computing	4	0	0	4		Electronic Packaging	0	0	0	2	
							Electric Vehicles	0	0	0	2	
							Electromagnetic Compatibility	0	0	0	2	
							IoT Sensors and Devices	0	0	0	2	

Discipline Elective	Discipline Electives												
Course Code	<b>Discipline Electives</b>	Course Code	Discipline Electives	Course Code	<b>Discipline Electives</b>								
ELE 403	Basics of Nanoelectronics		Biomedical Instrumentation	ECE 404	Optical Network								
	Mechatronics	ECE 402	Fiber Optics and Communication	ECE 406	Satellite Communication								
ELE 402	Audio and Video Systems		Analytical Instrumentation	ECE 403	Mobile Communication								
	Geoinformatics	ELE 304	Digital Signal Processing	ECE 405	Radar Navigation								
	Robotics and Automation	ECE 303	Communication Networks										
	Antenna Analysis EEE 304		Power Electronics										

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

Annexure III M.Sc. (Electronics)

### M.Sc. Electronics

						ear					
Semester-I						Semester-II					
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	с
CS 415	Computer Programming	4	0	0	4		Microwave Engineering	4	0	0	4
CS 415L	Computer Programming Lab	0	0	8	4		Microwave Engineering Lab	0	0	2	1
	Analog Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4
	Analog Electronics Lab	0	0	4	2	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2
ELE 406	Principles of Digital Electronics	4	0	0	4	EIE 302	Control Systems	4	0	0	4
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2	EIE 302L	Control Systems Lab	0	0	4	2
ECE 201	Signals, systems and Networks	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	TSKL 403	Communication Skills	2	0	0	2
						ELE 508S	Seminar	0	0	2	1
							Discipline Elective	4	0	0	4
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	1	12	27
	•										
						nd Year					
Semester-II	1					Semester-IV					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	(
VLSI 401	VLSI Design	4	0	0	4	ELE 507P	UIL Project	0	0	48	2
VLSI 401L	VLSI Design Lab	0	0	2	1		Reading Elective	0	0	0	2

Jennester n						mester iv					
Course Code	Course Name	L	т	Р	С	Course Code	Course Name	L	т	Ρ	C
VLSI 401	VLSI Design	4	0	0	4	507P	UIL Project	0	0	48	2
VLSI 401L	VLSI Design Lab	0	0	2	1		Reading Elective	0	0	0	2
CS 209	Data Structures	4	0	0	4						
CS 209L	Data Structures Lab	0	0	4	2						
ECE 301	Analog Communication	4	0	0	4						
ECE 301L	Analog Communication Lab	0	0	2	1						
ELE 306	Microprocessors and Microcontrollers	4	0	0	4						
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2						
	Open Elective	4	0	0	4						
	Project	0	0	4	2						
	Semester Wise Total	20	0	16	28		Semester Wise Total	0	0	48	2

Annexure III M.Sc. (Electronics)

Discipline Electives		
Basics of Nanoelectronics	Biomedical Instrumentation	Optical Network
Mechatronics	Fiber Optics and Communication	Satellite Communication
Audio and Video Systems	Analytical Instrumentation	Mobile Communication
Geoinformatics	Digital Signal Processing	Radar Navigation
Robotics and Automation	Communication Networks	
Antenna Analysis	Power Electronics	

Reading Electives										
Professional Ethics	Telecommunication switching systems and networks	Electric Vehicles								
Electromagnetic Compatibility	Multimedia Compression and Communication									
IoT Sensors and Devices	Electronic Packaging									

Student can opt for at most 2 additional Open (Generic) audit/ credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

Annexure III M.Sc. (Electronics)

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	CS 416, Computer Programming			CS 415, Computer Programming	Please refer from Department of Computer Science
2	Analog Integrated Circuits	<ul> <li>After the completion of course student will be able to:</li> <li>Explain the operation and properties of Opamp.</li> <li>Explain the design of differential amplifiers, active filters, oscillators, and other linear and nonlinear circuits using linear integrated circuits.</li> <li>Design and analysis of single stage, multistage amplifiers and high frequency amplifiers.</li> </ul>	Analog Integrated Circuits Section A         Feedback Amplifiers: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback.         Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class AB, Class C, power dissipation and efficiency calculations, amplifier distortion.         Section B         High Frequency Amplifiers : Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers : frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Analog Electronics Section A Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, differential and instrumentation amplifier, differential and anti-logarithmic amplifiers. Active filters. Section B Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Added Shifted Deleted
			Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance,	Added Shifted <del>Deleted</del>

			analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits : Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer. <b>Text Books:</b>	Hybrid -pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor. Recommended Books:	Deleted
			<ol> <li>Millman and Halkias : Integrated electronics, TMH, 1991.</li> <li>Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009.</li> <li>Gayakwad Ramakant A., "OP-AMP &amp; Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010.</li> <li>Reference Book :         <ol> <li>Adel Sedra&amp; Kenneth Smith, Microelectronic Circuits Theory and applications" FIFTH edition International version: Oxford University Press, 2009.</li> </ol> </li> </ol>	<ol> <li>Gayakwad, Ramakant A. (2010). OP- AMP &amp; Linear Integrated Circuits. New Delhi: Prentice Hall Publication.</li> <li>Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press.</li> <li>Parikh, Millman &amp; Halkias. (2010) Integrated Electronics: Analog &amp; Digital Circuits and Systems. New Delhi: McGraw Hill Education.</li> <li>Sedra, Adel. &amp; Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press.</li> <li>Suggested E-Resources:</li> <li>Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/</li> </ol>	
3.	Analog Integrated	After completion of this	Analog Integrated Circuits Lab	Analog Electronics Lab	Learning
	Circuits Lab	laboratory course, students will be able to:	<ol> <li>To design the Astable Multivibrator using 555</li> </ol>	1. To design the Astable Multivibrator using 555	Outcomes added.
		• Design, construct, and	2. To design the Monostable Multivibrator	2. To design the Monostable Multivibrator using 555	
		analyze the various analog circuits to	using 555 3. To design summer using 741 IC	3. To design summer using 741 IC	No Change in
		compare experimental results in the	<ol> <li>To design Intergrator using 741 IC</li> <li>To design Schmitt Trigger using 741/555</li> </ol>	4. To design Intergrator using 741 IC 5. To design Schmitt Trigger using	Experiment List.

4	ELE 406.	laboratory       with         theoretical analysis.       Observe the amplitude         and       frequency         responses of common       amplification circuits         Construct the desired       Electronic design to         Electronic design to       meet         requirements.       After the completion of	IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters : LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565.	<ul> <li>741/555 IC</li> <li>6. To design Differentiator using 741 IC</li> <li>7. To design peak detector using 741 IC</li> <li>8. To design scalar using 741 IC</li> <li>9. To study active filters: LPF, HPF, BPF, I0. To design Voltage to frequency converter.</li> <li>11. To study phase locked loop.</li> <li>12. I2. To study frequency shift keying using PLL 565.</li> </ul>	No change in
	Principles of	course student will be able			course contents
	Digital Electronics	<ul> <li>bescribe and minimize various digital systems.</li> <li>besign steps for combinational and sequential circuits.</li> <li>Understand basic memory architectures and their functionality.</li> </ul>	<ol> <li>Text/Reference Books:         <ol> <li>Digital Principles and Applications by Malvino C.P., Leach D.P.; Tata Mc-Graw Hill, 1985.</li> <li>Digital Computer Fundamentals:Bartee, T.C.</li> <li>Computer System Architecture: Mano, M.M., Prentice Hall, 1988</li> <li>Digital Electronics: K M Bakwad , Vardhan Publication, 2010</li> <li>Computer Architecture and Organization : Hayes John P., Mc-Graw Hill 1988 (International Edition)</li> <li>Introduction to Computer Architecture stone s., Galgotia Publications 1986.</li> <li>Microprocessors, Architecture, Programming &amp; Applications R. Gaonkar, Wiley Eastern - 1987.</li> </ol> </li> </ol>	<ol> <li>Recommended Books:         <ol> <li>Malvino C.P., Leach D.P. &amp; SahaGoutam (2014). <i>Digital Principles</i> and Applications. New Delhi: Tata Mc- Graw Hill Publication</li> <li>Bartee T.C. (1979). <i>Digital Computer</i> Fundamentals. New York: McGraw- Hill Publication</li> <li>Hayes John P. (1988). Computer Architecture and Organization. International edition: McGraw-Hill Publication</li> <li>Stone, Harold S. (1976). Introduction to Computer Architecture. Paris: SRA Publication</li> <li>Gaonkar, R.S. (1987). Microprocessors Architecture, Programming &amp; Applications with 8085/8080A, Wiley Eastern Publication</li> </ol> </li> </ol>	Deleted
5.	ELE 406L, Principles of Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the basic			Learning Outcomes added
		digital circuits and to verify their operation.			No change in

6 ECE 201, Signals,	<ul> <li>Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).</li> <li>Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers.</li> </ul>	Section-A	experiment list.
6 ECE 201, Signals, Systems and Networks	<ul> <li>After the completion of course student will be able to:</li> <li>Analyze linear time invariant system in time and frequency domain</li> <li>Apply network theorem to analyze the electrical circuit.</li> <li>Explain two port parameters.</li> </ul>	 Section-A Introduction: Continuous and discrete time signals, Transformation of independent variables, Exponential and sinusoidal signals, Unit impulse and unit step functions, Continuous and discrete time systems, Basic system properties Linear Time-Invariant System: Convolution for continuous and discrete time LTI system, Properties of LTI system, Causal LTI systems described by differential and difference equations, Singularity functions Fourier Series: Fourier series representation of continuous time periodic signals, Convergence of Fourier series, Properties of continuous time Fourier series, Fourier series representation of discrete time periodic signals, Properties of discrete time Fourier series Section-B Continuous Time Fourier Transform:	Introduced New Course

 		ī
	Representation of a periodic signals,	
	Fourier transform for periodic signals,	
	Properties of continuous time Fourier	
	Transform, Systems characterized by	
	constant coefficient differential equations	
	Laplace Transform: Laplace transform,	
	Region of convergence for Laplace	
	transform, Inverse Laplace transform,	
	Geometrical evaluation of Fourier	
	Transform from pole-zero plot, Properties	
	of Laplace transform, Analysis and	
	characterization of LTI systems using	
	Laplace transform	
	Initial Conditions in Networks: First order	
	differential equations- General and	
	Particular solutions, Time constants, Initial	
	conditions in elements, geometrical	
	interpretation of derivatives, A procedure	
	to evaluate initial conditions	
	Section- C	
	Differential equation in circuits: Second	
	order equations Internal excitations,	
	Networks excited by external energy	
	sources, Response as related to the s-plane	
	location of roots, General solutions in	
	Terms of S, Q, n	
	Impedance Functions and Networks	
	Theorems: The concept of complex	
	frequency, Transform impedance and	
	transform circuits, Series and parallel	
	combinations of elements, Superposition	
	and Reciprocity, Thevenin's Theorem and	
	Norton's Theorem	
	Two port Parameters: Relationship of two	
	port variables, Short circuit admittance	
	parameters, Open circuit impedance	
	parameters, Transmission parameters,	
	Hybrid parameters, Relation between	
	parameter sets, Parallel connection of two	
	port networks	

				Recommended Books:	
				1. Oppenheim A. V., A. V. &Nawab S.	
				H. (2015). Signal and Systems (2/e),	
				Boston: Pearson Publication	
				2. Valkenburg M.E. Van (2015). Network	
				Analysis (3/e). New Delhi: Pearson	
				Publication	
				3. Proakis J. G. &Manolakis D. G.	
				(2007). Digital Signal Processing:	
				Principles, Algorithms, and	
				Applications (4/e). New Delhi: Pearson	
				Publication	
				4. Kuo F. F. (2010). Network Analysis	
				and Synthesis (2/e). New Delhi: John	
				Wiley & Sons Publication	
				Suggested E-resources:	
				1. <b>Circuit Theory</b> by Prof. S.C. Dutta	
				Roy, Department of Electrical	
				Engineering, Indian Institute of	
				Technology, Delhi.	
				https://nptel.ac.in/courses/108102042/	
				2. Principles of Signals and Systems by	
				Prof. Aditya K. Jagannatham,	
				Department of Electrical Engineering	
				Indian Institute of Technology,	
				Kanpur.	
				https://nptel.ac.in/courses/108104100	
7	Microwave	After the completion of	Microwave Electronics	Microwave Engineering	Added
	Electronics	course student will be able	Section A	Section A	Shifted
		to:	Introduction to Microwaves & its application,	Introduction to Microwaves & its	
		<ul> <li>Understand various</li> </ul>	Transmission lines: General equation, input	application, Microwave Electromagnetic	-Deleted
		parameters of	impedance, characteristic impedance,	spectrum, Transmission Lines: General	
		waveguide and use of	reflection and transmission coefficient,	equation, input impedance, characteristic	
		component as per	standing wave ratio, resonant and anti	impedance, reflection and transmission	
		applications	resonant line impedance matching, smith	coefficient, standing wave ratio, resonant	
		<ul> <li>Design impedance</li> </ul>	chart and its applications, coaxial, twin, strip	and anti-resonant line impedance	
		matching network for	&microstrip lines &baluns	matching, Matching techniques: single	
		any transmission line		stub, double stub using smith chart, quarter	
		or system		wave transformer, baluns, coaxial	
				transmission line, Planar transmission line:	

<ul> <li>Analyse and find</li> </ul>		Strip line, Microstrip line, Slot line etc.	
applications and	Section B	Section B	Added
limitations of	Wave Guides: Wave propagation in	Wave Guides: Wave propagation in	Shifted
microwave tube	rectangular & circular wave guides, wave	rectangular wave guide: solution of TE and	
Generators and	guide modes, Q of wave guide, Wave guide	TM modes, Power Transmission and	Deleted
Amplifiers	coupling, Microwave passive components: S-	Attenuation, Excitation of modes in	
	parameter representation and analysis of	Rectangular waveguide, Circular	
	microwave components such as Waveguide	Waveguide: Basic idea of TE and TM	
	Tees, Two-hole directional coupler,	modes, Rectangular and Circular cavity	
	attenuators, Phase shifters, Rectangular cavity	resonators, Rectangular cavity resonators,	
	resonator, Isolators, Circulators.	Q of cavity resonators, S parameters and	
		its conversion with Z and Y parameters,	
		Wave guide coupling, Microwave passive	
		Components: S- parameter representation	
		and analysis of microwave components	
		such as Waveguide Tees, Two-hole	
		directional coupler, attenuators, Phase	
		shifters, Microwave propagation in	
		ferrites: Faraday rotation, Isolators,	
		Circulators.	
	Section C	Section C	Added
	Microwave Tube Devices: Conventional	Microwave Tubes: Limitations of	Shifted
	Vacuum tubes at microwave, O type device -	Conventional vacuum tubes at microwave,	Sinted
	Klystron (two cavity & reflex). M type	Klystron: Construction and operation of	Deleted
	device magnetron, Introduction to TWT	two cavity and multi-cavity klystrons,	
	(Traveling Wave Tubes). Microwave	Applegate Diagram and application of two	
	Semiconductor Devices IMPATT,	cavity klystron, Construction and working	
	TRAPATT& Gunn Devices.	of Reflex klystron, Magnetron: Types of	
1		magnetron, Construction, Operation and	
		Analysis of cavity or travelling wave	
		magnetron, Traveling wave tubes (TWT):	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT,	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices, Tunnel diodes,	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices principle of operation and application of	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices; Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron	
		magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices; Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley	

				IMPATT, TRAPATT.	
			Text Books:	Recommended Books:	
			1. Sisodia-Raghuvanshi: Microwave	1. Liao, S.Y. (1995). Microwave devices	
			Circuits & Passive Devices: (Wiley-	& Circuits. New Delhi: Prentice Hall	
			eastern).1st edition.1987	Publication.	
			2. S.Y. Liao: Microwave Devices &	2. Rizzi, P.A. (1998). Microwave	
			Circuits, (Prentice Hall).1st Edition 1995,	Engineering. New Delhi: Prentice Hall	
			3. Collins: Foundation Of Microwave	Publication.	
			<b>Engineering</b> , (Mc Graw Hill) 2nd Edition 1992	<ol> <li>Collins, R. E. (1992). Foundation of Microwave Engineering. New Delhi:</li> </ol>	
			4. P.A. Rizzi: Microwave: (Prentice	McGraw Hill Publication.	
			Hall). 1st Edition 1998	4. Pozar, David M. (2008). Microwave	
			,	Engineering. New Delhi: Wiley	
				Publication.	
				Suggested E- Recourses:	
				1. Microwave Theory and Techniques	
				by Prof. Girish Kumar, Indian Institute	
				of Technology, Bombay.	
				https://nptel.ac.in/courses/108101112/	
				2. Basic Building Blocks of Microwave	
				Engineering by Dr Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/117105130	
				3. Transmission Lines and E.M. Waves	
				by Prof. R. K. Shivgaonkar, Indian	
				Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/117101056/	
8	Microwave	After completion of this	Microwave Electronics Lab	Microwave Engineering Lab	Learning
	Electronics Lab	laboratory course, students	1. Determine the operating frequency of	1. Determine the operating frequency of	Outcomes
		will be able to:	reflex klystron. 2. Draw the V-I characteristics of Reflex	reflex klystron. 2. Draw the V-I characteristics of Reflex	added.
		• Understand the			No Channa i
		concept and working	klystron 3. Draw the characteristics of attenuator	klystron 3. Draw the characteristics of attenuator	No Change in
		of microwave bench	<ol> <li>Draw the characteristics of attenuator</li> <li>To verify the wave-guide law</li> </ol>	<ol> <li>Draw the characteristics of attenuator</li> <li>To verify the wave-guide law</li> </ol>	Experiment List.
		and different	5. To study the directivity and coupling	5. To study the directivity and coupling	List.
		components connected on a bench.	coefficient of Directional Coupler.	coefficient of Directional Coupler.	
			6. To study the properties of magic Tea and	6. To study the properties of magic Tea	
		<ul> <li>Analyze the behaviour of various microwave</li> </ul>	also determine isolation and coupling	and also determine isolation and	
			coefficient.	coupling coefficient.	
L		components.	coemetent.	couping coefficient.	

		• Verify properties/ characteristic of microwave source, tees and directional coupler.	<ol> <li>To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load.</li> <li>To study the properties of E-plane and H- plane Tea. Determine isolation and coupling coefficient</li> </ol>	<ol> <li>To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load.</li> <li>To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient</li> </ol>	
9	EIE 201, Electronics Measurement and Instrumentation	<ul> <li>After the completion of course student will be able to:</li> <li>Measure various electrical parameters with precision and accuracy.</li> <li>Select appropriate transducers for measurement of physical parameter.</li> <li>Use suitable AC Bridge for relevant parameter measurement.</li> </ul>	EIE 201, Electronics Measurement and Instrumentation Section A Measurements, Elements of Measurements, Mathematical Models of Measurements system, Performance Characteristics, Error in Measurement, True value, static error, static correction, scale range, scale spam, Reproducibility & drift, Repeatability, <del>Noise- Signal to noise ratio, source of noise, Johnson noise, noise factor &amp; noise figure.</del> Accuracy & precision, Indication of precision, Significant figures, Range of doubt, static sensitivity, linearity, Hysteresis, Threshold, dead time, dead zone, resolution & discrimination, measurement error type & analysis, standard & calibration, curve fitting. <u>SECTION B</u> Transducers: Classification, resistive,	Electrical and Electronics Measurements Section A Measurements: Elements of Measurements, Performance characteristics, Error in measurements, True value, Static error, Static correction, Scale range, Scale span, Reproducibility, Drift, Repeatability, Accuracy and Precision, Indication of Precision, Significant figures, Range of doubt, Static sensitivity, Linearity, Hysteresis, Threshold, Dead Time, Dead zone, Resolution and Discrimination. Measurement error: Types and analysis, Loading error due to series and shunt connected instruments, Standards and Calibration, Curve fitting, Dynamic characteristics of measurement systems, Mathematical models of measurement system (Mechanical and Electrical System). Transducers: Classification and characteristics, Resistive, Capacitive, Inductive, Hall Effect. Measurement of Displacement: LVDT and RVDT, Strain Gauges and its types. Measurement of Temperature: RTD, Thermistor and Thermocouples. Section B d'Arsonval Galvanometer- Construction,	Added Shifted Deleted
			capacitive, inductive, <del>Piezoelectric,</del>	Torque Equation and Dynamic behavior of	Shifted

$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	galvanometers, PMMC Instrument- Construction, Torque equation, Ammeter shunts, Voltmeter multipliers, Ohmmeter- Series and Shunt type, Moving Iron Instruments, Electrodynamometer Instrument, AC Bridges- Measurement of self-inductance (Maxwell's Bridge, Hay's Bridge, Owen's Bridge, Anderson's Bridge), capacitance (De Sauty's and Schering Bridge) and frequency (Wien's Bridge).	<del>Deleted</del>
SECTION C AC Bridges- Measurement of self-inductance, capacitance & Frequency, Measuring Instruments: Construction of Ballistie Galvanometer, PMMC instruments- Construction & Torque equation, Moving Iron- Construction & Torque equation, DC & AC voltmeters, DC & AC ammeters, ohmmeters-series & Shunt type, Multimeter- Digital & Analog, Cathode Ray Oscilloscope- CRT, Electron Gun, Focusing, Deflection, Time base Generator, Types of CRO, Function generator, Q- meter, Energy meter.	Section C Measurement of low, medium and high resistance, Multimeter- Analog and Digital, Function generator, Wave Analyzer, Spectrum Analyzer, Q-meter and its applications, CRO- CRT, Time base generator, Measurement of Phase and Frequency (Lissajous Patterns), types of CRO (Dual Trace, Dual Beam, Sampling type and Storage CRO).	Added Shifted <del>Deleted</del>
Text Books:         1. Sawhney, A.K.: A Text Book on Electrical and Electronics measurements and Instrumentation:Dhanpat Rai & Sons, 4 th edition 1968. Reprint 2004.         2. Doeblin, Ernest O: Measurement system: Application and Design: Mc Graw Hill New York, 4 th edition 1990.	<ul> <li>Recommended Books:</li> <li>1. Sawhney A.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai &amp; Co Publication</li> <li>2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers</li> <li>3. Nakra B.C. &amp; Chaudhry K.K. (2013).</li> </ul>	Added <del>Deleted</del>

			Reference Books:         1.       Jones, Barney E: Instrumentation measurement and Feedback:TMH, edition 1978, reprint 2004.         2.       Cooper, W.D: Modern Electronics instrumentation and Measurements: PHL.         3.       R.K Jain: Mechanical industrial Measurements: Khanna Publishers.	Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication         4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication         5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource:         1. Industrial Instrumentation by Prof.Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064	
10	Electrical and Electronics Measurements Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Develop an understanding of construction and working of different measuring instruments</li> <li>Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement</li> <li>Select appropriate passive or active transducers for measurement of physical phenomenon.</li> </ul>		<ol> <li>To study Hall Effect.</li> <li>To study principle of Thermocouple.</li> <li>To study principle of Load cell.</li> <li>To study principle of Strain guage.</li> <li>To study Principle of LVDT</li> <li>To study De sauty bridge.</li> <li>To study CRO circuitry in detail.</li> </ol>	Learning outcomes added.
11	EIE 302, Control Systems	After the completion of course student will be able to:	Section A Open loop and closed loop systems, servomechanism, mathematical model of	Section A Open loop and closed loop systems, servomechanism, mathematical model of	Added
		Formulate     mathematical model	systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of	systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects	Shifted <del>Deleted</del>

for physical systems and simplify representation of complex systems using reduction techniques.	feedback, servo components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	
<ul> <li>Use standard test signals to identify performance characteristics of first and second-order systems.</li> <li>Apply root locus technique for stability analysis.</li> </ul>	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted <del>Deleted</del>
	Section C           Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these.           Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.           Text/ReferenceBooks:           1.         I.J.         Nagrath and M.         Gopal: Control System & Engineering 2nd Ed: Wiley Eastern Ltd., 1985.           2.         Katsushiko Ogata: Modern Control Engineering 3rd	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant- M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation of LTI systems. Recommended Books: 1. Nagrath, I. J. (2006). Control systems engineering. New Delhi: New Age International. 2. Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol. 4). India:	Added Shifted <del>Deleted</del>

12	Control Systems Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Understand the concept of time response and frequency response of any physical system.</li> <li>Mathematical modeling of physical system to find out of transfer system.</li> <li>Analyze the stability of system with the help of system response.</li> </ul>	<ul> <li>Ed.: Printice Hall of India Pvt. Ltd., 2001</li> <li>1. To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph.</li> <li>2. To study the DC position controller and find out the tachometer gain.</li> </ul>	<ul> <li>Prentice hall.</li> <li>Suggested e-resource: <ol> <li>Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay.</li> <li>https://nptel.ac.in/courses/108101037/</li> <li>To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph.</li> <li>To study the DC position controller and find out the tachometer gain.</li> <li>To determine time domain response of a second order systems for step input and obtain performance parameters.</li> <li>To convert transfer function of a system into state space form and vice- versa.</li> <li>To plot root locus diagram of an open loop transfer function and determine range of gain 'k for stability.</li> <li>To plot a Bode diagram of an open</li> </ol> </li> </ul>	Learning Outcomes added. <del>Deleted</del> Added
13	MGMT 209, Entrepreneurship			<ol> <li>To draw a Nyquist plot of an open loop transfers function and examine the stability of the system.</li> </ol>	Please refer from Department of
14	TSKL 403, Communication Skills				Management Please refer from Department of English
15	Seminar	<ul> <li>After the completion of course student will be able to:</li> <li>To identify promising new directions of various cutting edge</li> </ul>			Learning Outcomes added.

16	VLSI 401, VLSI Design	<ul> <li>technologies.</li> <li>Undertake a critical review of the literature.</li> <li>Deliver well-organized technical presentations and prepare a technical report.</li> <li>After the completion of course student will be able to:</li> <li>Explain the basic theory of crystal growth, wafer fabrication and IC fabrication technology.</li> <li>Explain the different VLSI design styles, overview of ICs and fabrication steps of MOS, CMOS and BJT.</li> <li>Design and analyse the output characteristics of different MOS inverters</li> </ul>	Text Books: 1. Sze S.M.: VLSI Technology:TMH. 2. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design : Mc. Graw Hill. Reference Books: 1. Botker B.R: Microelectronics. 2. Gandhi S.K.: VLSI Fabrication Principle. 3. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. 4. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. 5. Martin Ken: Digital Integrated Circuits: Oxford press. 6. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design.	<ul> <li>Recommended Books:</li> <li>1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publication.</li> <li>2. Kang, S.M., &amp; Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis &amp; Design. New Delhi: McGraw Hill Publications.</li> <li>3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers.</li> <li>4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications.</li> <li>5. Plummer, J., Deal, M., &amp; Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications.</li> <li>6. Sarafazadeh, M.,&amp; Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication.</li> <li>7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press.</li> <li>8. Neil, H.E., Weste, &amp; Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication.</li> </ul>	No change in course contents
----	--------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------

				Suggested E-Resources:	
				<ol> <li>VLSI Circuits by Prof. S. Srinivasan, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1</li> <li>VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/</li> </ol>	
17	VLSI Design Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Use VHDL for design of digital circuits</li> <li>Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping.</li> <li>Develop and simulate register-level models of hierarchical digital systems</li> </ul>	<ul> <li>Silvace <ol> <li>Model the fabrication process flow of NMOS with I/V characteristics curve</li> <li>Model the fabrication process flow of PMOS with I/V characteristics curve</li> <li>Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve.</li> <li>Model the fabrication process flow of pn junction diode.</li> </ol></li></ul>	<ol> <li>Write a program for the implementation of half adder and Full adder.</li> <li>Write a program for implementing half subtractor and full subtractor.</li> <li>Write a program for implementing MUX 4x1 and DEMUX (1X4)</li> <li>Write a program for implementing Encoder and Decoder.</li> <li>Write a program to implement gray code to binary code converter and vice versa.</li> <li>Write a program to implement COMPARATOR.</li> <li>Write a program for the implementation of S-R Flip flop and D Flip flop.</li> <li>Write a program to the implement up- counter and down-counter.</li> <li>Write a program to design JK Flip-flop and write design summary</li> <li>Write design summary</li> </ol>	Learning Outcomes added. <u>Added</u>
18	CS 209, Data Structures				Please refer from Department of Computer
					Science
19	Analog Communication	After the completion of course student will be able	Section-A Introduction Communication Process,	Section-A Introduction to signals: Size of signals,	Added
	Communication	course student will be able	mirodaction – communication Process,	introduction to signals. Size of signals,	

to:		Source of Information, Channels-Noise,	Classification of signals, Some useful	Shifted
• Ex:	xplain different blocks	System Noise Source, Noise & Feed- back,	signal operations, Unit impulse function,	Deleted
in	communication	Noise Figure, Electromagnetic Spectra. Base	Signals and vectors, Signal comparison-	Deletted
sys	stem and how noise	band and pass band signals, Modulation	correlation, Signal representation by	
aff	fects communication	Process - Need, Bandwidth, Requirements-	orthogonal signal set, Trigonometric	
usi	ing different	Frequency Spectra of Non-sinusoidal Signals,	Fourier series, Exponential Fourier series	
par	rameters.	Analogue vs Digital Communication,	Analysis and Transmission of Signals:	
• Dis	istinguish between	Continuous and Discrete Spectra, Band pass	Fourier transform of some useful signals,	
dif	fferent amplitude	System,	Some properties of Fourier Transform,	
mc	odulation schemes		Signal Transmission through linear system,	
wit	ith their advantages,		Ideal and practical filters, Signal distortion	
	sadvantages and		over a communication channel, Signal	
	plications and analyse		energy and energy spectral density, Signal	
	neration and detection		power and power spectral density.	
	FM signal and	Section B	Section- B	Added
	mparison between	Modulation: Amplitude Modulation : Basic	Amplitude Modulation: Baseband and	Shifted
	nplitude and angle	Principles, Mathematical Relationships,	carrier communication, Double sideband	Deleted
	odulation schemes.	Frequency Modulation and Phase Modulation	modulation, Single sideband modulation,	
• Ide	entify different types	- Basic Principles, Mathematical	Quadrature amplitude modulation,	
	radio receiver circuits	Relationships, Comparison between	Vestigial sideband modulation, Carrier	
		Amplitude Modulation and Angle	acquisition, Superheterodyne receiver	
		Modulation, Spectral Analysis of Different	Angle Modulation: Concept of	
		Modulation; Modulators: Amplitude	instantaneous frequency, Bandwidth of	
		Modulator, Suppressed Carrier DSB	angle modulated waves, Generation of FM	
		Modulator, Balanced Modulator, SSB	waves, Demodulation of FM, Interference	
		Modulators: Filter Method, Phase-shift	in angle modulated systems, FM receiver	
		Method & Third Method-ISB Modulators,		
		Vestigial sideband Modulator; Frequency		
		Modulator: Direct &Indirect Method, Narrow		
		band FM, Phase Modulator, Spectral		
		Analysis of these Modulators; Transmitters -		
		AM Transmitter, Low Level and High Level		
		SSB Transmitter, Pilot Carrier - FM		
		Transmitter – Narrow band and Wide band.		
		FM Stereo Transmitter;		
		Section C	Section-C	Added
		Receiver:- Sensitivity, Selectivity, Signal to	Random Signal and Noise: Gaussian	Shifted
		Noise Ratio, Demodulators – Diode Detector;	Noise, Bandpass noise and its	Deleted
		FM Detectors, Phase Detector- Ratio Detector	representation, Noise power, SNR ratio,	
		- Foster - Seelay Discriminator: AM	PSD of white noise.	
		Stelly Distriminator, Thir		

			Receiver (Block Level Treatment) TRFReceiver,Super-heterodyne Receiver,Double Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum pre-emphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two- Port Networks, Free-Space Link Calculations	
			Text Books:         1. George       Kennedy:       Electronic         Communications Systems:McGraw Hill.         2. Taub and Schilling:       Principles of         communication systems:McGraw Hill.         3. Martin       S. Roden:       Analog and digital         Communication systems:         4. Sol       Lapatine:       Electronic         communication         5. Dennis       Roody       and       JhonCoolen:         Electronic communication Prentice Hall.         6.       J       Dunlop       & D       G       Smith:         Electronic communication Engineering.       Electronic       Electronic       Electronic	<ul> <li>Recommended Books:         <ol> <li>Lathi, B.P., Ding, Zhi,&amp; Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press</li> <li>Haykin, S. &amp; Moher, M. (2007).Introduction to Analog and Digital Communication. New York. United States: John Wiley &amp; Sons.</li> <li>Shilling, D.L., &amp;Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication.</li> <li>Suggested E-Resource:             <ol></ol></li></ol></li></ul>	Added Deleted
20	Analog Communication Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Demonstrate Amplitude modulation and demodulation techniques.</li> <li>Demonstrate frequency modulation</li> </ul>			Learning outcomes added. No change in experiment list.

21	ELE 306, Microprocessors and Microcontrollers	<ul> <li>and demodulation technique.</li> <li>Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes.</li> <li>Compare different modulations and demodulations to recognize the advantages and disadvantages of them.</li> <li>Identify different radio receiver circuits and role of AGC.</li> <li>After the completion of course student will be able to:</li> <li>Interface memory and different peripherals with Microprocessor and microcontroller</li> <li>Design and develop the system for real time applications</li> </ul>	Test Books : 1. Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. 2. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book : 1. Ajay V. Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. 2. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. 3. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005. 4. Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design, 2nd ed., Liu & Gibson.	<ul> <li></li> <li>Recommended Books: <ol> <li>Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication</li> <li>Hall, D.V. (2017). Micro Processor and Interfacing. New Delhi: McGraw- Hill Publication.</li> <li>Deshmukh, Ajay V. (2005). Microcontrollers – Theory and Applications. New Delhi: McGraw Hill Publication.</li> <li>Ray, A.K., &amp;Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication.</li> <li>Kenneth, J. Ayala. (2011). The 8086 Micro Processors Architecture, Programming and Applications. New Delhi: Prentice Hall India.</li> <li>Liu, Yu Cheng., &amp; Gibson, A. (1985). Microcomputer Systems: The</li> </ol></li></ul>	No change in course contents
----	--------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------

22	ELE 306L, Microprocessors and Microcontrollers Lab	After completion of this laboratory course, students will be able to: • Understand the different instructions of 8086 microprocessor assembly language. • Coding in assembly language. • Solve different real	 8086/8086       Family: Architecture, Programming and Design. New Delhi: Prentice Hall India.         Suggested E-Resources:         1. Microprocessors       and Microcontrollers         by Prof.SantanuChattopadhyay, Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/         2. Microprocessors       and Microcontrollers         by Prof. Krishna Kumar,       IISC         Bangalore       https://nptel.ac.in/courses/106108100/	Learning Outcomes added. No Change in Experiment List.
23	Project	<ul> <li>time problems.</li> <li>After completion of this course, students will be able to:</li> <li>Demonstrate effective project execution and control techniques that result in successful projects.</li> <li>Ability to identify, formulates, and solves engineering problems.</li> <li>Use the techniques,</li> </ul>	 	Learning Outcomes Added and this course has no prescribed syllabus

		1.11 1 1		1
		skills and modern engineering tools		
24		engineering practice		<b>T</b> ·
24	<b>UIL Project</b>	After completion of this course, students will be	 	Learning
		able to:		Outcomes
				Added and this
		• Undertake problem		course has no
		identification,		prescribed
		formulation and solution.		syllabus
		• Design engineering		
		solutions to complex		
		problems utilizing a		
		systems approach.		
		• Demonstrate the		
		knowledge, skills and		
		attitudes of a		
		professional engineer.		
		• Demonstrate effective		
		organizational		
		leadership and change		
		skills for managing		
		projects, project teams, and stakeholders.		
25	Biomedical		Section A	4 1 1*4* 6
25	Biomedical Instrumentation	After the completion of course student will be able	Section A	Addition of New Course as
	Instrumentation		Electrode electrolyte interface, half-cell	New Course as Elective
		<ul> <li>to:</li> <li>Describe the principle</li> </ul>	potential, polarization and non-polarisable	Elective
		Deservoe ane primeipre	electrode, calomel electrode, needle and	
		of interfacing of Electrode-electrolyte	wire electrode, microelectrode-metal	
		and different types of	 micropipette. Ag/AgCl electrodes	
		electrodes which are	Microelectrodes, skin surface electrode,	
		used in biomedical	and lead for EG, ECG, EMG. Transducer	
		field.	for biomedical applications, factors	
		<ul> <li>Explain different</li> </ul>	governing the selection of transducer,	
		<ul> <li>Explain different types of recorders and</li> </ul>	pressure, temperature, flow, biomedical	
		photometers.	ultrasonic transducer.	
		<ul> <li>Describe the method</li> </ul>	Section B	
		<ul> <li>Describe the method of measurement of BP</li> </ul>	 Less Maine and States and States	
L		of measurement of BP	Low-Noise preamplifier, main amplifier	

		and blood flow.	and driver amplifier, inkjet recorder, thermal array recorder, photographic recorder, magnetic tape recorder, X-Y recorder, medical oscilloscope. pH, PO2, PCO2, pHCO3, Electrophoresis, colorimeter, spectro photometer, flame photometer, auto analyzer.	
			 Section C Respiration, heart rate, temperature, pulse blood pressure, cardiac output, O2, CO2 measurements. Measurement of blood pressure, blood flow, and heart sound, cardiograph: Phonocardiography, vector cardiograph, Echocardiography pacemaker, defibrillators, Ventilator, Computer patient monitoring system.	
			 <ul> <li>Recommended Books:</li> <li>1. Cromwell L. (2007). Biomedical Instrumentation and Measurement. New Delhi: PHI Publication</li> <li>2. Webster J.G.(1998). Medical Instrumentation Application and Design. New York: John Wiley and Sons</li> <li>3. KhandpurR.S. (1997). Handbook of Biomedical Instrumentation. New Delhi: Tata McGraw-Hill Publication</li> <li>4. Carr J. J. &amp; Brown J. M. (1997). Introduction to Biomedical Equipment Technology. New York: John Wiley and Sons</li> </ul>	
26	Optical Network	<ul> <li>After the completion of course student will be able to:</li> <li>Describe the important components such as multiplexer, filters.</li> <li>Explain the</li> </ul>	 Section A Introduction to Optical Networks, Characteristics of Optical Fiber (Emphasis on Non Linear Characteristics) Timing & Synchronization, Components: Couplers, Isolators & Circulators, Multiplexers & Filters, Optical Amplifiers, Tunable Lasers, Switches, Wavelength Converters,	Addition of New Course as Elective

	plexing	Networks SONET/SDH, Multiplexing,	
techni		SONET/ SDH Layers, Frame, Structure,	
<ul> <li>Descr</li> </ul>	ribe the	Frame Structure, Physical Layer, Elements	
	ction technique	of a SONET/SDH Infrastructure	
	ONET/SDH and	Section B	
IP net	twork	ATM : Functions of ATM, Adaptation	
		Layers, Quality of Service, Flow Control,	
		Signaling and Routing, WDM Network	
		Elements, Optical Line Terminals, Optical	
		Line Amplifiers,	
		 Optical Add/ Drop Multiplexers, Optical	
		Cross Connects, WDM Network Design,	
		Cost Trade-offs, Light path Topology	
		Design, and Routing and wavelength	
		assignment problems, Dimensioning	
		Wavelength Routing Networks,	
		Section C	
		Network Survivability Basic Concepts,	
		Protection in SONET/SDH, Protection in	
		IP networks, Optical Layer Protection,	
		Different Schemes, Interworking between	
		Layers	
		 Access Networks, Network Architecture	
		Overview, Enhanced HFC, FTTC, Optical	
		Switching, OTDM, Synchronization,	
		Header Processing, Buffering, Burst	
		Switching.	
		Deployment Considerations	
		Recommended Books:	
		1. Ramaswami, Rajiv.,&Sivarajan,	
		Kumar. N.(2009). Optical Networks: A	
		Practical Perspective. San Francisco,	
		California: Morgan Kaufmann	
		 Publisher.	
		2. Uyless, Black. (2009). Optical	
		Networks Third Generation Transport	
		Systems: New Delhi: Pearson	
		Publication.	
		3. Tanenbaum, Andrew. S. (2010).	
		· · · · · · · · · · · · · · · · · · ·	

27	Satellite Communication	After the completion of course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch	 <ul> <li>Computer Networks. New Delhi: Pearson Publication.</li> <li>Murthy, C. Siva Ram.,&amp;Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design &amp; Algorithms. New Delhi: Pearson Publication.</li> <li>Suggested e-resources:</li> <li>Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminar s/OptNets.pdf</li> <li>Optical networks and Switching Systems by Prof.Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021 Section A</li> <li>Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches &amp; launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&amp;M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system</li> </ul>	Addition of New Course as Elective
		able to discuss launch methods and technologies.	design, uplink design, satellite systems using small earth station, design for specified C/N.	
		• Understand the systems	Section B	
		required by a	Modulation and multiplexing techniques	
		communications satellite	for satellite links: FM, pre-emphasis and	
		to function and the	 de-emphasis, S/N ratios for FM video	
		trade-offs and limitations encountered	transmission, digital transmission, digital	
		in the design of a	modulation and demodulation, TDM. Multiple access: FDMA, TDMA, DAMA	

		,
communications satellite		-
system.	Section C	
• Understand different	Enter control for digital satellite links.	
Networks topologies and		
applications of	capacity, citol control coung,	
networks, as well as the	convolutional codes, linear and cyclic	
comparison to	block codes. Propagation effects and their	
alternative	impact on satellite-earth links: attenuation	
communications	and depolarization, atmospheric	
systems.	absorption, rain, cloud and ice effects etc.	
	Introduction of various satellite systems:	
	VSAT, low earth orbit and non-	
	geostationary, direct broadcast satellite	
	television and radio, satellite navigation	
	and the global positioning systems.	
	Recommended Books:	
	1. Bostian, Charles., Pratt, Timothy.,	
	& Allnutt, Jeremy. (2006). Satellite	
	Communications. New Delhi: John	
	Wiley & Sons.	
	2. Roddy, Dennis. (2017). Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	3. Ha, Tri. T. (1990). Digital Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	Suggested e-resources:	
	1. Satellite Communication Systems by	
	Prof.Kalyan Kumar Bandyopadhyay	
	Department of Electronics and	
	Electrical Communication Engineering	
	Indian Institute of Technology,	
	Kharagpur.	
	http://textofvideo.nptel.ac.in/11710513	
	1/lec1.pdf	
	2. Satellite Link Design by Dr. Marwah	
	Ahmed.	
	https://net425site.files.wordpress.com/	
	2017/02/net-425-d-feb-2016-lec-5.pdf	
		I

20	D · 6	After the second still f		4 1 3 4 4
28	Basics of Nanoelectronics	After the completion of course student will be able	Section A	Addition of New Course as
	Nanoelectronics	to:	The 'Top down' and 'Bottom up'	Elective
		• Explain the	approach, Nanotechnology potential,	Liecuve
		• Explain the fundamental science and	introductory quantum mechanics for	
		quantum mechanics	 Nanoscience: size effect in smaller	
		behind nanoelectronics.	 systems, quantum behavior of nanometric world, Band structure and density of states	
		Explain the basic		
		• Explain the basic concepts behind the	at Nanoscale: energy bands, density of states at low dimensional structure.	
		operation of nano scale	Semiconductor heterostructure quantum	
		MOSFET	wells, quantum wires, and quantum dots.	
		describe the	Section B	
		various techniques and		
		approaches for the	MOS band structure, CMOS Scaling, The nanoscale MOSFET, Finfets, Vertical	
		fabrication of nano-scale	MOSFETs, limits to scaling, Tunnel	
		devices	junction and application of tunneling:	
			Tunneling through a potential barrier,	
			 potential energy profiles of material	
			interfaces.Classical and semi-classical	
			transport, ballistic transport, carbon	
			nanotubes,Single electron transistor,	
			Coulomb Blockade, Resonant Tunneling	
			diodes and transistors.	
			Section C	
			Buck minsterfullerence. Nanodiomond.	
			Molecular Machine. Nanobiometrics.	
			Fabrication technology: Top-down vs.	
			bottom-up technology. Lithographic	
			process: Lithography, Nanolithography,	
			split gate technology, self-assembly,	
			 limitation of lithographic process. Non-	
			lithographic techniques: Plasma arc	
			discharge, sputtering, evaporation,	
			chemical vapour deposition, pulsed laser	
			deposition, molecular beam epitaxy, sol-	
			gel technique, electro deposition and other	
			process.	
			 Recommended Books:	
			 1. Hanson, G. W. (2008). Fundamentals	
				5

			<ul> <li>of Nanoelectronics. New Delhi: Pearson Publication.</li> <li>2. Chattopadhyay ,K. K.,&amp; Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication.</li> <li>3. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press.</li> <li>4. Dragman,M., &amp;Dragman,D. (2008). Nanoelectronics- Principles and Devices (2/e): Artech House Publishers</li> <li>5. Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication</li> <li>6. Minoli, Daniel. (2005). Nanotechnology Application to Telecommunication and Networking. Hoboken, New Jersey: Wiley Publication.</li> <li>7. Davis John H. (1997). Physics of Low Dimension Semiconductor: New Delhi: Cambridge University Press.</li> <li>8. Cosh, Carl.C. (1998). Nanostructure Materials Processing Property and Applications. Norwich, New York: Noyes Publications</li> </ul>	
29	Mobile Communication	After the completion of course student will be able to: • To understand the various generations of mobile communications and basics of wireless communication • To understand the concept of cellular communication • Can conduct field	 Section A Introduction to Wireless Communication System: Evolution of mobile radio communication, Mobile radiotelephony in U.S Mobile radio system around the world, second generation (2G) cellular network, evolution to 2 5G wireless network evolution for 2.5G TDMA standards, third generation (3G) wireless network. The Cellular concept- System design fundamentals, frequency reuse channel, assignment strategies. Hand off strategies Interference and system capacity,	Addition of <u>New Course as</u> Elective

experiments and	improving coverage and capacity in	
measurements	cellular system.	
	Section B	
	 Propagation model and Spread Spectrum Modulation Techniques: Longley rice model, kumara model hata model pcs extension to hata model, wolfish and betony model, Pseudo Noise (PN) sequence, Direct sequence spread spectrum (DSSS), frequency hopped spread spectrum (FHSS). Multiple Access Techniques for Wireless Communication, Introduction to multiple access. Frequency division multiple access (TDMA).	
	Section C	
	 Spread spectrum multiple access. Packet Radio. Global System for Mobile Communication, channel types, Example of a GSM cell. Frame structure of GSM, Data over low power wireless Re-cordless Network.	
	Recommended Books:	
	 <ol> <li>Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication.</li> <li>Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication.</li> <li>Goddman, David.J. (1997). Wireless Personal Communication System: Addition Wesley Publication.</li> <li>Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication</li> <li>Suggested E-Resources:</li> <li>Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi.</li> </ol>	

			https://petal.co.in/courses/1171020(2/	1
20	Dadan Navigati	After the completion of	https://nptel.ac.in/courses/117102062/	Addition of
30	Radar Navigation	<ul> <li>After the completion of course student will be able to:</li> <li>Understand the basic concept of Radar and applications of various types.</li> <li>Understand the different Radar Performance factors.</li> <li>Explain the operation of CW&amp; FM Radar.</li> </ul>	 Section A RADAR SIGNAL MODELS: Amplitude models, distributed target forms of range equation, radar cross section, statistical description of radar cross section, Swerling model, Clutter, signal to clutter ratio, temporal and spatial correlation of clutter, noise model and signal to noise ratio, frequency models, Doppler shift, stop and hop assumption, spatial model, variation with angle, variation with range, projections, multipath, spectral models. RADAR WAVE FORMS: Waveform matched filter of moving targets, ambiguity function, ambiguity function of the simple matched pulse filter for the pulse burst, pulse by pulse processing, range ambiguity, Doppler response and ambiguity function of the pulse burst.	Addition of New Course as Elective
			 Section B DETECTION FUNDAMENTALS: Radar detection as hypothesis testing, Neyman- Pearson detection rule, likelihood ratio test, threshold detection of radar signals, non-coherent integration of nonfluctuating targets, Albersheim and Shnidaman equations, Binary integration. RADIO DIRECTION FINDING: loop direction finder, goniometer, errors in direction finders, commutated aerial direction finders, commutated aerial direction finder. RADIO RANGES: LF/MF four course radio range, VOR, ground equipment & receiver, VOR errors. HYBERBOLIC SYSTEM OF NAVIGATION: LORAN Decca & Omega system.DME&TECAN.	

			Section C     AIDS TO APPROACH AND LANDING:     ILS, GCA& MLS     DOPPLER NAVIGATION: Beam     configuration, doppler frequency equation,     track stabilisation and doppler spectrum,     components of doppler navigation system,     doppler radar equipment, CW &FMCW     Doppler radar, frequency trackers, doppler     range equation.     SATALLITE NAVIGATION SYSTEM:     transit system, NAVSTAR, GPS, basic     principles of operation, signal structure of     NAVSTAR broadcasts, data message,     velocity determination, accuracy of GPS &     differential navigation, NAVSTAR     receiver.     Recommended Books:	
			Recommended Books:         1. Richards, Mark. A (2014).         Fundamentals of Radar Signal         Processing. New Delhi:TMH         Publication.         2. Nagraja, N. S. (2009). Elements of	
			<i>Electronics Navigation</i> : New Delhi:TMH Publication. 3. Peebles Jr. P. Z. (1998). <i>Radar</i>	
			Principles. New Delhi: Wiley Publication.	
			Suggested E-Resources:	
			1. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll- 001-introduction-to-radar-systems- spring-2007	
31	Mechatronics	After successful	SECTION A	Addition of
		completion of the course, student will be able to:	<b>Mechatronics and its scope</b> : Basic Structure and Evolution	new elective.

Develop skills to	Introduction of Transducer & Sensor:	
monitor and control real	Displacement, Pressure, Flow, Level and	
world industrial systems	Temperature Measurements. Signal	
Implement projects for	conditioning: amplification, filtering	
industrial and home	PC based Control: Smart Sensor, Data	
automations	Acquisition System, PLC, SCADA, DCS	
Analyze and create own	and HMI System.	
innovative filters and	SECTION B	
signal conditioning	Pneumatic and Hydraulic actuation	
applications	systems: Directional control valves,	
Perform computer based	Pressure control valves and Process control	
controlling of industries	valves and cylinders.	
using PLC, SCADA and	Mechanical actuation system- Kinematic	
HMI	chains, cams, gear-trains, Ratchet & Pawl,	
IIIVII	dampers, Bearings.	
	Electrical actuation system: Mechanical	
	switches- solenoid operated solid state	
	switches, DC, AC & stepper motors.	
	Electrical Drives: Conventional and	
	Modern electrical drives, Classifications	
	and Applications	
	Closed loop Controllers: Performance	
	Specifications, Delayed First and Second	
	order system, PID Controller, ZN Tuning.	
	SECTION C	
	Case Studies of Mechatronics Systems:	
	Industrial Robot, Automobile Engine	
	Control, Vehicle Suspension Control,	
	MEMS, CNC Machine, Gyro system, 3-D	
	Printer.	
	Recommended Books:	
	1. Isermann, Rolf (2005). Mechatronics	
	Systems. Springer Publication	
	2. Bolton, W. (2003). Mechatronics:	
	electronic control systems in	
	mechanical and electrical engineering.	
	Pearson Education.	
	3. Sawhney A.K. (2015). A Course in	
	Electrical and Electronic	

32	Fiber Optics and Communication	After the completion of course student will be able to: • Explain the light propagation through optical fibers. • Explain the various light sources and optical	Section A Fiber optics: Introduction, optical fibers - geometrical Optics description, wave propagation, fiber modes, step index, graded index single and multimode fibers, dispersion, limitation on bit rate, fiber bandwidth, fiber loss, fiber manufacturing: design issue, fabrication methods, cables and connectors,	Measurements and Instrumentation. Dhanpat Rai & Co Publication 4. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. Tata McGraw Hill Publication	Move this course from 2 nd semester to list of Elective No change in course contents.
		detectors. • Design fiber optic transmitter and receiver system.	fiber splicing and fiber couplers. Section B Optical Sources and detectors: Light- Emitting diodes: LED characteristics, modulation response, LED structures. Semiconductor Lasers: structures, Laser characteristics, single longitude mode operation, DFB and VCSEL laser, Receivers: photo detector design: P-N, PIN, Schottky barrier and Avalanche photodiode, Phototransistor, receiver noise: noise mechanisms in PIN and APD receivers, Receiver structures.		
			Section C Optical Fiber Systems: optical transmitter circuit: source limitations, LED and Laser drive circuits, Optical receiver circuit, system design considerations, Digital systems, Digital optical receiver, BER, Optical power budgeting, rise time budget, line coding, analog systems: Direct intensity modulation, subcarrier intensity modulation, coherent systems, computer, sensor and military applications.		

			<ol> <li>Text Books:         <ol> <li>Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007.</li> <li>John M. Senior: Optical Fiber communication: PHI.</li> </ol> </li> <li>References:         <ol> <li>D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993.</li> <li>Gowar: Optical Fiber Communication: PHI, 1995.</li> <li>Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002.</li> <li>Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991.</li> </ol> </li> </ol>	<ol> <li>Recommended Books:</li> <li>Agarwal, Govind. P. (2007). Fiber- Optic Communication Systems. New Delhi: Wiley India.</li> <li>Senior, John.M. (2009). Optical Fiber Communication Principles &amp; Practice. New Delhi: PHI Publication.</li> <li>Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication.</li> <li>Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw Hill Publication.</li> </ol>	
33	Analytical Instrumentation	After the completion of course student will be able to: • Explain majorly pH conductivity & dissolved component analyzer, dissolved oxygen analyzer, sodium analyzer, sodium analyzer, silica analyzer and moisture measurement.		Section A PH conductivity & dissolved component analyzer Sampling systems – ion selective electrodes – conductivity meters – pH meters - dissolved oxygen analyzer – sodium analyzer – silica analyzer – moisture measurement. GAS ANALYSER Oxygen analyzer – CO monitor, CO2, O2, dust and smoke measurement, thermal conductivity type– thermal analyzer–industrial analyzers.	Addition of New Course as Elective
		<ul> <li>Evaluate the performance of Spectrophotometers, FTIR Spectrometers and their applications.</li> <li>Describe modern trends in NMR Spectrometers, X-ray Spectrometery, and Mass</li> </ul>		Section B Spectrophotometers: Spectral methods of analysis – Beer's law UV – visible spectrophotometers – single beam and double beam instruments – source and detectors – IR spectrophotometers – sources and detectors – FTIR spectrometers – atomic absorption spectrophotometer – flame emission	

	Spectrophotometers with their applications.	spectrophotometers – sources of flame photometry – applications. Section C	
<ul> <li>1. Willard., Merritt., Dean., &amp; Settle. (2004). Instrumental Methods of Analysis. New Delhi: CBS Publishers &amp; Distributors.</li> <li>2. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication.</li> <li>3. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company.</li> <li>4. Settle, Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry: New Delhi: PHI Publication.</li> <li>5. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka: BSP Books Pvt.Ltd.</li> <li>6. Skoog., Holler, &amp; Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication.</li> <li>Suggested e-resources:</li> <li>1. Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi,</li> </ul>		Nuclear magnetic resolance and radiation techniques NMR – basic principle – NMR spectrometers – applications – introduction to mass spectrophotometers – nuclear radiation detectors – GM counter – proportional counter – solid state detectors, X-ray spectrometry: Instrumentation for	
Department of Chemical Engineering,		<ol> <li>Willard., Merritt., Dean., &amp; Settle. (2004). Instrumental Methods of Analysis. New Delhi: CBS Publishers &amp; Distributors.</li> <li>Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication.</li> <li>Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company.</li> <li>Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication.</li> <li>Braun, Robert.D. (2012). Introduction to Instrumental Paolysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd.</li> <li>Skoog., Holler.,&amp;Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication.</li> <li>Suggested e-resources: 1. Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi,</li> </ol>	

			https://nptel.ac.in/courses/103108100/	
34 A	Audio and Video	After the completion of	Section A	Addition of
	Systems	<ul> <li>Arter the completion of course student will be able to:</li> <li>Understand the fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards.</li> <li>Understand different colour television systems used worldwide and its compatibility.</li> </ul>	Audio Systems: Types of microphones and speakers, Monophonic, stereophonic and quadraphonic audio systems.     Disc and Magnetic Recording and Reproduction : Monophonic and stereophonic disc recording and reproducing systems, Magnetic recording , playback, Biasing & equalization, Recording medium, Magnetic heads-replay & eraser heads, Audio cassettes, Tape speed, Maximum usable frequency, Tape transport mechanism, Distortion & noise aspects, Hi-Fi stereo system.	New Course as Elective
		Principles of recording and reproduction of disc and video cassete recorders.	Section B Video Cassette Recorders: Video recording requirements, Video tape formats. Modulation-up conversion and down conversion of video signal, Servo systems, Functional Block diagram of VCR: video recording & playback. Compact Disc Recording and Reproduction: advantages of Compact disc, & its Specifications, CD player, optical recording, CD technology & manufacturing, CDROM, CD video.	
			Section C     Video Cameras: Image conversion     principle, Plumbicon, Sidicon camera     tubes, three tubes colored camera, Block     diagram of color camera tube.     TV Engineering: Scanning process,     Interlaced scanning, Composite video     signals, Principle of black & white TV,     color TV, Primary colours, Chrominance     & luminance signals.     Becommended Books:	

				<ol> <li>Bali, S.P.,&amp;Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co.</li> <li>Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai &amp; Co.</li> <li>Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc-Graw Hill</li> <li>Suggested e-resources:</li> <li>Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur.</li> </ol>	
				https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof.Shyamal Kumar Das Mandal,	
				Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22	
35	Digital Signal Processing	After the completion of course student will be able to: • Students will be familiar with the most important methods in DSP. • Students will be familiar with design and functioning of digital filter design • Student will be able to transform-domain processing.	Section A Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Periodic and aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series - Exponential Fourier Series-Symmetry Properties of the Fourier Coefficients. Fourier Integral, Energy Spectral Density, Fourier Transforms in		Move this course from 2 nd semester to list of Elective No change in course contents.

the Limit, Fourier Transform Theorems and		
Pairs, System Analysis with Fourier		
Transform, Lap lace Transform		
Theorems, Network Analysis using the Lap		
lace Transform.		
Section B		
Discrete Time Signals and Systems -		
Review of Sampled Data Systems,		
Time Domain Representations of		
Discrete Time Signals, Frequency Domain		
Representation of Discrete Time Signals,		
Discrete Time Signals obtained by sampling,		
Discrete Fourier Transform. Z-Transform -		
Definition and Examples, Inverse Z-		
Transform, Properties of the Z-Transform,		
Introduction to Realization of		
Digital Systems - Block Diagrams and Signal		
Flow Graphs. Introduction to Realization of		
an IIR and FIR systems, Discrete Fourier		
Transforms (DFT) and Fast Fourier		
Transform (FFT).		
Section C		
Design of Digital Filters:		
Introduction to Filters, A		
comparison of IIR and FIR Digital Filters.		
Design of IIR Digital Filters –Impulse		
Invariant Transformation, Bilinear		
Transformation, Design of Digital Butter		
worth and Chebyshev Filters. Design of FIR		
Digital Filters - Windowing and		
Rectangular Window, Filter Designs using		
Windows, Frequency Sampling Technique.		
DSP tools and DSP techniques in various		
applications.		
**	December de d. De elses	
Text Books:	Recommended Books:	
1. Johnson Johnny R.: Introduction to	1. Johnson, Johnny. R. (1998).	
Signal Processin: Prentice-Hall of India,	Introduction to Signal Processing.	
1998.	New Delhi: phi Publication.	
2. Oppenheim V. Alan: Signal &		
Systems: Prentice-Hall of India, 1995.	Systems. New Delhi: PHI Publication.	

			3. ProakisG.John: Digital Signal Processing: Prentice-Hall of India, 3rd edition, 2002.	<ol> <li>Proakis, G.John. (2002). Digital Signal Processing. New Delhi: PHI Publication.</li> <li>Suggested E-resource:         <ol> <li>Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/</li> </ol> </li> </ol>	
36	Geoinformatics	After the completion of course student will be able to: • Describe spatial database, Co-ordinate and projection system • Analyse vector and raster based analysis in Geographical Information Sciences • Describe different types of satellite system and digital image processing		Section A Geographical Information System: Definition, Components of GIS, Hardware and software requirements for GIS, Coordinate system and projections, Database structure and formats, Spatial data models - raster and vector. Data inputting, Data base design - editing and topology creation. Linkage between spatial and Non spatial data, Query (Attribute/Spatial), Vector based analysis. Raster based analysis. Errors, Digital Elevation Model, Network analysis, Open source and WebGIS.	Addition of New Course as Elective
				Section B Remote Sensing: Definition - components of remote sensing - energy sensor, interacting body; Type - active and passive remote sensing. Satellite System - meteorological, communication and remote sensing. Platforms - aerial and space, synoptivity and repeativity. Electromagnetic Radiation (EMR) - EMR spectrum- visible, infrared [IR) middle IR, thermal IR and microwave. EMR interaction with earth surface material, radiance, irradiance, incident, reflected, absorbed and transmitted energy, spectral	

<ul> <li>(water, soil and vegetation).</li> <li>Digital Image, Statellite Im</li></ul>		response pattern - spectral signature curves
Digital Image Processing: Digital Image, Satellite Image - characteristics and formats. Resolution - spatial, spectral, radiometric and temporal; Introduction to rectification, enhancement; Classification - Unsupervised and Supervised classification and Supervised classification.         Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALILEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.         Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (Forestry, agriculture, urban telecommunication, transportation, water resources and environment).         Recommende Books:         1. Chor, Pang, Lo, &Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.         2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographic Information Systems. New Delhi: Pearson Publication.         3. Joseph. G. (2005). Fundamentals of remote sensing Jaipur, Rajasthan: Universities Press.         4. Jensen, John R. (2015). Introductory Digital Image Processing: A Remote Sensing Processing: A Remote Sensing Publication.		
Saiellite Image - characteristics and formits. Resolution - spatial, spectral, radiometric and temporal; Introduction to rectification, enhancement; Classification - Unsupervised classification. Unsupervised classification. Section C Global Positioning System: Global Navigation Statellite System (GNSS), GPS, GLONASS, GALILEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections. Applications of Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).		
formats. Resolution - spatial, spectral, radiometric and temporal; Introduction to rectification, enhancement; Classification - Unsupervised and Supervised classification.         Section C         Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALLEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.         Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).         Recommended Books:         1. Chor, Pang, Lo, & Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographical Information Systems. New Delhi: Plu bublication.         2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Preason Publication.         3. Joseph, G. (2005). Introduction to Geographical Information Systems. New Delhi: Person Publication.         3. Joseph, G. (2005). Introduction to Geographical Information Systems. New Delhi: Person Publication.         3. Joseph, G. (2005). Introduction to Geographical Information Systems. New Delhi: Person Publication.         3. Joseph, G. (2005). Introductory Intervention of Systems. New Delhi: Person Publication.         3. Joseph, G. (2005). Introductory Intervention of Systems. New Delhi: Person Publication.         4. Jensen, John, R. (2015). Introductory Digital Inage Processing: A Remote Sensing Intervention Systems. New Delhi: Person Publication.         5. Sabins, Floyd F. (2007). Remote		
radiometric and temporal; Introduction to rectification, enhancement; Classification - Unsupervised and Supervised classification.         Section C         Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALLEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.         Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and error/orment).         In construction, Low Recommended Books:         In Chor, Pang, Lo., &Albert, K. W. Yeung (2006). Concepts and Technique-of Geographic Information Systems. New Delhi: PHI Publication.         2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems.         New Delhi: Pearson Publication.         3. Joseph, G. (2005). Fundamentals of remote sensing Perspective. New Delhi: Presson Publication.         5. Joseph, G. (2007). Remote		
<ul> <li>rectification, enhancement; Classification - Unsupervised and Supervised classification.</li> <li>Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALILEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.</li> <li>Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).</li> <li>Recommended Books:         <ol> <li>Chor, Pang, Lo,&amp;Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Comelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Findamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Joseph, G. (2015). Introductory Digital Intege Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Hensen, John R. (2015). Introductory Digital Intege Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> </ol> </li> </ul>		
Image: Construct of the second sec		
classification.         Section C         Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALILEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.         Applications of GIS and Remote Sensing and GIS:         Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).         Recommended Books:         1. Chor, Pang, Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.         2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: PHI Publication.         3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.         4. Jensen, John, R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.         5. Sabins, Floyd F. (2007). Remote		
Global Positioning System: Global Navigation Satellite System (GNSS), GPS, GLONASS, GALLEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections. Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment). <b>Recommended Books:</b> 1. Chor, Pang. Lo.&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John, R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
<ul> <li>Navigation Satellite System (GNSS), GPS, GLONASS, GALILEO, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections.</li> <li>Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).</li> <li>Recommended Books: <ol> <li>Chor, Pang, Lo, &amp;Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John, R. (2015). Introductory Digital Image Processing: A Remote Sensing Prespective. New Delhi: Pearson Publication.</li> </ol> </li> </ul>		Section C
GLONASS, GALILEÖ, Segments - space, control, user, GPS Satellite signals, sources of errors and corrections. Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment). Recommended Books: 1. Chor, Pang. Lo., &Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Comelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
control, user, GPS Satellite signals, sources of errors and corrections.         Applications of Remote Sensing and GIS:         Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).         Recommended Books:         1. Chor, Pang. Lo., &Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.         2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction Systems. New Delhi: Pearson Publication.         3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.         4. Jonsen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Properties.         5. Sabins, Floyd F. (2007). Remote		
<ul> <li>sources of errors and corrections.</li> <li>Applications of Remote Sensing and GIS:</li> <li>Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).</li> <li>Recommended Books:         <ol> <li>Chor, Pang. Lo., &amp;Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jeansen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ol> </li> </ul>		
Applications of Remote Sensing and GIS: Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).		
Applications of GIS and Remote Sensing in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment). <b>Recommended Books:</b> 1. Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
<ul> <li>in resource management (forestry, agriculture, urban telecommunication, transportation, water resources and environment).</li> <li>Recommended Books:         <ol> <li>Chor, Pang. Lo., &amp; Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universites Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ol> </li> </ul>		
agriculture, urban telecommunication, transportation, water resources and environment). <b>Recommended Books:</b> 1. Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
transportation, water resources and environment).         Recommended Books:         1. Chor, Pang, Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.         2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.         3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.         4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.         5. Sabins, Floyd F. (2007). Remote		
environment).  Recommended Books:  Chor, Pang. Lo., &Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.  Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.  Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.  Joseph, G. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.  S. Sabins, Floyd F. (2007). Remote		
Recommended Books:         1. Chor, Pang. Lo., &Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: Phil Publication.         2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.         3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.         4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.         5. Sabins, Floyd F. (2007). Remote		
<ol> <li>Chor, Pang. Lo.,&amp;Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ol>		
<ul> <li>(2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ul>		
<ul> <li>Geographic Information Systems. New Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ul>		
<ul> <li>Delhi: PHI Publication.</li> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ul>		
<ol> <li>Heywood, D.I., Cornelius, S. &amp; Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ol>		
<ul> <li>S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication.</li> <li>3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>5. Sabins, Floyd F. (2007). Remote</li> </ul>		
Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
<ol> <li>Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press.</li> <li>Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>Sabins, Floyd F. (2007). Remote</li> </ol>		
remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		New Delhi: Pearson Publication.
Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
<ul> <li>4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication.</li> <li>5. Sabins, Floyd F. (2007). Remote</li> </ul>		
Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote		
SensingPerspective.NewDelhi:Pearson Publication.5.Sabins,FloydF.(2007).Remote		
Pearson Publication. 5. Sabins, Floyd F. (2007). <i>Remote</i>		
5. Sabins, Floyd F. (2007). Remote		
Sensing: Principles and Interpretation.		
		sensing: Principles and Interpretation.

			Long Grove, Illinois: Waveland Press Suggested e-resources: 1. Geoinformatics by University of	
			Twente. https://www.itc.nl/ilwis/applications- guide/	
			2. Geographical Information System by	
			Dr A. K. Gosain, Indian Institute of	
			Technology, Delhi.	
			https://nptel.ac.in/courses/105102015/1	
37	Power Electronics	After the completion of course student will be able to: • To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT • Analyze the various rectifiers used in power	 Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate	Addition of New Course as Elective
		circuits and DC to DC Converters • Explain the inverter	protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors.	
		operation and how harmonics are reduced and explain the basic working principle of cyclo-converters	 Section B Commutation, Techniques: Load commutation, resonant- pulse commutation, impulse commutation, line commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers.	
			 Inverters: Single-phase voltage source inverters 180 and 120 mode operation; Fourier analysis of single-phase inverter	

			output voltage. Pulse width modulated inverters, Reduction of harmonics in the inverter output, single-phase current source inverters with ideal switch. Cyclo- converters: Step-up and step-down cyclo- converter, Single phase to single-phase cyclo-converters three-phase half wave cyclo-converters.	
			 <ul> <li>Recommended Books:</li> <li>Rashid, Mohammad. H. (2017). Power Electronics Circuits, Devices and Applications: New Delhi: PHI Publication.</li> <li>Bimbhra, P.S. (2012). Power Electronics: New Delhi: Khanna Publication.</li> <li>Moorthy, Rama, (1991). An Introduction ToThyristors and Their Application: New Delhi: Affiliated East-West Press.</li> </ul>	
			<ol> <li>Suggested E-Resources:</li> <li>Power Electronics by Prof.B.G. Fernandes, Department of Electrical Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101038/</li> <li>Power Electronics by Prof. D. Prasad, Dr. D. Kastha, Prof.Sabyasachi Sengupta, Prof. N. K. De, Dept of Electrical Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105066/</li> </ol>	
38	Robotics and Automation	<ul> <li>After completion of this course, students will be able to:</li> <li>Develop skills of creating industrial and mobile robot projects</li> <li>Implement robots like KUKA, PUMA in real industrial world</li> </ul>	 SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and control system, Dynamic stabilization of Robotics. POWER SOURCES AND SENSORS- Hydraulic, Pneumatic and electric drivers	Addition of New Course as Elective

Create in	novative	- Determination HP of motor and gearing	
robot des	igns using	ratio, variable speed arrangements, Path	
	tical concepts	Determination - Machinery Vision -	
of kinem		Ranging – Laser – Acoustic, Magnetic	
	autonomous	Fiber Optic and Tactile Sensor.	
mobile re		SECTION B	
	nce, security,	MANIPULATORS- Construction of	
home and		Manipulators, Manipulator Dynamic and	
services	I office	Force Control, Electronic and Pneumatic	
services		manipulators.	
		ACTUATORS AND GRIPPERS-	
		ACTUATORS AND GRIPPERS- Pneumatic, Hydraulic Actuators, Stepper	
		Motor Control Circuits, End Effecter,	
		Various types of Grippers, Design	
		consideration.	
		Differential transformation and	
		manipulators, Jacobians – problems	
		.Dynamics: Lagrange - Euler and Newton	
		- Euler formations - Problems.	
		SECTION C	
		KINEMATICS- Forward and Inverse	
		Kinematic Problems, Solutions of Inverse	
		Kinematic problems, Multiple Solution,	
		Jacobian Work Envelop - Hill Climbing	
		Techniques.	
		PATH PLANNING- Trajectory planning	
		and avoidance of obstacles, path planning,	
		Skew motion, joint integrated motion -	
		straight line motion – Robot programming,	
		languages and software packages.	
		CASE STUDY- Multiple Robots –	
		Machine Interface – Robots in	
		Manufacturing and Non-Manufacturing	
		applications – Robot Cell Design Selection	
		applications itobot cen pesign bereetton	
		of a Robot	
		of a Robot.	
		Recommended Books:	
		Recommended Books: 1. Groover, M. P., Weiss, M., Nagel, R.	
		Recommended Books:	

			_
antenna.		M, Electric and Magnetic Fields for	
		Electric (J) and Magnetic (M) Current	
		Sources, Solution of the Inhomogeneous	
		Vector Potential Wave Equation, Far-field	
		radiation, Duality theorem, Reciprocity	
		and Reaction theorem, Image Theory	
		Linear wire antennas: Infinitesimal dipole,	
		Small dipole, Region separation, Finite	
		length dipole, Half-wave dipole	
		Loop Antennas: Small circular loop,	
		Square loop	
		Section C	
		Introduction to Arrays, two-element array,	
		N-element linear array: uniform amplitude	
		and spacing, directivity, N-element linear	
		array: uniform spacing, non-uniform	
		amplitude	
		Traveling wave antennas: Long wire	
		antenna, V-antenna, Rhombic antenna	
		Broadband antennas: Helical antenna,	
		Folded dipole, Yagi-uda array of linear	
		elements	
		Log-periodic antenna, Introduction to Horn	
		antenna: E-plane sectoral horn, H-plane	
		sectoral horn, Pyramidal horn	
		Recommended Books:	
		1. Balanis, C. A. (2005). Antenna Theory	
		Analysis and Design. New Delhi: John	
		Wiley & Sons.	
		2. Eliott, Robert S. (2003). Antenna	
		Theory and Design. New Delhi: Wiley-	
		IEEE Press.	
		3. Kraus, J. D., & Marhefka, R. H. (2001).	
		Antennas for All Applications,	
		Singapore: McGraw-Hill Publication.	
		4. Harrington, R. F. (2001). Time-	
		Harmonic Electromagnetic Fields.	
		New Delhi: Wiley-IEEE Press.	
		Suggested E- resources:	
		1. Advanced Antenna Theory by Dr	
	•		_

40	Communication Networks	After the completion of course student will be able to: • Recognize and describe about the working of Computer Networks. • Illustrate reference models with layers, protocols and interfaces. • Summarize functionalities of different Layers.	Section A Introduction to communication systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model. OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure- through wire-copper cable-STP, UTP, co-	<ul> <li>Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/</li> <li>2. Analysis and Design Principles of Microwave Antennas by Prof.Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/</li> <li>3. Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/</li> </ul>	Move this course from 3 rd semester to list of Elective No change in course contents.
			axial cable, optical fiber. Wireless media- wireless LAN, organization and standards. Wireless devices and topologies. Wireless communication, wireless security. Section B		
			Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway. Switching Networks-circuit switching, Packet Switching. Networks-circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting. Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of		

	Internetworking. Ethernet (CSMA/CD)		
	Token Ring and FDDI, Fast Ethernet.		
	Section C		
	Layer protocol Structure. Data link control -		
	Flow Control, Error Detection, Error Control.		
	HDLC. Network layer-ARP, RARP, ICMP.		
	Effect of Congestion and Congestion Control		
	in Network-(Back pressure, choke packet,		
	Implicit Congestion Signaling, Explicit		
	Congestion Signaling. Traffic Management-		
	Transport layer Protocols-connection oriented		
	and connectionless services, TCP, TCP		
	Congestion Control and Flow Control. UDP.		
	Application Layer Protocols - HTTP, FTP,		
	SMTP, SNMP, Telnet. Introduction to ISDN.		
	Narrow Band and Broad Band. Introduction		
	to WAN Technologies. ATM and Frame		
	relay.		
	Text Books:	Recommended Books:	
	1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic	
	& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
	2. A.S. Tannanbaum: Computer	PHI Publication.	
	Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
	3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
	Communication: PHI New Delhi, 5th	Publication.	
	edition 1997.	4. Stailling, W. (1997). Data & Computer	
	4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
	Distributed Processing: PHI, 1998.	Publication.	
		5. Martin, J. (1998). Computer Networks	
		and Distributed Processing Software,	
		Techniques, Architecture. New Delhi:	
		PHI Publication.	
		Suggested E-Resources:	
		1. Computer Networks and Internet	
		Protocol by Prof.SoumyaKanti Ghosh	
		Department of Computer Science and	
		Engineering Indian Institute of	
		Technology, Kharagpur.	
		https://nptel.ac.in/courses/106105183/	
1 1		2. Computer Networks by Prof. Sujoy	

			<ul> <li>Ghosh, Department of Computer Science and Technology, IIT KG. https://nptel.ac.in/courses/106105081/</li> <li>Computer Networks by Prof. Hema A Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/</li> <li>Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/22 78/data-communication</li> </ul>	
41	Professional Ethics		The course is intended to provide participants with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. <b>Suggested e-resources:</b> <b>1. Professional Ethics</b> by Rochester Institute of Technology, http://www.openculture.com/profession anal-ethics-a-free-online-course. <b>2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. Leigh Hafrey, MIT, USA. https://ocw.mit.edu/courses/sloan-</b>	Addition of New Course as Reading Elective

42	IoT Sensors and Devices		school-of-management/15-270-ethical- practice-leading-through- professionalism-social-responsibility- and-system-design-spring-2016. This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: 1. IoT Sensors and Devices by Curtin University. https://www.edx.org/course/sensors- and-devices-in-the-iot. 2. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet -of-things-sensing-actuation.	Addition of New Course as Reading Elective
43	Electromagnetic Compatibility	-	This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist	Addition of <u>New Course as</u> Reading Elective

		harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden https://onlinecourses.nptel.ac.in/noc19 ee17/preview.	
44	Electric Vehicles	<ul> <li>Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure</li> <li>Suggested e-resources;</li> <li>Electric Vehicles Part 1 by IIT Delhi. https://onlinecourse.nptel.ac.in/noc19_</li> </ul>	Addition of New Course as Reading Elective

45	Electronic		ee18/preview. 2. Electric Cars: Introduction by Delft University of Technology (TU Delft), https://www.edx.org/course/electric- cars-introduction-0. This course is designed to provide a basic	Addition of
	Packaging		knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge- based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical, design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18 me54.	New Course as Reading Elective
46	Multimedia Compression and Communication		The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication.	Addition of New Course as Reading Elective

n syst	mmunicatio vitching ems and tworks	Kharagpur. https://nptel.ac.in/syllabus/117105083/,         The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks.         Suggested e-resources: 1. Computer Networks by Department of CSE, IIT Kharagpur/ https://nptel.ac.in/courses/Webcoursed ontents/IIT%20Kharagpur/Communica tion%20network/New_index1.html.         2. Data Communication by IIT Kharagpur. https://nptel.ac.in/courses/106105082/1	Addition of New Course as Reading Elective
48 ELE 2 Semico Device Circuit	nductor course, students will be able to:	Section A P-N junction: thermal equilibrium condition, under forward and reverse bias, space charge region, junction capacitance, p-n junction current, small signal model, diode current equation, junction breakdown, charge storage and transient	

<ul> <li>Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences</li> <li>Analyze the various feedback circuits and design any power amplifiers.</li> <li>Analyze the various feedback circuits and disgrams. MOSFET findamentals, MOS disgrams, display, and disgrams of configuration, FET shall signal model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier, classifications of amplifiers of negative feedback, techback structure, propettics of negative feedback, fieldback topologies, firansfer gin with feedback, general feedback, structure, for propettics of class AC, Class C, Class C, Class C, Class C, Class C, Class AB, Class C, Class C, Class C, Class AB, Class C, Class AB, Class C, Class C, Class AB, Class C, Class AB, Class C, Class AB, Class C, Class AB, Class C, Class C, Class AB, Class C, Class AB, Class C, Class AB, Class C, Class AB, Class C, Class C, Class AB, Class C, Class AB, Class C, Class AB, Class C, Class C, Class C, Class AB, Class C, Class C, Class C, Class AB, Class C, Class C, Class AB, Class C, Class AB, Class C, Class AB, Clas</li></ul>				
PN junction, bipolar and unipolar transistor behavior and their differences       Bipolar Junction Transistor: the transistor action, minority carrier distribution, low frequency common-base current gain, MOSEET: The MOS diode, Energy band diagrams, MOSEET fundamentals, MOS Transistor current, Threshold Voltage. FET biasing: freed-base configuration, self-Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.         Number of the self-bias configuration, FET small signal model, common source and common drain amplifiers.       Section C         Feedback feedback, feedback, feedback, topologies, Transier gain with feedback, feedback, topologies, Transier gain with feedback, General Characteristics of negative feedback amplifiers. Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.         Recommended Books:       1.       S. Sinon. M.(2002), Seniconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication         Millman, J, Halkias, C, Parikh, C, (2017), Integrated Electronics, (2nd ed). New Delhi: TMH Publications.       S. Streetman Ben, G, (2006), Solid State Electronic Devices (the dy New Delhi:		• Explain the switching		
<ul> <li>and inipolar transistor behavior and their differences</li> <li>Analyze the various feedback circuits and design power amplifiers.</li> <li>Bipolar Junction Transistor: the transistor action, minority carrier distribution, low frequency common-base current gain, MOSFET: The MOS diode, Energy band diagrams, MOSFET fundamentalis, MOS Transistor current, Threshold Voltage. FET biasing: freed-bias configuration, self-Bias configuration, FET small signal model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier, classifications of amplifiers, general feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers; classifications of amplifiers, Input resistance, output resistance, output resistance, Voltage science and voltage shum feedback, Ourrent shunt and voltage shum feedback, Current shunt and voltage shum feedback, Coursent shunt and voltage shum feedback, Ourrent shunt and voltage shum feedback, Power amplifiers; Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier dobsis:</li> <li>S. Simon. M.(2002), Semiconductor <i>Devices Physics and Technology (2/e)</i>, New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Milman, J, Halkias, C, Parikh, C, (2017), <i>Integrated Destronics, Clad ed)</i>. New Delhi:</li> </ul>				
<ul> <li>behavior and their differences</li> <li>Analyze the various feedback circuits and design power amplifiers.</li> <li>MOSFET: The MOS diode, Energy band diagrams, MOSFET fundamentals, MOS Transistor current, Threshold Voltage.</li> <li>FET biasing: fixed-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier: classifications of amplifiers feedback, structure, properties of negative feedback, structure, properties of negative feedback, clutter, properties of negative feedback, class C, Power amplifiers; classification, operation, negative sons publication.</li> <li>Millman, J, Halkins, C, Parikh, C, properise feedback, properties (find ed) New Delhit;&lt;</li></ul>			Section B	
<ul> <li>behavior and their differences</li> <li>Analyze the various feedback circuits and design power amplifiers.</li> <li>Analyze the various feedback circuits and diagrams, MOSFET: The MOS diode, Energy band diagrams, MOSFET: The MOS diode, Energy band model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifiers: Iclassifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Current shunt and voltage shunt feedback, Current shunt and voltage shunt feedback, Current shunt and voltage shunt feedback, Current shunt and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books:         <ol> <li>S. Simon, M. (2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millmam. J, Halkias, C, Parikh, C, (2017). Integrated Electronics. (2nd ed), New Delhi: TMH Publications.</li> <li>Struetman Ben, G, (2006). Solid State Electronic do New Delhi:</li> </ol> </li> </ul>			Bipolar Junction Transistor: the transistor	
<ul> <li>differences</li> <li>Analyze</li> <li>Analyze</li> <li>More the various feedback circuits and design power amplifiers.</li> <li>Fell Disasing fixed-Bias configuration, self-Bias configuration, self-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, Source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier: classifications of amplifiers, general feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback, Power amplifiers.</li> <li>Class C, Power albiters, operation, operation, operation, operation, on Analysis and design of Class A, Class B, Class-AB, Class C, Power analytifers.</li> <li>Recommende Books:         <ol> <li>S. Simon. ML2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: 10HN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias, C, Parikh, C. (2017), Integrated Electronics, Clad ed) New Delhi: TMH Publications.</li> </ol> </li> </ul>				
<ul> <li>Analyze the various feedback circuits and design power amplifiers.</li> <li>MOSFET: The MOS diode, Energy band diagrams, MOSFET: The Kold Voltage. FET biasing: fixed-Bias configuration, self-Bias configuration, voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier: classifications of amplifiers, general feedback, feedback, feedback, feedback, feedback, moltifiers, general feedback, redback, feedback, General Characteristics of negative feedback, general feedback, current, multiplicers.</li> <li>Class A, Class B, Class-AB, Class C, Orlags S, Current shunt and voltage shunt feedback, Courrent shunt and voltage shunt feedback, Courrent shunt and voltage shunt feedback. Courrent shunt and voltage shunt feedback. Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books:         <ol> <li>S. Simon. M.(202), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONF Publication</li> <li>Millman, J, Halkias, C, Parikh, C, (2017), Integrated Electronics. (2nd ed), New Delhi: TMH Publications.</li> </ol> </li> </ul>		differences		
design power amplifiers. design power amplifiers. design power amplifiers. design power amplifiers. self-Bias configuration, Voltage. FET biasing: fixed-Bias configuration, Self-Bias configuration, Voltage. FET sisaing: fixed-Bias configuration, Self-Bias configuration, Voltage. FET sisaing: fixed-Bias configuration, Self-Bias configuration, Voltage. Section C Feedback amplifiers. Section C Feedback amplifiers. Section C Feedback are feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, feedback topologies, Transfer gain with feedback, C General Characteristics of negative feedback amplifiers. Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. Recommended Books: 1. S. Simon. M.(2002), Seniconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C, (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:			MOSFET: The MOS diode, Energy band	
amplifiers. amplifiers. FFT biasing: fixed-Bias configuration, Voltage-divider Bias configuration, Voltage-divider Section C Feedback amplifier: classifications of amplifiers, general feedback, feedback topologies, Transfer gain with feedback, feedback topologies, Transfer gain with feedback, feedback (General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Ourent shunt and voltage shunt feedback, Ourent amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class A, Class B, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon. M(2002), <i>Semiconductor</i> <i>Devices Physics and Technology (2/e)</i> , New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman, J, Halkias, C, Parikh, C, (2017). <i>Integrated Electronics. (2nd</i> <i>ed</i> , New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State <i>Electronic Devices (6th ed)</i> New Delhi:			diagrams, MOSFET fundamentals, MOS	
<ul> <li>Self-Bias configuration, Voltage-divider Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.</li> <li>Section C</li> <li>Feedback amplifier: classifications of amplifiers, general feedback, structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Courrent shunt and voltage shunt feedback, Courrent shunt and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books:</li> <li>Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman, J, Halkias, C, Parikh, C, (2017), Integrated Electronics, (2nd ed), New Delhi: TMH publications.</li> <li>Streetman Ben. G, (2006), State Electronic Devices (6th ed) New Delhi:</li> </ul>			Transistor current, Threshold Voltage.	
Bias configuration, FET småll signal model, common source and common drain amplifiers. Section C Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers. Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A. Class B. Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:		amplifiers.	FET biasing: fixed-Bias configuration,	
model, common source and common drain amplifiers. Section C Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C, (2017). Integrated Electronics. (2nd ed), New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:				
amplifiers.         Section C         Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers. Input resistance, output resistance, Voltage series and current series feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.         Recommended Books:       1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2e), New Jersey, USA: IOHN WILEY & SONS Publication         New Delhi: TMH Publications.       3. Streetman Ben. G. (2006). Solid State Electronic C, Old ed) New Delhi:				
Section C         Feedback amplifier: classifications of amplifiers, general feedback structure, proporties of negative feedback feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers. Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.         Recommended Books:       1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication         New Jersey, USA: JOHN WILEY & SONS Publications.       3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:				
<ul> <li>Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback, topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Milman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed), New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006), Solid State Electronic (did State Electronic Devices (6th ed) New Delhi:</li> </ol> </li> </ul>				
<ul> <li>amplifiers, general feedback structure, properties of negative feedback, feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> </ol> </li> </ul>			Section C	
<ul> <li>amplifiers, general feedback structure, properties of negative feedback, feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> </ol> </li> </ul>			Feedback amplifier: classifications of	
<ul> <li>topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C, (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ol> </li> </ul>				
General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon, M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:			properties of negative feedback, feedback	
<ul> <li>feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li><b>Recommended Books:</b> <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> </ol> </li> </ul>			topologies, Transfer gain with feedback,	
<ul> <li>output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> </ol> </li> </ul>				
current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon. M.(2002), <i>Semiconductor Devices Physics and Technology (2/e)</i> , New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:				
<ul> <li>voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li><b>Recommended Books:</b> <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ol> </li> </ul>				
Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion. <b>Recommended Books:</b> 1. S. Simon. M.(2002), <i>Semiconductor</i> <i>Devices Physics and Technology (2/e)</i> , New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). <i>Integrated Electronics. (2nd</i> <i>ed)</i> . New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). <i>Solid State</i> <i>Electronic Devices (6th ed)</i> New Delhi:				
<ul> <li>design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.</li> <li>Recommended Books: <ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ol> </li> </ul>				
Class C, Power dissipation and efficiency calculations, amplifier distortion. Recommended Books: 1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:				
<ul> <li>calculations, amplifier distortion.</li> <li>Recommended Books:</li> <li>1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ul>				
Recommended Books:         1. S. Simon. M.(2002), Semiconductor         Devices Physics and Technology (2/e),         New Jersey, USA: JOHN WILEY &         SONS Publication         2. Millman. J, Halkias. C, Parikh. C.         (2017). Integrated Electronics. (2nd         ed). New Delhi: TMH Publications.         3. Streetman Ben. G. (2006). Solid State         Electronic Devices (6th ed) New Delhi:				
<ol> <li>S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ol>				
<ul> <li>Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ul>				
<ul> <li>New Jersey, USA: JOHN WILEY &amp; SONS Publication</li> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ul>				
SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:				
<ol> <li>Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ol>				
<ul> <li>(2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications.</li> <li>3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ul>				
<ul> <li>ed). New Delhi: TMH Publications.</li> <li>3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi:</li> </ul>				
3. Streetman Ben. G. (2006). <i>Solid State</i> <i>Electronic Devices (6th ed)</i> New Delhi:				
<i>Electronic Devices (6th ed)</i> New Delhi:				
	L L	·	· · · · · · · · · · · · · · · · · · ·	

4. Smith. S.(2008). <i>Microelectronics</i>
Circuits. (5th ed). New Delhi: Oxford
press.
Suggested E-Resources:
1. Semiconductor Devices and Circuits
by Prof.SanjivSambandan, Department
of Instrumentation and Applied
Physics, Indian Institute of Science,
Bangalore.
https://nptel.ac.in/courses/108108112/
2. Analog Electronic Circuits byProf. S.
C. Dutta Roy, Department of Electrical
Engineering Indian Institute of
Technology Delhi.
https://nptel.ac.in/courses/108102095/

### Annexure IV

Name of Programme: Master of Technology (VLSI Design)

Programme Educational Objectives: The M.Tech. (VLSI Design) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. State-of-the-art VLSI technology requires research in physical devices as well as novel design and development of integrated circuits. The M. Tech. (VLSI Design) programme at Department of Electronics aims to impart knowledge of VLSI system design covering algorithms, hardware description languages, system architectures, physical designs, verification techniques, simulation & synthesis, low power design techniques and etc. The programme offersfoundational subjects like semiconductor devices, digital, analog and RFIC design, embedded system, electronic system packaging etc. Many courses have prominent lab component, offering hands-on training and exercises on numerous practical aspects of crucial importance. The students also get an opportunity to participate in projects related to design and optimization of VLSI circuits and systems.

The main objectives of M.Tech. (VLSI Design) programme are:

- To provide in-depth knowledge of device fundamentals and modern circuits design to gain an ability to analyze, design, and implement VLSI Systems circuits and systems.
- To enrich students to excel in research leading to cutting edge technology in VLSI design to create competent, innovative and productive professionals.
- To train them to understand the various recent issues and find the solutions with good scientific and engineering knowledge, so as to comprehend, analyze, design, and create novel products and develop the capability to prepare the scientist report in lucid and articulate form.
- To provide students with an academic environment to develop scientific awareness, leadership, ethical conduct, positive attitude, societal responsibilities and the lifelong learning needed for a successful professional career.
- To develop entrepreneurial skills in starting industries using VLSI technology.
- Practice the ethics of their profession and inculcate a lifelong learning culture.
- · Communicate effectively and manage resources skilfully as members and leaders of the profession.

#### Programme Outcomes:

- PO1. Scholarship of Knowledge: Acquire in-depth knowledge of VLSI technology in wider and global perspective, with an ability to discriminate, evaluate, analyze, synthesize and integrate for enhancement of knowledge. Graduates will be able to apply the knowledge of computing, mathematics, science and electronic engineering for designing VLSI circuits.
- PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using basic principles of mathematics, science and engineering.
- PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Graduates will have an ability to design and conduct experiments, perform analysis and interpret the problems of VLSI design.

- PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern VLSI tools including modeling to complex engineering activities with an understanding of the limitations.
- PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. Engineering Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. Leadership Skills: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Tech. (VLSI Design) Semester - I (December, 2019)

		Existing Scheme							Proposed Scheme				
Course	e Code	Course Name	L	Т	Р	С	Course	e Code	Course Name	L	Т	Р	С
VLSI	507	Digital CMOS IC design	4	0	0	4	VLSI	507	Digital CMOS IC design	4	0	0	4
VLSI	507L	Digital CMOS IC design Lab	0	0	2	1	VLSI	507L	Digital CMOS IC design Lab	0	0	2	1
VLSI	512	HDL Based System Design	4	0	0	4	VLSI	512	HDL Based System Design	4	0	0	4
VLSI	512L	HDL Based System Design Lab	0	0	6	3	VLSI	512L	HDL Based System Design Lab	0	0	6	3
VLSI	516	IC Fabrication Technology	4	0	0	4	VLSI	516	IC Fabrication Technology	4	0	0	4
VLSI	516L	IC Fabrication Technology Lab	0	0	2	1	VLSI	516L	IC Fabrication Technology Lab	0	0	2	1
VLSI	521P	Minor Project (Part - I)	0	0	2	1	VLSI	521P	Minor Project (Part - I)	0	0	2	1
VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4	VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4
		Elective-I	4	0	0	4			Discipline Elective	4	0	0	4
		Semester wise total	20	0	12	26			Semester wise total	20	0	12	26

M.Tech. (VLSI Design) Semester - II (April/May, 2020)

		Existing Scheme					Proposed Scheme						
Course	e Code	Course Name	L	Т	Р	С	Course	e Code	Course Name	L	Т	Р	С
VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4	VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4
VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2	VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2
VLSI	504	ASIC Design	4	0	0	4	VLSI	504	ASIC Design	4	0	0	4
VLSI	505	CAD for IC Design	4	0	0	4	VLSI	505	CAD for IC Design	4	0	0	4
VLSI	505L	CAD for IC Design Lab	0	0	4	2	VLSI	505L	CAD for IC Design Lab	0	0	4	2
VLSI	522P	Minor Project (Part - II)	0	0	4	2	VLSI	522P	Minor Project (Part - II)	0	0	4	2
VLSI	524	RF IC Design	4	0	0	4	VLSI	524	RF IC Design	4	0	0	4
		Elective - II	4	0	0	4			Open Elective	4	0	0	4
		Semester wise total	20	0	12	26			Semester wise total	20	0	12	26

#### List of Discipline Electives:

Course	Code	Course Name	L	Т	Р	С
CS	429	Pattern Recognition and Image Processing	4	0	0	4
CS	431	Real Time Systems	4	0	0	4
ELE	502	Discrete Time Signal Processing	4	0	0	4
VLSI	501	Advanced Digital Signal Processing	4	0	0	4
VLSI	502	Advanced Digital System Design	4	0	0	4
VLSI	506	Design of Semiconductor Memory	4	0	0	4
VLSI	510	Embedded System Design	4	0	0	4
VLSI	511	Fault Tolerance in VLSI	4	0	0	4
VLSI	513	High Level System Design and Modeling	4	0	0	4
VLSI	514	High Power Semiconductor Devices	4	0	0	4
VLSI	515	High Speed VLSI Design	4	0	0	4
VLSI	517	Integrated Electronic System Design	4	0	0	4
VLSI	518	Introduction to MEMS	4	0	0	4
VLSI	519	Low Power VLSI Design	4	0	0	4
VLSI	520	Nanoelectronics	4	0	0	4
VLSI	523	Representation and Analysis of Random Signals	4	0	0	4
VLSI	526	Speech Signal Processing	4	0	0	4
		Photonics Integrated Circuits	4	0	0	4

#### M.Tech. (VLSI Design) Semester - III (December, 2020)

	Existing Scheme						Proposed Scheme						
Course (	Code	Course Name	L	Т	Р	С	Course	Code	Course Name	L	Т	Р	С
		Reading Elective - I	0	0	4	2			Reading Elective - I	0	0	0	2
VLSI	602P	Project (Part - I)	0	0	48	24	VLSI	602P	Project (Part - I)	0	0	48	24
		Semester wise Total	0	0	52	26			Semester wise Total	0	0	48	26

#### M.Tech. (VLSI Design) Semester - IV (April/May, 2021)

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
	Reading Elective - II	0	0	4	2		Reading Elective - II	0	0	0	2
VLSI 603P	Project (Part - II)	0	0	48	24	VLSI 603P	Project (Part - II)	0	0	48	24
	Semester wise total	0	0	52	26		Semester wise total	0	0	48	26

* L - Lecture hrs/week; T - Tutorial hrs/week; P - Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C - Credit Points of the Course

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, & II with prior permission of respective heads, time table permitting.

List of Reading Electives:

S. No.	Course Code	Reading Elective
1.	VLSI 601R	High Level Synthesis
2.		Advanced Electronics Packaging
3.		Digital Image Processing
4.	VLSI 604R	VLSI Testing and Design for Testability
5.		Compound Semiconductor Technology
6.		Organic Electronic Devices

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	VLSI 507, Digital CMOS IC	After completion of this course, students will be able to:			No Change in course contents.
	Design	<ul> <li>Gain in-depth understanding of designing and analysis of CMOS inverters</li> <li>Explain the fabrication process and layout design of CMOS digital IC</li> <li>To describe the operation of semiconductor memories and low power circuits.</li> </ul>	<ol> <li>Text Books:         <ol> <li>N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993.</li> <li>Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addision Wesley,1998.</li> <li>Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1999</li> </ol> </li> <li>Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits" - Analysis and design, Tata McGraw- Hill - third edition.</li> <li>Douglas a. Pucknell and K.Eshragian, "Basic VLSI Design" 3rd Edition. PHI, 2000.</li> </ol>	<ol> <li>Recommended Books:         <ol> <li>Weste, Neil. H. E., &amp; Eshraghian, K. (1993). Principles of CMOS VLSI Design.Boston, New York: Addison Wesley Publication.</li> <li>Weste, Neil. H. E., &amp; Eshraghian, K. (1998). Principles of CMOS VLSI Design.Boston, New York: Addison Wesley Publication.</li> <li>Backer, Jacob., Harry, W. Li., &amp; Boyce, David. E. (1999). CMOS Circuit Design, Layout and Simulation.New Delhi: PHI Publication.</li> <li>Kang, Sung-Mo., &amp; Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and design. New Delhi: Tata McGraw-Hill Publication.</li> <li>Pucknell, Douglas. A.,&amp; Eshragian, K.(2000). Basic VLSI Design. New Delhi: PHI Publication.</li> <li>Suggested E-resources:             <li>Computation Structures - Part 1: Digital Circuits by Chris Terman https://www.edx.org/course/computati on-structures-part-1-digital-mitx-6-004-1x-0</li> <li>CMOS Digital VLSI Design by Prof. S. Dasgupta https://onlinecourses.nptel.ac.in/noc19_ee25/preview</li> </li></ol> </li> </ol>	

2.	VLSI 507L, Digital CMOS IC Design Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Understand of Cadence circuit design tool</li> <li>Understand procedure to analyse DC and Transient behaviour of circuits</li> <li>Understand procedure to analyse effects of device dimension variation on circuit performance</li> </ul>			Learning Outcomes added. No change in Experiment List
3.	VLSI 512, HDL Based System Design	<ul> <li>After completion of this course, students will be able to:</li> <li>Analysis and Design of Synchronous and Asynchronous and Asynchronous sequential machines</li> <li>Draw a FSM chart for digital designs and describe it using HDL.</li> <li>Detect and diagnosis different errors in digital circuit descriptions.</li> <li>Design the digital systems through VHDL and Verilog HDL.</li> </ul>	<ul> <li>Text and Reference Books:</li> <li>Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, McGraw Hill.</li> <li>J. Bhaskar, A VHDL Primer, Prentice Hall.</li> <li>R. Lipsett, C. Schaefer and C. Ussery, VHDL: Hardware Description and Design, Kluwer.</li> <li>J. Pick, VHDL: Techniques, Experiments and Coveats, McGraw Hill.</li> <li>D. E. Ott and J. J. Wilderotter, Designer's Guide to VHDL Synthesis, Kluwer.</li> <li>S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis",</li> </ul>	<ul> <li>Recommended Books: <ol> <li>Navabi, Z. (1997) VHDL: Analysis and Modelling of Digital Systems. New Delhi: McGraw Hill Publication.</li> <li>Bhaskar, J. (2015). A VHDL Primer. New Delhi: Pearson Publication.</li> <li>Lipsett, R., Schaefer, C.,&amp;Ussery, C. (1993) VHDL Hardware Description and Design. Menlo Park,California: Kluwer Academic Publishers.</li> <li>Pick, J. (1996) VHDL: Techniques, Experiments and Caveats. New Delhi: McGraw Hill Publication.</li> <li>Ott, Douglas E., &amp; Wilderotter, J. (1994). A Designer's Guide to VHDL Synthesis. Berlin: Springer.</li> <li>Palnitkar, S. (2003). Verilog HDL: A</li> </ol> </li> </ul>	No Change in course <u>contents.</u> <del>Deleted</del>
			Prentice Hall NJ, USA), 1996. 7. J. Bhaskar, "Verilog HDL Synthesis A Practical Primer", Star Galaxy	<ul> <li>Guide to Digital Design and Synthesis. New Delhi: PHI Publication.</li> <li>7. Smith, M.J.S. (1997). Application-</li> </ul>	

		<ul> <li>Publishing,(Allentown, PA) 1998.</li> <li>8. M.J.S. Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Longman Inc., 1997</li> </ul>	Specific Integrated Circuits.Boston, New York: Addison Wesley Publication.           Suggested E-resource:           1. Hardware Modeling using Verilog by Prof. Indranil Sengupta, Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur https://nptel.ac.in/courses/106105165/ 1	
4. VLSI 512L, HDL Based System Design Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>describe the IEEE Standard 1076 Hardware Description Language (VHDL)</li> <li>Model complex digital systems at several levels of abstractions; behavioral and structural, synthesis and rapid system prototyping.</li> <li>Develop and simulate register-level models of hierarchical digital systems</li> <li>Develop a formal test bench from informal system requirements</li> </ul>	This lab targets to develop an understanding of VLSI design using HDL languages among the students. Different objectives are given to the different group of students to develop a design using Hardware description languages and simulate it using EDA tools.	<ol> <li>Design all gates using VHDL, and verify functionality through simulation outcomes</li> <li>Write VHDL program for Half adder circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for Full adder circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for Multiplexer circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for Demultiplexer circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for Demultiplexer circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for encoder circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for decoder circuit, and verify functionality through simulation outcomes</li> <li>Write VHDL program for D Flip Flop, and verify functionality through simulation outcomes</li> <li>Write VHDL program for T Flip Flop, and verify functionality through simulation outcomes</li> <li>Write VHDL program for T Flip Flop, and verify functionality through simulation outcomes</li> </ol>	Learning Outcomes added <del>Deleted</del> Added

			<ul> <li>10. Write VHDL program for SR Flip Flop, and verify functionality through simulation outcomes</li> <li>11. Write VHDL program for JK Flip Flop, and verify functionality through simulation outcomes</li> <li>12. Write VHDL program for modulo 8 up Asynchronous counter circuit, and verify functionality through simulation outcomes</li> <li>13. Write VHDL program for modulo 8 down Asynchronous counter circuit, and verify functionality through simulation outcomes</li> <li>14. Write VHDL program for modulo 8 up synchronous counter circuit, and verify functionality through simulation outcomes</li> <li>15. Write VHDL program for modulo 8 down synchronous counter circuit, and verify functionality through simulation outcomes</li> <li>15. Write VHDL program for modulo 8 down synchronous counter circuit, and verify functionality through simulation outcomes</li> <li>16. Write VHDL program for shift and add multiplier circuit, and verify functionality through simulation outcomes</li> <li>17. Write VHDL program for shift and add multiplier circuit, and verify functionality through simulation outcomes</li> <li>18. Write VHDL program for parallel adder circuit, and verify functionality through simulation outcomes</li> <li>19. Write VHDL program for sequence detector circuit, and verify functionality through simulation outcomes</li> <li>20. Write VHDL program for serial adder</li> </ul>	
5.	VLSI 516,	After completion of this	circuit, and verify functionality through simulation outcomes	No Change
	IC	course, students will be able		in course

	Fabrication	to:			contents.
	Technology	<ul> <li>Understand thin film deposition and vacuum evaporation process.</li> <li>Differentiate dry and wet oxidation process and printing methods.</li> <li>Perform measurement techniques for extracting electrical properties of devices.</li> <li>Understand diffusion and ion implantation process.</li> </ul>	<ol> <li>Text Book:         <ol> <li>S. M. Sze, VLSI Technology, McGraw Hill.</li> </ol> </li> <li>Reference Books:         <ol> <li>S. K. Gandhi, The Theory and Practice of Microelectronics, John Wiley.</li> <li>D. Nagchoudhuri. Microelectronics technology, Pearson.</li> <li>C. Y. Yang and S. M. Sze, VLSI Technology, Tata McGraw Hill.</li> </ol> </li> <li>S. M. Sze, Semiconductor Technology:         <ol> <li>M. Sze, Semiconductor Technology.</li> </ol> </li> </ol>	<ul> <li>Recommended Books:</li> <li>Sze, Simon. (2017). VLSI Technology. New Delhi: McGraw Hill Publication</li> <li>Gandhi, S. K. (1994). The Theory and Practice of Microelectronics. New Delhi: John Wiley Publication.</li> <li>Nagchoudhuri, D. (2002). Microelectronics technology. New Delhi: Pearson Publication.</li> <li>Chang, C. Y.,&amp; Sze, Simon. (1996). ULSI Technology. Singapore, Tata McGraw Hill Publication.</li> <li>Suggested E-resources:</li> <li>Introduction to IC fabricationby Prof. Hardik J Pandya S, Department of Electronic Systems Engineering, IISC, Bangalore. https://nptel.ac.in/courses/108108111/3.</li> <li>MOSFET Fabrication for IC by Dr. Nandita Dasgupta Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106093/3.</li> </ul>	Deleted
6.	VLSI 516L, IC Fabrication Technology Lab	<ul> <li>After completion of this laboratory course, students will be able to:</li> <li>Understand fabrication process flow</li> <li>Understand Silvaco TCAD tool.</li> <li>understand the procedure to modeling devises and analysing their characteristics</li> </ul>	<ol> <li>Silvaco</li> <li>Model the fabrication process flow of NMOS with I/V characteristics curve</li> <li>Model the fabrication process flow of PMOS with I/V characteristics curve</li> <li>Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve.</li> <li>Model the fabrication process flow of pn junction diode.</li> </ol>	<ul> <li>All experiments will be performed on Silvaco TCAD Tool.</li> <li>1. Model the fabrication process flow of NMOS with I/V characteristics curve</li> <li>2. Model the fabrication process flow of PMOS with I/V characteristics curve</li> <li>3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve.</li> <li>4. Model the fabrication process flow of PN junction diode.</li> </ul>	Added
7.	Minor Project (Part-I)	After completion of this course, students will be able to:			Learning Outcomes Added and

		<ul> <li>Formulate the project objectives and deliverables.</li> <li>Estimate the physical resources required, and make plans to obtain the necessary resources.</li> <li>Develop plans with relevant people to achieve the project's goals.</li> </ul>			this course has no prescribed syllabus.
8.	VLSI 525, Solid State Device Modeling	After completion of this course, students will be able to: • Explain the carrier			No Change in course contents.
	and Simulation	<ul> <li>densities, charge transport, band diagrams and their relations to the device characteristics.</li> <li>Describe the SPICE device models and apply the basic governing model equations to analyze BJT and MOSFET.</li> <li>Explain and analyze the operation of optical, microwave and quantum effect devices.</li> </ul>	<ol> <li>Text Books:         <ol> <li>S. M. SZE "Semiconductor Devices Physics and Technology" 2nd Edition WILEY student edition</li> <li>Ben G. Streetman and Sanjay Kumar Banerjee "Solid State Electronics devices" Pearson Education</li> <li>Sung - MO kang, Yusuf Leblebice "CMOS Digital Integrated Circuits Analysis &amp; Design, Tata McGrawhill</li> <li>Sedra/Smith" Microelectronics Circuits" forth edition OXFORD</li> <li><u>PSpice Manuals</u></li> </ol> </li> </ol>	<ul> <li>Recommended Books:</li> <li>Sze, S. M. (1985). Semiconductor Devices Physics and Technology. New York: Wiley Publication.</li> <li>Streetman, Ben. G.,&amp;Banerjee, Sanjay.Kumar.(2019). Solid State Electronics Devices. New Delhi: Pearson Publication.</li> <li>Kang, Sung-Mo., &amp; Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and Design. New Delhi: Tata McGraw-Hill Publication.</li> <li>Smith, Sedra. (2013). Microelectronics Circuits. New Delhi: Oxford University Press.</li> <li>Suggested E-resources:</li> <li>Solid State Devicesby Dr. S. Karmalkar, Department of Electronics &amp; Communication Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106091/</li> <li>Semiconductor Devicesby Prof. Dr. G.S. Visweswaran, Department of</li> </ul>	Deleted

Image: Suggested E-resource:       1. Analog Integrated Circuit Design by Prof. Nagendra Krishnapura, Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106030/         10.       VLSI       After completion of this       1. Simulate simple current mirror and       1. Design NMOS simple current mirror for		Signal IC Design	<ul> <li>Design basic cells like current sources, current mirrors and reference circuit.</li> <li>Explain stability issues and design compensated IC operational amplifiers.</li> <li>Design and analyze comparators and sample-and-hold circuits.</li> <li>Illustrate the operation of commonly used data conversion circuits.</li> </ul>	<ol> <li>Text Books:         <ol> <li>Phillip E. Allen and Douglas R. Holberg, CMOS analog circuit design, oxford university press, 2nd edition.</li> <li>D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997.</li> <li>R.J.Baker, CMOS Mixed Signal Circuit Design, Wiley/IEEE,2002</li> </ol> </li> <li>Reference Books:         <ol> <li>R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley, 1986.</li> <li>Paul B Gray and Robert G Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley.</li> <li>R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog &amp; Digital Circuits, MGraw Hill, 1990</li> </ol> </li> </ol>	<ol> <li>Analog Integrated Circuit Design by Prof. Nagendra Krishnapura, Department of Electrical Engineering, Indian Institute of Technology, Madras.</li> </ol>	contents.
Analog and         will be able to:         2.         Simulate CASCODE current mirror and study DC analysis. Compare the results at	10.	VLSI 503L,	After completion of this laboratory course, students	1. Simulate simple current mirror and determine small signal output resistance.		

Mixed Signal IC Design Lab	<ul> <li>Analyse and interpret the waveform, comparison of simulation results with the theoretical analysis.</li> <li>Ability to use the simulation software for performing the experiments.</li> <li>Ability to design and test various amplifier circuits, which meets the desired specifications.</li> </ul>	<ul> <li>determine small signal output resistance.</li> <li>3. Design differential amplifier and study its DC and transient response.</li> <li>4. Study of AC response and bandwidth calculation of differential amplifier.</li> <li>5. Study of AC and transient response of differential amplifier.</li> <li>6. Design Common Source (CS) amplifier and study its DC and Transient response.</li> <li>7. Study of frequency response of CS amplifier.</li> <li>8. Design source follower and study its DC and Transient and AC response.</li> <li>9. Design two stage Op Amp and study of its DC and Transient characteristics and determine Slew rate.</li> <li>10. AC characteristics, UGB and Phase Margin estimation of two stage Op Amp</li> </ul>	<ul> <li>two different channel lengths.</li> <li>Analyze AC characteristics of the simple current mirror and determine small signal output resistance. Comparison of small signal resistance at different channel lengths. Discuss the results.</li> <li>Draw the schematic of NMOS CASCODE current mirror for channel length of 1</li></ul>	Learning Outcomes Added Added
----------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------

				<ul> <li>voltage swing of CS amplifier. Comment on the results.</li> <li>12. Create a new cell view and build Common Drain (CD) Amplifier. Build CD amplifier test circuit using your CD amplifier. Set up and run simulations(AC, DC and Transient) on the CD amplifier test design.</li> <li>13. Determine the gain, bandwidth and voltage swing, output resistance of CS amplifier. Comment on the results.</li> <li>14. Build schematic capture of two stage operational amplifier (OP-AMP) using the previously created symbols of CS amplifier and CD amplifier. Thereafter Create a symbol for the OP-AMP.</li> <li>15. To build op-amp_test circuit using your op-amp. Set up and run simulations(AC, DC and Transient) of op-amp_test circuit.</li> <li>16. Determine voltage gain, slew rate, UGB and Phase Margin of two stage Op-Amp and compare with the design specifications. Comments on the results</li> </ul>	
11.	VLSI 504, ASIC Design	<ul><li>After completion of this course, students will be able to:</li><li>Analyze the concept of</li></ul>			No Change in course contents.
		<ul> <li>Analyze the concept of Full Custom ASIC and Semi-Custom ASIC, Cell Libraries, Data Logic Cells, Low-level Design Entry and Low Level Design Languages</li> <li>Explain ASIC I/O Cell : DC Output, AC Output, DC Input, AC Input, Clock Input, Power</li> </ul>	<ol> <li>Text Books:         <ol> <li>Mohammed Ismail, Terri Fiez,</li></ol></li></ol>	<ol> <li>Text Books:</li> <li>Smith M. J. S. (2006). Application Specific Integrated Circuits USA:Pearson Publication</li> <li>Ismail, Mohammed. &amp;Terri, Fiez. (1994). Analog VLSI signal and Information processing. New York: McGraw-Hill Publication.</li> <li>Wolf,Wayne. (2005). FPGA based System Design. New Delhi: PHI Publication.</li> <li>Brown, Andrew. (1991). VLSI Circuits</li> </ol>	Deleted

		<ul> <li>Input and PLA Tools.</li> <li>Describe Programmable ASIC Logic Cell, FPGA Logic Cells, and Programmable Interconnects to Solve the RC delay of routing resources for each ASIC.</li> </ul>	<ol> <li>Malcom R.Haskard, Lan C.May, "Analog VLSI Design - NMOS and CMOS" Prentice Hall, 1998.</li> <li>Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", Mc Graw Hill International Company, 1990.</li> <li>Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal processing", Prentice Hall, 1994.</li> <li>Andrew Brown, - "VLSI Circuits and Systems in Silicon", McGraw Hill, 1994.</li> <li>Andrew Brown, - "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991.</li> <li>S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays"- Kluwer Academic Publishers, 1992.</li> <li>Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing ", Prentice Hall, 1994.</li> <li>Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing ", Prentice Hall, 1994.</li> <li>S. Y. Kung, H. J. Whilo House, T. Kailath, "YLSI and Modern Signal Processing", Prentice Hall, 1985.</li> </ol>	
12.	VLSI 505, CAD for IC Design	After completion of this course, students will be able to:		No Change in course contents.
		<ul> <li>Student will understand Basic concept of describing VLSI design problems</li> <li>Student will understand graph</li> </ul>	<ul> <li>Text Books:</li> <li>S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley &amp; Sons, 2002.</li> <li>N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar</li> <li>Recommended Books:</li> <li>Gerez, S.H. (2002). Algorithms for VLSI Design Automation. New York: John Wiley Publication.</li> <li>Sherwani, N.A. (2002). Algorithms for VLSI Physical Design Automation. Boston, New York: Kluwar Academic</li> </ul>	<del>Deleted</del>

solving CAD related problems.
----------------------------------

				<ul> <li>Flip Flop</li> <li>11. NETLIST generation and analysis of Four bit Binary Counter</li> <li>12. NETLIST generation and analysis of Serial in Serial Out Shift Register</li> <li>13. NETLIST generation and analysis of Parallel in Serial Out Shift Register</li> <li>14. NETLIST generation and analysis of Serial in Parallel Out Shift Register</li> <li>15. NETLIST generation and analysis of Ripple Carry Adder</li> </ul>	
14.	Minor Project (Part-II)	<ul> <li>After completion of this course, students will be able to:</li> <li>Identify, formulate, and solve VLSI design problems using advanced level manufacturing and design techniques</li> <li>Apply advanced level knowledge, techniques, skills and modern tools of VLSI Design.</li> <li>Understand the complexities and design methodologies of current and advanced VLSI design technologies.</li> </ul>			Learning Outcomes Added and this course has no prescribed syllabus.
15.	VLSI 524, RF IC Design	After completion of this course, students will be able to:	_	_	No Change in course contents.
		<ul> <li>Understand basics concepts of radio frequency integrated systems and their performance parameters.</li> <li>Identify design trade-off</li> </ul>	Texts/Reference Books:         1.       B.Razavi, RF Microelectronics, Prentice-Hall PTR,1998         2.       T.H.Lee, The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 1998.	<ul> <li>Recommended Books:</li> <li>1. Razavi, B. (2011). <i>RF Microelectronics</i>. New Delhi: PHI Publication.</li> <li>2. Lee, T.H. (1998). <i>The Design of CMOS Radio-Frequency Integrated Circuits</i>. New York: Cambridge University Press.</li> <li>3. Baker, R.Jacob., Li, H.W., &amp; Boyce, D.E.</li> </ul>	

	(Part-II)	<ul> <li>course, students will be able to:</li> <li>Demonstrate knowledge of contemporary issues in the area of VLSI design.</li> <li>Manage projects related to VLSI design in multidisciplinary environments.</li> <li>Understanding the Functioning with multidisciplinary teams, working cooperatively, respectfully, creatively and responsibly as a member of a team.</li> </ul>			Outcomes Added and this course has no prescribed syllabus.
18.	CS 429, Pattern	After completion of this course, students will be able			No Change in course
	Recognition	to:	—	—	contents.
	and Image	• Explain the concept of	Text Books:	Recommended Books:	
	Processing	<ul> <li>Image Processing, Mathematical preliminary of Image Processing and various Image Representations.</li> <li>Analyze the methods of Image Enhancement and Image Filtering,</li> <li>Identify different image analysis and pattern recognition methods and apply them in problem areas also develop an abundance of Image Processing applications that can serve mankind with the available and</li> </ul>	<ol> <li>Jain A. K., Fundamentals of digital image Processing, PHI Publications.</li> <li>Gozalez Rafel, Woods Richard, Digital Image Processing, Pearson Education.</li> <li>Reference Books:         <ol> <li>Rosenfield, A and Kak A. C, Picture Processing, Academic Press N.Y. 1982</li> <li>Pratt, W. K., Digital Image Processing, John Willey and sons, New York.</li> <li>Duda R., Hart Peter, Stork D., Pattern Classification, Willey Interscience Publication.</li> </ol> </li> <li>Manahem Friedman, Abraham Kandel, Introduction to Pattern Recognition, World Scientific.</li> </ol>	<ol> <li>Jain A. K. (2015). Fundamentals of Digital Iimage Processing. New Delhi: PHI Publication.</li> <li>Rafel, Gozalez., &amp; Richard, Woods. (2016). Digital Image Processing. New Delhi: Pearson Publication.</li> <li>Rosenfield, A., &amp; Kak, A. C.(1982). Picture Processing. Orlando, Florida: Academic Press.</li> <li>Pratt, W. K. (2007). Digital Image Processing.Hoboken, New Jersey: John Willey and sons, Publication.</li> <li>Friedman, Manahem., &amp; Kandel, Abraham.(1999). Introduction to Pattern Recognition. Singapore: World Scientific.</li> <li>Charniak, E., &amp; Mcdermott, D. (1985). Introduction to Artificial Intelligence.</li> </ol>	

		anticipated technology in the near future.	<ol> <li>E. Charniak, D. Mcdermott, Introduction to Artificial Intelligence, Addison Wesley.</li> </ol>	Boston, New York: Addison Wesley. Suggested E-resources: 1. Pattern Recognition and Application by Prof. P. K. Biswas, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105101/	
19	CS 431, Real Time Systems	<ul> <li>After completion of this course, students will be able to:</li> <li>To present the mathematical model of the system</li> <li>Analyse multi task scheduling algorithms</li> <li>To explain Reliability Evaluation techniques and Real time communication algorithms</li> </ul>	<ul> <li>Text Book:</li> <li>1. Krishna C.M, Shen K.G, Real Time Systems, Mc. Graw Hill,</li> <li>References Books:</li> <li>1. Lawrence P.D, Mauch, K, Real Time Microcomputer Design: An Introduction, Mc. Graw Hill,</li> <li>2. Joseph Mathai, Real Time systems : Specification, verification &amp; analysis ,Prentice Hall Inc.</li> <li>3 Bennet Stuart, Real Time computer control,Prentice Hall Inc.,</li> <li>4. Young S. J., Real time languages, John willey &amp; sons.</li> </ul>	<ul> <li>Recommended Books:</li> <li>Krishna, C.M., &amp; Shen, K.G. (2008). Real Time Systems. New Delhi: McGraw Hill Publication.</li> <li>Lawrence, P.D., &amp; Mauch, K.(1998). Real Time Microcomputer Design: An Introduction. New York: McGraw Hill Publication.</li> <li>Mathai, Joseph.(1996). Real Time systems: Specification, Verification &amp; Analysis. London, PHI Publication.</li> <li>Stuart, Bennet.(1994). Real Time Computer Control. ,New Jersey: PHI Publication.</li> </ul>	No Change in course contents. <del>Deleted</del>
20	ELE 502, Discrete Time Signal Processing	<ul> <li>After completion of this course, students will be able to:</li> <li>Apply discrete-time signal processing techniques analysis to perform various signal operations.</li> <li>Apply the principles of Fourier transform</li> </ul>	Text Books: 1. J.G.Proakis and D.G.Manolakis, Digital Signal Processing : Principles, Algorithms and Applications, Third Edition, PH, 1996. 2. I.J.Nagarath, S.N.Sharan, R.Ranjan	<ul> <li>Recommended Books:</li> <li>Proakis, J.G.&amp; Manolakis, D.G. (2014). Digital Signal Processing: Principles, Algorithms and Applications.New Jersey: Pearson Publication.</li> <li>Nagarath, I.J.,Sharan, S.N.,Ranjan, R.,&amp; Kumar, S. (2009). Signals and Systems,</li> </ul>	No Change in course contents. <del>Deleted</del>

21	VLSI 501,	<ul> <li>analysis to describe the frequency, and characteristics of discrete-time signals and systems.</li> <li>Understand the design techniques of various digital and analog filters.</li> </ul>	<ul> <li>and S.Kumar, Signals and Systems, TMH, 2001.</li> <li>3. A.V.Oppenheim, R.W.Schafer and J.R.Buck, Discrete-Time Signal Processing, Second Edition, PH, 1998.</li> <li>4. S.K.Mitra, Digital signal processing : A computer Based Approach, Second Edition, MH, 2000.</li> </ul>	<ul> <li>New Delhi: TMH Publication.</li> <li>Oppenheim, A.V., Schafer, R.W., &amp; Buck, J.R. (1998). <i>Discrete-Time Signal Processing</i>. New Jersey: PHI Publication.</li> <li>Suggested E-resources:</li> <li>Discrete Time Signal Processing by Prof. Mrityunjoy Chakraborty, Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105134/.</li> <li>Digital Signal Processing by Prof. S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/.</li> </ul>	No Change
	Advanced Digital Signals Processing	<ul> <li>Anter completion of this course, students will be able to:</li> <li>Modelling of random filter and identification of different parameters.</li> <li>Realization of Kalman filters and concept of spatial smoothing.</li> <li>Adaptive implementation of wiener filter and Adaptive noise cancelling.</li> </ul>	Text Books:         1.       S.J.Orfanids, Optimum Signal Processing: An Introduction, Second edition, MacMillian/MH, 1988. (Out of Print)         2.       J.G.Proakis, C.M.Rader, F.Ling and C.I.Nikias, Advanced Digital Signal Processing,MacMillian,1992.(Out of Print) <b>References Books:</b> 1.         1.       D.G.Manolakis, V.Ingle and S.Kogon, Statieally and Adaptive Signal Processing,MH, 2000.         2.       J.G.Proakis, C.M.Rader, F.Ling, M.Moonen, I.K.Proudler and C.I.Nikias, Algorithms for Statistical	<ul> <li>Recommended Books:</li> <li>1. Orfanids, S.J. (1988). Optimum Signal Processing: An Introduction. New York: Collier Macmillan Publication.</li> <li>Suggested E-resource:</li> <li>1. State space Models by Professor Anna Mikusheva Paul Schrimpf. https://ocw.mit.edu/courses//14/MI T14_384F13_lec21.pdf</li> <li>2. Adaptive signal Processing by Prof. Mrityunjoy Chakraborty, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105075/5</li> </ul>	in course contents. Deleted

22	VLSI 502, Advanced Digital System Design	After completion of this course, students will be able to: • Formulate and solve problems in Digital Systems design. • Knowledge about the properties of symmetric networks and apply threshold logic on digital circuits. • Analyze digital system design using PLD.	<ul> <li>Signal Processing, PH/Pearson, 2002.</li> <li>J.V.Candy, Signal Processing, MH,1986.(Out of Print)</li> <li>B.Mulgrew and C.F.Cowan,Adaptive Filters and Equalizers, Kulwer,1998.(Out of print)</li> <li>Text Books: <ol> <li>Brian Holdworth &amp; Clive Wood, "Digital logic Design" - Elsevier-2005.</li> <li>Nripendra N. Biswas, "Logic Design theory, "PHI, 2005.</li> <li>ZVI Kohavi, "Switching and Finite Automata theory", second edition, Tata Mcgraw Hill, 2001.</li> <li>William I. Fletcher, "An Engineering Approach to Digital Design, PHI, 2003.</li> <li>Randall L. Geiger, Phillip E. Allen, Noel k strader, "VLSI Design Techniques for Analog Digital circuits, "McGraw hill, 1990.</li> <li>John F. Warkerly, "Digital Design Principles &amp; practices, III editions, Pearson, education, 2005.</li> </ol> </li> </ul>	<ul> <li>Recommended Books: <ol> <li>Biswas, Nripendra.N. (2001) Logic Design theory. New Delhi: PHI Publication.</li> <li>Kohavi, ZVI. (2010) Switching and Finite Automata theory. New York: Cambridge University Press.</li> <li>Fletcher, William. I. (1997) An Engineering Approach to Digital Design. New Delhi: PHI Publication.</li> <li>Geiger, Randall. L., Phillip E. Allen., &amp; Strader, Noel. R. (1989) VLSI Design Techniques for Analog and Digital Circuits. Boston, Massachusetts: McGraw Hill Publication.</li> </ol> <li>Suggested E-resources: <ol> <li>Programmable logic devices Prof. D. Roychoudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/26.</li> <li>Digital Systems Design with PLDs and FPGAs Kuruvilla Varghese Department of Electronic Systems Engineering Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/117108040/.</li> </ol> </li> </li></ul>	No Change in course contents. Deleted
23	VLSI 506, Design of Semiconduc	After completion of this course, students will be able to:		_	No Change in course contents.

	tor Memory	<ul> <li>Know about architecture of semiconductor memories and methodologies adopted in data storage.</li> <li>Analyze the difference in volatile and non-volatile memory, and their building blocks.</li> <li>Know memory fault tolerance and testing methodology.</li> </ul>		<ul> <li>Recommended Books: <ol> <li>Betty, Prince. (1996). Semiconductor Memories: A Handbook of Design, Manufacture and Application. New York: Willey Publication.</li> </ol> </li> <li>Suggested E-resources: <ol> <li>Design of memory circuits by Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/31.</li> </ol> </li> </ul>	Added
24	VLSI 510, Embedded System	After completion of this course, students will be able to:			No Change in course contents.
	Design	<ul> <li>Explain the challenges in the design of embedded system</li> <li>Describe the Hardware and Software Tools for Embedded System</li> <li>Describe the Features of OS and language for Embedded System</li> </ul>	<ol> <li>Text Books:         <ol> <li>W. Wolf, Computers as Components: Principles of Embedded Computer System Design, Morgan Kaufmann, 2000.</li> <li>F.Vahid and T.D Givargis, Embedded System Design : A unified Hardware/ software Introduction ,Wiley.2002.</li> </ol> </li> <li>Reference Books:         <ol> <li>S.Health, Embedded System Design, Second Edition Butterworth- Heinemann, 2002</li> <li>D. Patterson and J. Hennessy .Computer Organization and Design; The Hardware/software Interface, Second Edition ,Morgan Kauffman ,1997</li> </ol> </li> <li>AS.Berger, Embedded System Design · An Introduction to Processes ,Tools         </li></ol>	<ul> <li>Recommended Books:</li> <li>1. Wolf, M. (2012). Computers as components: principles of embedded computing system design. Elsevier.</li> <li>2. Vahid, F., &amp; Givargis, T.D.(2002) Embedded System Design:A unified Hardware/ software Introduction. New Jersey: Wiley Publication.</li> <li>3. Gannsle, J. (2008) The Art of Designing Embedded System. New Delhi: Newnes Publication.</li> <li>4. Staunstrup, J.,&amp; Wolf,W. (1997) Hardware /software Codesign: Principles and Practice. Boston, Massachusetts: Springer Publications.</li> <li>5. Gajski, D.D., Vahid, F., Narayan, S., &amp; Gong, j. (2007). Specification design of Embedded System. New Delhi: Pearson Education India.</li> <li>Suggested E-resources:</li> <li>1. Embedded Systems - Shape The World: Microcontroller Input/Output by The University of Texas at Austin</li> </ul>	Deleted

			<ul> <li>and technique. CMP Books, 2001.</li> <li>J. Gannsle, The art of Designing Embedded System ,Newnes. 1999.</li> <li>L. Edwards, Embedded System Design on a Shestring ,Newnes. 2003</li> <li>J. Catsoulis. Designing embedded Hardware, ORA,2002</li> <li>J. J. Labrosse, Embedded System Building Blocks .CMP Books, 1999.</li> <li>J. Staunstrup and W.Wolf, Hardware /software Codesign: Peinciples and Practice, Kluwer 1997.</li> <li>D.D.Gajski.F.Vahid ,S.Narayan and j.gong ,specification and Design of Embedded System, 1994.</li> <li>G. G.de Micheli, R.Ernst and W.Wolf ,Reading in Hareware/software Codesign, Morgan Kaufmann .2001</li> <li>(UTAustinX), https://www.edx.org/course/embedded- systems-shape-the-world-microcontroller- inputoutput</li> <li>Embedded System by Georgia Tech as CS, 8803 https://in.udacity.com/course/embedded- systems-ud169</li> <li>Embedded System Design with ARM by Dr. Kamalika Datta Indian Institute of Technology, Kharagpur, https://onlinecourses.nptel.ac.in/noc19_cs 22/preview</li> </ul>	
25	VLSI 511, Fault Tolerance in VLSI	<ul> <li>After completion of this course, students will be able to:</li> <li>Diagnose and measure different type of Faults.</li> <li>Explain the detection, correction techniques and fault-tolerant networks</li> <li>Analyze fault tolerance strategies and enhance capabilities about applications of fault tolerant designs in arithmetic units and systems.</li> </ul>	Reference Books:       Recommended Books:         1. Victor P. Nelson and Bill D. Carroll, Tutorial: Fault-Tolerant Computing, IEEE Computer Society Press, 1987, ISBN: 0-8186-06770       I. Nelson, Victor. P.,&Carroll, Bill. D. (1987). Tutorial: Fault-Tolerant Computer System Design, Prentice- Hall, 1996.         2. D.K. Pradhan (ed.), Fault Tolerant Computer System Design, Prentice- Hall, 1996.       I. Nelson, Victor. P.,&Carroll, Bill. D. (1987). Tutorial: Fault-Tolerant Computer System Design, New Jersey: PHI Publication.         3. D.P. Siewiorek and R.S. Swarz, A.K. Peters, Reliable Computer Systems: Design and Evaluation, 1998.       Soton, Massachusetts: Addison-Wesley.	No Change in course contents. <del>Deleted</del>

		• Explain the basic mechanisms of fault- tolerance methods and fault tolerant computer systems.	<ol> <li>B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley, 1989</li> </ol>	Suggested E-resources: 1. VLSI Design Verification and Test by Prof. Jatindra Kumar Deka and Dr. Santosh Biswas, Department of CSE, IIT Guwahati.https://nptel.ac.in/courses/106 103016/	
26	VLSI 513, High Level System Design and Modeling	<ul> <li>After completion of this course, students will be able to:</li> <li>Understand describing a system</li> <li>Understand about information system and models</li> <li>Understand system analysis and system design</li> </ul>	<ul> <li>Books:-</li> <li>1. Embedded System Design- Modeling, Synthesis, Verification by Dainel D.Gajaski, Samer Abdi Springer.</li> <li>2. Specification and Design of Embedded Systems by Daniel D. Gajski, PTR Prentice Hall Englewood New Jersey</li> </ul>	<ul> <li>Recommended Books:</li> <li>1. Dainel D.Gajaski., &amp; Abdi, Samer. (2009). Embedded System Design-Modeling, Synthesis. New York: Springer Publication.</li> <li>2. Daniel D. Gajski. (1994). Specification and Design of Embedded Systems. New Jersey: PHI Publication.</li> </ul>	No Change in course contents.
27	VLSI 514, High Power Semiconduc tor Devices	After completion of this course, students will be able to: • Get knowledge of power semiconductor devices under extreme operation conditions like high voltage, high current and high temperature which are encountered under typical power electronic environment. • Understand knowledge developed from this, will help in designing power devices with desired specifications. • Get knowledge of VMOS, CMOS, DMOS Devices.	<ul> <li>Texts/References Book:</li> <li>S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 1981</li> </ul>	<ul> <li>Recommended Books:</li> <li>Sze, S.M. (1981). Physics of Semiconductor Devices. New York: Wiley Publication.</li> <li>Suggested E-resources:</li> <li>Basic Device models by Prof. Roshan Bhosh Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105084/.</li> <li>Semiconductor Device Modeling by Prof. Shreepad Karmalkar Department of Electrical Engineering Indian Institute of Technology- Madras, https://nptel.ac.in/courses/117106033/.</li> </ul>	No Change in course contents.

28	VLSI 515, High Speed VLSI Design	After completion of this course, students will be able to: • Design Clocked logic styles non clocked logic styles. • Understand knowledge of circuit designing margining. • Get knowledge of Clock generation and distribution.	<ul> <li>Reference Books:</li> <li>1. Kerry Bernstein &amp; et. al., High Speed CMOS Design Styles, Kluwer, 1999.</li> <li>2. Evan Sutherland, Bob stroll, David Harris, Logical Efforts, Designing Fast CMOS Circuits, Kluwer, 1999.</li> <li>3. David Harris, Skew Tolerant Domino Design.</li> </ul>	<ul> <li>Recommended Books:</li> <li>Bernstein, Kerry. (1999). High Speed CMOS Design Styles. New Jersey: Kluwer Academic Publishers.</li> <li>Sutherland, Evan., Stroll,Bob.,&amp; Harris, David.(1999) Logical Efforts, Designing Fast CMOS Circuits. Boston, Massachusetts: Kluwer Academic Publishers.</li> <li>Harris, David.(2000). Skew Tolerant Domino Design. New Delhi: Elsevier.</li> <li>Suggested E-resources:</li> <li>High Speed Devices and Circuits by Prof. K. N. Bhat Department of Electrical Engineering Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106089/</li> <li>CMOS VLSI Circuit by Prof. A. N. Chandorkar Department of Electrical Engineering Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101004/</li> </ul>	No Change in course contents.
29	VLSI 517, Integrated Electronic System Design	<ul> <li>After completion of this course, students will be able to:</li> <li>Understanding, gathering and processing of electronics system through basic Motherboard, PCB and IC technologies.</li> <li>Design their own circuits based on the knowledge learnt from class.</li> <li>Get the opportunity to become proficient in using</li> </ul>	Text Books:     M.J.Dally and J.W.Poulton, Digital     System Engineering, CUP, 1998.     N.Storey, Electronics: A System     Approach, AW/Pearson, 1998/2000.     S.D.Burd, System Architectures,     Thomson, 2001.     Reference Books:	<ul> <li>Text Books:</li> <li>1. Burd, S.D. (2001). System Architectures. New Delhi: Thomson learning Publication.</li> <li>2. Cady, F.M. (2009) Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering. New York: Oxford University Press.</li> <li>3. Predko, M. (1998) Handbook of Microcontrollers. New York: McGraw-</li> </ul>	No Change in course contents. <del>Deleted</del>

30 VLSI 518,	the 8051 microcontroller for circuit modeling and analysis.	<ol> <li>G.Lipovski, Introduction to Micro- Controllers (MC 68HC12), AP, 1999.</li> <li>G.Lipovski, Single and Multi-Chip Micro-Controller Interfacing (MC 68HC12), AP, 1999.</li> <li>F.M.Cady, Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering, OUP, 1997.</li> <li>M.Predko, Handbook of Microcontrollers, MH, 1998.</li> </ol>	<ul> <li>Hill.</li> <li>Suggested E-resources:</li> <li>1. Microprocessors and Microcontrollers by Prof. Santanu Chattopadhyay Department of E &amp; EC Engineering Indian Institute of Technology, Kharagpur.</li> <li>https://nptel.ac.in/courses/108105102/23</li> <li>2. Principles of Communication Systems - Part II by Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104098/7</li> </ul>	No Change
30 VLSI 518, Introductio n to MEMS	<ul> <li>After completion of this course, students will be able to:</li> <li>Be familiar with the important concepts applicable to MEMS, their fabrication.</li> <li>Be fluent with the design, analysis and testing of MEMS.</li> <li>Get knowledge of micro fabrication, micro actuators and surface micromachining and applications.</li> </ul>	<ol> <li>Text &amp; References Books:</li> <li>Stephen D. Senturia, "Microsystem Design" by, Kluwer Academic Publishers, 2001.</li> <li>Marc Madou, "Fundamentals of Microfabrication" by, CRC Press, 1997.</li> <li>Gregory Kovacs, "Micromachined Transducers Sourcebook" WCB McGraw-Hill, Boston, 1998.</li> <li>MH. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes" by Elsevier, New York, 2000.</li> </ol>	<ul> <li>Recommended Books:</li> <li>Senturia, Stephen. D. (2001) Microsystem Design. Norwell, Massachusetts:Kluwer Academic Publishers.</li> <li>Madou, Marc.(1997). Fundamentals of Microfabrication. California: CRC Press.</li> <li>Kovacs, Gregory. (1998) Micromachined Transducers Sourcebook. Boston, Massachusetts: WCB McGraw- Hill Publication.</li> <li>Bao, MH. (2000). Micromechanical Transducers: Pressure Sensors, Accelerometers, and Gyroscopes. New York: Elsevier Publication</li> <li>Suggested E-resources:</li> <li>MEMS and Microsystems Prof. Santiram Kal Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105082/4</li> </ul>	No Change in course contents.

31	VLSI 519, Low Power VLSI Design	After completion of this course, students will be able to: • Learn the design techniques low voltage and low power CMOS circuits for various applications. • Design and implementation of various design structures of flip flop for low power applications. • Design the different types of memory circuits and various CMOS static and dynamic logic circuits • Understand the mechanisms of power estimation and datapath width adjustment	<ul> <li>Text and Reference Books:</li> <li>M. Pedramand J. Rabaey (Editors), Power Aware Design Methodologies, Kluwer Academic Publishers, Boston, 2002</li> <li>Sung - Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated circuits- Analysis and Design", TMH, 3rd Edition.</li> </ul>	<ol> <li>Microsensors by Prof. G.K. Ananthasuresh, Department of Mechanical Engineering Indian Institute of Science Bangalore. https://nptel.ac.in/courses/112108092/mo dule1/lec03.pdf</li> <li>Recommended Books:         <ol> <li>Roy, Kaushik. &amp; Prasad, Sharat. C. (2009). Low Power CMOS VLSI Circuit Design. Dublin: Willey Publications.</li> <li>Pal, Ajit. (2015). Low Power VLSI Circuits and Systems. New Delhi: Springer Publications.</li> <li>Pedramand, M.,&amp; Rabaey, J.M.(2002) Power Aware Design Methodologies. Boston, Massachusetts: Kluwer Academic Publishers.</li> <li>Kang, Sung – Mo., &amp; Leblebici, Yusuf. (2002). CMOS Digital Integrated circuits- Analysis and Design. New Delhi: TMH Publications.</li> </ol> </li> <li>Suggested E-Resources:         <ol> <li>Low Power VLSI Circuits and Systems by Prof. Ajit Pal, Department of Computer Science and Engineering, IIT Kharagpur. https://nptel.ac.in/syllabus/106105034/</li> </ol> </li> </ol>	No Change in course contents. Added
32	VLSI 520, Nanoelectro nics	After completion of this course, students will be able to:	_	_	No Change in course contents.
		• Get knowledge in	Reference Books:	Recommended Books:	Deleted
		<ul><li>electronics has been driven by miniaturization.</li><li>Understand CMOS and MOSFET scaling,</li></ul>	<ol> <li>Introduction to Nanotechnology, C.P. Poole Jr., F.J. Owens, Wiley (2003).</li> <li>Nanoelectronics and Information Technology (Advanced Electronic</li> </ol>	<ol> <li>Poole , C.P., &amp; Owens, F.J. (2003). Introduction to Nanotechnology. New York: Wiley Publications.</li> <li>Waser, R. (Ed.). (2012). Nanoelectronics</li> </ol>	

	• Understand the electronic properties of molecules, carbon nanotubes and crystals.	Materials and Novel Devices), Waser Ranier, Wiley-VCH (2003) 3. Nanosystems, K.E. Drexler, Wiley (1992) 4. The Physics of Low-Dimensional Semiconductors, John H. Davies, Cambridge University Press, 1998 5. Research Papers	<ul> <li>and information technology. John Wiley &amp; Sons.</li> <li>Drexler, K.E. (1992). Nanosystems. New York: Wiley Publications.</li> <li>Davies, John. H. (1998). The Physics of Low-Dimensional Semiconductors. New York: Cambridge University Press.</li> <li>Suggested E-resources:</li> <li>Nanostructures and Nanomaterials: Characterization and Properties by Prof. Anandh Subramaniam and Prof. Kantesh Balani Department of Materials Science &amp; Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/118104008/</li> <li>Nanoelectronics: Devices and Materials by Prof. Navakanta Bhat Centre for Nano Science and Engineering Indian Institute of Science, Bangalore. http://textofvideo.nptel.ac.in/117108047/1 ec1.pdf</li> </ul>	
33 VLSI 523, Representat ion and Analysis of Random Signals	After completion of this course, students will be able to: • understand the theory and application of probability, random variables and random processes • understand to study and analyze analytical expression	<ul> <li>Text Book:</li> <li>Michel .K Ochi, Applied Probability and Stochastic Processes in Engineering and Physical Sciences, Wiley, 1992.</li> <li>Reference Books:</li> <li>A. Papoulis, Probability, Random Variables and Stochastic Processes, MH, 1985.</li> <li>K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Application, PH, 1982.</li> </ul>	<ul> <li>Recommended Books:</li> <li>1. Ochi, Michel .K. (1990) Applied Probability and Stochastic Processes in Engineering and Physical Sciences. New York: Wiley Publications.</li> <li>2. Papoulis, A. (2002). Probability, Random Variables and Stochastic Processes. New York: TMH Publications.</li> <li>3. 2. Trivedi ,K.S. (2001). Probability and Statistics with Reliability, Queuing and Computer Science Application. New York: Wiley Publications.</li> </ul>	No Change in course contents.

				1	
34	VLSI 526,	After completion of this			No Change
	Speech	course, students will be able	_	_	in course
	Signal	to:	T ( D )	D	contents.
	Processing	<ul> <li>Describe the fundamentals of digital speech processing and digital model for speech signal process.</li> <li>Illustrate and analyze the time domain model and Fourier representation for speech processing.</li> <li>Explain basic principles of LPC equations and solutions.</li> </ul>	<ol> <li>L.R.Rabiner and R.W.Schafer, Digital Processing of Speech Signals, PH, 1978.</li> <li>C.Plett, J.W.M.Rogers and M.A.Copeland, Radio Frequency Integrated Circuit Design, Artech, 2003</li> <li>R.E.Best, Phase-Locked Loops: Design, Simulation and Application , Fifth Edition, MH, 2003</li> <li>D.H.Wolaver, Phase-locked Loop Circuit Design, PH, 1991.</li> </ol>	<ul> <li>Recommended Books:</li> <li>Rabiner, L.R., &amp; Schafer, R.W. (1978). Digital Processing of Speech Signals. New Delhi: PHI Publications.</li> <li>Plett, C.,Rogers, J.W.M., &amp;Copeland, M.A. (2003). Radio Frequency Integrated Circuit. New Jersey: Design Artech House Publishers.</li> <li>Best, R.E. (2003). Phase-Locked Loops: Design, Simulation and Application. New York: TMH Publication.</li> <li>Deller, J.R., HansenJ.H.L., &amp; Proakis, J.G. (1999). Discrete-time processing of Speech Signals. New York: Wiley-IEEE Press.</li> </ul>	<b>Deleted</b>
			<ol> <li>Reference Books:</li> <li>J.R. Deller J.H.L .Hansen and J.G. Proakis, Discrete-time Processing of Speech signals, Wiley/IEEE, 2000.</li> <li>T.F. Quatieri, Discrete-Time Speech Processing: Principles and Practices, PH, 2001.</li> </ol>	<ul> <li>Press.</li> <li>Quatieri, T.F. (2001). Discrete-Time Speech Processing: Principles and Practices. Massachusetts: PHI Publications.</li> <li>Suggested E-resource:</li> <li>1. Digital Speech Processing by Prof. S. K. Das Mandal Centre for Educational Technology Indian Institute of Technology, Kharagpur .https://nptel.ac.in/courses/117105145/19</li> </ul>	
35	Photonics Integrated Circuits	After completion of this course, students will be able to: • Describe the optical waveguides and optical couplers with the help of coupled mode theory		Section A Optical Waveguide Modes, Planar Waveguides, Symmetric and Asymmetric, Slab and channel waveguides, Optical Couplers: Prism Couplers, Gräting Couplers, Tapered Couplers, Fiber to Waveguide Couplers, Multilayer Planar Waveguide Couplers, Dual-Channel Directional	New Course Added as elective.

<ul> <li>Explain the basic operating metchanisms of optical switches and modulators</li> <li>• Identify the performance limiting factors and applications of integrated optics</li> <li>Flectro-Optic Modulators: Basic Operating Characteristics of Switches and Modulators, Characteristics of Switches and Modulators. Acousto-Optic Modulators, Data-Channel Waveguide Electro-Optic Modulators. Acousto-Optic Modulators: Acousto-Optic Modulators. Acousto-Optic Fliftet, Raman-Nath-and Bragg Type Modulators. Acousto-Optic Optic Shifters.</li> <li>Section C</li> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Optic Integrated Optical Detectories. Integrated Optics of Integrated Optics of Integrated Optics of Integrated Optics Integrated Circuits and future projections.</li> <li>Recommended Books:         <ul> <li>I. Hunsperger, Robert, G. (1995). Integrated Optics Integrated Optics. Harvan, Massinara, Subara, Toshiaki, (1989). Optical integrated circuits. New York: Modulation.</li> <li>Reed, Graham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction, New York: John Wiley &amp; Sons</li> <li>Tamir, T.(1990). Guided wave Opticated Circuits. Betin, Heidelberg: Springer.</li> </ul> </li> </ul>		
<ul> <li>switches and modulators</li> <li>Identify the performance limiting factors and applications of integrated optics</li> <li>Electro-Optic Modulators: Basic Operating Characteristics of Switches and Modulators, The Electro-Optic Effect, Single-Waveguide Electro-Optic Modulators: Acousto-Optic Effect, Raman-Nath-and Bragg Type Modulators, Acousto-Optic Frequency Shifters.</li> <li>Section C</li> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Optics: Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi, Harana, Masamitsu,&amp; Suhara, Toshiaki, (1989), Optical Integrated Circuits. New York: McGiraw-Hill Publication, Seed, Graham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction, New York: John Wiley &amp; Sons.</li> <li>Tamir, T.(1900). Guided wave Optor electronics. Berlin, New York: John Wiley &amp; Sons.</li> </ul>	<ul> <li>Explain the basic operating</li> </ul>	Couplers, Coupled-Mode Theory.
<ul> <li>Identify the performance limiting factors and applications of integrated optics</li> <li>Electro-Optic Modulators, Dual-Channel Waveguide Electro-Optic Modulators, Acousto-Optic Effect, Single-Waveguide Electro-Optic Modulators, Acousto-Optic Effect, Raman-Nath-and Bragg Type Modulators, Acousto-Optic Frequency Shifters.</li> <li>Section C</li> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Optio-Electronic Integrated Circuits and future projections.</li> <li>I. Hunsperger, Robert. G. (1995). Integrated Optics and Current Trends: Optio-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books:</li> <li>I. Hunsperger, Robert. G. (1995). Integrated Optics and Current Trends: Optio-Electronic Integrated Circuits, New York: Springeri 2. Nishihara, Hiroshi. Haruna, Masamitsu,&amp; Suhara, Toshiaki. (1999). Optical integrated circuits. New York: Springeri 2. Nishihara, T., &amp; Knijbhs, Andrew, P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamiri, (1990). Guided wave Optor electronics. Berlin, Heidelbergier, Springer.</li> </ul>	mechanisms of optical	Section B
<ul> <li>limiting factors and applications of integrated optics</li> <li>Characteristics of Switches and Modulators, The Electro-Optic Effect, Single-Waveguide Electro-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Frequency Shifters.</li> <li>Section C</li> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodidoe Structures, Techniques for Modulators. Optics and future projections.</li> <li>Recommended Books:</li> <li>I. Hunsperger, Robert. G. (1995). Integrated Optical Difference in Integrated Circuits and future projections.</li> <li>Recommended Books:</li> <li>I. Hunsperger, Robert. G. (1995). Integrated Circuits. New York: Moderaw-Hill Publication.</li> <li>Sortian. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> <li>Reed, Granham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Moderaw-Hill Publication.</li> </ul>	switches and modulators	
<ul> <li>limiting factors and applications of integrated optics</li> <li>Characteristics of Switches and Modulators, The Electro-Optic Effect, Single-Waveguide Electro-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Shifters.</li> <li>Section C</li> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiodes Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and future projections.</li> <li>Recommende Books:</li> <li>I. Hunsperger, Robert, G. (1995). Integrated Books:</li> <li>Z. Nishihara, Hiroshi, Haruna, Masamitus, Subara, Toshiaki, (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> <li>Reed, Granham, T., &amp; Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: McGraw-Hill Publication.</li> </ul>	• Identify the performance	Electro-Optic Modulators: Basic Operating
applications of integrated optics       The Electro-Optic Effect, Single-Waveguide Electro-Optic Modulators, Dual-Channel Waveguide Electro-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Modulators, Acousto-Optic Frequency Shifters.         Section C       Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and future projections.         Recommended Books:       I. Hunsperger, Robert, G. (1995), Integrated Optics and future projections.         Recommended Books:       I. Hunsperger, Robert, G. (1995), Integrated Optical Supervised Optical Supervised Optical Supervised Optical Supervised Optications.         Recommended Concist. Supervised Structures, Supervised Structures, Techniques Supervised Optics and Current Trends: Opto-Electronic Integrated Optics.         Recommended Books:       I. Hunsperger, Robert, G. (1995), Integrated Optical Supervised Optical Supervised.         Background Detectories: New York: Springer.       Substan, Toshiaki, (1989), Optical integrated Circuits. New York: McGraw-Hill Publication.         B. Reed, Graham, T., & Knights, Andrew, P. (2004). Silicon photonics: An Introduction. New York: Soln Wiley & Sons.       Tamir, T.(1990). Guided wave Opto-electrorics. Relin, Heidelberg: Springer.	limiting factors and	
optics       Electro-Optic       Modulators, Dual-Channel         Waveguide       Electro-Optic       Modulators, Acousto-Optic         Acousto-Optic       Modulators, Acousto-Optic       Frequency         Shifters.       Section C         Distributed-Feedback       Lasers:       Theoretical         Considerations       and performance         characteristics, Integrated Optical Detectors:       Depletion       Layer Photodiodes, Specialized         Photodiode Structures, Techniques for       Modifying Spectral Response, performance       Imiting factors.         Recommended Books:       Imagrated Circuits and future projections.       Recommended Books:         1.       Hunsperger, Robert, G. (1995), Integrated Optical Detectors:       Depletion Layer Theory and Technology. Berlin, New York: Springer,         2.       Nishihara, Hiroshi.       Haruna, Masamitsu, & Maran, Toshiaki, (1989), Optical integrated circuits. New York: McGrav-Hill Publication.         3.       Reed, Graham T., & Knights, Andrew. P. (2004).       Siltion photonics: An Introduction, New York: John Wiley & Sons.         4.       Tamir, T.(1990).       Guided wave Opto-celectronics. Berlin, Heidelberg: Springer,		· · · · · · · · · · · · · · · · · · ·
Waveguide       Electro-Optic       Modulators.         Acousto-Optic       Modulators.       Acousto-Optic         Effect,       Raman-Nath-and       Bragg       Type         Modulators,       Acousto-Optic       Frequency         Shifters.       Section C         Distributed-Feedback Lasers:       Theoretical         Considerations       and       performance         characteristics,       Integrated Optical Detectors:       Depletion Layer Photodiodes,         Depletion Layer       Photodiodes,       Specialized         Photodiode       Structures,       Techniques       for         Modifying       Spectral Response, performance       Imiting factors.       Applections of Integrated         Optics and Current Trends:       Opto-Electronic       Integrated Concestors.       Recommended Books:         1.       Hunsperger,       Robert.       G. (1995),       Integrated Optics.       Haruna,         Masamitus_& Suhara,       Hiroshi.       Haruna,       Masamitus_& Suhara,       Haruna,         Masamitus_& Suhara,       Hiroshi.       Haruna,       Masamitus_& Suhara,       Haruna,         Masamitus_& Suhara,       Hiroshi.       Haruna,       Masamitus_& Suhara,       Haruna,         Masamitu	11 0	
Acousto-Optic Modulators: Acousto-Optic Effect, Raman-Nath-and Bragg Type Modulators, Acousto-Optic Frequency Shifters. Section C Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections. Recommended Books: I. Hunsperger, Robert, G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer, 2. Nishitara, Hiroshi, Harvuna, Masamitsu,& Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication. 3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: Motonics: An Introduction, New York: Sin Sons. 4. Tamir, T.(1990). Guided wave Opto- eleceronics. Berlin, Heidelberg: Springer,	. <b>I</b>	
Effect, Řaman-Nath-and Bragg Type Modulators, Acousto-Optic Frequency Shifters. Section C Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections. Recommended Books: I. Hunsperger, Robert, G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer. 2. Nishihara, Hiroshi. Haruna, Masamitsu.,& Suhara, Toshiaki. (1989). Optical integrated circuits. New York: MeGrav-Hill Publication. 3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons. 4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
Modulators, Acousto-Optic Frequency Shifters.         Section C         Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.         Recommended Books:         I. Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.         Nishihara, Hiroshi. Haruna, Masamitsu, & Suhara, Toshiaki. (1989). Optical integrated circuits. Rev York: McGrav-Hill Publication, B. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons.         4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
Shifters.       Section C         Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.         Recommended Books:       1.         Hunsperger, Robert. G. (1995).         Integrated Optics Theory and Technology. Berlin, New York: Springer.         2.       Nishihara, Hiroshi. Haruna, Masamitsu,& Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.         3.       Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons.         4.       Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
Section C         Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.         Recommended Books:         1. Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.         2. Nishihara, Hiroshi. Haruna, Masamitsu, & Subara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.         3. Reed, Graham, T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons.         4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
<ul> <li>Distributed-Feedback Lasers: Theoretical Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books:</li> <li>1. Hunsperger, Robert. G. (1995), Integrated Optics Theory and Technology. Berlin, New York: Springer,</li> <li>2. Nishihara, Hiroshi, Haruna, Masamitsu, &amp; Suhara, Toshiaki. (1989), Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>3. Reed, Graham. T., &amp; Knights, Andrew. P, (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		
Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections. <b>Recommended Books:</b> 1. Hunsperger, Robert. G. (1995). <i>Integrated Optics Theory and Technology</i> . Berlin, New York: Springer, 2. Nishihara, Hiroshi. Haruna, Masamitsu,& Suhara, Toshiaki. (1989). <i>Optical integrated circuits</i> . New York: McGraw-Hill Publication. 3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An <i>Introduction</i> . New York: John Wiley & Sons. 4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		Section C
Considerations and performance characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections. <b>Recommended Books:</b> 1. Hunsperger, Robert. G. (1995). <i>Integrated Optics Theory and Technology</i> . Berlin, New York: Springer, 2. Nishihara, Hiroshi. Haruna, Masamitsu,& Suhara, Toshiaki. (1989). <i>Optical integrated circuits</i> . New York: McGraw-Hill Publication. 3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An <i>Introduction</i> . New York: John Wiley & Sons. 4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
<ul> <li>characteristics, Integrated Optical Detectors: Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books: <ol> <li>Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol> </li> </ul>		
<ul> <li>Depletion Layer Photodiodes, Specialized Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books: <ol> <li>Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu., &amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Optoelectronics.</li> </ol> </li> </ul>		
<ul> <li>Photodiode Structures, Techniques for Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books: <ol> <li>Hunsperger, Robert. G. (1995).</li> <li>Hunsperger, Robert. G. (1995).</li> <li>Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol> </li> </ul>		
<ul> <li>Modifying Spectral Response, performance limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books: <ol> <li>Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> </ol> </li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		
<ul> <li>limiting factors. Applications of Integrated Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books:</li> <li>I. Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		Photodiode Structures, Techniques for
<ul> <li>Optics and Current Trends: Opto-Electronic Integrated Circuits and future projections.</li> <li>Recommended Books: <ol> <li>Hunsperger, Robert. G. (1995).</li> <li>Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> </ol> </li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		Modifying Spectral Response, performance
Integrated Circuits and future projections.         Recommended Books:         1. Hunsperger, Robert. G. (1995).         Integrated Optics Theory and Technology. Berlin, New York: Springer.         2. Nishihara, Hiroshi. Haruna, Masamitsu.,& Suhara, Toshiaki. (1989).         Optical integrated circuits. New York: McGraw-Hill Publication.         3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons.         4. Tamir, T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		limiting factors. Applications of Integrated
<ul> <li>Recommended Books:</li> <li>Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		Optics and Current Trends: Opto-Electronic
<ol> <li>Hunsperger, Robert. G. (1995). Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol>		Integrated Circuits and future projections.
<ul> <li>Integrated Optics Theory and Technology. Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		Recommended Books:
<ul> <li><i>Technology.</i> Berlin, New York: Springer.</li> <li>Nishihara, Hiroshi. Haruna, Masamitsu.,&amp; Suhara, Toshiaki. (1989). <i>Optical integrated circuits.</i> New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). <i>Silicon photonics: An</i> <i>Introduction.</i> New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). <i>Guided wave Opto-</i> <i>electronics.</i> Berlin, Heidelberg: Springer.</li> </ul>		1. Hunsperger, Robert. G. (1995).
<ol> <li>Nishihara, Hiroshi. Haruna, Masamitsu., &amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol>		Integrated Optics Theory and
<ol> <li>Nishihara, Hiroshi. Haruna, Masamitsu., &amp; Suhara, Toshiaki. (1989). Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol>		
<ul> <li>Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		2. Nishihara, Hiroshi. Haruna,
<ul> <li>Optical integrated circuits. New York: McGraw-Hill Publication.</li> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		Masamitsu., & Suhara, Toshiaki. (1989).
McGraw-Hill Publication. 3. Reed, Graham. T., & Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley & Sons. 4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.		
<ol> <li>Reed, Graham. T., &amp; Knights, Andrew. P. (2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir, T. (1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ol>		
<ul> <li>(2004). Silicon photonics: An Introduction. New York: John Wiley &amp; Sons.</li> <li>4. Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		
<ul> <li>Introduction. New York: John Wiley &amp; Sons.</li> <li>Tamir,T.(1990). Guided wave Opto- electronics. Berlin, Heidelberg: Springer.</li> </ul>		
Sons. 4. Tamir,T.(1990). <i>Guided wave Opto-</i> <i>electronics</i> . Berlin, Heidelberg: Springer.		
4. Tamir,T.(1990). <i>Guided wave Opto-</i> <i>electronics</i> . Berlin, Heidelberg: Springer.		
electronics. Berlin, Heidelberg: Springer.		
Suggesteu E- resource.		
		Suggesten E- resource.

				1. Photonic Integrated Circuits by Dr. Srinivas Talabatulla, Department of Electronics & Communication Engineering, IISc, Bangalore. https://nptel.ac.in/courses/117108142/	
36	VLSI 601R, High Level Synthesis	Design Automa Levels, Essentia Architectural Combinational I	Section A evel of Abstraction, Need for thion on Higher Abstraction l issues in Synthesis. Models in Synthesis. Logic, Finite State Machines. res: Area and Performance Measures. Section B	This course expose students to the advanced HDL design techniques, methodology and industrial standard EDA tools in electronic design. This course also discusses the new ideas and techniques in high level synthesis, essential issues in synthesis, architectural model, and guidelines for HDL design. Students will be expected to explore design methodology for high level synthesis, chip synthesis and physical design methodology.	
			iption Language: HDLs, ific Features, Formats, HDLs		
		· · · · · · · · · · · · · · · · · · ·	Based HDLs, Modeling IDLs		
			entation and Transformations: neduling. Allocation.		
		Synthesis: Go Synthesis, Ch Sequential S Methodology, Databases, Con High Level Synt	ceptualization Environment.		
		Signal Processin <b>Text and Refer</b> 1. Daniel D C-H Wu	ıg.	Suggested E- resources:           1. High level Synthesis by IIT Guwahati. https://nptel.ac.in/courses/117103125/4.           2. Synthesis of Digital Systems byDr.	

		<ul> <li>and System Design, Kluwer Academic Publishers.</li> <li>Wayne Wolf, High-Level VLSI Synthesis, Raul Camposano, Kluwer Academic Publishers.</li> <li>David C. Ku, Giovanni de Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints, Kluwer Academic Publishers</li> <li>Jan Vanhoof, Karl Van Rompaey, Ivo Bolsens, Gert Goossens, Hugo De Man, High-Level Synthesis for Real- Time Digital Signal Processing, The CATHEDRAL-11 Silicon Compiler, Kluwer Academic Publishers.</li> </ul>	Preethi Ranjan Panda, Department of Computer Science & Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/106102181/7	
37	VLSI 604R, VLSI Testing and Design for Testability	SECTION-A Physical defects and their modeling; stuck at faults; Bridging Faults; Fault collapsing Fault Simulation Deductive, Parallel and Concurrent; Critical Path Tracing; Test Generation for Combinational Circuits : D- Algorithm, Boolean Difference, PODEM Random, Exhaustive and Weighted Random Test Pattern Generations Aliasing and its effect on Fault coverage <b>SECTION-B</b> PLA Testing: cross-point Fault Model, Test Generation, easily testable design, Memory testing: Permanent Intermittent and Pattern Sensitive Faults; Delay Faults and Hazards; Test Generation Techniques	The course attempts to expose the students to the most recent, yet fundamental, VLSI test principles in an effort to help them design better quality products that can be reliably manufactured in large quantity. The course explores the issue related to the physical defects, test generation technique for combinational and sequential circuits, controllability and observability and redundancy.	

		SECTION-C		
		Test Generation for Sequential Circuits: Time Frame Expansion;		
		Controllability and Obeservability Scan Design.Scan path and LSSD, boundary Scan, BILBO, Bounday Scan For Board Level Diagnosis.		
		Concept of Redundancy, spatial redundancy. Time redundancy.		
		<ol> <li>References:</li> <li>M. Abramovici, M.A. Breuer and R.D. Friedman, Digital Systems Testing and Testable Design, Revised Edition, IEEE Press, 1995.</li> <li>V. Agarwal and S. C. Seth, Test Generation for VLSI Chips, IEEE CS Press, 1989.</li> <li>E. J. McCluskey, Logic Design Principles, Prentice Hall, 1986.</li> </ol>	Suggested E- resources:           1. Digital VLSI Testing by Prof. Santanu Chattopadhyay Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc17_ec 02/preview.           2. Testing and Verification of VLSI Circuits by Prof. Virendra Singh IIT Mumbai. https://www.ee.iitb.ac.in/~viren/Courses/ 2012/EE709.htm	
38	Advanced Electronic Packaging		This course is designed to equip students with the required knowledge and concepts in mechanical, thermal, and reliability concern of modern electronic packaging. Emphasis is on IC packaging performance and its achievement through the proper material selection. The course will explore the multichip module, electrical autonomy IC assembly, challenges in the electronic packaging, and can recognize the various methods available and selection of appropriate packaging solution for particular applications. Suggested e-resource: 1. An Introduction to Electronics Systems	

		<b>Packaging</b> by IISC Bangalore.
39	Compound	https://nptel.ac.in/courses/108108031/ This course provides students with the basic
	Semiconduc	understanding of Non-Silicon MOSFET
	tor	technology. The students should be able to
	Technology	use properties and trade-offs of compound
		semiconductors (GaAs, InAs, InP and InSb) for design of high performance MOSFETs.
		The students will be able to explain the
		challenges and power performance of
		strained III-V MOSFETs, the high k
		dielectric based MOSFETs. Students should
		also be able to discuss the Future Scaled
		CMOS and hybrid CMOS technology.
		Suggested e-resources:
		1. Nanoelectronics: Devices and
		Materialsby Prof. K. N. Bhat Centre for
		Nano Science and Engineering, https://nptel.ac.in/courses/117108047/28.
		2. Compound Semiconductor Devices by
		Prof. C. G. Fonstad, MIT, USA.
		https://ocw.mit.edu/courses/electrical-
		engineering-and-computer-science/6-772-
		compound-semiconductor-devices-
		spring-2003/lecture-notes/.
40	Digital	This course provides an introduction to basic
	Image	concepts, methodologies and algorithms of
	Processing	digital image processing focusing on image
		analysis and image enhancement and restoration for easier interpretation of images.
		The course provides overview of digital
		image processing including visual perception,
		Image Digitization, Basic Transformations,
		Interpolation and Resampling, Image
		Interpolation, Image Transformation, Image
		Enhancement, Image Segmentation,
		Morphology, Object Representation and
		Description, object Recognition etc. The
		course focuses on to create an ability in

	students to analyze a problem in this domain and identify the computing requirements appropriate for its solution; an ability to design, implement and evaluate a computer- based system, process, component or program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof .P. K. Biswas, IIT Kharagpur. https://nptel.ac.in/courses/117105079/	
41 Organic Electronic Devices	Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices.         Suggested e-resources:       1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-electronic-devices-purduex-nano515x	

Annexure V

### Name of Programme: B.Sc.

- Disciplinary Course-Physics

   Programme Educational Objectives:

   >
   To provide necessary knowledge and leadership skills for a successful professional career.

  - To provide necessary knowledge and leadership skills for a successful professional carce.
     To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology. > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- > Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- ۶ Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to proose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments. ۶
- ≻ Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- > Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- ۶ Function with multidisciplinary teams.

Programme Scheme:

# B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
PHY 103	Electricity and Electronics	6	0	0	6	PHY 103	Electricity and Electronics	6	0	0	6
PHY 104L	Electronics Lab	0	0	4	2	PHY 104L	Electronics Lab	0	0	4	2
	Tota				8		Total	6	0	4	8

# B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
PHY 107	Optics	6	0	0	6	PHY 107	Optics	6	0	0	6
PHY 107L	Optics Lab	0	0	4	2	PHY 107L	Optics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

# B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					-
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
PHY 201	Mechanics	6	0	0	6	PHY 201	Mechanics	6	0	0	6
PHY 201L	Mechanics Lab	0	0	4	2	PHY 201L	Mechanics Lab	0	0	4	2
	Tota						Total	6	0	4	8

# B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
РНҮ 203	Statistical and Mathematical Physics	6	0	0	6		Thermodynamics, Statistical and Mathematical Physics	6	0	0	6
PHY 202L	Physics Lab	0	0	4	2		Physics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

# B.Sc. (Mathematics) Semester - V (December, 2021) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
5.1	Quantum Atomic Molecular Physics						[*] Discipline Elective-I	6	0	0	6
	Atomic Physics Lab						* Discipline Elective-I Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

# B.Sc. (Mathematics) Semester - VI (April/May, 2022) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
6.1	Nuclear and Solid State Physics						[*] Discipline Elective-II	6	0	0	6
	Nuclear and Solid State Physics Lab						* Discipline Elective-II lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

### Discipline Electives

S. No.	Course code	Name of Course	L	Т	Р	С
1.		Quantum Mechanics and Spectroscopy	6	0	0	6
2.		Quantum Mechanics and Spectroscopy Lab	0	0	4	2
3.		Advance Quantum Mechanics	6	0	0	6
4.		Advance Quantum Mechanics Lab	0	0	4	2
5.		Nuclear and Solid State Physics	6	0	0	6
6.		Nuclear and Solid State Physics Lab	0	0	4	2
7.		Advanced Semiconductor Devices	6	0	0	6
8.		Advanced Semiconductor Devices lab	0	0	4	2

Note: Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

### **Course Details:**

S. N.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.		After completion of this course,	Recommended Books:		No
	Electricity and	the students will be able to-	<ol> <li>Tayal D C (2005) Electricity and Magnetism</li> </ol>	, Himalaya Publishing House.	change in the entire course
	Electronics	<ul> <li>learn fundamentals and</li> </ul>			
		concepts of electricity and electronics	3. Bhargava N N (2000), Basic Electronic, Tata	a McGraw Hill.	Update e-Resources
		<ul> <li>learn about the basic</li> </ul>	4. Mehta V.K.(2002), Principles of Electronics	, S. Chand publisher.	
		concepts of electronic	References Books:		
		and electrical circuit		ctromagnetics, New Delhi, Oxford Univ. Press	
		analysis techniques	2. Purcell, E. M. (1963). Berkeley physics cour	se. Electricity and magnetism.	
		<ul> <li>apply the above motioned concept to design a range of electronic devices and circuit configurations.</li> </ul>	<ol> <li>Millman, J., &amp; Halkias, C. C. (1972). Integ McGraw-Hill.</li> </ol>	grated electronics: analog and digital circuits and systems.	
			Suggested web-resources:		
			https://www.coursera.org/browse/physical-sc https://www.edx.org/learn/electronics	ience-and-engineering/electrical-engineering	

				1	
2.	PHY 104L	After completion of this course, 1. Determin			50 % of the syllabus deals with
			e characteristics of junction diode and		electricity and electromagnetism so
		<ul> <li>demonstrate laboratoryzener diode</li> </ul>			experiment no. 11 and 12 is removed
		skills in physics3. Study the	e voltage regulation and ripple factor of	<ol><li>Study the voltage regulation and ripple factor of half and</li></ol>	from the existing list and 4 new
		laboratory and analyzehalf and ful	l wave rectifier	full wave rectifier	experiment is introduced in proposed
		the measurements to 4. Study the	e bridge rectifier with filters	<ol><li>Study the bridge rectifier with filters</li></ol>	list.
		draw valid conclusions. 5. Study the	e characteristics of PNP/NPN junction	5. Study the characteristics of PNP/NPN junction transistor	
		<ul> <li>have oral and written transistor</li> </ul>		<ol><li>Study the characteristics of FET</li></ol>	
		scientific communication, 6. Study the	e characteristics of FET	7. Study a voltage multiplier circuit to generate high voltage	
		and to think critically and 7. Study a v		DC from AC	
		work independently. high voltage	e DC from AC	8. Study the characteristics of optoelectronic devices (LED,	
		<ul> <li>to understand principles⁸. Study the</li> </ul>	e characteristics of optoelectronic	Photodiode and Phototransistor)	
		of law of electricitydevices (LE	ED, Photodiode and Phototransistor)	9. Study the OPAMP in (i) inverting mod (ii) noninverting	
		magnetism. 9. Study the	e OPAMP in (i) inverting mod (ii)	mod (iii) integrator (iv) differentiator	
		noninverting	g mod (iii) integrator (iv) differentiator	10. Study AND, OR, NOT, NOR and NAND logic gates and	
		10. Study A	ND, OR, NOT, NOR and NAND logic	verify the truth tables	
		gates and ve	erify the truth tables	11. Study of electromagnetic induction by oscillation of bar	
		11. Study th	he voltage gain and frequency response	magnet.	
		of a double	stage RC coupled transistor amplifier	12. Mutual induction by direct method.	
		12. Study th	ne characteristics of a thermistor	13. Verification of Faraday's law and Lenz's law.	
				14. B-H Curve using Magnetometer.	
				15. To determine Self Inductance of a Coil by Anderson's	
				Bridge using AC	
	1			16. To determine Self Inductance of a Coil by Rayleigh's	
				Method.	
				17. Determination of mutual inductance of a pair of coils	
	1			using BG.	

3.	PHY 107	After completion of this course, Recomm	nended Books:	No
3.	PHY 107 Optics	<ul> <li>the students will be able to-</li> <li>appreciate the efficacy of 1. K Fourier transforms and 2. La their application to physical systems.</li> <li>understand the role of the 4. Gh wave equation and appreciate the universal Referent nature of wave motion in 1. Gh systems 2. He</li> <li>understand dispersion in 3. Ch waves and model dispersion using Fourier theory. 5. Gh</li> <li>understand diffraction and imaging in terms of Suggesto Fourier optics and gain https://w</li> </ul>	<ul> <li>Chandelwal D.P. (1973), Text book of optics and Atomic Physics, Pub. Shivlal Darwal, Agra.</li> <li>al B. &amp; Subramanium (2006), Optics by Brij Lal and Subrahmanium, S. Chand Publication.</li> <li>hatak, A., &amp; Thyagarajan, K. (1998). <i>An introduction to fiber optics</i>. Cambridge university press.</li> <li>hatak, A. K. (1971). An introduction to modern optics. <i>An introduction to modern optics.</i>, <i>by Ghatak</i>, <i>K. New York</i>, <i>NY (USA): McGraw-Hill.</i></li> <li><b>ce Books:</b></li> <li>hatak, A. K. (2012). <i>Contemporary optics</i>. Springer Science &amp; Business Media.</li> <li>eecht, J., &amp; Long, L. (1993). <i>Understanding fiber optics</i> (Vol. 3). Prentice Hall.</li> <li>herin, A. H., &amp; Short, L. (1983). <i>An introduction to optical fibers</i> (p. 135). New York: McGraw-Hill.</li> <li>eecht E (2006) Optics, Pearson Education.</li> <li>hatak, A. K., &amp; Thyagarajan, K. (1989). <i>Optical electronics</i>. Cambridge University Press.</li> </ul>	No change in the entire course Update e-Resources

4	DUN/ 107 I		N.
4.	PHY 107 L	After completion of this course,	No
	Optics Lab	the students will be able to-	change in the entire course
		<ul> <li>demonstrate laboratory</li> </ul>	
		skills in physics	
		laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		<ul> <li>have oral and written</li> </ul>	
		scientific communication,	
		and to think critically and	
		work independently.	
		<ul> <li>to understand principles</li> </ul>	
		of Optics and wave nature	
		of light.	

5.	PHY 201	After completion of this course,Recommended Books:	No
	Mechanics	the students will be able to- 1. Saxena M. P. Rawat S S (2000) Mechanics, College Book House.	change in the entire course
		demonstrate proficiency 2. Saxena M. P. Rawat S S (1997) Oscillations and Waves, College Book House.	
		in mathematics and the 3. Mathur D. S. (2005) Mechanics, S. Chand publishing.	Update e-Resources
		mathematical concepts needed for a proper4. Satya Prakash (2007) Waves & Oscillations, Kedar Nath Ram Nath publishing.	
		understanding of physics. Reference Books:	
		show that they have 1. Srivasatava P. K. (2006) Mechanics New Age International Publisher, Delhi.	
		learned laboratory skills, enabling them to take measurements in a	-
		physics laboratory and 3. Purcell, E. M. (1963). Berkeley physics course. <i>Electricity and magnetism, UC Berkeley</i> .	
		analyze the 4. French, A. P. (1971). <i>Vibrations and waves</i> . CRC press.	
		measurements to draw valid conclusions. • have oral and written scientific communication. https://ocw.mit.edu/courses/physics/ and think critically and https://www.khanacademy.org/science/physics work independently.	

6.	PHY 201L	After completion of this course,	No
0.		the students will be able to-	change in the entire course
	Meenanies Eab	<ul> <li>demonstrate laboratory</li> </ul>	change in the churc course
		skills in physics	
		laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		<ul> <li>have oral and written</li> </ul>	
		scientific communication,	
		and to think critically and	
		work independently.	
		<ul> <li>to understand principles</li> </ul>	
		of Newtonian mechanics,	
		friction, and motion of	
		bodies.	

7.		After completion of this course,	tecommended Books:	No change in the entire course
		the students will be able to-		contents, but the title of the
	Mathematical	<ul> <li>understand the laws of</li> </ul>	<ol> <li>Zeemansky M.W. (1968) Heat and Thermodynamics, McGraw Hill, 5th ed.</li> </ol>	course has been changed
	Physics	thermodynamics in their	2. Singhal, Agrawal Prakash (2007)Heat and Thermodynamics, Pragati Prakashan.	
		various forms and explain their physical significance.	<ol> <li>Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre, Jaipur.</li> </ol>	Update e-Resources
	New Proposed	<ul> <li>state the thermodynamic</li> </ul>	4. Rajput B S. (2005), Mathematical Physics, Pragati Prakashan.	
	Title-	potentials and recognize	teference Books:	
	Thermodynamic s, Statistical and	the most appropriate	1. Reif, F. (2009). Fundamentals of statistical and thermal physics. Waveland Press.	
	Mathematical	to a particular problem.	2. Holman, J. P. (1974). Thermodynamics McGraw-Hill. New York.	
	Physics	• derive and state the	3. Lokanathan, S., & Gambhir, R. S. (1991). Statistical and Thermal Physics: an Introduction. Prentice Hall.	
		Boltzmann, Fermi-Dirac and Bose-Einstein	4. French, A. P. (2017). Special relativity. CRC Press.	
		distributions.	5. Arfken, G. B., & Weber, H. J. (1999). Mathematical methods for physicists, Elsevier.	
		<ul> <li>know the key links</li> </ul>	uggested web-resources:	
		between thermodynamics	ttps://cosmolearning.org/courses/thermal-statistical-physics/	
			ttps://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/video-	
			ctures/lecture-1-thermodynamics-part-1/ ttps://programsandcourses.anu.edu.au/course/PHYS2020	
		<u> </u>	<u>ups://programsandcourses.anu.edu.au/course/PH r S2020</u>	
L	1	L		

8.	PHY 202L	After completion of this course, I.	Determine the mechanical equivalent of heat (J)1.	Determine the mechanical equivalent of heat (J) by using Experiment No. 6, 10, 11, 12 and
		the students will be able to-	by using Calendar and Barn's constant flow	Calendar and Barn's constant flow meter. 13 have been proposed to
		<ul> <li>demonstrate laboratory</li> </ul>	meter.	To Determine the thermal conductivity of bad conductorstrengthen the laboratory
		skills in physics2.	To Determine the thermal conductivity of bad	(samples may be Glass or Ply Wood or Cardboard) using practices. Expt. No. 9 and 10 in
		laboratory and analyze	conductor (samples may be Glass or Ply Wood	Lee's disc method. existing course have been
		the measurements to	or Cardboard) using Lee's disc method.	Determine the melting point of given material using removed due to unmatched with
		draw valid conclusions. 3.	Determine the melting point of given material	platinum resistance thermometer. theory
		<ul> <li>have oral and written</li> </ul>	using platinum resistance thermometer.	Plot thermo emf Vs temperature graph and find the
		scientific communication,4.	Plot thermo emf Vs temperature graph and find	inversion temperature and neutral temperature
		and to think critically and	the inversion temperature and neutral5.	To determine the thermodynamic constant $(C_p/C_v)$ using
		work independently.	temperature	Clement and Desorme's method.
		<ul> <li>to understand principles⁵.</li> </ul>		To verify the Stefan's law by electrical method.
		of thermodynamic laws	(Cp/Cv) using Clement and Desorme's method. 7.	To determine the value of stefan's constant.
		experimentally 5.	Study of the variation of total thermal radiations.	Verify certain laws of probability.
			with temperature and verify the stefan's law.	To determine the resistance per unit length of Carey Fosters
		7.	To determine the value of stefan's constant.	bridge and finds the resistance of a given wire (Unknown
		8.	Verify certain laws of probability.	resistance).
		P-		. Determination of the coefficient of linear thermal expansion
		10	0. To study the LC transmission line.	() of the given sample. Compare and verification of
		11	1. To determine the resistance per unit length of	( _{copper} )<( _{brass} )<( _{aluminum} ).
				. To determine mechanical equivalent of heat (J) Joule's
			a given wire (Unknown resistance).	constant by electrical method.
			.2	. Determine the resistance per unit length of bridge wire and
				then determine the temperature coefficient of Platinum
				resistance thermometer (PTR).
			13	To demonstrate Seebeck Effect with the help of
				Thermocouple module.
L		1		

9.		After completion of this course,	Recommended Books:	No change in the entire course
	Atomic	the students will be able to-	<ol> <li>Kakani S. L., Hemrajni C. (1995) Elementary Quantum Mechanics and Spectroscopy, College Book Centre, Jaipur.</li> </ol>	contents, but the title of the course has been changed
	<del>Molecular</del> <del>Physics</del> Quantum	<ul> <li>solve the Schrödinger equation for model systems of relevance within chemistry</li> </ul>	<ol> <li>Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand.</li> <li>Raj Kumar (1997), Atomic and Molecular Spectera, Kedar Nath Ram Nath publisher.</li> </ol>	Update e-Resources
	Mechanics and	and physics	4. Rawat S. S. Singh Sardar (2000) Prarambhik Quantum Yantriki avam Spectroscopy, CBH publisher.	
	Spectroscopy	<ul> <li>describe many-electron atoms with the independent particle model</li> </ul>	<ol> <li>Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre, Jaipur.</li> </ol>	
			Reference Books:	
		periodic system and the connections between the	1. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan.	
		<ul> <li>properties of the elements and their electron configurations</li> <li>describe the bases behind</li> </ul>	<ol> <li>Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill.</li> </ol>	
		interaction between light and matter and account for the	3. White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132.	
			Suggested web-resources: https://swayam.gov.in/course/4250-quantum-chemistry-spectroscopy-photochemistry https://www.edx.org/course/quantum-mechanics-molecular-structures-utokyox-utokyo003x-1	
10.		<ul> <li>After completion of this course, the students will be able to-</li> <li>demonstrate measurements skills in a physics laboratory</li> <li>analyze the measurement results to draw valid conclusions.</li> <li>have oral and written scientific communication, and think critically and work independently.</li> </ul>	Photo cell.       2. Determine the value of Planck constant using solar cell.         2 Determine the value of Planck constant using solar cell.       3. Study the absorption spectrum of Iodine Molecule.         4 Study the Branck Hertz experiment and determine the ionization potential of inert gas.       5. Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method.         5 Determine the electrical charge (e/m) using 7. Determine the specific charge (e/m) using Thomson method.	have been removed from the existing experiments list due to unmatched with the theory course in the relevant semester.

		9 Determine ballistic constant using constant deflection method.	To determine the workfunction of given metal by	
11. Advanced Quantum Mechanics	<ul> <li>After completion of this course the students will be able to-</li> <li>solve the Schrödinger equation for complex systems</li> <li>describe the structure of the periodic system and the connections between the properties of the elements and their electron configurations</li> <li>understand the effect of external parameters on the quantum systems</li> </ul>		Unit-1         Postulates of Quantum Mechanics, Planck's Quantum theory, Einstein's explanation, Compton Effect, Wave Particle Duality, de-Broglie waves, Electron Diffraction Experiment, Uncertainty Principle: Formulation and its applications, Bohr's principle of complementarity, Time dependent and time independent forms of Schrodinger's equation: need and justification         Unit-2       Wave Function, its physical significance and properties, Schrodinger and Born interpretation, Probability Current Density, eigenvalues and eigenfunctions, degeneracy, parity and orthogonality of eigenfunctions, expectation values of dynamical variables-position, momentum, energy, Ehrenfest Theorem, Time independent schrodinger equation and stationary state solution, particle in one dimensional box: eigenfunctions and eigenvalues         Unit-3         Discrete energy levels, generalization to three dimensions and degeneracy of levels, Potential step and rectangular potential barrier, Calculation of reflection and transmission coefficients, Alpha Decay, Square Well Potential Problem(attractive), Calculation of	

	transmission and reflection coefficients, Applications of Schrodinger Equation in Spherically symmetric systems: Rigid Rotator and Hydrogen Atom Unit-4 Operators in quantum mechanics: Definition, Orthogonal Sets, Completeness, Eigen values and Eigenfunction, Operator Formalism, Commutation Algebra, Linear and Hermitian Operators, Commutativity and simultaneous eigenfunctions, Hilbert Space, Operators as matrix, Matrix form of wave equation, Schrodinger, Heisenberg and Interaction matrix representation, Dirac's Bra and Ket vectors, Direct Sum and product of Hilbert space, Co-ordinate and momentum representation Unit-5	
	Approximation Methods: perturbation theory, motivation of approximation methods, Variational methods, WKB	
	Approximation, Applications of Variational and WKB methods. Time dependent perturbation theory, Harmonic perturbation.	
	Recommended Books: 1. Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand. 2. Ghatak, A. & Lokanathan S. (2001) Quantum	
	Mechanics (McMillan India Ltd.) 3. Sakurai J. J. (2005) Modern Quantum Mechanics	
	(Pearson Education) 4. Griffiths D. (2006) Introduction to Quantum	
	Mechanics (Pearson Education) 5. Bjorken J. D. and S. D. Drell (1997) Relativistic Ouantum Mechanics (McGraw Hill)	
	6. Greiner,W and Bromley D. A. (2003) Relativistic Quantum Mechanics (Springer)	

	<ol> <li>Reference Books:</li> <li>Ghatak, A. K., &amp; Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan.</li> <li>Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill.</li> <li>White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132.</li> </ol>
<ul> <li>2. 5.2 AdvancedAfter completion of this course, Quantum the students will be able to-</li> <li>demonstrate measurements skills in a physics laboratory</li> <li>analyze the measurement results to draw valid conclusions.</li> <li>have oral and written scientific communication, and think critically and work independently.</li> </ul>	Suggested web-resources:         https://swayam.gov.in/course/4250-quantum-chemistry-         spectroscopy-photochemistry         https://www.edx.org/course/quantum-mechanics-molecular-         structures-utokyox-utokyo003x-1         1. Determine the specific charge (e/m) using Thomson method.         2. Determine the specific charge (e/m) using helical method.         3. Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method         4. Determine the electrical charge (e/m) using Millikan's oil drop method.         5. To study the hydrogen spectrum and determination of Rydberg's constant.         6. Verify the inverse square law using photo cell.         7. Determine the value of Planck constant using solar cell.         8. Determine the value of Planck constant using solar cell.         9. Study the absorption spectrum of lodine Molecule.         10. Study the Franck Hertz experiment and determine the ionization potential of inert gas.

13.	6.1	After completion of this course, Recommended Bool	ks:	No
	Nuclear		C (1992) Nuclear physics, Himalya Pub. House, Bombay.	change in the entire course
	Solid Physics	forces and bonds 2 Dilloi S C	I. (1963). Nuclear physics, Oxford & IBH Pub. D. (2005), Solid State Physics, New Age International.	Update e-Resources
		• nave a basic knowledge of crystal systems and 4. Singhal H	R. L. Alvi P. A. (2015) Solid State Physics, Kedarnath Ramnath, Meerut.	
		spatial symmetries Reference Books:     account for how		
		crystalline materials are 1. Singru, R. M	. (1974). Introduction to experimental nuclear physics, Wiley Eastern Pvt. Ltd.	
			I. (2006) Nuclear Physics by S. N., S. Chand.	
			76). Introduction to solid state physics (Vol. 8). New York: Wiley.	
		form factor, structure factor, and scattering amplitude. 4. Ashcroft, N. Publishing.	W., & Mermin, N. D. (1976). Solid state physics, Cornell University Saunders College	
		<ul> <li>understand the concepts Suggested web-resonance</li> </ul>	urces:	
		of nuclear physics https://swayam.gov.ir	n/course/3817-solid-state-physics	
		<ul> <li>understand the elementary <u>https://nptel.ac.in/cou</u></li> </ul>	<u>urses/115105099/</u>	
			ourses/nuclear-engineering/	
		interactions		

14.	6.2	After completion of this course,	No
		the students will be able to-	change in the entire course
	Solid State	<ul> <li>demonstrate</li> </ul>	
	Physics Lab	measurements skills in a	
	-	physics laboratory	
		<ul> <li>analyze the measurement</li> </ul>	
		results to draw valid	
		conclusions.	
		<ul> <li>have oral and written</li> </ul>	
		scientific communication,	
		and think critically and	
		work independently.	
		<ul> <li>to understand the laws of</li> </ul>	
		nuclear and solid state	
		physics	
	1		

15.	Advanced	course, the students will be	<u>Unit-1</u>	
	Semiconductor	able to-	Energy Bands, direct and indirect semiconductors,	
	Devices	<ul> <li>understand the</li> </ul>	effective mass, Intrinsic and Extrinsic semiconductors,	
		mechanism of	Occupation Probability and carrier concentration,	
		semiconductor devices	Temperature Dependence of carrier concentration, Fermi	
		• understand the	Level, Quasi Fermi Level, mobility and conductivity, Hall	
		applications of	effect, four probe method of resistivity measurement	
		semiconductor devices in		
		routine life	Generation and Recombination of Charges, Diffusion,	
		<ul> <li>make advancement in</li> </ul>		
		these devices	potential variation within a graded semiconductor,	
			Schottky Junction and Ohmic Contact, pn junction diode,	
			Zener diode, Zener and avalanche breakdown, Tunnel	
			diode, Semiconductor Photodiode and Light Emitting	
			Diode	
			Unit-3	
			Avalanche Photodiode: Structure, Materials,	
			Characteristics and device performance	
			Bipolar Junction Transistor: Types, Current components,	
			CB,CC,CE configuration, Ebers-Moll model of transistors.	
			Concept of Load Line and Operating Point, Thermal	
			stability of transistor, Fixed Bias, Emitter Bias, Voltage	
			Divider Bias, Collector Feedback Configuration	
			Unit-4	
			Junction Field Effect transistor, depletion and	
			enhancement type MOSFET, V-I characteristic, operation	
			methods, FET biasing: Fixed, self and Voltage Divider	
			Bias	
			Four Layer Diode (p-n-p-n), SCR, Principle of operation,	
			transistor analogy, methods of turning on and turning off	
			(only reference), Gate characteristic, DIAC, TRIAC, light	
			activated thyristor	
			Unit-5	
			Operational Amplifier and its applications, inverting and	
			non-inverting amplifiers, adder, integrator, differentiator,	

	<ul> <li>wave-form generator, comparator, Schmitt trigger.</li> <li>Recommended Books: <ol> <li>Millaman J. and Halkias C. (1972) Integrated Electronics (McGraw Hill, New York),</li> <li>Malvino L. (1999) Electronic Devices and circuits</li> <li>Sterectman B. G. (1995) Solid State Electronic Devices and Integrated Circuits (Prentice Hall Inc.).</li> <li>Sze S.M. (1999) Physics of Semiconductors Devices</li> </ol></li></ul>
	by (John Wiley & Sons). Suggested e-resources: 1. https://nptel.ac.in/courses/115102014/ 2. https://nptel.ac.in/courses/113106062/ 3. https://nptel.ac.in/courses/117106091/

16.       Advanced       After completion of this         Semiconductor course, the students will be       1       To study the V-1 characteristics of FIT.         Devices       able to-       2       To study the V-1 characteristics of FIT.         LAB       • assess the validity of       4       To study the V-1 characteristics of TBT.         5       To study the V-1 characteristics of TBT.       5       To study the V-1 characteristics of TBAC.         6       To study the V-1 characteristics of TBAC.       7       To study the V-1 characteristics of TBAC.         7       To study the V-1 characteristics of TBAC.       8       To study the V-1 characteristics of TBAC.         8       ro study the V-1 characteristics of TBAC.       7       To study the V-1 characteristics of Polocoled.         9       To study the V-1 characteristics of TBAC.       8       To study the V-1 characteristics of Polocoled.         9       To study the V-1 characteristics of Polocoled.       10       To study the V-1 characteristics of Polocoled.         10       To study the V-1 characteristics of Polocoled.       10       To study the V-1 characteristics of polocoled.         10       To study the V-1 characteristics of polocoupler and draw valid scientific conclusions (lab skills).       • conneution of an appropriate sampling rate;       • generate and interpret the power spectrum of the recorded data, use the tooo			
Devices       able to-       2 To study the V-I characteristics of UJT.         AB       - assess the validity of physical theories through the design and execution of an experiment, the analysis of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills).       8 To study the V-I characteristics of Photodiode.         10 To study the V-I characteristics of physical theories the government of data and the interpretation of the data to draw valid scientific conclusions (lab skills).       9 To study the V-I characteristics of physical theories the government of the recorded data, use the tools, nethodologies, language and conventions of physics			
LAB       3 To study the output and transfer characteristics of FET.         • assess the validity of physical theories       5 To study the input and output characteristics of BJT.         • trough the design and execution of an experiment, the analysis of uncertainties       5 To study the V-1 characteristics of TRIAC.         • associated with the measurement of data and the interpretation of the data draw valid scientific conclusions (lab skills).       8 To study the V-1 characteristics of photodiode.         • conspute 1 a digital oscilloscope to a comporter and record a signal with an appropriate sampling rate;       • generate and interpret the power spectrum of the recorded data, use the totols, and convertions of physics         • generate and interpret totologies, language and convertions of physics       • generate and interpret totologies, language and convertions of physics			
<ul> <li>assess the validity of physical theories</li> <li>assess the validity of physical theories</li> <li>To study the V-1 characteristics of DIAC.</li> <li>To study the V-1 characteristics of TRIAC.</li> <li>To study the V-1 characteristics of TRIAC.</li> <li>To study the V-1 characteristics of TRIAC.</li> <li>To study the V-1 characteristics of OLOC.</li> <li>To study the V-1 characteristics of TRIAC.</li> <li>To study the V-1 characteristics of Photodiode.</li> <li>To study the V-1 characteristic</li></ul>		able to-	
<ul> <li>physical theories</li> <li>through the design and</li> <li>execution of an</li> <li>experiment, the analysis</li> <li>of uncertainties</li> <li>associated with the</li> <li>measurement of data</li> <li>and the interpretation of</li> <li>the data to draw valid</li> <li>scientific conclusions</li> <li>(lab skills).</li> <li>connect a digital</li> <li>oscilloscope to a</li> <li>computer and record a</li> <li>signal with an</li> <li>appropriate sampling</li> <li>rate;</li> <li>generate and interpret</li> <li>the power spectrum of</li> <li>the recorded data, use</li> <li>the tools,</li> <li>methodologies,</li> <li>language and</li> <li>conventions of physics</li> <li>to test and</li> </ul>	LAB		
<ul> <li>through the design and</li> <li>through the design and</li> <li>experiment, the analysis</li> <li>of uncertainties</li> <li>associated with the</li> <li>measurement of data</li> <li>and the interpretation of</li> <li>the data to draw valid</li> <li>connect a digital</li> <li>oscilloscope to a</li> <li>computer and record a</li> <li>signal with an</li> <li>appropriate sampling</li> <li>rate;</li> <li>generate and interpret</li> <li>the tools,</li> <li>methodologies,</li> <li>language and</li> <li>conventions of physics</li> <li>to test and</li> </ul>		<ul> <li>assess the validity of</li> </ul>	
<ul> <li>execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills).</li> <li>econnect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		physical theories	
<ul> <li>8 To study the characteristics of optocoupler and draw its frequency response.</li> <li>9 To study the V-1 characteristics of P-n junction diode using discrete components on bread board.</li> <li>11 To study the V-1 characteristics of por or pn transistor using discrete components on bread board.</li> <li>11 To study the V-1 characteristics of por or pn transistor using discrete components on bread board.</li> <li>12 To study the V-1 characteristics of por or pn transistor using discrete components on bread board.</li> <li>13 To study the V-1 characteristics of por or pn transistor using discrete components on bread board.</li> <li>14 To study the V-1 characteristics of por or pn transistor using discrete components on bread board.</li> <li>15 Connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>9 generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		through the design and	
of       uncertainties         associated       with the         measurement of data       9         and the interpretation of       the         the data to draw valid       signal with an         scientific       conputer and record a         signal       with an         appropriate       sampling         rate;       generate and interpret         the power spectrum of       the         the tools,       methodologies,         language       and         to       to         to       test         to       test		execution of an	7 To study the V-I characteristics of SCR.
<ul> <li>associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		experiment, the analysis	8 To study the characteristics of optocoupler and draw its
<ul> <li>measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> <li>10 To study the V-1 characteristics of pn or npn transistor using discrete components on bread board.</li> <li>11 To study the V-1 characteristics of pn or npn transistor</li> <li>12 To study the V-1 characteristics of pn or npn transistor</li> <li>13 To study the V-1 characteristics of pn or npn transistor</li> <li>14 To study the V-1 characteristics of pn or npn transistor</li> <li>15 To study the V-1 characteristics of pn or npn transistor</li> <li>16 To study the V-1 characteristics of pn or npn transistor</li> <li>17 To study the V-1 characteristics of pn or npn transistor</li> <li>18 To study the V-1 characteristics of pn or npn transistor</li> <li>19 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>10 To study the V-1 characteristics of pn or npn transistor</li> <li>11 To study the V-1 characteristics of pn or npn transistor</li> <li>12 To study the V-1 characteristics of pn or npn transistor</li> <li>13 To study the V-1 characteristics of pn or npn transistor</li> <li>14 To study the V-1 characteristics of pn or npn transistor</li> <li>14 To study the V-1 characteristics of pn or npn transistor</li> <li>14 To study the V-1 characteristics of pn or npn transistor</li> <li>14 To study the V-1 characteristi</li></ul>		of uncertainties	
<ul> <li>and the interpretation of the data to draw valid scientific conclusions (lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		associated with the	9 To study the V-I characteristics of Photodiode.
<ul> <li>the data to draw valid scientific conclusions (lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		measurement of data	
<ul> <li>scientific conclusions (lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		and the interpretation of	
<ul> <li>(lab skills).</li> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		the data to draw valid	
<ul> <li>connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		scientific conclusions	using discrete components on bread board.
oscilloscope       to       a         computer and record a       signal       with       an         appropriate       sampling       rate;       generate and interpret         the power spectrum of       the recorded data, use       the       tools,         methodologies,       language       and       conventions of physics         to       test       and       test       and		(lab skills).	
<ul> <li>computer and record a signal with an appropriate sampling rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		<ul> <li>connect a digital</li> </ul>	
signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and		oscilloscope to a	
appropriate sampling rate;         • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and		computer and record a	
<ul> <li>rate;</li> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		signal with an	
<ul> <li>generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and</li> </ul>		appropriate sampling	
the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and		rate;	
the recorded data, use the tools, methodologies, language and conventions of physics to test and		<ul> <li>generate and interpret</li> </ul>	
the tools, methodologies, language and conventions of physics to test and		the power spectrum of	
methodologies, language and conventions of physics to test and		the recorded data, use	
language and conventions of physics to test and		the tools,	
conventions of physics to test and		methodologies,	
to test and			
		conventions of physics	
communicate ideas and			
		communicate ideas and	
explanations		explanations	

### Name of Programme: M. Sc. (Physics)

### **Programme Educational Objectives**

Among various science subjects, Physics is a natural science which deals with the behavior of matter, energy and the natural laws. The core theories of Physics are: Classical Mechanics, Electromagnetism, Thermodynamics and Statistical Mechanics, Quantum Mechanics and Relativity. There are many more branches of Physics like including astronomy, biophysics, atmospheric physics, nuclear physics etc. Therefore, Physics plays a key role in the future progress of humankind either in education or research in the world because of its characteristics features.

Keeping in views the entire scientific development of the student through covering almost all the courses, the M.Sc. (Physics) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in Physics through learning the designed studies with high quality and significance. However, the main objectives of the programmes are as follows:

- To provide the fundamental concepts of nature in terms of physics with their utilizations
- To produce MSc students who are very knowledgeable and theoretically sound and are able to apply these for the analysis and solution of problems where these leads to new or substantially improved insights and performances.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent physicists at national and international level
- To produce MSc students with high integrity having social values and who are ethically professional
- To produce MSc students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To produce MSc students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To produce MSc students who can adapt to changes in environment and practice lifelong learning
- To provide the ideas about pollution control and environment sustainability through exemplary education

#### **Programme Outcomes**

**PO1: Physics Knowledge:** Possess fundamental knowledge of various core courses of physics to solve complex scientific problems of the society. Also, the students will be able to apply theoretical knowledge of principles and concepts of Physics to practical problems

**PO2: Planning Abilities-**Ability to demonstrate efficient planning including time management, resource management and organization skills.

**PO3: Expert of Advanced Tool:** Expertise in new and advanced techniques like photo-sepectrometer, XRD, FESEM, Raman, DSC etc. through project component of the programme.

**PO4: Problem analysis ability**-Ability to apply physics principles alongwith other scientific conceptual attitude to analyze the problems related to society and to show the caliber for finding the solution.

**PO5: Leadership Skills-** ability to have leadership skills with high regard for ethical values and social responsivities through learning of time management and team work skill.

**PO6: Professional Identity-** Possess ability to prove professional identity in any institution and industry at national and international level

**PO9 7: Physics and society**-Ability to explain the understanding of impact of physics study on the society including pollution, environment, health and ecosystem. In addition, the students will be able to propagate their knowledge to address problems of social relevance such as energy, and environment through their specific electives.

**PO8:** Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate the role of physics to address environmental issues.

**PO9: environment and sustainability-** Understanding about environment sustainability and pollution control through project and laboratory practices

**PO10: Life-long learning-** Possess the knowledge of current issues and ability to engage in life-long learning

# Master of Science (Physics)

#### Programme Scheme: Semester (I):

semester (1	Existing				
Course	Course Name	L	Т	Р	С
Code					
CS 416	Computer Programming	4	0	0	4
ELE 406	Principle of Digital Electronics	4	0	0	4
PHY 403	Classical Mechanics	4	0	0	4
PHY 404	Mathematical Physics	4	0	0	4
PHY 406	Quantum Mechanics-I	4	0	0	4
CS 416L	Computer Programming Lab	0	0	8	4
ELE 406L	Principle of Digital Electronics Lab	0	0	4	2
	<ul> <li>403 Classical Mechanics</li> <li>404 Mathematical Physics</li> <li>406 Quantum Mechanics-I</li> <li>16L Computer Programming Lab</li> <li>ELE Principle of Digital</li> </ul>		0	12	26

Proposed									
Course	Course Course Name								
Code									
CS 416	Computer Programming	4	0	0	4				
	Principle of Digital								
ELE 406	Electronics	4	0	0	4				
	Classical Mechanics	4	0	0	4				
	Mathematical Physics	4	0	0	4				
PHY 406	Quantum Mechanics-I	4	0	0	4				
CS 416L	Computer Programming Lab	0	0	8	4				
ELE	Principle of Digital								
406L	Electronics Lab	0	0	4	2				
	Total:	20	0	12	26				

## Semester (II):

	Existing						Proposed				
Course	Course Name	L	Т	P	С	Course	Course Name	L	Т	P	С
Code						Code					
CS 414	Computer oriented numerical and statistical methods	4	0	0	4	CS 414	Computer oriented numerical and statistical methods	4	0	0	4
PHY 401	Atomic and Molecular Physics	4	0	0	4	PHY 401	Atomic and Molecular Physics	4	0	0	4
PHY 402	Classical Electrodynamics-I	4	0	0	4		Classical Electrodynamics-I	4	0	0	4
PHY 407	Quantum Mechanics-II	4	0	0	4		Quantum Mechanics-II	4	0	0	4
PHY 408	Statistical Mechanics	4	0	0	4	PHY 408	Statistical Mechanics	4	0	0	4
TSKL 403	Communication Skills	2	0	0	2		Communication Skills	2	0	0	2
CS 414L	Computer oriented numerical and statistical methods Lab	0	0	4	2	CS 414L	Computer oriented numerical and statistical methods Lab	0	0	4	2
PHY 405L	Physics Lab-I	0	0	8	4	PHY 4051	Physics Lab-I	0	0	8	4
	Total:	22	0	12	28		Total:	22	0	12	28

## Semester (III):

	Existing					Proposed									
Course						Semester - III									
Code	Course Name	L	т	Р	C	Course Course Name	L	т	Р	с					
PHY						Code	<b>L</b>	1	r						
530	Solid State Physics	4	0	0	4	РНҮ	$\rightarrow$								
РНҮ	Classical Electrodynamics-					530 Solid State Physics	4	0	0	4					
504		4	0	0	4			-	•						
			-		·	PHY Classical									
PHY						504 Electrodynamics-II	4	0	0	4					
516	Nuclear Physics-I	4	0	0	4	РНҮ									
РНҮ	Physics of Laser and Laser					516 Nuclear Physics-I	4	0	0	4					
520	Applications	4	0	0	4		•	Ŭ	Ŭ	1					
520	Apprecients	·		Ŭ		Physics of Laser and									
PHY						Laser Applications	4	0	0	4					
518L	Physics Lab-II	0	0	8	4	Dhysics Leb II	0	0	8	4					
	Elective-I	4	0	0	4	Physics Lab-II	0	0	0	4					
	Elective-i	4		0	4	Dissipling Flastius	4	0	0	4					
PHY						Discipline Elective	4	0	U	4					
527S	Seminar	0	0	2	1	Reading Elective	0	0	0	2					
	Total:	20	0	14	27	PHY				-					
						527S Seminar	0	0	2	1					
									10						
						Semester Wise Total:	20	0	10	27					

## Semester (IV):

	Existing						Proposed								
Course	Course Name	L	Т	P	ľ	C	Semest	er - IV							
Code							Course Code	Course Name	L	т	Р	с			
PHY 529	Solid State Electronics Devices	4	0	0	4		PHY 529	Solid State Electronics Devices	4	0	0	4			
ELE 307	Microwave Electronics	4	0	0	4		ELE								
PHY 517	Nuclear Physics-II	4	0	0	4		307	Microwave Electronics	4	0	0	4			
PHY 519L	Physics Lab-III	0	0	8	4		PHY 517	Nuclear Physics-II	4	0	0	4			
	Elective-II	4	0	0	4		PHY 525P	Project	0	0	8	4			
PHY 525P	Project	0	0	8	4			Physics Lab-III	0	0	8	4			
	-							Open Elective	4	0	0	4			
	Total:	16	0	16	2.	4	Semeste	r Wise Total:	16	0	16	24			

Discipline Electives					Reading Electives				
Fibre Optics Communication	4	0	0	4	Optical materials and Devices	0	0	0	2
Physics of Nano-structure & Nanotechnology-I	4	0	0	4	Solar Energy: photovoltaic systems	0	0	0	2
Plasma Physics-I	4	0	0	4	Introduction to photonics	0	0	0	2
High Energy Physics-I	4	0	0	4					
Nonlinear Physics-I	4	0	0	4					
Condensed Matter Physics-I	4	0	0	4					
Science and Technology of Solar Hydrogen and other Renewable Energies	4	0	0	4					
Bio Physics-I	4	0	0	4					
Analog and Digital Communication	4	0	0	4					
Physics of Nano-structure & Nanotechnology-II	4	0	0	4					
Plasma Physics-II	4	0	0	4					
High Energy Physics-II	4	0	0	4					
Nonlinear Physics-II	4	0	0	4					
Condensed Matter Physics-II	4	0	0	4					
Solar Energy: Principles of Solar Thermal Devices	4	0	0	4					
Bio Physics-II	4	0	0	4					

#### Annexure-VIIIA

#### Name of Programme: M. Tech. (Nanotechnology)

#### **Programme Educational Objectives**

Banasthali Vidyapith has made a significant contribution in the technology education by introducing the M.Tech. (Nanotechnology) programme. Nanotechnology is not being considered simply a technology like other technologies which are confined almost in a limited area. In fact, the nanotechnology leads to a mission through which the whole country can be promoted in terms of sciences and technology. Keeping in view such a mission, The M. Tech. (Nanotechnology) programme has been designed by the department of Physics. Actually, M. Tech. (Nanotechnology) is an umbrella programme for capacity building which envisages the overall development of this field of research in the country and to tap some of its applied potential for nation's development.

Keeping in views the entire scientific and technological development of the student through covering almost all the courses, the M. Tech. (Nanotechnology) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in the direction of technology through learning the designed courses with high quality and significance. However, the main objectives of the programmes are as follows:

- To prepare the students to outshine in academics and research in different motifs of Nanoscience and Nanotechnology.
- To train the students with good theoretical and practical knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent technologists at national and international level
- To provide students with an academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career
- To produce the students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To prepare the students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To coach students in professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.
- To provide the ideas about environment sustainability and pollution control through exemplary and practical educations

#### **Programme Outcomes**

**PO1: Knowledge about Technology:** Able to apply knowledge and skills to solve complex technical problems which calls for insight into the latest technologies and best engineering practices including behavioral, social, and manufacturing practices.

**PO2: Planning Abilities-**Ability to demonstrate efficient planning including time management, resource management and organization skills

**PO3: Problem analysis ability-**Ability to apply scientific attitude to analyze the society problems and to apply information systematically for the solution

**PO4: Modern Tool usage:** Ability to handle new techniques and advanced tools like XRD, FESEM etc, which derive the nanosciences and nanotechnology

**PO5: Leadership Skills-** ability to have leadership skills with high regard for ethical values and social responsivities through the management related courses.

**PO6: Professional Identity-** able to show professional identity as competent technologists at national and international level

**PO9 7: Technology and society-**Ability to show the understanding of impact of nanomaterials on the society including environment, health and ecosystem. On the other side, the Graduates will be able to propagate their knowledge to address problems of social relevance such as energy, environment and medicine through their specific electives.

**PO8:** Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.

**PO9: environment and sustainability-** Understanding about environment sustainability and pollution control through laboratory practices

**PO10: Life-long learning-** Possess the knowledge of contemporary issues and ability to engage in life-long learning

## M.Tech (Nanotechnology)

## **Programme Scheme:**

## Semester (I):

	Existing		Existing							Proposed							
Course	Course Name	L	Т	P	,	С	Course	Course Name	L	Τ	Р	С					
Code							Code										
ELE 506	Nano-Photonics & Optoelectronics	4	0	0	4	4		Nano-Photonics & Optoelectronics	4	0	0	4					
PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4	4	PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4					
PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4	4	PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4					
PHY 511	Introduction to Materials Science	4	0	0	4	4	PHY 511	Introduction to Materials Science	4	0	0	4					
PHY 531	Surface, Interface and Thin films	4	0	0	4	4	PHY 531	Surface, Interface and Thin films	4	0	0	4					
NANO 502L	Simulation Lab-I	0	0	6	-	3		Simulation Lab-I	0	0	6	3					
PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6		3	PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3					
	Total:	20	0	12	-	26		Total:	20	0	12	26					

## Semester (II):

	Existing						Proposed							
Course	Course Name	L	Т	P	С	Course	Course Name	L	Т	Р	С			
Code						Code								
ELE 501	Advanced Nano-electronics	4	0	0	4	ELE 501	Advanced Nano-electronics	4	0	0	4			
	Mathematical Modeling and Simulation	4	0	0	4	MATH 514	Mathematical Modeling and Simulation	4	0	0	4			
NANO 501	Quantum Computations and Information Processing	4	0	0	4	NANO 501	Quantum Computations and Information Processing	4	0	0	4			
PHY 501	Advanced Characterization Techniques	4	0	0	4	PHY 501	Advanced Characterization Techniques	4	0	0	4			
NANO 503L	Simulation Lab-II	0	0	6	3		Simulation Lab-II	0	0	6	3			
PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3	PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3			
	Elective	4	0	0	4		Discipline Elective	4	0	0	4			
	Total:	20	0	12	26		Total	20	0	12	26			

Discipline Electives	L	Т	Ρ	С
Nano-Engineering of Biological Systems	4	0	0	4
Organic and Polymer Technology	4	0	0	4
MEMS and NEMS Technology	4	0	0	4

#### Semester (III):

	Existing						Proposed				
Course	Course Name	L	Т	P	С	Course	Course Name	L	Т	Р	С
Code						Code					
	Reading Elective-I	0	0	4	2	PHY 601P	Project (Part-I)	0	0	48	24
PHY 601P	Project (Part-I)	0	0	48	24		Reading Elective-I	0	0	4	2
	Total:	0	0	52	26		Total:	0	0	52	26

## Semester (IV):

	Existing						Proposed				
Course	Course Name	L	Т	Р	С	Course	Course Name	L	Т	Р	С
Code						Code					
PHY 601P	Project (Part-I)	0	0	48	24	PHY 601P	Project (Part-I)	0	0	48	24
	Reading Elective-II	0	0	4	2		Reading Elective-II	0	0	4	2
	Total:	0	0	52	26		Total:	0	0	52	26

Reading Electives				
Nanotechnology in Healthcare and Environment	0	0	4	2
Development of Nanotechnology: A Global Aspect	0	0	4	2
Nanotechnology and Society	0	0	4	2
Tissue Engineering	0	0	4	2
Nano-Catalysis	0	0	4	2
RF and MMIC Design Reading	0	0	4	2

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, with prior permission of respective heads, time table permiting.

#### Name of Programme: M.Tech. (Nanotechnology)

#### **Course Details:**

Photonics & to- Optoelectronic • understand the fundamentalConfin	⁷ semiconductor quantum wells, Quantum , Nonlinear Optical Properties, Quantum		Defining the topics to be studied
Optoelectronic • understand the fundamentalConfin			in a clear form.
photodevices Dots,Q • analyse LED and ^{structure} heterojunction laser materials selection and structure design <u>Photon</u>	t, Superlattices, Core shell Quantum ,Quantum Dot Quantum wells, Quantum confined ures as lasing media onie Crystals, 1D,2D,3D photonie tures, Features of photonic crystals, ocavity effect Methods of Fabrication, onic crystal optical circuitry Nonlinear	transitions, Exciton absorption, Donor acceptor and	Updating the course: Photonic Crystals moved to Section-C
iquid crystal displays Photon • get an overview of photonic systems Introdu two lev Gain in Amplif conditi line bro in two Materia Semico Heteroj	onic Crystal Sensor TION-B duction to Lasers, Guided Waves,Gain in level lasing medium, Lasing Condition and in semiconductors, Selective lification and Coherence, Threshold lition for lasing, Lineshape function and broadening mechanisms, Lasing threshold ro level system, LED: Basics, Choice of trials, Light Output from LED, iconductor Lasers: Basic principles, rojunction Lasers: Energy Band diagram	Bandgap radiative transitions, Deep-level transitions, Auger recombination; Dielectric confinement effect; Superlattices; Core shell Quantum Dots; Quantum confined structures as lasing media SECTION-B Introduction to Lasers; Gain in two level lasing medium; Lasing Condition and Gain in semiconductors; Selective Amplification and Coherence; Threshold condition for lasing; Lineshape function:Line broadening mechanisms: Natural	

242

## Annexure VIII

	Structure and Principle of Operation	Structure and Principle of Operation	
	SECTION-C Photodiodes, Avalanche Photodiodes, Structure, Materials, Characteristics, Device performance, Infrared Quantum detectors, QWIPs, Operation Principles, design and material choices, Quantum dot Infrared Photodetectors, Extending QWIPs into shorter and longer wavelengths	Features of photonic crystals, Optical microcavites, Methods of Fabrication, Nonlinear Photonic crystals, Photonic Crystal Fibre, Photonic Crystal Sensor, Surface Plasmons: Drude–Sommerfeld theory,Surface plasmon polaritons at plane interfaces, Properties of surface plasmon polaritons, Surface plasmon sensors, Surface plasmons in nano-optics, Plasmons supported	
		<ol> <li>Recommended Books</li> <li>Bhattacharya P. (2002) Semiconductor Optoelectronic Devices (Prentice Hall India, IInd edition )</li> <li>Prasad P. N. (2004) Nanophotonics (Wiley Interscience, USA).</li> <li>Silvfast W.T. (1998) Laser Fundamentals by, (Cambridge University Press, UK)</li> <li>Ghatak A, Thyagarajan, K (2010) Lasers, Fundamentals and applications (Springer Science+Business Media, USA)</li> <li>Novotny L., Hecht B. (2006) Principles of Nano-Optics (Cambridge University Press, UK)</li> </ol>	
		Suggested e-Resources: NPTEL : Semiconductor optoelectronics https://nptel.ac.in/courses/115102103/ NPTEL : Nanophotonics https://nptel.ac.in/courses/118106021/1	

2.	PHY 502	After completion of this		No change in entire course
	Advanced	course, the students will be		_
	Synthesis	able to- Recommended H	ooks	Update e-resources
	Processes and			-
	Devices		Dutta J. Tibbals H.F., Rao A .(2008) Introduction to Nanoscience (CRC Press)	
			(2013). Springer handbook of nanomaterials. Springer Science & Business Media.	
		application of current chemical and scientific ³ . Henini, M. (Ed.)	(2012). Molecular beam epitaxy: from research to mass production. Newnes.	
			d.). (2005). Microfabrication and nanomanufacturing. CRC press	
		in Analytical, Inorganic, 5. Neamen, D. A. (	2012). Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill,.	
		Organic and Physical synthesis processes. 6. Manasreh, O. (2)	11). Introduction to nanomaterials and devices. John Wiley & Sons.	
		<ul> <li>have skills in problem</li> </ul>		
		solving, critical thinkingSuggested -e-res		
		and analytical reasoning https://nptel.ac.in/c	<u>ourses/117106109/1</u>	
		as applied to scientifichttps://ocw.mit.edu	courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall-	
		problems. 2005/lecture-notes/	<u>vd.pdf</u>	
		<ul> <li>communicate the results</li> </ul>		
		of scientific work in oral,		
		written and electronic		
		formats to both scientists		
		and the public at large.		
		• explore new areas of		
		research in both		
		chemistry and allied		
		fields of science and		
		technology.		
3.	PHY 508	After completion of this		No change in entire course
		course, the students will be		Update e-resources
		able to- Recommended H	ooks	- F
	sciences and		Kulkarni, K. (2007). Nanotechnology: principles and practices.	
	Nano-	conoral principles of		
	technology	physical chemistry 2. Guozhong, C	(2004). Nanostructures and Nanomaterials: synthesis, properties and applications.	
	connoiog,	electronics and biology World scienti	ĩc	

<ul> <li>that play a role on the³. Köhler, M., &amp; Fritzsche, W. (2008). Nanotechnology: an introduction to nanostructuring nanometer scale</li> <li>have insight into the⁴ and the experimental techniques that can be⁵Suggested -e-resources used on the nanoscale. <a href="https://ocw.mit.edu/search/ocwsearch.htm?q=quantum%20dots">https://ocw.mit.edu/search/ocwsearch.htm?q=quantum%20dots</a> as well as their <a href="https://ocwsearch.htm?q=quantum%20dots">https://ocwsearch.htm?q=quantum%20dots</a> as mell as their <a href="https://ocwsearch.htm?q=quantum%20dots">https://ocwsearch.htm?q=quantum%20dots</a> as well as their <a href="https://ocwsearch.htm?q=quantum%20dots">https://ocwsearch.htm?q=quantum%20dots</a> as well as their <a href="https://ocwsearch.htm?q=quantum%20dots">https://ocwsearch.htm?q=quantum%20dots</a> as well as thei</li></ul>	
	No change in entire course
Introduction to course, the students will be	8
Materials able to- 1. Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: anUpda	date e-resources
Science • apply knowledge of <i>introduction</i> (Vol. 7, pp. 665-715). New York: John wiley & sons.	
mathematics, science 2. Jones, D. R., & Ashby, M. F. (2012). Engineering materials 2: an introduction to microstructures and engineering to and processing Butterworth Hainemann	
and engineering to <i>and processing</i> . Butterworth-Heinemann.	
to materials science and	
engineering. Suggested –e resources https://ocw.mit.edu/courses/materials-science-and-engineering/3-012-fundamentals-of-materials-science-fall-	
design     new maximum courses machines science and engineering 5-012 inframentals of materials science and     new 2005/lecture-notes/lect/b.odf	
design     new <u>2005/lecture-notes/lec17b.pdf</u> nanomaterials, as well <u>https://nptel.ac.in/courses/112104039/53</u> as characterize the new	

	1			
		•	collaborate effectively	
			on multidisciplinary	
			teams.	
		•	communicate	
			effectively in written	
			and oral formats.	
5.	PHY 531	Afte		No change in entire course
	Surface,			Update e-resources
		andable	to-	
	Thin films	•		
			properties of free liquid 2. Daillant, J., & Gibaud, A. (Eds.). (2008). X-ray and neutron reflectivity: principles and	
			surfaces, such as applications (Vol. 770). Springer	
			surface tension, 3. Delchar, T. A. (1993). Vacuum physics and techniques. Chapman and Hall	
			capillarity, wetting and	
			spreading.	
			Suggested –e resources	
		•	understand and describehttps://nptel.ac.in/courses/112101004/downloads/(36-8-1)%20NPTEL%20-%20Vacuum%20Technology.pdf	
			electrical phenomena at https://ocw.mit.edu/search/ocwsearch.htm?q=stm	
			surfaces, such as	
			surface charge, surface	
			potential, the electrical	
			double layer, and basic	
			electrochemical	
			concepts.	
			-	
			describe the phase	
			behaviour and	
			aggregation of	
			amphiphiles in solution	
			and at interfaces.	
			desribe intermolecular	
			forces, forces acting	
			between molecules and	
L	1			

	Nano	course	, the students will be		
	Fabrication and	able to	-		No change in entire course
	Characterizatio	•	synthesize the nano-		
	n Lab-I		materials		
		•	characterize the		
			synthesized materials		
			using several advanced		
			characterizing tools		
		•	seek potential of the		
			materials for several		
			industrial technological		
			applications.		
8.		After	r r r r r r r		No change in entire course
			, the students will be		Update e-resources
		able to		Recommended Books	
	electronics	•	cope up with certain		
			nanoelectronic systems and building blocks		
			and building blocks such as: low-	2. Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press.	
			dimensional	3. Heinzel, T. (2008). Mesoscopic electronics in solid state nanostructures. John Wiley & Sons.	
			semiconductors,	4. Waser, R. (Ed.). (2012). Nanoelectronics and information technology. John Wiley & Sons	
			heterostructures, carbon nanotubes, quantum dots, nanowires etc.	<ol> <li>Lundstrom, M., &amp; Guo, J. (2006). Nanoscale transistors: device physics, modeling and simulation. Springer Science &amp; Business Media.</li> </ol>	
		•	set up and solve the Schrödinger equation	<ol> <li>Hanson, G. W. (2008). Fundamentals of nanoelectronics. Upper Saddle River: Pearson/Prentice Hall.</li> </ol>	
			for diferent types of	Reference Books:	
			potentials in one dimension as well as in	21). Oxford University Press.	
			2 or 3 dimensions for	2. Park, B. G., Hwang, S. W., & Park, Y. J. (2012). Nanoelectronic devices. CRC Press.	
		•	specific cases. use matrix methods for	<ol> <li>Mitin, V. V., Kochelap, V. A., &amp; Stroscio, M. A. (2008). Introduction to nanoelectronics. Science, Nanotechnology, Engineering, and Applications (Cambridge Univ. press, Cambridge, 2008).</li> </ol>	
			solving transport	4. Chang, C. Y. (2000). ULSI devices. John Wiley & Sons.	
			problems such as	5. Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge university press.	

-				
			tunneling, resonant	
			tunneling and know the Suggested -e resources	
			concept of quantized https://nptel.ac.in/courses/113104004/	
			conductance. https://nptel.ac.in/courses/113104004/29	
		•	familiarize with	
			searching for scientific	
			information in their	
			subject area, practice	
			report writing and	
			presenting their project	
			in a seminar	
9.	MATH 514	After		No change in entire course
			the students will be <b>Recommended Books</b>	
	Modeling and			Update e-resources
	Simulation		characterize	
			engineering systems in 1. Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. Boston: McGraw-Hill	
			terms of their essential Higher Education,.	
			alamanta numasa	
			parameters constraints 2. Frenkel, D., & Smit, B. (2001). Understanding molecular simulation: from algorithms to	
			performance applications (Vol. 1). Elsevier.	
			requirements, sub-3. Ohno, K., Esfarjani, K., & Kawazoe, Y. (2018). Computational materials science: from ab initio to	
			systems, Monte Carlo methods. Springer.	
			interconnections and environmental context.	
		-	model and solve the https://nptel.ac.in/courses/103106119/ relationship between https://opu.mit.edu/coarch/courses/htm?grab%20initio	
			relationship between https://ocw.mit.edu/search/ocwsearch.htm?g=ab%20initio	
			mathematical, and	
			computational	
			modelling for	
			predicting and	
			optimizing performance	
			and objective.	
			develop solutions and	
L		•	develop solutions and	

Advanced Characterizatio n Techniques	<ul> <li>understand basic principles of the techniques presented in the course 3. Rao, C. N. R., Müller, A., &amp; Cheetham, A. K. (Eds.). (2006). <i>The chemistry of nanomaterials: synthesis, properties and applications</i>. John Wiley &amp; Sons.</li> <li>their advantages and limitations. Furthermore, the student should understand the5. Rose, R.M., Shepard L.A., and. Wulff, (1966) The Structure and Properties of Materials (Wiley Eastern Ltd.)</li> <li>suitable for each technique.</li> <li>perform simple and routine operations on the https://nptel.ac.in/courses/117106109/1</li> <li>experimental setups.</li> <li>After completion of this to perform various experiments Atomistix Toelkit.</li> </ul>	
Simulation	course, the students will be Virtual NanoLab (ATK-VNL) simulation package is languages like Python, C++, Fortran, Mathematicapu	

		<ul> <li>write computer co</li> </ul>	lessimulation results for various 1,2 and 3 dimensional		scientific training today.
		for cojontific real proble	mano-structures and nano-devices which will rather W	rite the Computer program to:	
		using various numer	requires a very large and expansive laboratory at the 1.	Find the roots of a polynomial or transcendental	Without writing codes for all the
		and simulation methods	experimental level. ATK-VINL helps students to	equation using Bisection, Iteration, Newton-	numerical methods studied in the
			understand the electronic, optical, thermal, mechanical	Raphson, Ramanujan's, Quotient-difference	course will be useless. Students will
		<ul> <li>have command over</li> </ul>	and other properties of various nano structures and	methods.	be required to write their own coded
		numerical analysis	materials at the atomic level. 2.	Interpolate data using forward, backward and	and test all the techniques studied in
				central difference, Newton's general and	the class.
			Simulation Lab-II	Lagrange interpolation methods.	
			3.	Find the least square fit using Straight line and	
			1. To study transport properties of armchair graphene	polynomial.	
			nano ribbon devices. 4.	Differentiate and integrate functions using Cubic	
			2. To study transport properties of zigzag graphene	spline, Trapezoidal, Simpson's, Gaussian	
			nano-ribbon devices.	integration. To calculate double integral.	
			3. To analyse chlorine sensing properties of zigzag 5.	Simple Linear Algebra manipulations and	
			boron phosphide nano-ribbons through electronic	calculating inverse and eigenvalue problems using	
			properties.	inbuilt libraries.	
			4. To analyse chlorine sensing properties of zigzag 6.	Solve single and couple ordinary differential	
			boron phosphide nano-ribbons through transport	equations using Euler's and Runge-Kutta	
			properties.	method.	
			5. To calculate binding energy of boron nitride nano-	Solving Partial differential equations.	
			ribbons.		
			6. To calculate ionization energy and affine energy of	One dimensional single orbital tight-bonding	
			boron doped benzene molecule in isolated (gas	odel, with random onsite energies. Calculate the	
				genvalues, density of states and site dependent	
				ectronic occupation for given electron density.	
			molecule based nano-device.	certome occupation for given electron density.	
			8. To calculate magnetic moment of a molecular	Compare results for different strength of disorder.	
			Junction.	compare results for unrerent strength of disorder.	
			9. To study I V characteristic for a molecular	). Setup a metropolis algorithm based Monte Carlo	
	1			mulation of 1d ferromagnetic ising model. Calculate	
				mperature dependence of total energy, specific	
				eat, magnetization and magnetic susceptibility.	
12.	PHY 513L	After completion of		and an and an and an approved the subsection of the	
	Nano	course, the students will			No change in entire course
	Fabrication and	,			no change in chure course
	Characterizatio	<ul> <li>understand ba</li> </ul>	sic		

	n Lab-II	principles of the techniques presented in the course, their advantages and limitations. Furthermore, the student should understand the requirements for samples suitable for each technique. • perform simple and routine operations on the experimental setups.	
13.	BT 518	After completion of this	No change in entire course
	Nano-	course, the students will be	
	Engineering of		Update e-Resources
	Biological	• explain the concepts of 1. Enderle, J., & Bronzino, J. (2012). Introduction to biomedical engineering. Academic press.	
	Systems	nanotechnology and and 2. Bronzino, J. D., & Peterson, D. R. (2014). <i>Biomedical engineering fundamentals</i> . CRC press.	
		account for the Supplementary Reading :	
		importance of which in 1. Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals. CRC press.	
		the development of Cromwell I Weibell F. I. & Pfeiffer F. A. (2018) Biomedical instrumentation and	
		biomedical surface science, science, surface science, surface science	
		• explain the	
		interdisciplinary nature of protochoology Suggested -web resources	
		or nanotechnology,	
		using examples from https://ocw.mit.edu/search/ocwsearch.htm?q=ph%20sensorss	
		biology, medicine, <u>https://ocw.mit.edu/search/ocwsearch.htm?q=cell%20structure</u>	
		chemistry and physics,	
		evaluate the different     technologies upd in the	
		technologies used in the synthesis and analysis	
		of nanostructures, and	
L	1		I

14.       CHEM 508       After completion of this commended Books       No change in entire course         14.       CHEM 508       After completion of this commended Books       No change in entire course         Polymer       able to-       isolate the key design!       Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & features of a poduct which Sons.       No change in entire course         Technology       • isolate the key design!       Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & features of a poduct which Sons.       Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers(Vol. 2). Berlin: Springer.       Update e-Resources         • describe the role of Suggested -web resources       interrulation in the proving the mechanical https://npdata.in/courses/113105028/       Update e-Resources       Update e-Resources         improving the isomeric structures which and enaxity       • identify the isomeric structures which and enaxity       Interrulation in the proving the isomeric structures which and enaxity for the someric structures which and enaxity       Interrulation in the proving the isomeric structures which and enaxity       No change in entire course         15.       ELE 504       After completion of this present.       No change in entire course       No change in entire course         If MEMS and course, the students will beRecommended Books       • Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       Update e-Resources				
Image: Interactions between mano objects and biological and artificial interfaces     Image: Interactions between mano objects and biological and artificial interfaces       I.4.     CHEM 508     After completion of this organic and course, the students will be <b>Recommended Books</b> No change in entire course       Polymer     able to-     • isolate the key design!     • Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & Sons.     Update e-Resources       Technology     • isolate the key design!     • Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & Sons.     Update e-Resources       .     • isolate the key design!     • Nicolais, L., & Strobl, G. R. (1997). The physics of polymers (Vol. 2). Berlin: Springer     Update e-Resources       .     • describe the role of Suggested -web resources     • Suggested -web resources     •       .     • identify the repeat units of particular polymers and specify the isomerie structures which can exist for those repeat units     • identify the repeat units     • identify the repeat units       .     • estimate the number- and weight-average molecular masses of polymers and specify the isomeries in present.     •     No change in entire course       15.     ELE 504     After completion of this MEXPS and course, the students will be Recommended Books     No change in entire course       NEMS     and course, the students will be Recommended Books     1. Senturia, S. D. (2007). Microxystem design. Springer Science & Business Media.		-		
14.       CHEM 508       After completion of this interfaces       No change in entire course         14.       CHEM 508       After completion of this organic andcourse, the students will be Recommended Books able to- <ul> <li>• isolate the key design!</li> <li>Nicolais, L., &amp; Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley &amp; features of a product which relate directly to the2. Strobl, G. R., &amp; Strobl, G. R. (1997). The physics of polymers(Vol. 2). Berlin: Springer</li> <li>• describe the role of Suggested -web resources rubber-toughening in improving the mechanicalhtus://notel.ac.in/courses/113105028/.</li> <li>• projecties of oplymers in this //ocumit.edu/search/acouses/htm?g=metal%20containing%20polymers</li> <li>• identify the repeat units of particular polymers and masses of polymer samples given the degree of polymer samples in this proving and mass fraction of chain present.</li> <li>ELE 504</li> <li>After completion of this metaer.</li> <li>Settudents will be Recommended Books neurons will be Recommended Books neurons.</li> <li>No change in entire course function of this metaer.</li> <li>If the completion of this samples given the degree of polymerisation and mass fraction of chain present.</li> <li>ELE 504</li> <li>After completion of this metaer.</li> <li>Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> <li>No change in entire course in the present in the present in this metaer.</li> <li>Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> <li>Webus neurons of this metaer.</li> <li>Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li></ul>				
14.       CHEM 508       After completion of this organic and course, the students will be Recommended Books Polymer able to -       No change in entire course         7 Echnology       - isolate the key design!       Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & features of a product which relate directly to the state directly to the construction -       Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers(Vol. 2). Berlin: Springer       Update e-Resources         .       .       describe the role of Suggested -web resources       Strobl, G. R. (2014). Polymer science and technology. Pearson Education       Update e-Resources         .       .       describe the role of Suggested -web resources       .       Strobl, G. R. (2014). Polymer science and technology. Pearson Education       .         .       .       describe the role of polymers in improving the mechanical mitos//nptel.ac.in/courses/11305028/       .       .       .         .       oparticular polymers and specify the isomeric structures which can exist for those ropeat units of particular polymers and pass of polymer same set o				
14.       CHEM 508       After completion of this Organic andcourse, the students will be Recommended Books able to- Technology       No change in entire course         14.       CHEM 508       After completion of this organic andcourse, the students will be Recommended Books able to- Technology       No change in entire course         14.       CHEM 508       After completion of this solate the key design!       Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & features of a product which relate directly to the construction       Sons.       Sons.         0.       describe the role of Suggested -web resources rubber-toughening in improving the mechanical theo/Intelactinc/Intelactincourses/L13105028/.       Properties of polymers ites://ocw.mit.edu/search/ocw.search.htm?gumetal%20containing%20polymers       Update e-Resources         0.       edscribe the role of Suggested -web resources rubber-toughening in improving the mechanical theo/Intelactincourses/L13105028/.       Update e-Resources         0.       identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units • estimate the number- and degree of polymerisation and mass fraction of this present.       No change in entire course         15.       ELE 504       After completion of this metadues able to- the degree of polymerisation and mass fraction of this present.       No change in entire course         15.       ELE 504       After completion of this metadues able to-       Isenturia, S. D. (2007). Microsystem design. Springer Sc				
14.       CHEM 508       After completion of this Organic addocurse, the students will be <b>Recommended Books</b> No change in entire course         Polymer       able to-       • isolate the key design       I. Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & Sons       Update e-Resources         relate directly to the2.       Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers(Vol. 2). Berlin: Springer       Update e-Resources         auterial(s) used in its construction       3. Fried, J. R. (2014). Polymer science and technology. Pearson Education       • describe the role of Suggested -web resources         • identify the mechanical https://ptel.ac.in/courses/113/05028/       properties of polymers and specify the isomeric structures which can exist for those repeat units       • estimate the number- and weight-average molecular masses of polymer same structures which can exist for those repeat units       • estimate the number- and weight-average molecular masses of polymers, the students will be Recommended Books         15.       ELE 504       After completion of this more       No change in entire course         NEMS       able to-       1. Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       No change in entire course			I.	
Organic Polymer       andcourse, the 'students will be Recommended Books able to- Technology       isolate the key design 1. Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley & features of a product which relate directly to the material(s) used in its construction       Update e-Resources         • describe the role of rubber-toughening in improving the mechanical properties of polymers       Strobl, G. R. (1997). The physics of polymers(Vol. 2). Berlin: Springer       Update e-Resources         • identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units • estimate the number- and weight-average molecular masses of polymer samels given the degree of polymerisation and mass fraction of chains present.       No change in entire course         15.       ELE 504       After completion of this MEMS       andcourse, the students will be Recommended Books NEMS         NEMS       able to-       1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.				
Polymer Technology       able to- • isolate the key design relates of a product which relate directly to the 2. Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers (Vol. 2). Berlin: Springer       Update e-Resources         Update e-Resources       .       Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers (Vol. 2). Berlin: Springer       Update e-Resources         .       .       .       Strobl, G. R., & Strobl, G. R. (1997). The physics of polymers (Vol. 2). Berlin: Springer       Update e-Resources         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .         .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .	14.	CHEM 508 After completion of this	3	No change in entire course
<ul> <li>Technology</li> <li>isolate the key design I. Nicolais, L., &amp; Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley &amp; Sons</li> <li>relate directly to the Sons</li> <li>relate directly to the Sons</li> <li>Fried, J. R. (2014). Polymer science and technology. Pearson Education</li> <li>describe the role of Suggested -web resources</li> <li>rubber-toughening in improving the mechanical https://nptel.ac.in/courses/113105028/</li> <li>properties of polymers</li> <li>identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units</li> <li>estimate the number- and weight-average molecular masses of polymer station of chains present.</li> <li>ELE 504 After completion of this MEMS andcourse, the students will beRecommended Books NEMS able to - busice to the topic of the station of chains present.</li> <li>Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> </ul>		Organic and course, the students will be	Recommended Books	
15.       ELE 504       After completion of this MEKS       Sons.       Sons.       Sons.       Sons.       Sons.       Sons.       Sons.       Update e-Resources         Internation       describe the role of Suggested -web resources       Sons.       Fried, J. R. (2014). Polymer science and technology. Pearson Education       Update e-Resources         Internation       describe the role of Suggested -web resources       Internation       Internatin <td></td> <td>Polymer able to-</td> <td></td> <td></td>		Polymer able to-		
15.       ELE 504       After completion of this methods       No change in entire course         15.       ELE 504       After completion of this methods       No change in entire course         16.       ELE 504       After completion of this       No change in entire course         16.       ELE 504       After completion of this       No change in entire course         16.       ELE 504       After completion of this       No change in entire course		Technology • isolate the key design	1. Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley &	
15.       ELE 504       After completion of this MEMS       No change in entire course         15.       ELE 504       After completion of this       No change in entire course         16.       ELE 504       After completion of this       No change in entire course				
15.       ELE 504       After completion of this MEMS       No change in entire course         15.       ELE 504       After completion of this       No change in entire course         16.       ELE 504       After completion of this       No change in entire course		relate directly to the	2. Strohl G. P. & Strohl G. P. (1997). The physics of polymers (Vol. 2). Berlin: Springer	Update e-Resources
<ul> <li>construction 3. Fried, J. R. (2014). Polymer science and technology. Pearson Education</li> <li>describe the role of Suggested -web resources rubber-toughening in improving the mechanical https://nptel.ac.in/courses/113105028/ properties of polymers</li> <li>identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units</li> <li>estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.</li> <li>ELE 504 After completion of this MEMS and course, the students will be Recommended Books</li> <li>No change in entire course</li> </ul>		material(s) used in its		•
Image: standard s			3. Fried, J. R. (2014). <i>Polymer science and technology</i> . Pearson Education	
Image: standard s		• describe the role of	Suggested –web resources	
<ul> <li>improving the mechanical https://nptel.ac.in/courses/113105028/ properties of polymers</li> <li>identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units</li> <li>estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.</li> <li>ELE 504 After completion of this MEMS and course, the students will be Recommended Books</li> <li>No change in entire course</li> <li>I. Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> </ul>				
Image: second spectral second second spectral second spectral second spectral second second spectral second spectral second spectral second spectral second second spectral second second second spectral second second spectral second second second spectral second se			https://pptel.ac.in/courses/113105028/	
<ul> <li>identify the repeat units of particular polymers and specify the isomeric structures which can exist for those repeat units         <ul> <li>estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.</li> </ul> </li> <li>ELE 504 After completion of this MEMS andcourse, the students will be Recommended Books</li> <li>No change in entire course</li> <li>I. Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> </ul>			https://jocw.mit.edu/search/ocwsearch.htm?g=metal%20containing%20polymers	
of particular polymers and specify the isomeric structures which can exist for those repeat units       • estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.         15.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books NEMS         15.       ELE 504       After completion of this MEMS able to-         1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.				
<ul> <li>specify the isomeric structures which can exist for those repeat units         <ul> <li>estimate the number-and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.</li> </ul> </li> <li>15. ELE 504 After completion of this MEMS and course, the students will be Recommended Books NEMS able to-</li></ul>				
Image: structures which can exist for those repeat units       • estimate the number-and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.       • estimate the number-and weight-average molecular masses of polymerisation and mass fraction of chains present.         I5.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books NEMS able to-       No change in entire course         I5.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books NEMS able to-       I. Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.		1 1 5		
for those repeat units       • estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.       •         15.       ELE 504       After completion of this MEMS andcourse, the students will be Recommended Books       •         15.       ELE 504       After completion of this MEMS andcourse, the students will be Recommended Books       •         15.       ELE 504       After completion of this MEMS andcourse, the students will be Recommended Books       •         16.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       •				
<ul> <li>estimate the number- and weight-average molecular masses of polymer samples given the degree of polymerisation and mass fraction of chains present.</li> <li>ELE 504 After completion of this MEMS and course, the students will be Recommended Books</li> <li>No change in entire course</li> <li>I. Senturia, S. D. (2007). Microsystem design. Springer Science &amp; Business Media.</li> </ul>				
and       weight-average molecular masses of polymer samples given the degree of polymer samples given the degree of polymerisation and mass fraction of chains present.       Image: No change in entire course set of the set of		1		
molecular masses of polymer samples given the degree of polymer samples given the degree of polymerisation and mass fraction of chains present.       No change in entire course         15.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books       No change in entire course         15.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books       No change in entire course         1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       Undate a Becommende				
polymer samples given the degree of polymerisation and mass fraction of chains present.     Polymerisation       15.     ELE 504     After completion of this MEMS and course, the students will be Recommended Books     No change in entire course       15.     ELE 504     After completion of this MEMS and course, the students will be Recommended Books     No change in entire course       15.     ELE 504     After completion of this MEMS and course, the students will be Recommended Books     No change in entire course			1	
degree of polymerisation and mass fraction of chains present.       degree of polymerisation and mass fraction of chains present.         15.       ELE 504       After completion of this MEMS and course, the students will be Network able to-       No change in entire course         1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       Undet a Resource				
and mass fraction of chains present.     No change in entire course       15.     ELE 504     After completion of this MEMS and course, the students will be NEMS     No change in entire course       NEMS     able to-     1.     Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.				
present.     No change in entire course       15.     ELE 504     After completion of this MEMS and course, the students will be Recommended Books     No change in entire course       NEMS     able to-     1.     Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.     Undet a Because of the students				
15.       ELE 504       After completion of this MEMS and course, the students will be Recommended Books       No change in entire course         NEMS       able to-       1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.       Undete a Recommended Books				
MEMS       andcourse, the students will be         Recommended Books         NEMS       able to-         1.       Senturia, S. D. (2007). Microsystem design. Springer Science & Business Media.	1.5			NY N
NEMS able to- Technology l. (2007). Microsystem design. Springer Science & Business Media.	15.			No change in entire course
Tashnalagy 1 ( 1 )				
• understand the 2. Alvi, P. A. (2014). MEMS Pressure Sensors: Fabrication and Process Optimization.				
		echnology • understand the	2. Alvi, P. A. (2014). MEMS Pressure Sensors: Fabrication and Process Optimization.	Update e-Resources

	<ul> <li>operation of micro3. Gad-el-Hak, M. (2001). <i>The MEMS handbook</i>. CRC press.</li> <li>devices, micro systems</li> <li>and their applications</li> <li>Suggested –web resources</li> <li>gain a knowledge of <a href="https://ow.mit.edu/search/ocwsearch.htm?q=mems">https://ow.mit.edu/search/ocwsearch.htm?q=mems</a></li> <li>basic approaches for <a href="https://nptel.ac.in/courses/105105108/24">https://nptel.ac.in/courses/105105108/24</a></li> <li>gain a knowledge of <a href="https://nptel.ac.in/courses/105105108/24">https://nptel.ac.in/courses/105105108/24</a></li> <li>gain a knowledge required for <a href="https://nptel.ac.in/courses/105105108/24">https://nptel.ac.in/courses/105105108/24</a></li> <li>gain the technical <a href="https://nptel.ac.in/courses/105105108/24">https://nptel.ac.in/courses/105105108/24</a></li> <li>gain a knowledge required for <a href="https://nptel.ac.in/courses/105108/24">https://nptel.ac.in/courses/105108/24</a></li> </ul>
Reading Electi	
	After completion of this No change in entire course
	course, the students will be <b>Recommended Books</b>
y in Healthcare	
and	describe how the properties and applications.
Environment	environment and human health interact ² . Challa, K. (2006). Tissue, cell and organ engineering.
	<ul> <li>at different levels.</li> <li>Challa, R. K., &amp; Kumar, R. (2007). Nanomaterials for medical diagnosis and therapy. Mass</li> <li><i>bectrometry</i>, 1, 2.</li> </ul>
	knowledge and skills
	environmental sustainability of health 1. Goddard III, W. A., Brenner, D., Lyshevski, S. E., & Iafrate, G. J. (Eds.). (2007). <i>Handbook of</i> <i>nanoscience, engineering, and technology</i> . CRC press.
	<ul> <li>systems.</li> <li>discuss how the duty of a doctor to protect and</li> </ul> 2. Bhushan, B. (Ed.). (2017). Springer handbook of nanotechnology. Springer.

		promote health is Suggested -web resources	
		shaped by the https://www.futurelearn.com/courses/nanotechnology-health	
		dependence of human https://elearninguoa.org/course/health-nanotechnology-nanomedicine/nanotechnology-and-nanomedicine	
		health on the local and https://www.edx.org/learn/nanotechnology	
		global environment.	
17.	MGMT 601R	After completion of this course	No change in entire course
	Development	the student will be able to: Recommended Books	D
	of	• understand the I. Maclurcan, D., & Radywyl, N. (Eds.). (2011). Nanotechnology and global sustainability. CRC	Update e-Resources
	Nanotechnolog	role of Press	1
	y: A Global	nanotechnology 2. Fulekar, M.H. Pathak B., R K Kale (2013) Environment and Sustainable Development, (Springer	
	Aspect	in various Press).	
		asmaata alahally	
		advancement in Suggested – web resources	
		tookenlooden	
		http://www.greeknewsagenda.gr/htdex.php/topies/business-r-d/6565-university-or-athens-online-	
		courses-on-nanotechnology-and-nanothechene	
		nanotechnology https://www.coursera.org/learn/nanotechnology	
1.0			
18.		After completion of this course <b>Recommended Books</b>	No change in entire course
		the student will be able to: 1. Fritz, S., & Roukes, M. L. (2002). Understanding nanotechnology: from the editors of Scientific	
	y and Society	• understand the impact American. Warner Books	Update e-Resources
		of nanotechnology in 2. Ratner, M. A., & Ratner, D. (2003). Nanotechnology: A gentle introduction to the next big idea.	
		routine life Prentice Hall Professional.	
		• understand the impact3. Jasanoff, S., Markle, G. E., Peterson, J. C., & Pinch, T. (Eds.). (2001). Handbook of science and	
		of nanotechnology on <i>technology studies</i> . Sage publications	
		society 4. MacKenzie, D., & Wajcman, J. (1999). The social shaping of technology (No. 2nd). Open	
		university press.	
		5. Pickering, A. (Ed.). (1992). Science as practice and culture. University of Chicago Press.	
		Suggested –web resources	
		https://www.mrs.org/docs/default-source/programs-and-outreach/strange-matter.green-earth/nanotechnology-and-	
		society-a-practical-guide-to-engaging-museum-visitors-in-conversations.pdf?sfvrsn=bf66fa11_0 user(f)	
		http://www.cns.ucsb.edu/about/nanotechnology-society.html	

	Reading Elective-II*				
19.	BIO 604R	After completion of this course Recommended Books	No change in entire course		
	Tissue	the student will be able to- 1. Palsson, B. O., Bhatia, S. N., & Prentice, P. (2004). Reviewed by Kam W. Leong. Molecular			
	Engineering	• understand the basic <i>Therapy</i> , 9(4).	Update e-Resources		
		mechanism of biological systems using nano-science and engineering (Vol. 7). John Wiley & Sons.			
		technology. Supplementary Readings:			
		• understand concept of 1. Joseph D., Bronzino (2006) The Biomedical Engineering –Handbook, (CRC; 3rd edition)			
		Suggested –web resources			
		https://nptel.ac.in/courses/102106036/			
		https://ocw.mit.edu/search/ocwsearch.htm?q=bio%20materials After completion of this course Recommended Books			
20.	CHEM 601R	No change in entire course			
	Nano-Catalysis	the student will be able to- 1. Levenspiel, O. (1999). Chemical reaction engineering. Industrial & engineering chemistry			
		• understand the basic research, 38(11), 4140-4143	Update e-Resources		
		mechanism of chemical ₂ . Carberry, J. J. (2001). Chemical and catalytic reaction engineering. Courier Corporation.			
		reaction 3. Satterfield, C. N. (1970). Mass transfer in heterogeneous catalysis. The MIT Press.			
		• understand the role of Suggested -web resources			
		nano-catalysis. https://ocw.nit.edu/search/ocwsearch.htm?g=%20nano%20catalysis			
		https://nptel.ac.in/courses/103108097/28			
21.	ELE 601R	After completion of this courseRecommended Books	No change in entire course		
	RF and MMIC	the student will be able to- 1. Robertson, I. D., & Lucyszyn, S. (Eds.). (2001). RFIC and MMIC Design and Technology (No. 13).	5		
	Design	• understand radiolet.	Update e-Resources		
		frequency systems Suggested –web resources	•		
		design the new <u>https://ocw.mit.edu/search/ocwsearch.htm?q=mesfet</u>			
		electronic devices. https://nptel.ac.in/courses/117107095/20			

Verified Deren

Offg. Secretary Banasthali Vidyapith P.O. Banasthali Vidyapith Distt. Tonk (Raj.)-304022