Department of Physical Sciences Banasthali Vidyapith, Banasthali

Minutes of the meeting of Board of Studies held on 26thDecember, 2018 at 11:00 a.m. in Conference Room, Urja Mandir, Banasthali Vidyapith.

Present

1. Mr. Aavishkar Katti	:	Member
2. Dr. Ajay Singh Verma	:	Member
3. Dr. Banwarilal Chaudhari	:	Member
4. Dr. C.M.S. Negi	:	Member
5. Dr. Devendra Pratap Singh	:	Member
6. Dr. G. Savitha	:	Member
7. Mr. Hemant Kumar	:	Member
8. Mr. Kamal Kumar Jain	:	Member
9. Ms. Lajwanti Singh	:	Member
10. Dr. Madhumita Halder	:	Member
11. Dr. Manish Kumar Srivastava	:	Member
12. Mr. Nishant Singh	:	Member
13. Mr. Pardeep Lamba	:	Member
14. Dr. Parvez Ahmad Alvi	:	Member
15. Ms. Pooja Srivastava	:	Member
16. Ms. Priyanka Saxena	:	Member
17. Mr. Rajnish Kumar	:	Member
18. Dr. Ram Lal Awasthi	:	Member
19. Prof. Ritu Vijay	:	Convener
20. Dr. Sadhu Veera Bhadraiah	:	Member
21. Dr. Saral Kumar Gupta	:	Member
22. Prof. Seema Verma	:	Member
23. Ms. Shalini Jharia	:	Member
24. Mr. Shekhar Yadav	:	Member
25. Ms. Shivani Saxena	:	Member
26. Ms. Sraja	:	Member
27. Dr. Supratim Mitra	:	Member
28. Dr. Sweta Parashar	:	Member

29. Dr. Vartika Kulshreshtha : Member

30. Dr. Vishant Gahlaut : Member

31. Prof. Rajeev Gupta : External Member
 32. Prof. Ameer Azam : External Member
 33. Prof. Sudhish Kumar : External Member

34. Prof. Deepak Bhatnagar : External Member

Note: Prof. S.C. Bose (External), Dr. Parvendra Tyagi (Internal) could not attend the meeting.

Before proceeding to discuss the agenda of the meeting, convener accorded a cordial welcome to all members who were present in the meeting.

- 1. BOS took up the confirmation of its last meeting held on 10th March, 2012 and 24th April, 2016 and no comments were received from the members, the Board resolved that the minutes of its last meeting be confirmed.
- 2. BOS reviewed and updated the existing panel of examiners in each panel of undergraduate and postgraduate examination of Electronics in accordance to the Byelaws 15:03:2002 of the Vidyapith. The list of examiners has been sent to the secrecy.
- 3. The board reviewed the Study/Curriculum, scheme of examination and proposed revisions in various courses of study as follows:

I. B.Sc. (Mathematics) Examination

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Minor Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^a
V.	Fifth Semester Examination, December, 2021	Change a, b
vi.	Sixth Semester Examination, April/May, 2022	Change a, b

The Board reviewed the objectives, learning outcomes and existing courses of Electronics running in B.Sc. (Mathematics) programme and no modification in the syllabus was suggested in I year and II year. However board recommended the up gradation in text books and reference books. The list of upgraded text books, reference books and e-resources of the

Electronics courses running in B.Sc. (Mathematics) programme have been enclosed as **annexure I** (Page No 7 -21).

- (a) The board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V & VI with prior permission of respective heads, time table permitting.
- (b) In III year board proposed to introduce electives in place of discipline courses.

 Microprocessors, Communication systems, Introduction to photonics and Antenna

 Theory and Wave Propagation have been proposed to include in the discipline electives.

II. B. Tech. (ECE) Examination

i.	First Semester Examination, December, 2019	Minor Change ^a
ii.	Second Semester Examination, April/May, 2020	Minor Change ^a
iii.	Third Semester Examination, December, 2020	Minor Change a, b
iv.	Fourth Semester Examination, April/May, 2021	Minor Change a, b
v.	Fifth Semester Examination, December, 2021	Revised a, c
vi.	Sixth Semester Examination, April/May, 2022	Revised a, c
vii.	Seventh Semester Examination, December, 2022	Revised d, e, f
viii.	Eighth Semester Examination, April/May, 2023	Revised g, h, i, j

Restructuring of the B.Tech. (ECE) scheme has been started from session 2017-18. Scheme and syllabus of I year, II year III year and IV year were presented in front of the board which are enclosed as annexure II (Page No. 22-73).

The following modifications have been recommended for approval:

- (a) The board proposed to introduce language courses in I year and incorporate more foundation and vocational courses I year, II year, III year.
- **(b)** The board advised to change the credit from 3 to 4 in *Complex Variables course*.
- (c) Upgradation in the syllabus of Analog Communication, Analog Electronics, Microwave Engineering, Digital Communication, Control systems for the session 2021- 2022 in the curriculum. Microwave Electronics and Analog integrated circuits have been renamed as Microwave Engineering and Analog Electronics, respectively.
- (d) Inclusion of *Antenna Analysis* instead of Antenna and Radar course from the session 2022-2023.
- (e) The UIL Project is shifted from 7th semester to 8th semester. The change will be applicable from session 2019-20.

- **(f)** Inclusion of *Mechatronics* and *Robotics and Automation* course as discipline electives from the session 2022-2023 in the curriculum keeping in view of interdisciplinary approach of curriculum structure.
- **(g)** Board proposed some new reading electives from the session 2022- 2023 in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
- (h) Board proposed inclusion of few online courses as reading elective from the session 2022-2023 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility.
- (i) 3rd year and 4th year of Session 2019 -20 and 2020-21 will be same as session 2021-22 and session 2022-23.
- (j) The board advised to introduce open elective in the VII semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V, VI, and VII with prior permission of respective heads, time table permitting.

III. M.Sc. (Electronics) Examination

i.	First Semester Examination, December, 2019	Revised a,
ii.	Second Semester Examination, April/May, 2020	Revised a, b, c
iii.	Third Semester Examination, December, 2020	Revised b,c
iv.	Fourth Semester Examination, April/May, 2021	Revised d,e

The Board reviewed the existing course of M.Sc. (Electronics) examination and recommended change in the scheme and syllabus. The board also suggested that whenever there is a change or modification in the B.Tech. (ECE) courses, which are common with the M.Sc. (Electronics) Programme, will be affected in the M.Sc. (Electronics) Programme simultaneously. The changed scheme and syllabus are enclosed as annexure III (Page No. 74-132).

The following modifications have been recommended for approval:

(a) Inclusion of Signals, Systems and Networks, Semiconductor Devices and Circuits courses in the curriculum.

- (b) Addition of elective course in II semester. Inclusion of Electives in the curriculum as follows:
 - Basics of Nanoelectronics
 - Mechatronics
 - Audio and Video Systems
 - Geoinformatics
 - Robotics and Automation
 - Biomedical Instrumentation
 - Fiber Optics and Communication
 - Analytical Instrumentation

- Digital Signal Processing
- Communication Networks
- Optical Network
- Satellite Communication
- Mobile Communication
- Radar Navigation
- Power Electronics
- Antenna Analysis
- (c) Addition of open elective course in III semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, and III with prior permission of respective heads, time table permitting.
 - (d) Addition of new reading electives in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
 - (e) Board proposed inclusion of few online courses as reading elective for the session 2020-2021 in the curriculum as follows:
 - Electric Vehicles
 - *IoT Sensors and Devices*
 - Electromagnetic Compatibility

IV. M.Tech. (VLSI Design)

i.	First Semester Examination, December, 2019	Revised ^a
ii.	Second Semester Examination, April/May, 2020	Revised ^a
iii.	Third Semester Examination, December, 2020	Revised b, c
iv.	Fourth Semester Examination, April/May, 2021	Revised b, c

The Board reviewed the existing course of M.Tech. (VLSI Design) and recommended few changes in the list of electives and reading electives. The Board also reviewed the text books and reference books of existing courses of M.Tech. (VLSI Design) and recommended upgradation in text books and reference books. E-resources also have been included for referencing. The board also suggested some of the online courses as reading elective for the programme. The updated syllabus, list of electives and reading electives are enclosed as **annexure IV** (Page No. 133-169).

The following modifications have been recommended for approval:

- (a) The board advised to incorporate open elective course in the II semester and include of *Photonics Integrated Circuits* in the list of discipline electives. In addition, board proposed to choose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, and II with prior permission of respective heads, time table permitting. The board also suggested to amend the list of discipline electives.
- **(b)** Addition of *Advanced Electronic Packaging and Compound Semiconductor Technology* in the list of reading electives.
- **(c)** Inclusion of online courses namely *Digital Image Processing and Organic Electronic Devices* as reading electives in the curriculum.

V. B.Sc. (Mathematics)/ B.Sc. (Geology)/B.Sc-B.Ed. Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	Revised (b,c)
V.	Fifth Semester Examination, December, 2021	Change (d,e,f)
vi.	Sixth Semester Examination, April/May, 2022	Change ^(f)

The Board reviewed the objectives, syllabi, learning outcomes of the B.Sc. (Mathematics) / B.Sc. (Geology)/B.Sc-B.Ed. programmes.

- (a) The board has reframed the experiment list of **Electronics Lab (PHY 104L)** and suggested to add some more experiments relevant to existing syllabus of Physics in first semester.
- (b) The board has suggested the name of the course (course code: PHY 203) as "Thermodynamics, Statistical and Mathematical Physics" instead of "Statistical and Mathematical Physics".
- (c) The board has reviewed the experiment list of physics lab (course code: PHY 202L). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (d) The board has reviewed the experiment list of physics lab (course code: 5.2). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (e) The board has suggested the name of the course (course code: PHY 203) as "Quantum Mechanics and Spectroscopy" in place of "Quantum, Atomic and

Molecular Physics" and the name of "Atomic Physics Lab" changed to "Quantum Mechanics and Spectroscopy Lab".

(f) The board has suggested to keep discipline electives and related labs in V and VI semester of the program.

The revised syllabus, course learning outcomes, list of suggested books and e-resources of the B.Sc. (Mathematics) programme is attached and marked as **Annexure-V** (Page No. 170-190).

*The corrected name of the courses as well as name of Labs and the contents changed in the revised syllabi should be implemented for the session 2019-20.

VI. B.Sc. (Aviation Science) Examinations:

The course learning outcomes of the course: Basic Physics-I (course code: PHY 102), list of suggested books and e- resources of the B.Sc. (Aviation Science) programme is attached and marked as **Annexure-VI** (Page No. 191).

VII. M.Sc. (Physics) Examinations:

The Board discussed the recent trends in physical sciences at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, board suggested to give more weight-age to self-learning and independent research activities.

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	Revised ^(b)
iii.	Third Semester Examination, December, 2020	Revised ^(c,*)
iv.	Fourth Semester Examination, April/May, 2021	Revised ^(d,*)

- (a) Board reviewed the syllabi of M.Sc. Physics I Semester and found that the courses *Classical Mechanics* (Course Code: PHY 403) and *Mathematical Physics* (Course Code: PHY 404) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the syllabi.
- (b) Board reviewed the syllabi of M.Sc. Physics II Semester and found that the courses *Classical Electrodynamics I* (Course Code: PHY 402) and *Quantum Mechanics* (Course Code: PHY 407) must be revised. The board has suggested minor changes in the course *Classical Electrodynamics I* (Course Code: PHY 402); while in the *Quantum Mechanics* (Course Code: PHY 407) some mathematical and conceptual details and revision of perturbation theory is required to explain the need of approximation methods.

- (c) Board reviewed the syllabi of M.Sc. Physics III Semester and found that the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520), *Condensed Matter Physics-I* (Course Code: PHY 505), *Condensed Matter Physics-II* (Course Code: PHY 506) and *Physics Lab II* (Course Code: PHY 518L) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520); while the list of the experiments has been divided into two parts: part A and part B instead of three parts. In addition to these changes, the board has also proposed to include **Reading Elective** in the third semester.
- (d) Board reviewed the syllabi of M.Sc. Physics IV Semester and no changes were suggested except laboratory practices of physics lab-III (Course code- PHY 519L). The board has suggested that the list of the experiments should be divided into two parts: part A and part B instead of three parts.
- (*) Board has proposed new electives in the curricula i.e. **Bio Physics-I** and **Bio Physics-II** in M.Sc. IIIrd and IVth semester respectively.

The specific programme outcome, revised syllabus, course learning outcomes, list of suggested books and e- resources of the M.Sc. (Physics) programme is attached and marked as **Annexure-VII** (Page No. 192-230). The detailed proposed scheme of M.Sc. (Physics) programme is attached as **Annexure VII A** (Page No. 231-236).

VIII. M.Tech. (Nanotechnology) Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a,*)
ii.	Second Semester Examination, April/May, 2020	Revised ^(*)
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	No Change

- (a) The board has revised the whole syllabus of M.Tech (Nanotechnology) and found that the syllabus of **Nano-photonics and Optoelectronics** course (code: ELE506) should be revised.
- (*) Apart from the theory course, the board has also reframed the simulation lab-I and –II (code: NANO 502L & NANO 503L). The revised syllabus is enclosed as **Annexure–VIII** (Page No. 242-256). The detailed proposed scheme of M.Tech. (Nanotechnology) programme is attached as **Annexure VIII A** (Page No. 237-241).
- 4. The Board reviewed the curriculum for the courses running in the other programmes of the Vidyapith. The recommendations as follows-

^{*}The content changed in the revised syllabi should be implemented for the session 2019-20.

Bachelor of To	Bachelor of Technology (BT/CE/EC/EE/EI/CS/IT/MCTR)											
ENGG 202	Basic Electronics	No Change										
Bachelor of To	echnology (EI)											
VLSI 401 VLSI Design No Change												
ELE 201	201 Digital Electronics No Chan											
ECE 302	No Change											
ECE 302 Communication Engineering No Change Bachelor of Technology (EE/EI/MCTR)												
ELE 201 Digital Electronics No Change												
Master of Scie	ence (Physics)											
ELE 406	Principles of Digital Electronics	No Change										
Bachelor of Sc	cience (Aviation Science)											
PHY 102	Basic Physics-I	No Change										
Bachelor of To	echnology (All Branches)											
PHY 101	Applied Optics	No Change										
PHY 105	Engineering Mechanics	No Change										
PHY 106	Modern Physics	No Change										

5. The board considered the report of examiners of different examinations. Most of the examiners found that the content of the answers were satisfactory or good. The reports are attached as **annexure IX** (Page No. 257).

The board has reviewed the reports received from the examiners of different examinations and their observations are as follows:

- reports were satisfactory
- Performance of the students in most of the papers is up to the mark.
- The numerical solving ability of the students was found less.

After observing the reports received from the examiners of different examinations the following suggestions were given:

- The numerical solving ability of the students is a major concern and therefore, it should be addressed through proper tutorial classes.
- To give equal weightage for each section (three sections course paper), the number of questions to be attempted compulsorily should be **six** instead of **five**.
- 6. BOS has thoroughly analysed the quality of the session 2017-2018 question papers keeping the following points in mind
 - Percentage of analytical based question
 - Percentage of descriptive questions
 - Percentage of numerical based questions

In most of the paper, it has been found that there has been a judicious balance of all these components in the papers.

The board has evaluated the question papers of the periodical and semester examinations and found that the quality of the question papers is maintained at UG and PG level. To improve the standard of the question paper, the board has given following suggestions:

- Include more numerical/logical problems.
- Instead of direct questions and derivations, some small conceptual questions must be put in the question paper to check the analytical ability of the student.

7. To review the degree title for the Ph.D. Scholars

Currently Ph.D. degree is awarded in various disciplines namely Electronics, Electronics Engineering, Digital Communication Engineering and many more. To remove the ambiguity it is proposed that the degree title in sciences should be Electronics or Physics and for engineering background, it should be awarded in Electronics Engineering.

The meeting ended with vote of thanks.

Annexure I

Name of Programme: B.Sc. (Mathematics)

Disciplinary Course-Electronics

Programme Educational Objectives:

- To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- > Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- > Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- Function with multidisciplinary teams.

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Electronics

	Existing Scheme						Proposed Scheme						
Course	e Code	Course Name	L	T	P	C	Course C	ode	Course Name	L	T	P	C
ELE	102	Circuits and Signals	6	0	0	6	ELE 1	02	Circuits and Signals	6	0	0	6
ELE	102L	Circuits and Signals Lab	0	0	4	2	ELE 1	02L	Circuits and Signals Lab	0	0	4	2
	Total		6	0	4	8			Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Electronics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
ELE 103	Principles of Electronics	6	0	0	6	ELE 103	Principles of Electronics	6	0	0	6
ELE 103L	Principles of Electronics Lab	0	0	4	2	ELE 103L	Principles of Electronics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Electronics

	Existing Scheme							Proposed Scheme					
Course C	ode	Course Name	L	T	P	С	Course Code	Course Name	L	T	P	C	
ELE 2	204	Fundamentals of Digital Electronics	6	0	0	6	ELE 204	Fundamentals of Digital Electronics	6	0	0	6	
ELE 2	204L	Fundamentals of Digital Electronics Lab	0	0	4	2	ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2	
	Total			0	4	8		Total	6	0	4	8	

B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Electronics

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	С
ELE 203	Electronic Instrumentation and Measurements	6	0	0	6	ELE 203	Electronic Instrumentation and Measurements	6	0	0	6
ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2	ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2
Total			0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - V (December, 2021) **Disciplinary Course-Electronics**

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	T	P	С	Course Code	Course Name	L	T	P	C
ELE 305	Microprocessors	6	0	0	6		Discipline Elective -I	6	0	0	6
ELE 305L	Microprocessors Lab	0	0	4	2		Discipline Elective Lab-I	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022) **Disciplinary Course-Electronics**

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	С	Course Code	Course Name	L	T	P	C
ELE 302	Communication Systems	6	0	0	6		Discipline Elective -II	6	0	0	6
ELE 303L	Communication Systems Lab and Project	0	0	4	2		Discipline Elective Lab-II	0	0	4	2
Total			0	4	8		Total	6	0	4	8

* L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

	Discipline Elective				
Course Code	Name of Course	L	T	Р	С
ELE 305	Microprocessors	6	0	0	6
ELE 305L	Microprocessors Lab	0	0	4	2
	Introduction to Photonics	6	0	0	6
	Introduction to Photonics Lab	0	0	4	2
ELE 302	Communication Systems	6	0	0	6
ELE 302L	Communication Systems Lab	0	0	4	2
	Antenna Theory and Wave Propagation	6	0	0	6
	Antenna Theory and Wave Propagation Lab	0	0	4	2

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 102, Circuits and Signals	After completion of this course, students will be able to: Predict the behaviour of any electrical and magnetic circuits. Formulate and solve complex AC, DC circuits. Explain response of RL, RC and RLC networks. Realize the requirement of transformers in transmission and	_	_	No Change in course contents.
		distribution of electric power and other applications.	Text Book: 1. B.L.Thareja, "A Text Book of Electrical Technology", Vol. I and II, 1994, ISBN-81-219-0515-X	Recommended Books: 1. Thareja,B.L.(2005). A Text Book of Electrical Technology. New Delhi: S Chand Publication. 2. Chakrabarti, A. (2018). Circuit Theory Analysis and Synthesis. New Delhi: Dhanpat Rai & Co. 3. Mehta, V.K. (2005). Principles of	Added

Annexure- I B.Sc.(Mathematics) Disciplinary Course-Electronics

2.	ELE 102L, Circuits and Signals Lab	After completion of this laboratory course, students will be able to: Test Various Active and Passive components using Multimeter and CRO. Understand frequency response of Resonance.		Electrical Engineering. New Delhi: S Chand Publication. Suggested e-resources: 1. Basic Electrical Circuits by Dr Nagendra Krishnapura, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106108/ 2. Basic Electrical Technology by Prof. T. K. Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105053/ 3. Fundamentals of Electrical Engineering by Prof.Debapriya Das, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105112/ 1	Learning Outcomes added. No Change in Experiment List.
3.	ELE 103, Principles of Electronics	After completion of this course, students will be able to: Design various diodes circuits for various applications. Differentiate various biasing	_	_	No Change in course contents.

methods used in BJTs and FET's • Analysed different kinds of oscillators and feedback circuits. After completion of this laboratory course, students will be able to: • Identify and Test various electronics components. • Understand I-V characteristics of various Electronic devices. • Draw frequency response of apprehistors	Text books: 1. Millman, Halkias, "Integrated Electronics," TMH Publications 2. Robert Baylsted, "Electronics Devices," PHI Publications Reference books: 1. Malvino Leach, "Principle of Electronics," Tata Mg Hills	Recommended Books: 1. Parikh, Millman & Halkias. (2017). Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 2. Boylestad, Robert L., & Nashelsky Louis. (2015). Electronic Devices& Circuit Theory. New Delhi: Pearson Publication. 3. Malvino, Albert., & Bates, David J. (2017) Electronic Principles. New Delhi: McGraw Hill Education. Suggested E-resources: 1. Basic Electronics by Dr. Pramod Agarwal, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/	Learning Outcomes added. No Change in Experiment List.
After completion of this course, students will be able to: Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation of various combinational and sequential circuits. Differentiate various logic families. Understand the operation and application of multi-vibrators.	Text Books: 1.MANO M.M. "DIGITAL DESIGN", PHI, 2ND EDI. 2. SinghalRajul, "Pulse & Linear Integrated Circuits", Standard Publisher distributor, 1st Edition, 2002.	Recommended Books: 1. Morris Mano, M., & Ciletti, Michael D. (2018). Digital Design. New Delhi: Pearson Publication. 2. Singhal, Rajul. (2003). Pulse & Linear Integrated Circuits. New Delhi: Standard Publisher distributor.	No Change in course contents.
	After completion of this laboratory course, students will be able to: Identify and Test various electronics components. Understand I-V characteristics of various Electronic devices. Draw frequency response of amplifiers. After completion of this course, students will be able to: Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation of various combinational and sequential circuits. Differentiate various logic families. Understand the operation and	After completion of this laboratory course, students will be able to: Understand I-V characteristics of various Electronic devices. Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation of various combinational and sequential circuits. Differentiate various logic families. Understand the operation and application of multi-vibrators. In Millman, Halkias, "Integrated Electronics," TMH Publications Reference books: Malvino Leach, "Principle of Electronics," Tata Mg Hills ——————————————————————————————————	Analysed different kinds of oscillators and feedback circuits. Analysed different kinds of oscillators and feedback circuits.

6.	ELE 204L, Fundamentals of Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the functioning of bread board. • Implement and verify logic gates and theorems.	Fundamental ", PHI, 3rd Edition Reference Books: 1. Floyd Thomas L., "Digital Fundamental", Pearson Education, 3rd Edition, 2002. 2. SchilingTaub, "Integrated circuits", TMH, 2nd Edition.	Publication. Suggested E-resources: 1. Digital Circuits and Systems by Prof. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086 2. Digital System Design by Prof. D. Roy Choudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/3.	Learning Outcomes added. No Change in Experiment List.
7.	ELE 203, Electronic Instrumentation and Measurements	Design combinational and sequential circuits. After completion of this course, students will be able to: Understand and estimate various types of errors in measurements. Explain the operating principle of various measuring instruments used to detect physical quantities. Design op-amp circuits and understand SCR operation.	Text Books: 1. Ramamoorthy M., "An Introduction to Thyristors&	Recommended Books: 1. Ramamoorthy, M. (1991). An Introduction to Thyristors& their	No Change in course contents.
			their Applications", 2nd Edition, ISBN-81-85336-67-9 2. SawhenyA.K., "A Course of Electrical & Electronic Instrumentation and Measurement Techniques", 11th Edition, 1995, Pub. Dhanpat Rai, New Delhi	Applications. New Delhi: Affiliated East-West Press (Pvt.) Ltd. 2. Sawheny, A.K.(2015). A Course in Electrical & Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co 3. Helfrick Albert D. & Cooper W.D. (2016). Modern Electronic	

			References Book: 1. Cooper W.D., "Modern Electronic Instrumentation and Measurement Techniques", 3rd Indian Reprint, Prentice Hall of India Private Limited, 1995	Instrumentation and Measurement Techniques (1/e). New Delhi: Pearson Publication. Suggested E-resources: 1. Industrial Instrumentation by Prof. AlokBarua, Department of Electrical Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064/7 2. Analog Circuits by Prof. Pramod Agarwal, Department of Electrical Engineering Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107094/1 3. Basic Electronics by Prof. T.S. Natarajan, Department of Physics	
8.	ELE 203L,	After completion of this laboratory		Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064/7 2. Analog Circuits by Prof. Pramod Agarwal, Department of Electrical Engineering Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107094/1 3. Basic Electronics by Prof. T.S.	
	Electronic Instrumentation and Measurements Lab	course, students will be able to: Understand principle of different transducers. Design various circuits Using Op-Amp IC.			Learning Outcomes added. No Change in Experiment List.
		Understand and draw V-I characteristics of SCR, DIAC and TRIAC.			

9.	ELE 305, Microprocessors	After completion of this course, students will be able to: Describe the general architecture of microcomputer system and architecture & organization of 8085 & 8086 Microprocessor and understand the difference between 8085 and advanced microprocessor. Distinguish the use of different instructions and apply them in assembly language programming. Explain and realize the interfacing of memory & various I/O devices with 8085 microprocessor.	Text Books 1. GaonkerR.S., "Microprocessor Architecture, Programming & Applications with the 8085/8080", 2nd Edition, New Age International Publishers Limited, ISBN-81-224-0710-2. 2. Douglas V. Hall, "Microprocessor and Interfacing", Mc-Graw Hill Book Company, 1987, ISBN-0-07-100462-9 Reference Books 1. Short K.L., "Microprocessor and Programmed Logic", 2nd Edition, Prentice Hall of India Pvt. Ltd. 1988, ISBN-0-87692-515-8. 2. Ram B., "Fundamentals of Microprocessors and Microcomputer", 5th rev ed., 2001, Dhanpat Rai, New Delhi. 3. Verma Seema, "8085 Microprocessor: Programming, Interfacing and Applications", Aashirvad Publication. Jaipur, 2006	Recommended Books: 1. Gaonker, R.S. (2013) Microprocessor Architecture, Programming & Applications with the 8085. Mumbai, Maharashtra: Penram International Publishing (India) Pvt. Ltd. 2. Douglas V. Hal., SSSP, Rao.(2012) Microprocessor and Interfacing. New Delhi: Mc-Graw Hill Publication 3. Ram B. (2018). Fundamentals of Microprocessors and Microcomputers. New Delhi: Dhanpat Rai & Co Suggested E-resources: 1. Microprocessor by Dr. Pramod Agarwal, Department of Electrical Engineering, IITRoorkee https://nptel.ac.in/courses/108107029/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	No Change in course contents. Deleted
10.	ELE 305L, Microprocessors Lab	After completion of this laboratory course, students will be able to: Understand the different instructions of 8085 microprocessor assembly language. Coding in assembly language. Solve different real time problems.			Learning Outcomes added. No change in Experiment List.

11.	ELE 302,	After completion of this course, students			
11.	Communication	will be able to:			
	Systems	Explain the working of			No Change in
	Systems	communication system, Analog			course contents.
		Modulation Techniques and their			course contents.
		comparative analysis and			
		applications suitability.	T (D)	D 1.1D 1	
			Text Books: 1. Kennedy George "Electronics	Recommended Books: 1. Kennedy, George. (2017) Electronics	
		To analyse various methods of	, ,	3, 5	
		baseband/band pass Analogue transmission and detection.	communication system", TMH, 4th edition, 1999 TMH, New	communication System. New Delhi:Mc-Graw Hill Publication.	
			Delhi.		
		To evaluate the performance of		2. Gulati, R. R. (2011) Monochrome and colour Television. New Delhi: New	
		analogue communications in the			
		presence of noise.	&colour TV", 1986, Wiley	Age International Publication.	
		Explain the working of AM, FM	Eastern, New Delhi.	3. Shilling, Taub. (2013) Principles of	
		transmitter and receiver.	Reference Books :	Communication Systems. New Delhi: Mc-Graw Hill Publication.	
			Shilling Taub , " Communication system" ,	4. Lathi, B.P., Ding, Zhi., & Gupta, Hari	
			TMH, 2nd Edition	Mohan. (2017) Modern Digital and	
			2. Lathi BP, "Analog & Digital	Analog Communication Systems. New	
			Communication", Oxford	Delhi: Oxford University Press.	
			University Press		
			_	5. Sharma S.P. (2012). Basic Radio & Television. New Delhi: Mc-Graw Hill	
				Publication. New Dellii. Mc-Graw Hill	
			TV, TMH", 1983, TMH, New Delhi.	Suggested E-resources:	
			Deliii.	88	
				1. Analog Communication by Prof.Goutam Das, G S Sanyal School	
				of Telecommunications, IIT	
				Kharagpur. https://nptel.ac.in/courses/117105143/	
				2. Communication Engineering by	
				Prof. Surendra Prasad, Dept. of	
				Electrical Engineering, IIT, Delhi.	
				https://nptel.ac.in/courses/117102059/	
12.	ELE 303L,	After completion of this laboratory	To study the Amplitude Modulation	Communication Systems:	
12.	Communication	course, students will be able to:	& Demodulation and measure	To study the Amplitude Modulation &	Learning Outcomes
	Systems Lab	Understand modulation.	modulation Index.	Demodulation and measure	added.
	Systems Lab	demodulation waveform and measure	2. To study the Single sideband AM	modulation Index.	auucu.
		modulation index.	using Balanced Modulator.	2. To study the Single sideband AM	No Change in
			3. To study the PAM and its	using Balanced Modulator.	Experiment List.
		Understand the operation of Pulse modulation and demodulation.	Demodulation.	3. To study the PAM and its	Experiment Eist.
		modulation and demodulation.	4. To study the PWM and its	Demodulation.	
l			T. 10 Study the I WIVE alle his	Demodulation.	

			D 1-1-4:	4 Ttl d DWM 1 2	
		Familiarized with radio and TV	Demodulation. 5. To study the PCM and its	To study the PWM and its Demodulation.	
		receiver.	Demodulation.		
			6. To study the PPM and its Demodulation.	Demodulation.	
				6. To study the PPM and its	
			7. Familiarization with Radio	Demodulation.	
			Receiver - Block Diagram.	7. Familiarization with Radio Receiver -	
			8. Familiarization with TV Receiver -	Block Diagram. 8. Familiarization with TV Receiver -	
			Block Diagram.		
1.2	4 4 751	10 10 01	Project.	Block Diagram.	
13.	Antenna Theory	After completion of this course, students		UNIT I	
	and Wave	will be able to:		Review of Electromagnetic theory:	
	Propagation	Analyze Maxwell's equation in		Cartesian coordinate system, Circular	
		different forms (differential and		coordinate system, Spherical coordinate system (dot product, cross product,	
		integral) and apply them to		divergence & curl). Maxwell's equations	
		diverse engineering problems.		in differential and integral form,	
		Examine the phenomena of		Boundary Conditions for Electrostatics	
		wave propagation in different		and magnetostatics.	
		media and its interfaces and in applications of microwave		UNIT II	
		engineering.		Wave equation and its solution, Poynting	
		Recall electromagnetic plane		vector, General Transmission line	
		waves. Apply principles of		equation, input impedance, characteristic	
		electromagnetic to explain		impedance, Reflection coefficient,	
		antenna radiation. Explain		standing wave ratio, Practical problems in	
		various antenna parameters.		transmission lines.	
		Explain dipole antennas.		UNIT III	
		Establish mathematical		Introduction to antennas, network	
		equations for various parameters		theorems, Antenna characteristics	
		of thin linear antenna.		(Radiation pattern, Directivity, Gain,	
		of thin inical antenna.		Polarization, Effective aperture, Friis	
				transmission formula), Vector potentials	
				for electric and magnetic current sources.	
				UNIT IV	
				Wire antennas: Hetzian and Marconi	
				antenna, Half wave dipole, monopole and	
				loop antenna, Antenna arrays: Linear	
				array, Two element array, Uniform array,	
				Binomial array	
				UNIT V	
				Practical antennas: Slot antenna, Horn	

			antenna, Yagi-uda antenna, folded dipole	
			antenna, Helical antenna.	
			Recommended Books:	
			1. Hyat, W. H. &. Jr. John A. Buck.	
			(2018). Engineering	
			Electromagnetics, Student edition.	
			McGraw Hill Education.	
			2. Liao, S. Y. (1989). Microwave devices	
			and circuits. Pearson Education India.	
			3. Balanis, C. A. (2016). Antenna	
			theory: analysis and design. John	
			wiley & sons.	
			4. Sadiku, M. N., & Kulkarni, S. V.	
			(2015). Principles of	
			electromagnetics. Oxford University	
			Press.	
			5. Kraus, J. D., Marhefka, R. J., & Khan,	
			A. S. (2006). Antennas and wave	
			propagation. Tata McGraw-Hill	
			Education.	
			6. Collin, R. E. (2007). Foundations for	
			microwave engineering. John Wiley	
			& Sons.	
14.	Antenna Theory	After completion of this laboratory	To design dipole antenna in HFSS	
	and Wave	course, students will be able to:	Design monopole antenna in HFSS	
	Propagation Lab	Use HFSS tool to design and	3. Design horn antenna in HFSS	
	1 Topagation Lab	analysis of antennas.	4. To measure radiation pattern of	
			Horn Antenna	
		Design various type of antennas	5. To measure radiation pattern of log	
		Measure and analyse radiation	periodic Antenna	
		pattern of antennas.		
			6. To measure radiation pattern of	
			micro strip patch Antenna	
			7. To measure radiation pattern of	
			YAGI-UDA Antenna.	
15.	Introduction to	After completion of this course, students	Unit 1	
	Photonics	will be able to:	Introduction, Ray theory, Optical fibers:	
		 Explain the light propagation 	multimode, single mode, step index,	
		through optical fibers.	graded index, plastic & glass fibers.	
		 Explain the various light sources 	Transmission Characteristics of Optical	
		and optical detectors.	Fibers: Attenuation, Material absorption	
		<u>r</u>	loss, refractive index profile, Dispersion	

	•	Design fiber optic transmitter and	(intermodal & intramodal), Dispersion
	_	receiver system.	Shifted Fibers, Dispersion Compensating
		receiver system.	Fiber.
			Unit 2
			Emission and absorption of radiation,
			Einstein relation, Absorption of radiation,
			Population inversion, Optical feedback,
			Threshold condition. Population inversion
			and threshold, Basic idea of solid state,
			semiconductors, gas & liquid laser. Basic
			concept of Q-switching and mode
			locking.
			Unit 3
			Fiber Structure, Material, Characteristics,
			Power & Efficiency of Light Emitting
			Diode.
			Optical detection principles, quantum
			efficiency, Responsivity, p-n and p-i-n
			photo diode, Avalanche photo diodes.
			Unit 4
			Measurements of Fiber Attenuation,
			Dispersion, Refractive Index Profile, Cut
			off Wave Length, Numerical Aperture &
			Diameter.
			Optical Time Domain Reflectometry
			(OTDR) Field measurement through
			optical time domain reflectometry, Laser
			Unit 5
			Laser based systems for measurement of
			distance, velocity, liquid level. Fibre optic
			gyroscope, Holography: basic principle
			and applications.
			Recommended Books:
			1. Senior, John.M. (2009). Optical
			Fiber Communication Principles &
			Practice. New Delhi: PHI
			Publication.
			2. Keiser, Gerd. (1991). Optical Fiber
			Communication. New Delhi:
			McGraw Hill Publication.
			3. Ghatak, A.K. & Thyagarajan, K.
			5. Onatak, A.K. & Hiyagarajan, K.

	Applications, 1 edition. Springer
Explain the working of optical	. To study Analog Link To study Digital link To measure Numerical aperture To study Propagation Loss To study Bending Loss.

Annexure II

Name of Programme: Bachelor of Technology (ECE)

Programme Educational Objectives: The B.Tech. (ECE) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for those engineers who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics engineers develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics and Communications. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematical and engineering fundamentals required to solve engineering problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- To develop an ability to integrate fundamental knowledge of basic science, mathematics and engineering to work on complex problems in the field of Electronics and Communication.
- . To prepare engineers to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their engineering design, problem–solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.
- To prepare competent engineers at various national and international levels.

Programme Outcomes:

- PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and Electronics engineering to the solution of complex engineering problems.
- PO2. Problem analysis: Review, Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using principles of mathematics, natural sciences, and engineering sciences.
- PO3. Design/development of solutions: Develop solutions for complex engineering problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct investigations of complex problems: Use scientific and engineering knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Apply appropriate techniques, resources, and modern engineering tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex engineering activities with an understanding of the limitations.
- PO6. The engineer and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the engineering practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.
- PO10. Communication Skill: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

- 1. Highlighted with gray indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

B.Tech. (ECE) Semester - I (December, 2019)

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	T	P	С	Course Code	Course Name	L	T	P	С
BVF 002/ BVF 003	Environment Studies/Indian Heritage	2	0	0	2		General English /सामान्य हिन्दी	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4		Core Foundation Course - I	2	0	0	2
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	3/4	1/0	0	4	CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4
ENGG 101L /ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2
						ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3
	Semester Wise Total	18/19	4/3	10	27		Semester Wise Total	21/20	3/4	10	29

B.Tech. (ECE) Semester - II (April/May, 2020)

	Fyisting Scheme Proposed Scheme													
	Existing Scheme						Proposed Scheme							
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C			
BVF 003/ BVF 002	Indian Heritage/ Environment Studies	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2			
MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4		Core Foundation Course – II	2	0	0	2			
PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4			
BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4			
PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	4/3	0/1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4			
EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4			
EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4			
ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2			
						ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3			
	Semester Wise Total	19/18	3/4	10	27		Semester Wise Total	20/21	4/3	10	29			

B.Tech. (ECE) Semester - III (December, 2020)

	21100m (202) oumone in (2000mor), 2020)													
	Existing Scheme					Proposed Scheme								
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C			
BVF 007R	Selected Writings for Self-Study – I	2	0	0	2		Core Foundation Course - III	2	0	0	2			
MATH 207 /MATH 208	Complex Variables/ Differential Equations	3/4	0	0	3/4		Elective Foundation Course - I	2	0	0	2			
ENGG 201/ ENGG 202	Structure and Properties of Materials/ Basic Electronics	4	0	0	4	MATH 208/ MATH 207	Differential Equations / Complex Variables /	3	1	0	4			
MGMT 209/ TSKL 203	Entrepreneurship/ Technical Report Writing	3	0	0	3	ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4			
CS 209	Data Structures	4	0	0	4	CS 209	Data Structures	4	0	0	4			
CS 209L	Data Structures Lab	0	0	4	2	CS 209L	Data Structures Lab	0	0	4	2			
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201	Signals, Systems and Networks	4	0	0	4			
ELE 201	Digital Electronics	4	0	0	4	ELE 201	Digital Electronics	4	0	0	4			
ELE 201L	Digital Electronics Lab	0	0	2	1	ELE 201L	Digital Electronics Lab	0	0	2	1			
	Total	24/25	0	6	27/28		Semester Wise Total	23	1	6	27			

B.Tech. (ECE) Semester - IV (April/May, 2021)

	Existing Scheme			(:-p:	Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
BVF 008R	Selected Writings for Self-Study - II	2	0	0	2		Core Foundation Course - IV	2	0	0	2
MATH 208/ MATH 207	Differential Equations / Complex Variables	4/3	0	0	4/3		Elective Foundation Course - II	2	0	0	2
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	MATH 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
TSKL 203/ MGMT 209	Technical Report Writing/ Entrepreneurship	3	0	0	3	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS 214	Object Oriented Programming	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4
CS 214L	Object Oriented Programming Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Seminar	0	0	2	1	ECE 201S	Seminar	0	0	2	1
ELE 202	Electrical and Electronics Measurements	3	1	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 202L	Electrical and Electronics Measurements Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1	ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Total	24/23	1	10	30/29		Semester Wise Total	23	1	10	29

B.Tech. (ECE) Semester - V (December, 2021)

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C	
	Principles of Management / Economics for Engineers	3	0	0		Vocational Course - I	2	0	0	2	
	Analog Communication	3	1	2		Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2	
	Microprocessor and Microcontrollers	3	1	2		Principles of Management/ Economics	3	0	0	3	
	Analog integrated Circuits	4	0	2	ECE 301	Analog Communication	4	0	0	4	
	Communication Networks	4	0	0	ELE 306	Microprocessors and Microcontrollers	4	0	0	4	
	Microwave Electronics	4	0	2		Analog Electronics	4	0	0	4	
	Seminar	0	0	2	ELE 202	Electromagnetic field Theory	4	0	0	4	
	Women in Indian Society (WIS) / Parenthood and Family Relationship	3	0	0		Probability and Statistical Methods/ Numerical Methods	3	1	0	4	
					ECE 301L	Analog Communication Lab	0	0	2	1	
					ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1	
						Analog Electronics Lab	0	0	2	1	
	Total	24	2	10		Semester Wise Total	26	1	6	30	
	Total Credits		31	1 Total Credits					30		

B.Tech. (ECE) Semester - VI (April/May, 2022)

	Existing Scheme				Proposed Scheme							
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C		
	Economics for Engineers/ Principles of Management	3	0	0		Vocational Course - II	2	0	0	2		
	Mathematics IV	4	0	0		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2		
	Power Electronics	3	1	2		Economics / Principles of Management	3	0	0	3		
	Control Systems	3	1	2		Microwave Engineering	4	0	0	4		
	Digital Communication	4	0	2	EIE 302	Control Systems	4	0	0	4		
	Digital Signal Processing	4	0	2	ECE 304	Digital Communication	4	0	0	4		
	Project	0	0	8		Numerical Methods/Probability and Statistical Methods	3	1	0	4		
	Parenthood and Family Relationship / Women in Indian Society (WIS)	3	0	0		Microwave Engineering Lab	0	0	2	1		
	•				EIE 302L	Control Systems Lab	0	0	2	1		
					ECE 304L	Digital Communication Lab	0	0	2	1		
						Project	0	0	4	2		
	Total					22	1	10	28			
	Total Credit 34					Total Credit	t 28					

B.Tech. (ECE) Semester - VII (December, 2022)

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	T	P	Course Code	Course Code Course Name		T	P	C
	UIL Project	20	0	0		Antenna Analysis	4	0	0	4
	Reading Elective	0	0	4	ECE 402	Fiber Optics and Communication	4	0	0	4
					VLSI 401	VLSI Design	4	0	0	4
					ECE 303	Communication Networks	4	0	0	4
						Discipline Elective	4	0	0	4
						Open Elective	4	0	0	4
						Antenna Analysis Lab	0	0	2	1
					VLSI 401L	VLSI Design Lab	0	0	2	1
					ECE 402L	Fiber Optics and				
					ECE 402L	Communication Lab	0	0	2	1
	Total			2		Semester Wise Total	24	0	6	27
	Total Credit				Total Credit 27					

B.Tech. (ECE) Semester - VIII (April/May 2023)

	Existing Scheme				Proposed Scheme						
Course Code	Course Name	L	T	P	Course Code	Course Name	L	T	P	C	
	Antenna & Radar	4	0	0	ECE 407P	UIL Project	0	0	48	24	
	Fiber Optics Communication	4	0	2		Reading Elective	0	0	0	2	
	VLSI Design	4	0	2							
	Elective I	4	0	0							
	Elective II	4	0	0							
	Total	20	0	2		Total	0	0	48	26	
	Total Credits					Total Credits				26	

Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Reading Electives
	Biomedical Instrumentation		Geoinformatics		Electronic Packaging
ECE 404	Optical Network		Analytical Instrumentation		Multimedia Compression and Communication
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems		Professional Ethics
ELE 403	Basics of Nano electronics		Robotics and Automation		Electromagnetic Compatibility
ECE 403	Mobile Communication	EEE 304	Power Electronics		Telecommunication Switching Systems and Networks
ECE 405	Radar Navigation		Mechatronics		Electric Vehicles
ELE 304	Digital Signal Processing				IoT Sensors and Devices

Curriculum Structure B. Tech. –Electronics & Communication

					I Year)	munication					
Semester - I				,		Semester - II					
Course Code	Course Name	L	Т	P	С	Course Code	Course Name	L	Т	Р	С
	General English /सामान्य हिन्दी	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
	Core Foundation Course - I	2	0	0	2		Core Foundation Course – II	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3 1 0		0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics		1/0	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	21/20	3/4	10	29		Semester Wise Total	20/21	4/3	10	29
				(II Year)			•			
Semester - III						Semester - I\	!				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	т	Р	С
	Core Foundation Course - III	2	0	0	2		Core Foundation Course - IV	2	0	0	2
	Elective Foundation Course - I	2	0	0	2		Elective Foundation Course - II	2	0	0	2
MATH 208/ Math 207	Differential Equations / Complex Variables /	3	1	0	4	Math 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS209	Data Structures	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4

	Semester Wise Total	26	1	6	30		Semester Wise Total	22	1	10	28
	Analog Electronics Lab	0	0	2	1		Project	0	0	4	2
ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1	ECE 304L	Digital Communication Lab	0	0	2	1
ECE 301L	Analog Communication Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	2	1
	Probability and Statistical Methods/ Numerical Methods	3	1	0	4		Microwave Engineering Lab	0	0	2	1
ELE 202	Electromagnetic field Theory	4	0	0	4		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Analog Electronics	4	0	0	4	ECE 304	Digital Communication	4	0	0	4
ELE 306	Microprocessors and Microcontrollers	4	0	0	4	EIE 302	Control Systems	4	0	0	4
ECE 301	Analog Communication	4	0	0	4		Microwave Engineering	4	0	0	4
	Principles of Management/ Economics	3	0	0	3		Economics / Principles of Management	3	0	0	3
	Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Vocational Course - I	2	0	0	2		Vocational Course - II	2	0	0	2
Course Code	Course Name	L	т	P	С	Course Code	Course Name	L	Т	Р	С
Semester - V	,					Semester - V	1				
				(1	II Year)						
	Semester Wise Total	23	1	6	27		Semester Wise Total	23	1	10	29
						ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
						ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
ELE 201	Digital Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201S	Seminar	0	0	2	1
CS 209L	Data Structures Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab		0	4	2

				(1	V Year)							
Semester –	VII					Semester -	VIII					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С	
	Antenna Analysis	4	0	0	4	ECE 407P	UIL Project	0	0	48	24	
ECE 402	Fiber Optics and Communication	4	0	0	4		Reading Elective	0	0	0	2	
VLSI 401	VLSI Design	4	0	0	4							
ECE 303	Communication Networks	4	0	0	4							
	Discipline Elective	4	0	0	4							
	Open Elective	4	0	0	4							
	Antenna Analysis Lab	0	0	2	1							
VLSI 401L	VLSI Design Lab	0	0	2	1							
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1							
	Semester Wise Total	24	0	6	27		Semester Wise Total	0	0	48	26	
Course Code	Discipline Electives					Course Code	Reading Electives					
	Biomedical Instrumentation Geoinformat		ormatic	:s		Electronic Packaging						
ECE 404	Optical Network		Analytical Instrumentation				Multimedia Compression and Communication					
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems				Professional Ethics					
ELE 403	Basics of Nano electronics		Robotics and Automation				Electromagnetic Compatibility					
ECE 403	Mobile Communication		Power Electronics				Telecommunication Switching Systems and Networks					
ECE 405	Radar Navigation		Mecha	tronics			Electric Vehicles					
ELE 304	Digital Signal Processing			IoT Sensors and Devices								

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ECE 201, Signals, Systems and Networks	After the completion of course student will be able to:	_	_	No Change in course contents.
		Analyze linear time invariant system in time and frequency domain Apply network theorem to analyze the electrical circuit. Explain two port parameters.	Suggested Books: 1. V. Oppenheim, A. V. Willsky, S. Hamid Nawab. Signal and Systems. Second Edition, Prentice Hall. 2. M.E. Van Valkenburg. Network Analysis. Third Edition, Prentice Hall India. 3. J. G. Proakis, D. G. Manolakis. Digital Signal Processing. Fourth Edition, Pearson. 4. F. F. Kuo. Network Analysis and Synthesis. Second Edition, John Wiley and Sons.	Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication Suggested E-resources:	
				Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100	
2	ELE 201, Digital Electronics	After completion of this course, students will be able to:	_	_	No Change in course contents.
		Students will be able to describe and minimize various digital systems. Students will understand design steps for combinational and sequential circuits. Students will understand basic	Suggested Books: 1. M. Morris Mano. Digital Design. Third Edition. Prentice Hall. 2. Charles H. Roth, Larrry N. Kiney. Fundamentals of Logic Design. Sixth Edition, Cengage Learning. 3. D.P. Leach, A. P. Malvino, G. Saha. Digital Principles and Applications. Eighth Edition, McGraw Hill. 4. John F. Wakerly. Digital Design:	Recommended Books: 1. M. M. Morris R. & C. Michael D. (2013). Digital Design (5/e). Pearson Publication 2. R. Charles H., JR. & K. Larrry N. (2010). Fundamentals of Logic Design (6/e). Stanford, USA: Cengage Learning 3. Malvino, A. P., & Leach, D. P. & S. Goutam (2014). Digital Principles and Applications (8/e). New Delhi: Tata McGraw Hill Education Private limited.	

		memory architectures and their functionality.	Principles and Practice. Fourth Edition, Pearson. 5. T. C. Bartee. Digital Computer Fundamentals. Sixth Edition. McGraw-Hill. 6. J. P. Hayes. Computer Architecture and Organization. Third Edition, McGraw Hill.	4. W. John F. (2008). Digital Design: Principles and Practices (4/e). Pearson Publication 5. B. Thomas C. (1981). Digital Computer Fundamentals (5/e).McGraw-Hill Publication 6. Hayes, J. P. (2002). Computer architecture and organization. New York, USA: McGraw-Hill Publication Suggested E-resources: 1. Digital Circuits by Prof.Santanu Chattopadhyay, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc18_ee 33/preview 2. Digital Electronic Circuitsby Prof.Goutam Saha, Dept. of Electronics and Electrical Communication Engineering at IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc19_ee 09/preview 3. Digital Circuits and Systemsby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086/	
3.	ELE 201L, Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the basic digital circuits and to verify their operation. • Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).		Intps://ipici.ac.ii/courses/11/100080/	Learning Outcomes added No change in experiment list.

		Create a gate-level			
		implementation of a			
		combinational and			
		sequential logic			
		functions described by			
		a truth table using			
		and/or/inv gates,			
		multiplexers.			
4.	ENGG 202,	After completion of this			No Channe
	Basic	course, students will be			No Change in course
	Electronics	able to:	_	_	contents.
		Understand the			
		fundamental of	Suggested Books:	Recommended Books:	Deleted
		semiconductors and	1. J. Millman, C. Halkias. Integrated	1. Millman. J, Halkias. C, Parikh. C. (2017).	
		design semiconductor	Electronics. Second Edition, McGraw Hill.	Integrated Electronics. (2/e). New Delhi:	
		circuits	2. R. L. Boylested. Electronics Devices	TMH Publications.	
		Understand the	and Circuit Theory. Tenth Edition, Pearson.	2. Boylestad.R. (2012). Electronic	
		different type of	3. A. P. Malvino, Electronic Principles.	Devices& Circuits Theory.(6/e). New	
		diode/ transistors with	Sixth Edition. McGraw Hill.	Delhi: Pearson Publications.	
		their responses.	4. N. B. Somanatha, Electronics	3. Somanathan B. Nair. (2006). Electronics	
		 Analyze various types 	Devices and Applications. First Edition,	Devices and Applications. New Delhi:	
		of oscillators	Prentice Hall India.	Prentice Hall India Learning Private	
		available with their		Limited	
		utilization.	5. A. S. Sedra, K. C. Smith.	4. Smith. S.(2008). <i>Microelectronics Circuits</i> . (5/e). New Delhi: Oxford press,	
			Microelectronics Circuits: Theory and	India.	
			Applications. Seventh Edition, Oxford		
			University Press.	5. Streetman Ben. G. (2006). Solid State Electronic Devices (6/e). New Delhi: PHI	
			6. B. G. Streetman, S. K. Banerjee.	Publications.	
			Solid State Electronic Devices. Sixth Edition,	Suggested E-resources:	
			Prentice Hall India.	1. Basic Electronics by Prof. Pramod	
				Agarwal, Department of Electrical	
				Engineering, Indian Institute of	
				Technology, Roorkee.	
				https://nptel.ac.in/courses/117107095/4	
				2. Circuits and Electronics by Anant	
				Agarwal, Massachusetts Institute of	
				Technology: MIT OpenCourseWare.	
				https://ocw.mit.edu/courses/electrical-	
				engineering-and-computer-science/6-002-	
				circuits-and-electronics-spring-	
				2007/video-lectures/6002 116.pdf	

5.	Electrical and Electronics Measurements	After completion of this course, students will be able to: • Measure various electrical parameters with precision and accuracy. • Select appropriate transducers for measurement of physical parameter. • Use Signal Generator and CRO for appropriate measurement. • Test and troubleshoot electronic circuits using various measuring instruments.	Suggested Books: 1. A. K. Sawhney. A Course in Electrical and Electronic Measurements and Instrumentation. Eleventh Dhanpat Rai Publication. 2. R.K. Jain. Mechanical and Industrial Measurements. Twelfth Edition, Khanna Publishers. 3. B.C.Nakra, K.K. Chaudhry. Instrumentation, Measurement and Analysis. Third Edition, McGraw Edition. 4. E. O. Doebelin. MeasurementSystems: Application and Design. Fourth Edition. McGraw Hill. 5. D. P. Eckmann, Industrial Instrumentation. First Edition, CBS Publications. 6. H.S. Kalsi. Electronic Instrumentation. Third Edition, Tata McGraw Hill. 7. S.K. Singh. Industrial Instrumentation and Control. Third Edition, Tata McGraw Hill.	Recommended Books: 1. SawhneyA.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers 3. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof. Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064	No Change in course contents. Deleted
			Instrumentation and Control. Third Edition,		
6.	Electrical and Electronics Measurements Lab	After completion of this laboratory course, students will be able to: • Develop an understanding of construction and working of different	To study behavior of Inductive Sensors and calculate its switching hysteresis. To study behavior of Capacitive Sensors and calculate its Reduction factor. To study behavior of Magnetic Sensors and plot its response curve.	1. To study Hall Effect. 2. To study principle of Thermocouple. 3. To study principle of Load cell. 4. To study principle of Thermistor. 5. To study principle of strain guage. 6. To study Principle of LVDT 7. To study De sauty bridge.	Learning outcomes added. Deleted Added

		Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement Select appropriate passive or active transducers for measurement of physical phenomenon.	To study behaviour of Photo electric sensors and calculate its switching frequency. To detect level with the help of Ultrasonic, Photo electric and Capacitive sensors. Logic linking of Sensors: OR gate and AND gate. To study Wheatstone bridge and find the unknown resistance. To calculate the frequency and phase with Lissajous figure pattern using DSO.	9. To study CRO circuitry in detail.	
7.	ELE 205, Semiconductor Devices and Circuits	After completion of this course, students will be able to: • Explain the energy bands, temperature	Suggested Books:	Recommended Books:	No Change in course contents.
		effects, carrier transport of semiconductor devices Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences Analyze the various feedback circuits and design power	1. D. A. Neamen, Semiconductor Physics and Devices, fourth edition, McGraw Hill. 2. S. M. Sze. Semiconductor Devices Physics and Technology. Second Edition, Wiley Student Edition. 3. J. Millman, C. Halkias, C. D. Parikh. Integrated electronics. Second Edition, McGraw Hill. 4. A. Sedra, K. Smith. Microelectronic Circuits Theory and Applications. Fifth International Edition, Oxford University Press.	 S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication Millman, J., Halkias, C., Parikh, C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed). New Delhi: PHI Publications. Smith. S.(2008). Microelectronics Circuits. (5th ed). New Delhi: Oxford press. Suggested E-Resources: Semiconductor Devices and Circuits by Press Semiconductor Devices and Circuits of 	Deleted
		amplifiers.		Prof.SanjivSambandan, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/108108112/ 2. Analog Electronic Circuits byProf. S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/	
8.	ELE 205L,	After completion of this	1. To study the half wave and full wave	1. To study the half wave and full wave	Learning

9.	Semiconductor Devices and Circuits Lab ECE 201S, Seminar	laboratory course, students will be able to: Develop understanding of current voltage characteristics of various semiconductor devices. Design and analyze the various electronic circuits such as amplifiers and oscillators. Draw output waveforms of various clipper and clamper circuits. After the completion of course student will be able to: To identify promising new directions of various cutting edge technologies. Undertake a critical review of the literature. Deliver well-organized technical presentations	rectifier circuit. 2. Measurement of bipolar junction transistor (BJT) characteristics. 3. Measurement of junction field effect transistors (JFET) characteristics. 4. To measure input and output characteristics and calculate gain of CE amplifier circuit. 5. To measure input and output characteristics and calculate gain of CB amplifier circuit. 6. To study the frequency response of RC coupled amplifier. 7. To study Wien-bridge oscillator circuit. 8. To study Hartley oscillator circuit. 9. To study the effects of negative feedback on the amplifier characteristics. 10. Study of class A push-pull amplifier. 11. Study of class B push-pull amplifier.	rectifier circuit. 2. Measurement of bipolar junction transistor (BJT) characteristics. 3. Measurement of junction field effect transistors (JFET) characteristics. 4. To measure input and output characteristics and calculate gain of CE amplifier circuit. 5. To measure input and output characteristics and calculate gain of CB amplifier circuit. 6. To study the frequency response of RC coupled amplifier. 7. To study Wien-bridge oscillator circuit. 8. To study Wien-bridge oscillator circuit. 9. To study the effects of negative feedback on the amplifier characteristics. 10. Study of class A push-pull amplifier. 11. Study of class B push-pull amplifier. 12. To study clipper and clamper circuits.	outcomes added. Added Learning Outcomes added.
10	A1	and prepare a technical report.	Continu A	Southern A	A 11-1
10.	Analog Communication	After completion of this course, students will be able to: Explain different blocks in communication system and how noise affects	Section-A Introduction Communication Process, Source of Information, Channels Noise, System Noise Source, Noise & Feed back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals, Modulation Process – Need, Bandwidth, Requirements Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication.	Section-A Introduction to signals: Size of signals, Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison- correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals:	Added Shifted Deleted

communication using different parameters. • Distinguish between different amplitude modulation schemes with their advantages, disadvantages and	Continuous and Discrete Spectra, Band pass System,	Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density, Signal power and power spectral density.	
applications and analyse generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Identify different types of radio receiver circuits	Section B Modulation: Amplitude Modulation: Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation — Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulation and Angle Modulation, Spectral Analysis of Different Modulation; Modulators: Amplitude Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulator, Balanced Modulator, SSB Modulators: Filter Method, Phase-shift Method & Third Method-ISB Modulators; Vestigial sideband Modulator; Frequency Modulator: Direct & Indirect Method, Narrow band FM, Phase Modulator, Spectral Analysis of these Modulators; Transmitters — AM Transmitter, Low Level and High Level SSB — Transmitter, Pilot Carrier — FM Transmitter — Narrow band and Wide band, FM Stereo Transmitter;	Section- B Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Vestigial sideband modulation, Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulation of FM, Interference in angle modulated systems, FM receiver	Added Shifted Deleted
	Section C Receiver:- Sensitivity, Selectivity, Signal to	Section-C Random Signal and Noise: Gaussian Noise,	Shifted
	Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector - Ratio Detector – Foster — Seelay Discriminator; AM Receiver — (Block Level Treatment) — TRFReceiver,Super-heterodyne Receiver,Double — Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver — FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise. Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum preemphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two-Port Networks, Free-Space Link Calculations	Deleted

			Text Books: 1. George Kennedy: Electronic Communications Systems:McGraw Hill. 2. Taub and Schilling: Principles of communication systems:McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering.	Recommended Books: I. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007).Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., & Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resources: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/	Added Deleted
C	nalog Communication .ab	After completion of this laboratory course, students will be able to: • Demonstrate Amplitude modulation and demodulation techniques. • Demonstrate frequency modulation and demodulation technique. • Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. • Compare different modulations and demodulations to recognize the advantages and disadvantages of them. • Identify different radio receiver circuits and			Learning outcomes added. No change in experiment list.

		1 6466	T		
12.	ELE 207	role of AGC. After completion of this			N. CI
12.	ELE 306, Microprocessor	course, students will be			No Change in course
	s and	able to:	_	_	contents.
	Microcontroller	Interface memory and	Test Books :	Recommended Books:	contents.
	s	different peripherals	1. Kenneth J Ayala, "The 8051 Micro	1) Kenneth, J. Ayala.(2004). <i>The</i> 8051	
	3	with Microprocessor	Controller Architecture, Programming	Micro Controller Architecture.	
		and microcontroller	and Applications", Thomson Publishers, 2nd	Programming and Applications. New	
		Design and develop	Edition.	Delhi: Cengage Learning Publication	
		the system for real	2. D.V.Hall, "Micro Processor and	2) Hall, D.V. (2017). <i>Micro Processor and</i>	
		time applications	Interfacing", Tata McGraw-Hill.	Interfacing. New Delhi: McGraw-Hill	
		time applications	Reference Book :	Publication.	
			1. Ajay V. Deshmukh.	3) Deshmukh, Ajay V. (2005).	
			"Microcontrollers - theory applications", Tata	Microcontrollers – Theory and	
			McGraw-Hill Companies-2005.	Applications. New Delhi: McGraw Hill	
			2. Ray and Bhurchandi. "Advanced Micro	Publication.	
			Processors", Tata McGraw Hill.	4) Ray, A.K., &Bhurchandi, B.H. (2017).	
			3. Kenneth J. Ayala, "The 8086 Micro	Advanced Micro Processors. New Delhi:	
			Processors Architecture, Programming and	McGraw-Hill Publication.	
			Applications", Thomson Publishers, 2005.	5) Kenneth, J. Ayala. (2011). The 8086	
			4. Microcomputer Systems: The 8086/8086	Micro Processors Architecture,	
			Family: Architecture, Programming and	Programming and Applications. New	
			Design, 2nd ed., Liu & Gibson.	Delhi: Prentice Hall India.	
				6) Liu, Yu Cheng., & Gibson, A. (1985).	
				Microcomputer Systems: The 8086/8086	
				Family: Architecture, Programming and	
				Design. New Delhi: Prentice Hall India.	
				Suggested E-Resources:	
				1. Microprocessors and Microcontrollers	
				by Prof.Santanu Chattopadhyay,	
				Department of E&EC Engineering, IIT	
				Kharagpur.	
				https://nptel.ac.in/courses/108105102/	
				2. Microprocessors and Microcontrollers	
				by Prof. Krishna Kumar, IISC Bangalore	
				https://nptel.ac.in/courses/106108100/	
13.	ELE 306L,	After completion of this			
	Microprocessor	laboratory course, students			
	s and	will be able to:			Learning
	Microcontroller	• Understand the			Outcomes
	s Lab	different instructions			added.
		of 8086			

		microprocessor assembly language. Coding in assembly language. Solve different real time problems.		No Change in Experiment List.
14.	Electromagnetic Field Theory	After completion of this course, students will be able to: • Apply vector calculus to static electricmagnetic fields in different engineering situations. • Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems.	Section A Elements of Vector calculus: Cartesian coordinate system, Circular-Cylindrical coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Electrostatics: Electric Flux Density, Coulomb's law, Gauss's law and their applications, Energy in electrostatic fields, capacitance of parallel plate and coaxial cable, Fields in dielectrics, Boundary conditions, dipole, Laplace's and Poisson's equations and their applications. Section B	 Entire Course is shifted from 3 rd semester to 5 th semester No Change in course contents
		Examine the phenomena of wave propagation in different media and its interfaces and in applications of microwave engineering.	Magnetostatics: Ampere's law, Bios wart's law and their applications, Stock's theorem, Energy in magnetic field, Boundary conditions. Maxwell's Equation: - Maxwell's equations in integral & differential form (Gauss's law in electric and magnetic field, Ampere's circuital law, Faraday's law), Maxwell's equations for time varying field.	
			Section C Uniform Plane Waves: Wave equation and its solutions, Pointing vector, propagation through various media-free space, conductor & dielectric, Reflection and Refraction in conductors & Dielectrics with normal and oblique incidence, Phase & Group velocity, Skin depth. Transmission Lines: General equation, input impedance, characteristics impedance, Reflection and reflection coefficient, Standing wave ratio, resonant and resonant line impedance matching, Smith chart and its applications, practical problems in transmission lines.	

		1	Curganted Deals	Decommonded Decker	Addad
			Suggested Book: 1. William H. Hayt. Engineering Electromagnetics. Eighth Edition, McGraw Hill. 2. E. C. Jordan, K. G. Balmain. Electromagnetic Waves and Radiating Systems. Second Edition, Prentice hall India. 3. J.D. Kraus, D. A. Fleisch. Electromagnetics with Applications. Fifth Edition, McGraw Hill.	Recommended Books: 1. William, H. Hayt. (2017). Engineering Electromagnetics. New Delhi: McGraw-Hill Publication. 2. Sadiku, Matthew N. O. (2009). Principles of Electromagnetics. New Delhi: Oxford University Press. 3. Jordan, E. C., & Balmain, K. G. (2015). Electromagnetic Waves and Radiating Systems. New Delhi: Pearson Publication. 4. Kraus, J.D., &Fleisch, D. A. (1992) Electromagnetics with Applications, New Delhi: McGraw-Hill Publication. Suggested E- Resources: 1. Electromagnetic Fields by Prof.Harishankar Ramachandran, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/108106073/ 2. Electromagnetic Fields by Dr RatnajitBhattacharjee, Indian Institute of Technology, Guwahati. https://nptel.ac.in/courses/117103065/ 3. Electromagnetic Theory by Dr Pradeep Kumar K, Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104087/	Added
15.	Analog	After completion of this	Analog Integrated Circuits	Analog Electronics	
	Integrated	course, students will be	Section A	Section A	Added
	Circuits	able to:	Feedback Amplifiers: classifications of	Operational Amplifier and its applications:	
		Explain the operation	amplifiers, general feedback structure,	BJT differential amplifier: DC and AC	Deleted part
		and properties of Op-	properties of negative feedback, feedback topologies, Transfer gain with feedback,	analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp,	is shifted to IV sem.
		amp.Explain the design of	General Characteristics of negative feedback	inverting and non-inverting amplifier, offset	Semiconduct
		differential	amplifiers, input resistance, output resistance.	voltage, offset current, bias current,	or devices &
		amplifiers, active	Method of analysis, voltage series and current	frequency response, slew rate, CMRR,	Circuits
		filters, oscillators, and	series feedback, current shunt and voltage shunt feedback.	summing amplifier, differential and instrumentation amplifier, design of	paper
		other linear and non-	Power amplifiers: classification, operation,	integrator and differentiator, logarithmic and	Shifted
		linear circuits using linear integrated	analysis and design of Class A, Class B,	anti-logarithmic amplifiers, Active filters.	Deleted
		circuits.	Class-AB, Class C, power dissipation and		
		Design and analysis	efficiency calculations, amplifier distortion.	Section B	Added
			Section B	Section B	Added

of single stage, multistage amplifiers and high frequency amplifiers.	High Frequency Amplifiers: Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers: frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP-AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits. IC voltage regulators, switching regulators.	Shifted Deleted
	Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits: Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance, Hybrid –pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	Added Shifted Deleted
	Text Books: 1. Millman and Halkias: Integrated electronics, TMH, 1991. 2. Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009. 3. GayakwadRamakant A., "OP-AMP & Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010. Reference Book: 1. Adel Sedra& Kenneth Smith, Microelectronic Circuits Theory and applications" FIFTH edition International version: Oxford University Press, 2009.	Recommended Books: 1. Gayakwad, Ramakant A. (2010). OP-AMP & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press. 3. Parikh, Millman&Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel.,& Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resource:	

16.	Analog Integrated Circuits Lab	After completion of this laboratory course, students will be able to: Design, construct, and analyze the various analog circuits to compare experimental results in the laboratory with theoretical analysis. Observe the amplitude and frequency responses of common amplification circuits Construct the desired Electronic design to meet specific requirements.	Analog Integrated Circuits Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC 4. To design Intergrator using 741 IC 5. To design Schmitt Trigger using 741 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565.	1. Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/ Analog Electronics Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC 4. To design Intergrator using 741 IC 5. To design Schmitt Trigger using 741 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF, 10. To design Voltage to frequency converter, 11. To study phase locked loop. 12. 12. To study frequency shift keying using PLL 565.	Learning Outcomes added. No Change in Experiment List
17.	Digital Communication	After completion of this course, students will be able to: • Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems • Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse Modulation and PCM • Describe and analyse	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit—Huffman coding, Lampel—Liveoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade — off. Errorcontrol coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts—Code efficiency and Hamming bound, linear block codes, Cyclic	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes; polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted

mathematically the Digital Modulation Techniques-ASK, FSK, PSK	codes, Convolution codes, maximum likelihood decoding of convolution codes. Section B Pulse Modulation Systems: Sampling theorem, Generation and demodulation of PAM.PWM, PPM, Quantization of Signals, Quantization error, PCMCompanding and Multiplexing of PCM Signals, Delta and adaptive delta modulation, Bit, Word and Frame Synchronization, Matched filter detection.	Section B Digital Modulation Techniques: Various techniques of phase shift, BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of ASK, FSK& Minimum shift keying Noise in digital Communication: PCM and CompandedPCM SNR, Matched filter, Calculation of error probability for ASK, ASK, FSK.	
	Section C Digital Modulation Techniques: Various techniques of phase shift, BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of BPSK modulation, spectrum, Bandwidth efficiency, geometrical representation of ASK, FSK& Minimum shift keying, Calculation of error probability for PSK, ASK, FSK, Application of digital modulation techniques.	Section C Information Theory: The concept of amount of information, Entropy, Information rate, Huffman coding, Channel capacity of a discrete memoriless channel, Shannon's Theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth-S/N trade – off. Error control coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts -Code efficiency and Hamming bound, linear block codes, Cyclic codes, Convolution codes, maximum likelihood decoding of convolution codes.	
	Text Books: 1. Simon Haykin: Digital Communication: John Wiley and sons 2. Taub and Schilling: Principles Of Communication System: Tata McGraw Hill, Second edition. 3. JhonProakis: Digital Communications: McGraw Hill. 4. BernadShlar: Digital Communication: Pearson Education. 5. K Sam Shanmugam: Digital and Analog Communication Systems: Jhon Wiley and Sons. 6. LathiB.P.: Modern Digital And Analog Communications Systems: PRISM	Recommended Books: 1. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007) Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., &Taub, H. (2008). Principles of Communication systems. New Delhi: Mc-Graw Hill Publication. Suggested E-Resources: 1. Digital Communication by Prof.Bikash Kumar Dey, Department of Electrical	

			Indian Edition.	Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101051/	
18.	Digital Communication Lab	After completion of this laboratory course, students will be able to: • Understand the			Learning Outcomes added.
		concept of Sampling and various Pulse Modulation techniques i.e. Pulse Amplitude Modulation and demodulation, Pulse Position Modulation and demodulation and demodulation and demodulation. • Analyze the behavior of Pulse Code Modulation and demodulation. • Explain the working of Digital Modulation Techniques ie: Amplitude Shift Keying, Phase Shift			No Change in Experiment List.
19.	Control Systems	Keying and Frequency Shift Keying. After completion of this	Section A	Section A Open loop and closed loop systems,	
		course, students will be able to: • Formulate mathematical model for physical systems and simplify representation of complex systems using reduction techniques.	Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback, servo components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op-amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	Added Shifted Deleted

	1		a d B	T	1
		Use standard test signals to identify performance characteristics of first and second-order systems. Apply root locus technique for stability analysis. Analyse performance characteristics of system using Frequency response methods.	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
		metrous.	Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant- N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation of LTI systems.	Added Shifted Deleted
			Text/ReferenceBooks: 1. I.J. Nagrath and M. Gopal: Control System & Engineering 2nd Ed.: Wiley Eastern Ltd.,1985. 2. Katsushiko Ogata: Modern Control Engineering 3rd Ed.: Printice Hall of India Pvt. Ltd., 2001	Recommended Books: 1. Nagrath, I. J. (2006). Control systems engineering. New Delhi: New Age International. 2. Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol. 4). India: Prentice hall. Suggested e-resource: 1. Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/	
20.	Control Systems Lab	After completion of this laboratory course, students will be able to: • Understand the	To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and	To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph.	Learning Outcomes added.

		concept of time	find out the tachometer gain.	find out the tachometer gain.	Deleted
		response and frequency response of any physical system. • Mathematical modeling of physical system to find out of transfer system. • Analyze the stability of system with the help of system response.		 To determine time domain response of a second order systems for step input and obtain performance parameters. To convert transfer function of a system into state space form and vice-versa. To plot root locus diagram of an open loop transfer function and determine range of gain 'k for stability. To plot a Bode diagram of an open loop transfer function. To draw a Nyquist plot of an open loop transfers function and examine the stability of the system. 	Added
21.	Communication Networks	After completion of this course, students will be able to: Recognize and describe about the working of Computer Networks. Illustrate reference models with layers, protocols and interfaces. Combine and distinguish functionalities of different Layers. Model the LAN and WAN configuration using different media	Section A Introduction to communication systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model. OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure-through wire-copper cable-STP, UTP, coaxial cable, optical fiber. Wireless media-wireless LAN, organization and standards. Wireless devices and topologies. Wireless communication, wireless security.	stability of the system.	Entire Course is shifted from 5th semester to 6th semester. No change in course contents.
			Section B Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway, Switching Networks-circuit switching, Packet Switching. Networks-Circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting, Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of Internetworking. Ethernet (CSMA/CD)		

	Token Ring and FDDI, Fast Ethernet.		
	Section C		
	Layer protocol Structure. Data link control -		
	Flow Control, Error Detection, Error Control.		
	HDLC. Network layer-ARP, RARP, ICMP.		
	Effect of Congestion and Congestion Control		
	in Network-(Back pressure, choke packet,		
	Implicit Congestion Signaling, Explicit		
	Congestion Signaling. Traffic Management-		
	Transport layer Protocols-connection oriented		
	and connectionless services, TCP, TCP		
	Congestion Control and Flow Control. UDP.		
	Application Layer Protocols - HTTP, FTP,		
	SMTP, SNMP, Telnet. Introduction to ISDN.		
	Narrow Band and Broad Band. Introduction		
	to WAN Technologies. ATM and Frame		
	relay.		
	Text Books:	Recommended Books:	
	1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic	
	& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
	2. A.S. Tannanbaum: Computer	PHI Publication.	
	Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
	3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
	Communication: PHI New Delhi, 5th	Publication.	
	edition 1997.	3. Stailling, W. (1997). Data & Computer	
	4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
	Distributed Processing: PHI, 1998.	Publication.	
		4. Martin, J. (1998). Computer Networks	
		and Distributed Processing Software,	
		Techniques, Architecture. New Delhi:	
		PHI Publication.	
		Suggested E-Resources:	
		1. Computer Networks and Internet	
		Protocol by Prof.SoumyaKanti Ghosh Department of Computer Science and	
		Engineering Indian Institute of	
		Technology, Kharagpur.	
		https://nptel.ac.in/courses/106105183/	
		2. Computer Networks by Prof. Sujoy	
		Ghosh, Department of Computer Science	
		and Technology, IIT KG.	
		https://nptel.ac.in/courses/106105081/	
		3. Computer Networks by Prof. Hema A	
		5. Computer Networks by Piol. Hema A	

22.	Microwave Electronics	After completion of this course, students will be able to: • Understand various parameters of waveguide and use of component as per applications • Design impedance matching network for any transmission line or system	Microwave Electronics Section A Introduction to Microwaves & its application, Transmission lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart and its applications, coaxial, twin, strip µstrip lines &baluns	Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/2278 /data-communication Microwave Engineering Section A Introduction to Microwaves & its application Microwave Electromagnetic spectrum. Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti-resonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer, baluns, coaxial transmission line, Planar transmission	Added Shifted Deleted
		Analyse and find applications and limitations of microwave Semiconductor devices. Find various applications of microwave engineering in specific area	Section B Wave Guides: Wave propagation in rectangular & circular wave guides, wave guide modes, Q of wave guide, Wave guide coupling, Microwave passive components: Sparameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Rectangular cavity resonator, Isolators, Circulators.	line: Strip line, Microstrip line, Slot line etc. Section B Wave Guides: Wave propagation in rectangular wave guide: solution of TE and TM modes, Power Transmission and Attenuation, Excitation of modes in Rectangular waveguide, Circular Waveguide: Basic idea of TE and TM modes, Rectangular and Circular cavity resonators, Rectangular cavity resonators, Q of cavity resonators, S parameters and its conversion with Z and Y parameters. Wave guide coupling, Microwave passive Components: S- parameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Microwave propagation in ferrites: Faraday rotation, Isolators, Circulators.	Added Shifted Deleted
			Section C Microwave Tube Devices: Conventional	Section C Microwave Tubes: Limitations of	Added Shifted
			Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two	Deleted

23. Mic	crowave After completion of this	Microwave Electronics Lab	Microwave Engineering Lab	Learning
			https://nptel.ac.in/courses/117101056/	
			of Technology, Bombay.	
			Prof. R. K. Shivgaonkar, Indian Institute	
			3. Transmission Lines and E.M. Waves by	
			https://nptel.ac.in/courses/117105130/	
			Technology, Kharagpur.	
			Bhattacharya, Indian Institute of	
			Engineering by Dr Amitabha	
			2. Basic Building Blocks of Microwave	
			https://nptel.ac.in/courses/108101112/	
			Technology, Bombay.	
			Microwave Theory and Techniques by Prof. Girish Kumar, Indian Institute of	
			Suggested E- Recourses:	
			Publication.	
			Engineering. New Delhi: Wiley	
		Hall). 1st Edition 1998	4. Pozar, David M. (2008). Microwave	ļ
		4. P.A. Rizzi: Microwave: (Prentice	Delhi:McGraw Hill Publication.	
		1992	Microwave Engineering. New	ļ
		Engineering, (Mc Graw Hill) 2nd Edition	3. Collins, R. E. (1992). Foundation of	
		3. Collins: Foundation Of Microwave	Publication.	
		Circuits, (Prentice Hall).1st Edition 1995,	Engineering. New Delhi: Prentice Hall	
		2. S.Y. Liao: Microwave Devices &	2. Rizzi, P.A. (1998). Microwave	
		eastern).1st edition.1987	Publication.	
		Circuits & Passive Devices: (Wiley-	Circuits. New Delhi: Prentice Hall	
		1. Sisodia-Raghuvanshi: Microwave	1. Liao, S.Y. (1995). Microwave devices &	
		Text Books:	Recommended Books:	
			Avalanche Transit-Time devices: IMPATT, TRAPATT.	
			Mode of operations of Gunn diode,	
			Gunn-Effect diodes, Two-valley theory,	
			tunnel diodes, Transferred Electron devices:	l
1 I			principle of operation and application of	
			Semiconductor Devices: Tunnel diodes,	
			Applications of TWT, Microwave	
I			consideration of helical type TWT,	
			Construction, Operation and practical	
			magnetron, Traveling wave tubes (TWT):	
			Analysis of cavity or travelling wave	
			magnetron, Construction, Operation and	
		TRAPATT& Gunn Devices.	Reflex klystron, Magnetron: Types of	
		Semiconductor Devices IMPATT,	cavity klystron, Construction and working of]

24.	Project	laboratory course, students will be able to: • Understand the concept and working of microwave bench and different components connected on a bench. • Analyze the behaviour of various microwave components. • Verify properties/ characteristic of microwave source, tees and directional coupler. After completion of this course, students will be able to: • Demonstrate effective project execution and control techniques that result in successful projects. • Ability to identify, formulates, and solves engineering problems. • Use the techniques, skills and modern engineering tools necessary for engineering practice.	1. Determine the operating frequency of reflex klystron. 2. Draw the V-I characteristics of Reflex klystron 3. Draw the characteristics of attenuator 4. To verify the wave-guide law 5. To study the directivity and coupling coefficient of Directional Coupler. 6. To study the properties of magic Tea and also determine isolation and coupling coefficient. 7. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. 8. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient	1. Determine the operating frequency of reflex klystron. 2. Draw the V-I characteristics of Reflex klystron 3. Draw the characteristics of attenuator 4. To verify the wave-guide law 5. To study the directivity and coupling coefficient of Directional Coupler. 6. To study the properties of magic Tea and also determine isolation and coupling coefficient. 7. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. 8. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient.	Outcomes added. No Change in Experiment List Learning Outcomes Added and this course has no prescribed syllabus
25.	Antenna and Radar	After completion of this course, students will be able to: • Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain	Antenna and Radar Section A Introduction to antennas, network theorems, directional properties of dipole antennas, travelling wave antenna& effect of point of feed on standing wave antenna, two element array, linear array, multiplication of patterns, effect of earth on vertical patterns, binomial array, antenna gain, effective area, antenna terminal impedance, antenna as	Antenna Analysis Section A Introduction to antenna, Radiation Mechanism, Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity, Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input	Added Shifted Deleted

various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical equations for various parameters of thin linear antenna. Explain loop, slot, patch and horn antennas. Derive expressions for the parameters of loop and slot antennas.	Section B Practical antennas: Hertz and Marconi antenna, antenna losses, effect of antenna height, electrically short antennas, wave antenna, Medium and high frequency antenna, half wave dipole or dipole antenna, harmonie,rhombic, V, inverted V, traveling wave antenna, loop antennas, folded dipole, yagi-uda, horn, biconical, helical, slot, notch,frequency independent and microwave antennas, Antenna measurements.	impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Electric Current Source J, The Vector Potential F for a Magnetic Current Source M, Electric and Magnetic Fields for Electric (J) and Magnetic (M) Current Sources, Solution of the Inhomogeneous Vector Potential Wave Equation, Far-field radiation, Duality theorem, Reciprocity and Reaction theorem, Image Theory Linear wire antennas: Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, Half-wave dipole Loop Antennas: Small circular loop, Square loop	Added Shifted Deleted
	Section C Radio wave propagation, phenomena and problems encountered in practice: effect of earth and atmosphere in radio waves. Physical principles & basic equations of radar, pulsed, continuous wave and pulsed Doppler radar, antenna systems, transmitters, detection theory, waveform considerations including pulse compression, principle of synthetic aperture radar, propagation clutter, and airborne radar References: 1. John D. Kraus: Electromagnetic: Mc Graw Hill. 2. William, Hayt: Electromagnetic Engineering: Mc Graw Hill. 3. Jordan & Balmain: Electromagnetic Fields & Radiation Systems: PHI. 4. Sadiku: Elements of	Section C Introduction to Arrays, two-element array, Nelement linear array: uniform amplitude and spacing, directivity,N-element linear array: uniform spacing, non-uniform amplitude Traveling wave antennas: Long wire antenna, V-antenna, Rhombic antenna Broadband antennas: Helical antenna, Folded dipole, Yagi-uda array of linear elements Log-periodic antenna, Introduction to Horn antenna: E-plane sectoral horn, H-plane sectoral horn, Pyramidal horn Recommended Books: 1. Balanis, C. A. (2005). Antenna Theory Analysis and Design. New Delhi: John Wiley & Sons. 2. Eliott, Robert S. (2003). Antenna Theory and Design. New Delhi: Wiley-IEEE Press. 3. Kraus, J. D., &Marhefka, R. H. (2001). Antennas for All Applications, Singapore: McGraw-Hill Publication.	Added Shifted Deleted

			Electromagnetic: Oxford University Press.	4. Harrington, R. F. (2001). Time-Harmonic	
			Merrill. I. Skolnik: Introduction to Radar	Electromagnetic Fields. New Delhi:	
			Systems, 3rd Ed., Mc-Graw-Hill.	Wiley-IEEE Press.	
			6. Merrill. I. Skolnik: Radar	Suggested E- resources:	
			Handbook: 2nd Ed., Mc-Graw-Hill, 1990.	1. Advanced Antenna Theory by Dr	
			7. K. D. Prasad: Antenna and Wave	Amalendu Patnaik, Indian Institute of	
			Propagation.	Technology, Roorkee.	
			1 Topagation.	https://nptel.ac.in/courses/117107035/	
				2. Analysis and Design Principles of	
				Microwave Antennas by Prof.Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/108105114/	
				3. Antennas by Prof. Girish Kumar, Indian	
				Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/108101092/	
26.	Antenna	After completion of this		To design dipole antenna in HFSS	Addition of
	Analysis Lab	laboratory course, students		2. Design monopole antenna in HFSS	new Lab.
		will be able to:		3. Design horn antenna in HFSS	
		Use HFSS tool to		4. To measure radiation pattern of Horn	
		design and analysis of		Antenna	
		antennas.		5. To measure radiation pattern of log	
		 Design various type of 		periodic Antenna	
		antennas		6. To measure radiation pattern of micro	
		Measure and analyse		strip patch Antenna 7. To measure radiation pattern of YAGI-	
		radiation pattern of		UDA Antenna.	
		antennas.		ODA Antenna.	_
27.	VLSI Design	After completion of this	Section A		Course is
		course, students will be	Recapitulation of basics, semiconductor		shifted from
		able to:	devices, orientation effect, impurities, defects,		8 th semester
		Explain the basic	Fabrication: Crystal growth & wafer		to 7 th
		theory of crystal	preparation, Epitaxial growth, oxidation,		semester.
		growth, wafer fabrication and IC	photo-lithography, etching technology (wet & dry), Diffusion Fick's law, chemical vapor	_	NT 1 .
		fabrication and IC	deposition, CVD reactors, ion implantation,		No change in course
			metallization & patterning, photo resistive		
		technology.	material, packaging.		contents.
		 Explain the different VLSI design styles, 	11 0 0		
		overview of ICs and	Section B		
		fabrication steps of	Overview of VLSI methodologies, VLSI		
		MOS, CMOS and	design flow, type of ICs (monolithic, thick		
		BJT.	film, thin film, hybrid), Fabrication steps		
		231.	involve in, different type of resisters,		

Design and analyse the output characteristics of different MOS inverters Design combinational and sequential circuit.	capacitor, diode, transistor (Darlington etc), JFET, MOSFET, isolation technique used in fabrication, fabrication of typical circuits. Section C Digital CMOs circuit, MOS devices, V-I characteristics, Design & detailed analysis of MOS inverters (resistive load, enhancement load, depletion load, CMOS), delay & power analysis, Design layout of simple CMOS gates. Circuit implementation of combinational circuit, circuit implementation of sequential circuits - FFs, SRAM, DRAM.		
	Text Books: 1. Sze S.M.: VLSI Technology:TMH. 2. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design: Mc. Graw Hill. Reference Books: 1. Botker B.R: Microelectronics. 2. Gandhi S.K.: VLSI Fabrication Principle. 3. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. 4. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. 5. Martin Ken: Digital Integrated Circuits: Oxford press. 6. Neil H.E. Weste & Kamran Eshraghian: Principle of CMOS VLSI Design.	Recommended Books: 1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publications. 2. Kang, S.M., &Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. 3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. 4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. 5. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. 5. Sarrafazadeh, M., & Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. 7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. 8. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. Suggested E-Resources: 1. VLSI Circuits by Prof. S. Srinivasan,	

28.	VLSI Design Lab	After completion of this laboratory course, students will be able to: • Use VHDL for design of digital circuits • Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. • Develop and simulate register-level models of hierarchical digital systems	Silvace 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 2. VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ 1. Write a program for the implementation of half adder and Full adder. 2. Write a program for implementing half subtractor and full subtractor. 3. Write a program for implementing MUX 4x1 and DEMUX (1X4) 4. Write a program for implementing Encoder and Decoder. 5. Write a program to implement gray code to binary code converter and vice versa. 6. Write a program to implement COMPARATOR. 7. Write a program for the implement of S-R Flip flop and D Flip flop. 8. Write a program for the implement upcounter and down-counter. 9. Write a program to design JK Flip-flop and write design summary 10. Write a program to design T Flip-flop and write design summary	Learning Outcomes added. Added
29.	Fiber Optics and Communication	After completion of this course, students will be able to: • Explain the light propagation through optical fibers. • Explain the various light sources and optical detectors. • Design fiber optic transmitter and receiver system.	Text Books: 1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication:	Recommended Books: 1. Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. 2. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. 3. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. 4. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw	No change in course contents. Deleted

			PHI, 1995. 3. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. 4. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991.	Hill Publication.	
30.	Fiber Optics and Communication Lab	After completion of this laboratory course, students will be able to: Understand the characteristics of an optical fiber and LED. Understand and measure the basic properties of propagation of light in dielectric optical fibre including losses, attenuation and coupling. Explain the working of optical power meter and various sensors.	*****		Learning Outcomes added. No change in experiment list.
31.	UIL Project	After completion of this course, students will be able to: • Undertake problem identification, formulation and solution. • Design engineering solutions to complex problems utilizing a systems approach. • Demonstrate the knowledge, skills and attitudes of a professional engineer. • Demonstrate effective organizational leadership and change			Learning Outcomes Added and this course has no prescribed syllabus

		T		1	
		skills for managing projects, project teams,			
		and stakeholders.			
32.	Biomedical	After completion of this			No Change
32.	Instrumentation	course, students will be			in course
	111011 4111011411011	able to:	_	_	contents.
		Describe the principle of interfacing of Electrode-electrolyte and different types of electrodes which are used in biomedical field. Explain different types of recorders and photometers. Describe the method of measurement of BP and blood flow.	Text Book: 1. Leslie Cromwell: "Biomedical Instrumentation and measurement". Prentice hall of India, New Delhi, 1997. References: 2. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998. 3. KhandpurR.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 1997. 4. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment Technology" John Wiley and sons. New York, 1970.	Recommended Books: 1. Cromwell L. (2007). Biomedical Instrumentation and Measurement. New Delhi: PHI Publication 2. Webster J.G.(1998). Medical Instrumentation Application and Design. New York: John Wiley and Sons 3. KhandpurR.S. (1997). Handbook of Biomedical Instrumentation. New Delhi: Tata McGraw-Hill Publication 4. Carr J. J. & Brown J. M. (1997). Introduction to Biomedical Equipment Technology. New York: John Wiley and sons	
33.	Optical	After completion of this	,		No Change
	Network	course, students will be			in course
		able to:			contents.
		Describe the important components such as multiplexer, filters. Explain the multiplexing technique Explain the signalling and routing of WDM network elements Describe the protection technique in SONET/SDH and IP network	Text Books: 1. Ramaswami, Rajiv &Sivarajan, Kumar N.: Optical Networks a Practical perspective: Morgan Kaufmann Publishers / 2nd Ed. 2. Black, Uyless: Optical Networks Third Generation Transport Systems: Pearson Educations. Reference Books: 1. Tanenbaum. Andrew S.: Computer Networks: Prentice Hall (India) 2. Murthy, C. Siva Ram &Gurusamy, Mohan: WDM Optical Networks Concepts, Design & Algorithms: Prentice Hall (India)	Recommended Books: 1. Ramaswami, Rajiv.,&Sivarajan, Kumar. N.(2009). Optical Networks: A Practical Perspective. San Francisco, California: Morgan Kaufmann Publisher. 2. Uyless, Black. (2009). Optical Networks Third Generation Transport Systems: New Delhi: Pearson Publication. 3. Tanenbaum, Andrew. S. (2010). Computer Networks. New Delhi: Pearson Publication. 4. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: 1. Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of	

34.	Satellite Communication	After completion of this course, students will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites. • Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system. • Understand the radio propagation channel for Earth station to satellite and satellite to satellite	Text Books: 1. Pratt, Bostian, Allnutt: Satellite Communications: John Wiley & Sons. 2. Dennis Roddy: Satellite Communications: McGraw-Hill 3. Tri T. Ha: Digital Satellite Communications: McGraw-Hill.	Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminars/ OptNets.pdf 2. Optical networks and Switching Systems by Prof. Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021 — Recommended Books: 1. Bostian, Charles.,Pratt, Timothy., & Allnutt, Jeremy. (2006). Satellite Communications. New Delhi: John Wiley & Sons. 2. Maral G., Bousquet M., Sun Z. (2010) Satellite Communications Systems: Systems, techniques and technology, 5th edition, John Willy and sons. 3. Roddy, Dennis. (2017). Satellite Communications. New Delhi:McGraw- Hill Publication 4. Ha, Tri. T. (1990). Digital Satellite Communications. New Delhi: McGraw-Hill Publication Suggested e-resources: 1. Satellite Communication Systems by Prof.Kalyan Kumar Bandyopadhyay Department of Electronics and Electrical Communication Engineering Indian	No Change in course contents. Added
		propagation channel for Earth station to satellite		Prof.Kalyan Kumar Bandyopadhyay Department of Electronics and Electrical	

35.	Basics of Nanoelectronics	applications of those networks, as well as the comparison to alternative communications systems. After completion of this course, students will be able to: Explain the fundamental science and quantum mechanics behind nanoelectronics. Explain the basic concepts behind the operation of nano scale MOSFET describe the various techniques and approaches for the fabrication of nanoscale devices	Text books: 1. G. W. Hanson: Fundamentals of Nanoelectronics, Pearson Education. 2. K. K. Chattopadhyay and A. N. Banerjee: Introduction to Nanoscience and Nanotechnology, PHI Learning. References: 1. Vlaadiniz U. Mitin: Introduction to Nanoelectronics, Cambridge University Press. 2. M. Dragman and D. Dragman: Nanoelectronics- Principles and devices, Artech House. 3. Karl Goser: Nanoelectronics and Nanosystems, Springer. 4. Daniel Minoli: Nanotechnology application to telecommunication and networking, Wiley Interscience. 5. John H. Davis: Physics of low dimension semiconductor, Cambridge Press.	Recommended Books: 1. Hanson, G. W. (2008). Fundamentals of Nanoelectronics. New Delhi: Pearson Publication. 2. Chattopadhyay, K. K., & Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication. 3. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press. 4. Dragman,M., & Dragman,D. (2008). Nanoelectronics- Principles and Devices (2/e): Artech House Publishers 5. Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication 6. Minoli, Daniel. (2005). Nanotechnology Application toTelecommunication and Networking. Hoboken, New Jersey: Wiley Publication.	No Change in course contents.
			networking, Wiley Interscience. 5. John H. Davis: Physics of low dimension	Application to Telecommunication and Networking. Hoboken, New Jersey: Wiley Publication. 7. Davis John. H. (1997). Physics of Low Dimension Semiconductor. New Delhi: Cambridge University Press. 8. Cosh, Carl.C. (1998). Nanostructure Materials	
				Processing Property and Applications. Norwich, New York: Noves Publications	
36.	Mobile Communication	After completion of this course, students will be able to:	_	_	No Change in course contents.
		To understand the various generations of mobile communications and	Text Book: 1. Rappaport Theodre S: Wireless Communication: Pearson Education, second	Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication.	

different Radar Performance factors. • Explain the operation of CW& FM Radar. • Understand the Satellite navigation system. 3. Peebles Jr. P. Z: Radar Principles: Wiley, NY. 3. Peebles Jr. P. Z: Radar Principles: Wiley, NY. 5. Explain the operation of CW& FM Radar. • Understand the Satellite navigation system. 6. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll-001- introduction-to-radar-systems-spring- 2007	
Course, students will be able to: • Understand the basic concept of Radar and applications of various types. • Understand the Navigation: TMH. Course, students will be able to: • Understand the basic concept of Radar and applications of various types. • Understand the Navigation: TMH. Course, students will be able to: • Understand the basic concept of Radar and applications of various types. • Understand the Navigation: TMH. Course, students will be able to: • Course, students will able to: • Course, students will be able to: • Course, students will able to: •	No Change in course contents.

		Management Views Dubling	Dalli, CDC Ballisham (Distail)	
	analyzer, dissolved oxygen analyzer, sodium analyzer, sodium analyzer, silica analyzer and moisture measurement. • Evaluate the performance of Spectro-photometers, FTIR Spectrometers and their applications. • Describe modern trends in NMR Spectrometers, X-ray Spectrometry, and Mass Spectrophotometers with their applications.		Delhi: CBS Publishers & Distributors. 2. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. 3. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company. 4. Settle, Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication. 5. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka: BSP Books Pvt.Ltd. 6. Skoog. Holler., & Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication. Suggested e-resources: 1. Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/103108100/	
39. Geoinfor	course, students will be	_	_	No Change in course
	able to: Describe spatial database, Co-ordinate and projection system Analyse vector and raster based analysis in Geographical Information Sciences Describe global cover based global position systems i.e. GPS, GLONASS Describes applications of remote sensing and GIS in natural resources management	Text Books: 1. Chor Pang Lo and Albert K. W. Yeung. 2006. Concepts and Techniques-of Geographic Information Systems (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 2. Heywood, D.I. and Cornelius, S. and Carver, S. 2011. An Introduction to Geographical Information Systems. Pearson, Prentice-Hall, Inc. 3. Joseph, G. 2005. Fundamentals of remote sensing. Universities prc;s (India) Pvt Ltd., Hyderabad. 4. Jensen, John R. 2016. Introductory digital image processing: a remote sensing perspective. Upper Saddle River, N.I.: Prentice Hall. 5. Sabins, Floyd F. 1997. Remote	Recommended Books: 1. Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote Sensing: Principles and Interpretation. Long	contents.

	,				-
40.	Audio and Video Systems	After completion of this course, students will be able to: • Understand the fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards. • Understand different colour television systems used worldwide and its compatibility. • Principles of recording and reproduction of disc and video cassette recorders.	Recommended Books: 1. S.P. Bail & R. Bali: Audio Video systems: Khanna Book Publishing Co. Delhi. 2. Ajay Sharma: Audio and Video Systems:Dhanpat Rai & Co. 3. R.G. Gupta: Audio and Video Systems: Tata Mc-Graw Hill.	Grove, Illinois: Waveland Press Suggested e-resources: 1. Geoinformatics by University of Twente. https://www.itc.nl/ilwis/applications-guide/ 2. Geographical Information System by Dr A. K. Gosain, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/105102015/1 —— Recommended Books: 1. Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. 2. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. 3. Gupta, R.G. (2010). Audio and Video Systems. Principles, Maintenance and Troubleshooting. New Delhi: Tata McGraw Hill Suggested e-resources: 1. Digital Video Signal Processing by Prof. Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof. Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur.	No Change in course contents.
				https://nptel.ac.in/courses/117105133/22	
	7.1.4	1.0		SECTION .	
41.	Robotics and Automation	After completion of this course, students will be able to: Develop skills of creating industrial and		SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and	Addition of as Elective

mobile robot projects Implement robots like KUKA, PUMA in real industrial world Create innovative robot designs using mathematical concepts of kinematics Develop autonomous mobile robots in surveillance, security, home and office services	 control system, Dynamic stabilization of Robotics. POWER SOURCES AND SENSORS-Hydraulic, Pneumatic and electric drivers – Determination HP of motor and gearing ratio, variable speed arrangements, Path Determination - Machinery Vision – Ranging – Laser – Acoustic, Magnetic Fiber Optic and Tactile Sensor. SECTION B MANIPULATORS- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators. ACTUATORS AND GRIPPERS-Pneumatic, Hydraulic Actuators, Stepper Motor Control Circuits, End Effecter, Various types of Grippers, Design consideration. Differential transformation and manipulators, Jacobians – problems Dynamics: Lagrange – Euler and Newton – Euler formations –	
	 Problems. SECTION C KINEMATICS- Forward and Inverse Kinematic Problems, Solutions of Inverse Kinematic problems, Multiple Solution, Jacobian Work Envelop – Hill Climbing Techniques. PATH PLANNING- Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages. CASE STUDY- Multiple Robots – Machine Interface – Robots in Manufacturing and Non-Manufacturing applications – Robot Cell Design Selection of a Robot. Recommended Books: 1. Groover, M. P., Weiss, M., Nagel, R. N., & Odrey, N. G. (2017). Industrial Robotics: Technology, programming, and Applications (2/e). McGraw-Hill	

				 Education Publication Niku, S. (2010). Introduction to robotics. John Wiley & Sons. Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGraw-Hill Education. Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E. Pearson Education India. Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. 	
42.	Power Electronics	After completion of this course, students will be able to: To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT Analyze the various rectifiers used in power circuits and DC to DC Converters	Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors.	Busiliess Media.	Shifted from 6 th semester to list of
		Explain the inverter operation and how harmonics are reduced and explain the basic working principle of cycloconverters	Section B Commutation Techniques: Load commutation, resonant- pulse commutation, complementary commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers. Section C Inverters: Single-phase voltage source		clectives. No change in course contents.

			inverters 180 and 120 mode operation; Fourier analysis of single-phase inverter output voltage. Pulse width modulated inverters, Reduction of harmonics in the inverter output, single-phase current source inverters with ideal switch. Cyclo-converters: Step-up and step-down cyclo-converters. Step-up and step-down cyclo-converters three-phase half wave cyclo-converters. Text Books: 1. Rashid Muhammad H.: Power Electronics Circuits, Devices And Applications: PHI publication, 14th reprint Edition. 2. Bimbhra P.S.: Power Electronics: Khanna Publication, 3rd Edition. Reference: 1. Rama Moorthy: An Introduction To Thyristors And Their Application: 2nd Edition, ISBN-81-85336-67-9.	Recommended Books: 1. Rashid, Mohammad. H. (2017) .Power Electronics Circuits, Devices And Applications: New Delhi: PHI Publication. 2. Bimbhra, P.S. (2012). Power Electronics: New Delhi: Khanna Publication. 3. Moorthy, Rama, (1991). An Introduction ToThyristors and Their Application: New Delhi: Affiliated East-West Press. Suggested E-Resources: 1. Power Electronics by Prof.B.G. Fernandes, Department of Electrical Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101038/ 2. Power Electronics by Prof. D. Prasad, Dr. D. Kastha, Prof.SabyasachiSengupta, Prof. N. K. De, Dept of Electrical Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105066/	
43.	Digital Signal Processing	After completion of this course, students will be able to: Students will be familiar with the most important methods in DSP. Students will be familiar with design and functioning of digital filter design Student will be able	Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series -		Shifted from 6 th semester to list of electives. No change in course contents. No Change

		2. Oppenheim V. Alan: Signal &	2. Oppenheim, V. Alan. (1995). Signal &	
		1998.	Delhi: phi Publication.	
		Signal Processin: Prentice-Hall of India,	Introduction to Signal Processing. New	
		1. Johnson Johnny R.: Introduction to	1. Johnson, Johnny. R. (1998).	
		Text Books:	Recommended Books:	
		applications.		
		DSP tools and DSP techniques in various		
		Windows, Frequency Sampling Technique.		
		Rectangular Window, Filter Designs using		
		Digital Filters - Windowing and		
		worth and Chebyshev Filters. Design of FIR		
		Transformation, Design of Digital Butter		
		Design of IIR Digital Filters – Impulse Invariant Transformation. Bilinear		
		comparison of IIR and FIR Digital Filters.		
		Section C Design of Digital Filters:		
		()		
		Transform (FFT).		
		Transforms (DFT) and Fast Fourier		
		an IIR and FIR systems, Discrete Fourier		
		Flow Graphs. Introduction to Realization of		
		Digital Systems - Block Diagrams and Signal		
		Introduction to Realization of		
		Transform, Properties of the Z-Transform,		
		Definition and Examples, Inverse Z-		
		Discrete Furier Transform. Z-Transform -		
		Discrete Time Signals obtained by sampling,		
		Representation of Discrete Time Signals,		
		Discrete Time Signals, Frequency Domain		
		Time Domain Representations of		
		Review of Sampled Data Systems,		
		Discrete Time Signals and Systems -		
		Section B		
		lace Transform.		
		Theorems, Network Analysis using the Lap		
		Transform, Lap lace Transform		
		Pairs, System Analysis with Fourier		
		the Limit, Fourier Transform Theorems and		
		Spectral Density, Fourier Transforms in		
	r-seessing.	Coefficients. Fourier Integral, Energy		
	processing.	Series-Symmetry Properties of the Fourier		
	to transform-domain	Trigonometric Series- Exponential Fourier		

				,	
			Systems: Prentice-Hall of India, 1995.	Systems. New Delhi: PHI Publication.	
			3. ProakisG.John: Digital Signal	3. Proakis, G.John. (2002). Digital Signal	
			Processing: Prentice-Hall of India, 3rd	Processing. New Delhi: PHI Publication.	
			edition, 2002.	Suggested E-resource:	
				1. Digital Signal Processing by Prof: S. C.	
				Dutta Roy, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Delhi.	
				https://nptel.ac.in/courses/117102060/	
44.	Mechatronics	After successful		SECTION A	Addition of
		completion of the course,		Mechatronics and its scope: Basic Structure	new elective.
		student will be able to:		and Evolution	
		Develop skills to		Introduction of Transducer & Sensor:	
		monitor and control real		Displacement, Pressure, Flow, Level and	
		world industrial systems		Temperature Measurements. Signal	
		Implement projects for		conditioning: amplification, filtering	
		industrial and home		PC based Control: Smart Sensor, Data	
		automations		Acquisition System, PLC, SCADA, DCS and	
		Analyze and create own		HMI System.	
		innovative filters and		SECTION B	
		signal conditioning		Pneumatic and Hydraulic actuation	
		applications		systems: Directional control valves, Pressure	
		Perform computer based		control valves and Process control valves and	
		controlling of industries		cylinders.	
		using PLC, SCADA and		Mechanical actuation system- Kinematic	
		HMI		chains, cams, gear-trains, Ratchet & Pawl,	
		TIVII		dampers, Bearings.	
				Electrical actuation system: Mechanical	
				switches- solenoid operated solid state	
				switches, DC, AC & stepper motors.	
				Electrical Drives: Conventional and	
				Modern electrical drives, Classifications and	
				Applications	
				Closed loop Controllers: Performance	
				Specifications, Delayed First and Second	
				order system, PID Controller, ZN Tuning.	
				SECTION C	
				Case Studies of Mechatronics Systems:	
				Industrial Robot, Automobile Engine	
				Control, Vehicle Suspension Control,	
				MEMS, CNC Machine, Gyro system, 3-D	
				Printer.	
				Recommended Books:	

			,
45.	Professional Ethics	with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: 1. Professional Ethics by Rochester	New reading elective added
		and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: 1. Professional Ethics by Rochester Institute of Technology, http://www.openculture.com/professional	
		-ethics-a-free-online-course. 2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. LeighHafrey, MIT, USA, https://ocw.mit.edu/courses/sloan-school-of-management/15-270-ethical-practice-	

		leading-through-professionalism-social- responsibility-and-system-design-spring- 2016.	
46.	Tot Sensors and Devices	This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: 1. IoT Sensors and Devices by Curtin University https://www.edx.org/course/sensors-and-devices-in-the-iot. 2. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-	New reading elective added
47.	Electromagnetic Compatibility	 of-things-sensing-actuation. This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to	<u>N</u> ew readin <u>g</u> elective added

		Daniel Mansson, KTH Ro Technology, https://onlinecourses.nptel. 17/preview.	patibility by syal Institute of Sweden ac.in/noc19_ee
48.	Electric Vehicles	Electric vehicles are the transportation. Electric mobilist an essential part of the energy will imply significant change manufacturers, governments, individuals. This course prepare for product development per automotive, communications turbine, and smart grid industre positions in the automotive course will be a first level convehicle. Students will be able the operation of battery evenicle. The course will focu come under the umbrella of elsuch as vehicle dynamics, lelectronics, Batteries, Charry Students will explore the respects of this new market, in of-the-art technology of electric charging infrastructure Suggested e-resources: 1. Electric Vehicles Part 1 https://onlinecourses.nptel. 18/preview. 2. Electric Cars: Introduc University of Technolog https://www.edx.org/course introduction-0.	ity has become transition, and less for vehicle companies and less for vehicle companies and less for vehicle companies and less for vehicle less for vehicle less for less and service industry. This less on electric less on areas that lectric vehicles, Motors, Power ging and etc. most important including state-ic vehicles and less for vehicles and less for less for less for vehicles and less for less for less for vehicles and less for vehicles and less for vehicles for vehic
49.	Electronic Packaging	This course is designed to p knowledge of the technologies required for the packaging products. The focus of the co the mechanical, and materials are often neglected in the des	s and processes of electronic urse will be on aspects which

		potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18 m e54.	
50.	Multimedia Compression and Communication	The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication. The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur, https://iptel.ac.in/syllabus/117105083/.	New reading elective added
51.	Telecommunica tion switching systems and networks	 The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching	New reading elective added

	systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks. Suggested e-resources: 1. Computer Networks by Department of CSE, IIT Kharagpur https://nptel.ac.in/courses/Webcoursecont
	https://nptel.ac.in/courses/Webcoursecont ents/ITT%20Kharagpur/Communication%20network/New index1.html. 2. Data Communication by IIT Kharagpur, https://nptel.ac.in/courses/106105082/19.

Name of Programme: Master of Science (Electronics)

Programme Educational Objectives: The M.Sc. (Electronics) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for the technically skilled personnel who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics professionals develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematics and electronics fundamentals required to solve subject related problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- . To prepare professionals to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their problem–solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- POI. Knowledge: Apply the knowledge of mathematics, science and electronics fundamentals to the solution of related complex problems.
- PO2. Problem analysis: Interpret, compare and analyze following rules of scientific methodology to arrive at a defensible conclusion of a problem.
- PO3. Design/development of solutions: Develop solutions for complex electronics problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct investigations of complex problems: Use scientific knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Apply appropriate techniques, resources, and modern electronics tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex electronics activities with an understanding of the limitations.
- PO6. The electronics professional and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional electronics practice.
- PO7. Environment and sustainability: Understand the impact of the professional electronics solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the professional practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.

- PO10. Communication Skill: Communicate effectively on complex electronics activities with the electronics professional community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. Project management and finance: Demonstrate knowledge and understanding of the professional and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological

Programme Scheme:

M.Sc. (Electronics) I Sem (December 2019)

- Highlighted with gray shade indicates the changed subject/course/credit/modification in syllabus/ new course added.
 Text in white color with black background indicates swapping of course.

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	P	С	Course Code	Course Name	L	T	P	C
CS 416	Computer Programming	4	0	0	4	CS 415	Computer Programming	4	0	0	4
CS-416L	Computer Programming Lab	0	0	8	4	CS 415L	Computer Programming Lab	0	0	8	4
ELE 301	Analog Integrated Circuits	4	0	0	4		Analog Electronics	4	0	0	4
ELE 301L	Analog Integrated Circuits Lab	0	0	2	1		Analog Electronics Lab	0	0	4	2
ELE 404	Electronics Devices	4	0	0	4	ELE 406	Principles of Digital Electronics	4	0	0	4
ELE 405	Network Theory	4	0	0	4	ELE 406L	Principles of Digital Electronics Lab	0	0	4	2
ELE 405L	Network Theory Lab	0	0	2	1	ECE 201	Signals, systems and Networks	4	0	0	4
ELE 406	Principles of Digital Electronics	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2						
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	0	16	28

M.Sc.(Electronics) II Sem (April/May 2020)

Existing Sch	eme					Proposed S	cheme				
Course Code	Course Name	L	Т	P	C *	Course Code	Course Name	L	T	P	C *
ECE 402	Fiber Optics and Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1		Microwave Engineering Lab	0	0	2	1
EIE 201	Electronics Measurement and Instrumentation	3	1	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4
EIE 201L	Electronics Measurement and Instrumentation Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2
EIE 302	Control Systems	3	1	0	4	EIE 302	Control Systems	4	0	0	4
EIE 302L	Control Systems Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	4	2
ELE 304	Digital Signal Processing	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3
ELE 304L	Digital Signal Processing Lab	0	0	2	1	TSKL 403	Communication Skills	2	0	0	2
TSKL 403	Communication Skills	2	0	0	2	ELE 508S	Seminar	0	0	2	1
VLSI 401	VLSI Design	4	0	0	4		Discipline Elective	4	0	0	4
VLSI 401L	VLSI Design Lab	0	0	4	2						
	Semester Wise Total	20	2	12	28		Semester Wise Total	20	1	12	27

M.Sc. (Electronics) III Sem (December 2020)

Existing Sc	heme					Proposed Scheme						
Course Code	Course Name	L	T	P	C *	Course Code	Course Name	L	T	P	C	
ELE 307	Microwave Electronics	4	0	0	4	VLSI 401	VLSI Design	4	0	0	4	
ELE 307L	Microwave Electronics Lab	0	0	2	1	VLSI 401L	VLSI Design Lab	0	0	2	1	
ELE 306	Microprocessors and Microcontrollers	3	1	0	4	CS 209	Data Structures	4	0	0	4	
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	2	1	CS 209L	Data Structures Lab	0	0	4	2	
ECE 301	Analog Communication	4	0	0	4	ECE 301	Analog Communication	4	0	0	4	
ECE 301L	Analog Communication Lab	0	0	2	1	ECE 301L	Analog Communication Lab	0	0	2	1	
CS 209	Data Structures	4	0	0	4	ELE 306	Microprocessors and Microcontrollers	4	0	0	4	
CS 209L	Data Structures Lab	0	0	4	2	ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2	
ECE 303	Communication Networks	4	0	0	4		Open Elective	4	0	0	4	
ELE 308P	Project			8	4		Project	0	0	4	2	
ELE 508S	Seminar			2	1							
	Semester Wise Total	19	1	20	30		Semester Wise Total	20	0	16	28	

M.Sc.(Electronics) IV Sem (April/ May 2021)

	Existing Schen	me				Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	С	
	Reading Elective	0	0	4	2	ELE 507P	UIL Project	0	0	48	24	
ELE 507P	Project	0	0	40	20		Reading Elective	0	0	0	2	
	Semester Wis	se To	otal	44	22		Semester V	Vise T	otal	48	26	

Reading Electives:

	Existing Scheme					Proposed Scheme						
Course Code Course Name L T P C					C	Course Code	Course Name	L	T	P	C	
IT 403R	Enterprise Resource planning	0	0	4	2		Professional Ethics	0	0	0	2	
CS 509R	Client-Server Computing and Applications	0	0	4	2		Telecommunication switching systems and networks	0	0	0	2	
IT-402R	Electronic commerce	0	0	4	2		Multimedia Compression and Communication	0	0	0	2	
CS 427R	Parallel Computing	4	0	0	4		Electronic Packaging	0	0	0	2	
							Electric Vehicles	0	0	0	2	
							Electromagnetic Compatibility	0	0	0	2	
							IoT Sensors and Devices	0	0	0	2	

Discipline Elective	s				
Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Discipline Electives
ELE 403	Basics of Nanoelectronics		Biomedical Instrumentation	ECE 404	Optical Network
	Mechatronics	ECE 402	Fiber Optics and Communication	ECE 406	Satellite Communication
ELE 402	Audio and Video Systems		Analytical Instrumentation	ECE 403	Mobile Communication
	Geoinformatics	ELE 304	Digital Signal Processing	ECE 405	Radar Navigation
	Robotics and Automation	ECE 303	Communication Networks		
	Antenna Analysis	EEE 304	Power Electronics		

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

M.Sc. Electronics

						Ist Year
Semester-I						
Course Code	Course Name	L	т	Р	С	
CS 415	Computer Programming	4	0	0	4	
CS 415L	Computer Programming Lab	0	0	8	4	
	Analog Electronics	4	0	0	4	
	Analog Electronics Lab	0	0	4	2	
ELE 406	Principles of Digital Electronics	4	0	0	4	
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2	
ECE 201	Signals, systems and Networks	4	0	0	4	
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	
	Semester Wise Total	20	0	16	28	

Semester-II								
Course Code	Course Name	L	Т	Р	С			
	Microwave Engineering		0	0	4			
	Microwave Engineering Lab	0	0	2	1			
FIF 202	Electrical and Electronics	3	1	0	4			
EIE 202	Measurements							
EIE 202L	Electrical and Electronics	0	0	4	2			
EIE 202L	Measurements Lab							
EIE 302	Control Systems		0	0	4			
EIE 302L	Control Systems Lab	0	0	4	2			
MGMT 209	Entrepreneurship	3	0	0	3			
TSKL 403	Communication Skills	2	0	0	2			
ELE 508S	Seminar	0	0	2	1			
	Discipline Elective	4	0	0	4			
	Semester Wise Total	20	1	12	27			

Semester-III								
Course Code	Course Name	L	Т	Р	С			
VLSI 401	VLSI Design	4	0	0	4			
VLSI 401L	VLSI Design Lab	0	0	2	1			
CS 209	Data Structures	4	0	0	4			
CS 209L	Data Structures Lab	0	0	4	2			
ECE 301	Analog Communication	4	0	0	4			
ECE 301L	Analog Communication Lab	0	0	2	1			
ELE 306	Microprocessors and Microcontrollers	4	0	0	4			
ELE 306L	Microprocessors and Microcontrollers	0	0	4	2			
	Lab	_						
	Open Elective	4	0	0	4			
	Project	0	0	4	2			
	Semester Wise Total	20	0	16	28			

IInd Year								
Seme	ter-IV							
Cour	Course Code Course Name L T P C							
ELE 50	7P	UIL Project	0	0	48	24		
		Reading Elective	0	0	0	2		
		Semester Wise Total	0	0	48	26		

Discipline Electives						
Basics of Nanoelectronics	Biomedical Instrumentation	Optical Network				
Mechatronics	Fiber Optics and Communication	Satellite Communication				
Audio and Video Systems	Analytical Instrumentation	Mobile Communication				
Geoinformatics	Digital Signal Processing	Radar Navigation				
Robotics and Automation	Communication Networks					
Antenna Analysis	Power Electronics					

Reading Electives						
Professional Ethics	Telecommunication switching systems and networks	Electric Vehicles				
Electromagnetic Compatibility	Multimedia Compression and Communication					
IoT Sensors and Devices	Electronic Packaging					

Student can opt for at most 2 additional Open (Generic) audit/ credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	CS 416, Computer Programming			CS 415, Computer Programming	Please refer from Department of Computer Science
2	Analog Integrated Circuits	After the completion of course student will be able to: • Explain the operation and properties of Opamp. • Explain the design of differential amplifiers, active filters, oscillators, and other linear and nonlinear circuits using linear integrated circuits. • Design and analysis of single stage, multistage amplifiers and high frequency amplifiers.	Analog Integrated Circuits Section A Feedback Amplifiers: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback. Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class AB, Class C, power dissipation and efficiency calculations, amplifier distortion. Section B High Frequency Amplifiers: Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers: frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Analog Electronics Section A Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, design of integrator and differentiator, logarithmic and anti-logarithmic amplifiers. Active filters. Section B Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops; performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators; Voltage regulators basics, OP-AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Added Shifted Deleted Added Shifted Deleted
			Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance,	Added Shifted Deleted

			analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits: Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Hybrid –pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	
			Text Books: 1. Millman and Halkias: Integrated electronics, TMH, 1991. 2. Boylestad, Nashelshy, Electronic Devices and Circuit Theory, Pearson publication, Tenth Edition, 2009. 3. Gayakwad Ramakant A., "OP-AMP & Linear Integrated circuits", New Delhi (Prentice Hall) fourth Edition 2010. Reference Book: 1. Adel Sedra& Kenneth Smith, Microelectronic Circuits Theory and applications" FIFTH edition International version: Oxford University Press, 2009.	Recommended Books: 1. Gayakwad, Ramakant A. (2010). OP-AMP & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) Operational Amplifiers and Linear ICs. New Delhi: Oxford University Press. 3. Parikh, Millman & Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel. & Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resources: 1. Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/	Deleted
3.	Analog Integrated Circuits Lab	After completion of this laboratory course, students will be able to: Design, construct, and analyze the various analog circuits to	Analog Integrated Circuits Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC	Analog Electronics Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC	Learning Outcomes added.
		compare experimental results in the	4. To design Intergrator using 741 IC5. To design Schmitt Trigger using 741/555	4. To design Intergrator using 741 IC5. To design Schmitt Trigger using	Experiment List.

4	ELE 406, Principles of Digital Electronics	laboratory with theoretical analysis. Observe the amplitude and frequency responses of common amplification circuits Construct the desired Electronic design to meet specific requirements. After the completion of course student will be able to: Describe and minimize various digital systems. Design steps for combinational and sequential circuits. Understand basic memory architectures and their functionality.	IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565. Text/Reference Books: 1 Digital Principles and Applications by Malvino C.P., Leach D.P.; Tata Mc-Graw Hill, 1985. 2. Digital Computer Fundamentals:Bartee, T.C. 3. Computer System Architecture: Mano, M.M., Prentice Hall, 1988 4. Digital Electronics: K. M. Bakwad, Vardhan Publication, 2010 5. Computer Architecture and Organization: Hayes John P., McGraw Hill 1988 (International Edition) 6. Introduction to Computer Architecture Stone s., Galgotia Publications 1986. 7. Microprocessors, Architecture, Programming & Applications R. Gaonkar, Wiley Eastern - 1987.	741/555 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF, IO. To design Voltage to frequency converter. 11. To study phase locked loop. 12. I2. To study frequency shift keying using PLL 565. Recommended Books: 1. Malvino C.P., Leach D.P. & SahaGoutam (2014). Digital Principles and Applications. New Delhi: Tata McGraw Hill Publication 2. Bartee T.C. (1979). Digital Computer Fundamentals. New York: McGraw-Hill Publication 3. Hayes John P. (1988). Computer Architecture and Organization. International edition: McGraw-Hill Publication 4. Stone, Harold S. (1976). Introduction to Computer Architecture. Paris: SRA Publication 5. Gaonkar, R.S. (1987). Microprocessors Architecture, Programming & Applications with 8085/8080A, Wiley Eastern Publication	No change in course contents Deleted
5.	ELE 406L, Principles of Digital Electronics Lab	After completion of this laboratory course, students will be able to: • Understand the basic digital circuits and to verify their operation.			Learning Outcomes added

				. ,
		Explain the elements of digital system abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs). Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers.		experiment list.
6	ECE 201, Signals, Systems and Networks	After the completion of course student will be able to: • Analyze linear time invariant system in time and frequency domain • Apply network theorem to analyze the electrical circuit. • Explain two port parameters.	Section-A Introduction: Continuous and discrete time signals, Transformation of independent variables, Exponential and sinusoidal signals, Unit impulse and unit step functions, Continuous and discrete time systems, Basic system properties Linear Time-Invariant System: Convolution for continuous and discrete time LTI system, Properties of LTI system, Causal LTI systems described by differential and difference equations, Singularity functions Fourier Series: Fourier series representation of continuous time periodic signals, Convergence of Fourier series, Properties of continuous time Fourier series, Fourier series representation of discrete time periodic signals, Properties of discrete time Fourier series Section-B	Introduced New Course
			Continuous Time Fourier Transform:	

		Representation of a periodic signals,	
		Fourier transform for periodic signals,	
		Properties of continuous time Fourier	
		Transform, Systems characterized by	
		constant coefficient differential equations	
		Laplace Transform: Laplace transform,	
		Region of convergence for Laplace	
		transform, Inverse Laplace transform,	
		Geometrical evaluation of Fourier	
		Transform from pole-zero plot, Properties	
		of Laplace transform, Analysis and	
		characterization of LTI systems using	
		Laplace transform	
		Initial Conditions in Networks: First order	
		differential equations- General and	
		Particular solutions, Time constants, Initial	
		conditions in elements, geometrical	
		interpretation of derivatives, A procedure	
		to evaluate initial conditions	
		Section- C	
		Differential equation in circuits: Second	
		order equations-Internal excitations,	
		Networks excited by external energy	
		sources, Response as related to the s-plane	
		location of roots, General solutions in	
		Terms of S, Q, n	
		Impedance Functions and Networks	
		Theorems: The concept of complex	
		frequency, Transform impedance and	
		 transform circuits, Series and parallel	
		combinations of elements, Superposition	
		and Reciprocity, Thevenin's Theorem and	
		Norton's Theorem	
		Two port Parameters: Relationship of two	
		port variables, Short circuit admittance	
		parameters, Open circuit impedance	
		parameters, Transmission parameters,	
		Hybrid parameters, Relation between	
1		parameter sets, Parallel connection of two	
		port networks	

F 1		T		T	
				Recommended Books:	
				1. Oppenheim A. V., A. V. &Nawab S.	
				H. (2015). Signal and Systems (2/e),	
				Boston: Pearson Publication	
				2. Valkenburg M.E. Van (2015). Network	
				Analysis (3/e). New Delhi: Pearson	
				Publication	
				3. Proakis J. G. &Manolakis D. G.	
				(2007). Digital Signal Processing:	
				Principles, Algorithms, and	
				Applications (4/e). New Delhi: Pearson	
				Publication	
				4. Kuo F. F. (2010). Network Analysis	
				and Synthesis (2/e). New Delhi: John	
				Wiley & Sons Publication	
				Suggested E-resources:	
				88	
				1. Circuit Theory by Prof. S.C. Dutta	
				Roy, Department of Electrical	
				Engineering, Indian Institute of	
				Technology, Delhi.	
				https://nptel.ac.in/courses/108102042/	
				2. Principles of Signals and Systems by	
				Prof. Aditya K. Jagannatham,	
				Department of Electrical Engineering	
				Indian Institute of Technology,	
				Kanpur.	
				https://nptel.ac.in/courses/108104100	
7	Microwave	After the completion of	Microwave Electronics	Microwave Engineering	Added
	Electronics	course student will be able	Section A	Section A	Shifted
		to:	Introduction to Microwaves & its application,	Introduction to Microwaves & its	
		 Understand various 	Transmission lines: General equation, input	application, Microwave Electromagnetic	-Deleted
		parameters of	impedance, characteristic impedance,	spectrum, Transmission Lines: General	
		waveguide and use of	reflection and transmission coefficient,	equation, input impedance, characteristic	
		component as per	standing wave ratio, resonant and anti	impedance, reflection and transmission	
		applications	resonant line impedance matching, smith	coefficient, standing wave ratio, resonant	
		Design impedance	chart and its applications, coaxial, twin, strip	and anti-resonant line impedance	
		matching network for	µstrip lines &baluns	matching, Matching techniques: single	
		any transmission line	-	stub, double stub using smith chart, quarter	
		or system		wave transformer, baluns, coaxial	
				transmission line, Planar transmission line:	

	Analyse and find		Strip line, Microstrip line, Slot line etc.	
	applications and	Section B	Section B	Added
	limitations of	Wave Guides: Wave propagation in	Wave Guides: Wave propagation in	Shifted
	microwave tube	rectangular & circular wave guides, wave	rectangular wave guide: solution of TE and	
	Generators and	guide modes, Q of wave guide, Wave guide	TM modes, Power Transmission and	Deleted
	Amplifiers	coupling, Microwave passive components: S-	Attenuation, Excitation of modes in	
		parameter representation and analysis of microwave components such as Waveguide	Rectangular waveguide, Circular Waveguide: Basic idea of TE and TM	
		Tees, Two-hole directional coupler,	modes, Rectangular and Circular cavity	
		attenuators, Phase shifters, Rectangular cavity	resonators, Rectangular cavity resonators,	
		resonator, Isolators, Circulators.	Q of cavity resonators, S parameters and	
			its conversion with Z and Y parameters,	
			Wave guide coupling, Microwave passive	
			Components: S- parameter representation	
			and analysis of microwave components	
			such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase	
			shifters, Microwave propagation in	
			ferrites: Faraday rotation, Isolators,	
			Circulators.	
		Section C	Section C	Added
		Microwave Tube Devices: Conventional	Microwave Tubes: Limitations of	Shifted
		Vacuum tubes at microwave, O type device -	Conventional vacuum tubes at microwave,	
		Klystron (two cavity & reflex). M type	Klystron: Construction and operation of	Deleted
		device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	two cavity and multi-cavity klystrons, Applegate Diagram and application of two	
		Semiconductor Devices IMPATT.	cavity klystron, Construction and working	
		TRAPATT& Gunn Devices.	of Reflex klystron, Magnetron: Types of	
		Train Train Gamin Bevices.	magnetron, Construction, Operation and	
			Analysis of cavity or travelling wave	
			magnetron, Traveling wave tubes (TWT):	
			Construction, Operation and practical	
			consideration of helical type TWT,	
			Applications of TWT, Microwave	
			Semiconductor Devices: Tunnel diodes, principle of operation and application of	
			tunnel diodes, Transferred Electron	
			devices: Gunn-Effect diodes, Two-valley	
			theory, Mode of operations of Gunn diode,	
	1		Avalanche Transit-Time devices:	

				IMDATT TRADATT	
			m (P)	IMPATT, TRAPATT.	
			Text Books:	Recommended Books:	
			1. Sisodia-Raghuvanshi: Microwave	1. Liao, S.Y. (1995). Microwave devices	
			Circuits & Passive Devices: (Wiley-	& Circuits. New Delhi: Prentice Hall	
			eastern).1st edition.1987	Publication.	
			2. S.Y. Liao: Microwave Devices &	2. Rizzi, P.A. (1998). Microwave	
			Circuits, (Prentice Hall).1st Edition 1995,	Engineering. New Delhi: Prentice Hall	
			3. Collins: Foundation Of Microwave	Publication.	
			Engineering, (Mc Graw Hill) 2nd Edition	3. Collins, R. E. (1992). Foundation of	
			1992	Microwave Engineering. New Delhi:	
			4. P.A. Rizzi: Microwave: (Prentice	McGraw Hill Publication.	
			Hall). 1st Edition 1998	4. Pozar, David M. (2008). Microwave	
				Engineering. New Delhi: Wiley	
				Publication.	
				Suggested E- Recourses:	
				1. Microwave Theory and Techniques	
				by Prof. Girish Kumar, Indian Institute	
				of Technology, Bombay.	
				https://nptel.ac.in/courses/108101112/	
				2. Basic Building Blocks of Microwave	
				Engineering by Dr Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/117105130	
				3. Transmission Lines and E.M. Waves	
				by Prof. R. K. Shivgaonkar, Indian	
				Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/117101056/	
8	Microwave	After completion of this	Microwave Electronics Lab		Lagunina
ð	Electronics Lab			Microwave Engineering Lab	Learning Outcomes
	Electronics Lab	laboratory course, students	1. Determine the operating frequency of	1. Determine the operating frequency of	
		will be able to:	reflex klystron.	reflex klystron.	added.
		• Understand the	2. Draw the V-I characteristics of Reflex	2. Draw the V-I characteristics of Reflex	N 61
		concept and working	klystron	klystron	No Change in
		of microwave bench	3. Draw the characteristics of attenuator	Draw the characteristics of attenuator	Experiment
		and different	4. To verify the wave-guide law	4. To verify the wave-guide law	List.
		components connected	5. To study the directivity and coupling	5. To study the directivity and coupling	
		on a bench.	coefficient of Directional Coupler.	coefficient of Directional Coupler.	
		Analyze the behaviour	6. To study the properties of magic Tea and		
		of various microwave	also determine isolation and coupling	and also determine isolation and	
		components.	coefficient.	coupling coefficient.	
L		components.	COCINCICIII.	couping coefficient.	

		Verify properties/ characteristic of microwave source, tees and directional coupler.	To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient	To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient	
9	EIE 201, Electronics Measurement and Instrumentation	After the completion of course student will be able to: • Measure various electrical parameters with precision and accuracy. • Select appropriate transducers for measurement of physical parameter. • Use suitable AC Bridge for relevant parameter measurement.	EIE 201, Electronics Measurement and Instrumentation Section A Measurements, Elements of Measurements, Mathematical Models of Measurements system, Performance Characteristics, Error in Measurement, True value, static error, static correction, scale range, scale spam, Reproducibility & drift, Repeatability, Noise-Signal to noise ratio, source of noise, Johnson noise, noise factor & noise figure. Accuracy & precision, Indication of precision, Significant figures, Range of doubt, static sensitivity, linearity, Hysteresis, Threshold, dead time, dead zone, resolution & discrimination, measurement error type & analysis, standard & calibration, curve fitting.	Electrical and Electronics Measurements Section A Measurements: Elements of Measurements, Performance characteristics, Error in measurements, True value, Static error, Static correction, Scale range, Scale span, Reproducibility, Drift, Repeatability, Accuracy and Precision, Indication of Precision, Significant figures, Range of doubt, Static sensitivity, Linearity, Hysteresis, Threshold, Dead Time, Dead zone, Resolution and Discrimination. Measurement error: Types and analysis, Loading error due to series and shunt connected instruments, Standards and Calibration, Curve fitting, Dynamic characteristics of measurement systems, Mathematical models of measurement system (Mechanical and Electrical System). Transducers: Classification and characteristics, Resistive, Capacitive, Inductive, Hall Effect. Measurement of Displacement: LVDT and RVDT, Strain Gauges and its types. Measurement of Temperature: RTD, Thermistor and Thermocouples.	Added Shifted Deleted
			SECTION B	Section B	Added
			Transducers: Classification, resistive, capacitive, inductive, Piezoelectric,	d'Arsonval Galvanometer- Construction, Torque Equation and Dynamic behavior of	Shifted

thermoelectrie, photoelectrie, Hall Effect. Measurements of displacement- linear & rotational (LVDT&RVDT), Strain gauge, Types of Strain gauge. Measurement of Velocity Linear & Angular. Measurement of Temperature- RTD, Thermistor, thermocouple, Pyrometer-Radiation & optical, Platinum Resistance thermometer. Measurement of flow Electromagnetie & ultrasonie type. Measurement of Humidity-Hydrometer, Measurement of PH-PH electrode, Measurement of Phase & Frequency- Lissouge Pattern.	Deleted
SECTION C AC Bridges- Measurement of self-inductance, capacitance & Frequency, Measuring Instruments: Construction of Ballistic Galvanometer, PMMC instruments-Construction & Torque equation, Moving Iron- Construction & Torque equation, Moving Iron- Construction & Torque equation, DC & AC woltmeters, DC & AC ammeters, ohmmeters-series & Shunt type, Multimeter-Digital & Analog, Cathode Ray Oscilloscope-CRT, Electron Gun, Focusing, Deflection, Time base Generator, Types of CRO, Function generator, Q- meter, Energy meter. Section C Measurement of low, medium and high resistance. Multimeter- Analog and Digital, Function generator, Wave Analyzer, Spectrum Analyzer, Q-meter and its applications, CRO-CRT, Time base generator, Types of CRO, Function generator, Q-meter, Energy meter.	Added Shifted Deleted
Text Books: 1. Sawhney, A.K.: A Text Book on Electrical and Electronics measurements and Instrumentation: Dhanpat Rai & Sons, 4 th edition 1968. Reprint 2004. 2. Doeblin, Ernest O: Measurement system: Application and Design: Mc Graw Hill New York, 4 th edition 1990. Recommended Books: 1. Sawhney A.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Course in Electrical and Electronic Measurements and Instrumentation. 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers 3. Nakra B.C. & Chaudhry K.K. (2013)	Deleted

			Reference Books: 1. Jones, Barney E: Instrumentation measurement and Feedback:TMH, edition 1978, reprint 2004. 2. Cooper, W.D: Modern Electronics instrumentation and Measurements: PHI. 3. R.K Jain: Mechanical industrial Measurements: Khanna Publishers.	Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof.Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064	
10	Electrical and Electronics Measurements Lab	After completion of this laboratory course, students will be able to: • Develop an understanding of construction and working of different measuring instruments • Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement • Select appropriate passive or active transducers for measurement of physical phenomenon.		To study Hall Effect. To study principle of Thermocouple. To study principle of Load cell. To study principle of Thermistor. To study principle of Strain guage. To study Principle of LVDT To study De sauty bridge. To study Wein AC bridge. To study CRO circuitry in detail.	Learning outcomes added.
11	EIE 302, Control Systems	After the completion of course student will be able to: • Formulate mathematical model	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects	Added Shifted Deleted

T. T				
	for physical systems and simplify representation of complex systems using reduction techniques. • Use standard test signals to identify performance	feedback, servo components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op-amp, potentiometer as an error detector; comparison of AC and DC servomechanism. Section B Standard test signals, time response of first and second order systems, steady state	of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems. Section B Effects of derivative and integral error	
	characteristics of first and second-order systems. • Apply root locus technique for stability analysis.	errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus	compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
		technique.	ar ar prompton	
		Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots,Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical	Added Shifted
		Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin,	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant-N circles; closed loop frequency response from these.	Added

			Ed.: Printice Hall of India Pvt. Ltd.,	Prentice hall.	
			2001	Suggested e-resource:	
				1. Control System by Prof. S. D. Agashe,	
				Indian Institute of Technology,	
				Bombay.	
				https://nptel.ac.in/courses/108101037/	
12	Control Systems	After completion of this	1. To study and controlling action using PID	To study and controlling action using	Learning
12	Lab	laboratory course, students	controller and calculate the first overshoot	PID controller and calculate the first	Outcomes
	Lab	will be able to:	temperature and plot the graph.	overshoot temperature and plot the	added.
		Understand the	2. To study the DC position controller and	graph.	auucu.
		concept of time	find out the tachometer gain.	2. To study the DC position controller	Deleted
			ind out the tachometer gam.	and find out the tachometer gain.	Deleted
		response and			4 7 7 7
		frequency response of		3. To determine time domain response of	Added
		any physical system.		a second order systems for step input	
		Mathematical		and obtain performance parameters.	
		modeling of physical		4. To convert transfer function of a	
		system to find out of		system into state space form and vice-	
		transfer system.		versa.	
		 Analyze the stability 		To plot root locus diagram of an open	
		of system with the help		loop transfer function and determine	
		of system response.		range of gain 'k for stability.	
		, ,		To plot a Bode diagram of an open	
				loop transfer function.	
				7. To draw a Nyquist plot of an open loop	
				transfers function and examine the	
				stability of the system.	
13	MGMT 209,				Please refer
	Entrepreneurship				from
	zam epreneur samp		_		Department of
					Management
14	TSKL 403.				Please refer
17	Communication				from
	Skills				Department of
	SKIIIS				
15	Seminar	After the completion of			English
15	Schillar	course student will be able			Locumina
					Learning
		to:			Outcomes
		To identify promising			added.
		new directions of			
		various cutting edge			

LSI 401, LSI Design	technologies. • Undertake a critical review of the literature. • Deliver well-organized technical presentations and prepare a technical report. After the completion of course student will be able to: • Explain the basic theory of crystal growth, wafer fabrication and IC fabrication technology. • Explain the different VLSI design styles, overview of ICs and fabrication steps of MOS, CMOS and BJT. • Design and analyse the output characteristics of different MOS inverters	Text Books: 1. Sze S.M.: VLSI Technology:TMH. 2. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design: Mc. Graw Hill. Reference Books: 1. Botker B.R: Microelectronics. 2. Gandhi S.K.: VLSI Fabrication Principle. 3. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. 4. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. 5. Martin Ken: Digital Integrated Circuits: Oxford press. 6. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design.	Recommended Books: 1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publication. 2. Kang, S.M., & Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. 3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. 4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. 5. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. 6. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. 7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. 8. Neil, H.E., Weste, &Eshraghian, Kenger (1004). Principle of CMOS.	No change in course contents
			Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication.	

				Suggested E-Resources:	
				VLSI Circuits by Prof. S. Srinivasan, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/	
17	VLSI Design Lab	After completion of this laboratory course, students will be able to: • Use VHDL for design of digital circuits • Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. • Develop and simulate register-level models of hierarchical digital systems	Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	Write a program for the implementation of half adder and Full adder. Write a program for implementing half subtractor and full subtractor. Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program for implementing Encoder and Decoder. Write a program to implement gray code to binary code converter and vice versa. Write a program to implement COMPARATOR. Write a program for the implementation of S-R Flip flop and D Flip flop. Write a program for the implement upcounter and down-counter. Write a program to design JK Flip-flop and write design summary Write a program to design T Flip-flop and write design summary	Learning Outcomes added. Added
18	CS 209, Data				Please refer
	Structures	_			from Department of Computer Science
19	Analog	After the completion of	Section-A	Section-A	Added
	Communication	course student will be able	Introduction Communication Process,	Introduction to signals: Size of signals,	

Explain different blocks in communication system and how noise affects communication using different parameters. Distinguish between different amplitude modulation schemes with their advantages, disadvantages and applications and analyse generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Identify different types of radio receiver circuits	Source of Information, Channels Noise, System Noise Source, Noise & Feed back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals, Modulation Process – Need, Bandwidth, Requirements Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication, Continuous and Discrete Spectra, Band pass System, Section B Modulation: Amplitude Modulation: Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulation; Modulators: Amplitude Modulation, Spectral Analysis of Different Modulation; Modulators: Amplitude Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulators: Filter Method, Phase-shift Method & Third Method-ISB Modulators, Vestigial sideband Modulator; Frequency Modulator: Direct &Indirect Method, Narrow Modulator: Direct &Indirect Method, Narrow Modulator: Direct &Indirect Method, Narrow Modulators of these Modulators; Transmitter – AM Transmitter, Low Level and High Level SSB Transmitter, Pilot Carrier – FM Transmitter – Narrow band and Wide band, FM Stereo Transmitter;	Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison-correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series, Analysis and Transmission of Signals; Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density, Signal power and power spectral density. Section-B Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Quadrature amplitude modulation, Vestigial sideband modulation, Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulated systems, FM receiver	Added Shifted Deleted
	Section C Receiver: Sensitivity, Selectivity, Signal to Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector Ratio Detector Foster Seelay Discriminator; AM	Section-C Random Signal and Noise: Gaussian Noise, Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise.	Added Shifted Deleted

			Receiver (Block Level Treatment) TRFReceiver,Super-heterodyne Receiver,Double Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum pre-emphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two- Port Networks, Free-Space Link Calculations	
			Text Books: 1. George Kennedy: Electronic Communications Systems:McGraw Hill. 2. Taub and Schilling: Principles of communication systems:McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering:	Recommended Books: I. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007).Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., & Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resource: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/	Added Deleted
20	Analog Communication Lab	After completion of this laboratory course, students will be able to: • Demonstrate Amplitude modulation and demodulation techniques. • Demonstrate frequency modulation			Learning outcomes added. No change in experiment list.

21	ELE 306, Microprocessors and Microcontrollers	and demodulation technique. Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Compare different modulations to recognize the advantages and disadvantages of them. Identify different radio receiver circuits and role of AGC. After the completion of course student will be able to: Interface memory and different peripherals with Microprocessor and microcontroller Design and develop the system for real time applications	Test Books: 1. Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. 2. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book: 1. Ajay V. Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. 2. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. 3. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005.	Recommended Books: 1. Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication 2. Hall, D.V. (2017). Micro Processor and Interfacing. New Delhi: McGraw- Hill Publication. 3. Deshmukh, Ajay V. (2005). Microcontrollers — Theory and Applications. New Delhi: McGraw Hill Publication. 4. Ray, A.K., &Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication. 5. Kenneth, J. Ayala. (2011). The 8086	No change in course contents
			Processors", Tata McGraw Hill. 3. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and	4. Ray, A.K., &Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication.	

22	ELE 306L, Microprocessors and Microcontrollers Lab	After completion of this laboratory course, students will be able to: • Understand the different instructions of 8086 microprocessor assembly language. • Coding in assembly language. • Solve different real	 8086/8086 Family: Architecture, Programming and Design. New Delhi: Prentice Hall India. Suggested E-Resources: 1. Microprocessors and Microcontrollers by Prof.SantanuChattopadhyay, Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	Learning Outcomes added. No Change in Experiment List.
		time problems.		
23	Project	After completion of this course, students will be able to: Demonstrate effective project execution and control techniques that result in successful projects. Ability to identify, formulates, and solves engineering problems. Use the techniques.	 	Learning Outcomes Added and this course has no prescribed syllabus

		1		
		skills and modern		
		engineering tools		
		necessary for		
		engineering practice		
24	UIL Project	After completion of this	 	Learning
		course, students will be		Outcomes
		able to:		Added and this
		 Undertake problem 		course has no
		identification,		prescribed
		formulation and		syllabus
		solution.		
		 Design engineering 		
		solutions to complex		
		problems utilizing a		
		systems approach.		
		• Demonstrate the		
		knowledge, skills and		
		attitudes of a		
		professional engineer.		
		Demonstrate effective		
		organizational		
		leadership and change		
		skills for managing		
		projects, project teams,		
		and stakeholders.		
25	Biomedical	After the completion of	Section A	Addition of
	Instrumentation	course student will be able		New Course as
		to:	Electrode electrolyte interface, half-cell	Elective
		Describe the principle	potential, polarization and non- polarisable	
		of interfacing of	electrode, calomel electrode, needle and	
		Electrode-electrolyte	wire electrode, microelectrode-metal	
		and different types of	 micropipette. Ag/AgCl electrodes	
		electrodes which are	Microelectrodes, skin surface electrode,	
		used in biomedical	and lead for EG, ECG, EMG. Transducer	
		field.	for biomedical applications, factors	
		Explain different	governing the selection of transducer,	
		types of recorders and	pressure, temperature, flow, biomedical	
		photometers.	 ultrasonic transducer.	
		*	Section B	
		of measurement of BP	Low-Noise preamplifier, main amplifier	

		4 h1 4 d		
		and blood flow.	and driver amplifier, inkjet recorder,	
			thermal array recorder, photographic	
			recorder, magnetic tape recorder, X-Y	
			recorder, medical oscilloscope. pH, PO2,	
			PCO2, pHCO3, Electrophoresis,	
			colorimeter, spectro photometer, flame	
			photometer, auto analyzer.	
			Section C	
			Respiration, heart rate, temperature, pulse	
			blood pressure, cardiac output, O2, CO2	
			measurements. Measurement of blood	
			 pressure, blood flow, and heart sound,	
			cardiograph: Phonocardiography, vector	
			cardiograph, Echocardiography	
			pacemaker, defibrillators, Ventilator,	
			Computer patient monitoring system.	
			Recommended Books:	
			1. Cromwell L. (2007). Biomedical	
			Instrumentation and Measurement.	
			New Delhi: PHI Publication	
			2. Webster J.G.(1998). Medical	
			Instrumentation Application and	
			Design. New York: John Wiley and	
			 Sons	
			3. KhandpurR.S. (1997). Handbook of	
			Biomedical Instrumentation. New	
			Delhi: Tata McGraw-Hill Publication	
			4. Carr J. J. & Brown J. M. (1997).	
			Introduction to Biomedical Equipment	
			Technology. New York: John Wiley	
			and Sons	
26	Optical Network	After the completion of	Section A	Addition of
		course student will be able	Introduction to Optical Networks,	New Course as
		to:	Characteristics of Optical Fiber (Emphasis	Elective
		• Describe the	on Non Linear Characteristics) Timing &	
		important components	 Synchronization, Components: Couplers,	
		such as multiplexer,	Isolators & Circulators, Multiplexers &	
		filters.	Filters, Optical Amplifiers, Tunable	
		• Explain the	Lasers, Switches, Wavelength Converters,	
		- Explain the	Lasers, Switches, wavelength Converters,	

12	tin lawin a		Naturalis CONET/CDII Multi-1	
	tiplexing		Networks SONET/SDH, Multiplexing,	
	nique		SONET/ SDH Layers, Frame, Structure,	
	cribe the		Frame Structure, Physical Layer, Elements	
	ection technique		of a SONET/SDH Infrastructure	
	SONET/SDH and		Section B	
IP ne	etwork		ATM: Functions of ATM, Adaptation	
			Layers, Quality of Service, Flow Control,	
			Signaling and Routing, WDM Network	
			Elements, Optical Line Terminals, Optical	
			Line Amplifiers,	
			Optical Add/ Drop Multiplexers, Optical	
			Cross Connects, WDM Network Design,	
			Cost Trade-offs, Light path Topology	
			Design, and Routing and wavelength	
			assignment problems, Dimensioning	
			Wavelength Routing Networks,	
			Section C	
			Network Survivability Basic Concepts,	
			Protection in SONET/SDH, Protection in	
			IP networks, Optical Layer Protection,	
			Different Schemes, Interworking between	
			Layers	
			Access Networks, Network Architecture	
			Overview, Enhanced HFC, FTTC, Optical	
			Switching, OTDM, Synchronization,	
			Header Processing, Buffering, Burst	
			Switching.	
			Deployment Considerations	
			Recommended Books:	
			1. Ramaswami, Rajiv.,&Sivarajan,	
			Kumar. N.(2009). Optical Networks: A	
			Practical Perspective. San Francisco,	
			California: Morgan Kaufmann	
			Publisher.	
			2. Uyless, Black. (2009). Optical	
			Networks Third Generation Transport	
			Systems: New Delhi: Pearson	
			Publication.	
			3. Tanenbaum, Andrew. S. (2010).	

			Computer Networks. New Delhi: Pearson Publication. 4. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: 1. Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminar s/OptNets.pdf 2. Optical networks and Switching Systems by Prof.Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology,	
			Kanpur.	
27	Satellite	After the completion of	https://nptel.ac.in/syllabus/117104021	Addition of
	Communication	course student will be able to: • Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies.	 Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N.	New Course as Elective
		Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a	 Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and de-emphasis, S/N ratios for FM video transmission, digital transmission, digital modulation and demodulation, TDM. Multiple access: FDMA, TDMA, DAMA	

	1 CD) (4	
communications satellite	and CDMA.	
system.	Section C	
• Understand different	Error control for digital satellite links:	
Networks topologies and	error detection and correction, channel	
applications of	capacity, error control coding,	
networks, as well as the	convolutional codes, linear and cyclic	
comparison to	block codes. Propagation effects and their	
alternative	impact on satellite-earth links: attenuation	
communications	and depolarization, atmospheric	
systems.	absorption, rain, cloud and ice effects etc.	
	Introduction of various satellite systems:	
	VSAT, low earth orbit and non-	
	geostationary, direct broadcast satellite	
	television and radio, satellite navigation	
	and the global positioning systems.	
	Recommended Books:	
	1. Bostian, Charles., Pratt, Timothy.,	
	& Allnutt, Jeremy. (2006). Satellite	
	Communications. New Delhi: John	
	Wiley & Sons.	
	2. Roddy, Dennis. (2017). Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	3. Ha, Tri. T. (1990). Digital Satellite	
	Communications. New Delhi:	
	McGraw-Hill Publication	
	Suggested e-resources:	
	1. Satellite Communication Systems by	
	Prof.Kalyan Kumar Bandyopadhyay	
	Department of Electronics and	
	Electrical Communication Engineering	
	Indian Institute of Technology,	
	Kharagpur.	
	http://textofvideo.nptel.ac.in/11710513	
	1/lec1.pdf	
	2. Satellite Link Design by Dr. Marwah	
	Ahmed.	
	https://net425site.files.wordpress.com/	
	2017/02/net-425-d-feb-2016-lec-5.pdf	
	2017/02/fiet 123 d-160-2010-166-3.pdf	

28	Basics of	After the completion of	Section A	Addition of
	Nanoelectronics	course student will be able to:	The 'Top down' and 'Bottom up' approach, Nanotechnology potential,	New Course as Elective
		• Explain the	introductory quantum mechanics for	Elective
		fundamental science and	Nanoscience: size effect in smaller	
		quantum mechanics	 systems, quantum behavior of nanometric	
		behind nanoelectronics.	world, Band structure and density of states	
		Explain the basic	at Nanoscale: energy bands, density of	
		concepts behind the	states at low dimensional structure.	
		operation of nano scale	Semiconductor heterostructure quantum	
		MOSFET	wells, quantum wires, and quantum dots.	
		• describe the	Section B	
		various techniques and	MOS band structure, CMOS Scaling, The	
		approaches for the	nanoscale MOSFET, Finfets, Vertical	
		fabrication of nano-scale	MOSFETs, limits to scaling, Tunnel	
		devices	junction and application of tunneling:	
			 Tunneling through a potential barrier,	
			potential energy profiles of material	
			interfaces, Classical and semi-classical	
			transport, ballistic transport, carbon nanotubes, Single electron transistor,	
			Coulomb Blockade, Resonant Tunneling	
			diodes and transistors.	
			Section C	
			Buck minsterfullerence, Nanodiomond,	
			Molecular Machine, Nanobiometrics.	
			Fabrication technology: Top-down vs.	
			bottom-up technology. Lithographic	
			process: Lithography, Nanolithography,	
			split gate technology, self-assembly,	
			 limitation of lithographic process. Non-	
			lithographic techniques: Plasma arc	
			discharge, sputtering, evaporation,	
			chemical vapour deposition, pulsed laser	
			deposition, molecular beam epitaxy, sol-	
			gel technique, electro deposition and other	
			process.	
			 Recommended Books:	
			1. Hanson, G. W. (2008). Fundamentals	

			of Nanoelectronics. New Delhi: Pearson Publication. 2. Chattopadhyay, K. K.,& Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication. 3. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press. 4. Dragman, M., & Dragman, D. (2008). Nanoelectronics- Principles and Devices (2/e): Artech House Publishers 5. Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication 6. Minoli, Daniel. (2005). Nanotechnology Application to Telecommunication and Networking. Hoboken, New Jersey: Wiley Publication. 7. Davis John H. (1997). Physics of Low Dimension Semiconductor. New Delhi: Cambridge University Press. 8. Cosh, Carl.C. (1998). Nanostructure Materials Processing Property and Applications. Norwich, New York: Noyes Publications.	
29	Mobile Communication	After the completion of course student will be able to: • To understand the various generations of mobile communications and basics of wireless communication • To understand the concept of cellular communication • Can conduct field	Introduction to Wireless Communication System: Evolution of mobile radio communication, Mobile radiotelephony in U.S Mobile radio system around the world, second generation (2G) cellular network, evolution to 2 5G wireless network evolution for 2.5G TDMA standards, third generation (3G) wireless network. The Cellular concept- System design fundamentals, frequency reuse channel, assignment strategies. Hand off strategies Interference and system capacity,	Addition of New Course as Elective

experiments and	improving coverage and capacity in	
measurements and	cellular system.	
measurements		
	Section B	
	Propagation model and Spread Spectrum	
	Modulation Techniques: Longley rice	
	model, kumara model hata model pcs	
	extension to hata model, wolfish and	
	betony model, Pseudo Noise (PN)	
	 sequence,. Direct sequence spread	
	spectrum (DSSS), frequency hopped	
	spread spectrum (FHSS). Multiple Access	
	Techniques for Wireless Communication,	
	Introduction to multiple access. Frequency	
	division multiple access (FDMA) Time	
	division Multiple access (TDMA).	
	Section C	
	Spread spectrum multiple access. Packet	
	Radio. Global System for Mobile	
	 Communication, channel types, Example	
	of a GSM cell. Frame structure of GSM,	
	Data over low power wireless Re-cordless Network.	
	Recommended Books:	
	1. Rappaport, Theodre. S. (2014) Wireless	
	Communication. New Delhi: Pearson	
	Publication. 2. Pandya, Raj. (1999). <i>Mobile and</i>	
	Personal Communication System and	
	Services: New Delhi: PHI Publication.	
	3. Goddman, David.J. (1997). Wireless	
	 Personal Communication System:	
	Addition Wesley Publication.	
	4. Tesal, Joachim. (1997). GSM cellular	
	Radio: New Delhi: John Wiley	
	Publication	
	Suggested E-Resources:	
	1. Wireless Communications by	
	Prof.Dr.Ranjan Bose, Department of	
	Electrical Engineering, IIT Delhi.	

			https://nptel.ac.in/courses/117102062/	
30	Radar Navigation	After the completion of	Section A	Addition of
		course student will be able	RADAR SIGNAL MODELS: Amplitude	New Course as
		to:	models, distributed target forms of range	Elective
		• Understand the basic	equation, radar cross section, statistical	
		concept of Radar and	description of radar cross section, Swerling	
		applications of various	model, Clutter, signal to clutter ratio,	
		types.	temporal and spatial correlation of clutter,	
		• Understand the different	noise model and signal to noise ratio,	
		Radar Performance	frequency models, Doppler shift,	
		factors.	 simplifies approach to Doppler shift, stop	
		• Explain the operation of	and hop assumption, spatial model,	
		CW& FM Radar.	variation with angle, variation with range,	
			projections, multipath, spectral models.	
			RADAR WAVE FORMS: Waveform	
			matched filter of moving targets, ambiguity function, ambiguity function of	
			the simple matched pulse filter for the	
			pulse burst, pulse by pulse processing,	
			range ambiguity, Doppler response and	
			ambiguity function of the pulse burst.	
			Section B	
			DETECTION FUNDAMENTALS: Radar	
			detection as hypothesis testing, Neyman-	
			Pearson detection rule, likelihood ratio	
			test, threshold detection of radar signals,	
			non-coherent integration of nonfluctuating	
			targets, Albersheim and Shnidaman	
			equations, Binary integration.	
			 RADIO DIRECTION FINDING: loop	
			 direction finder, goniometer, errors in	
			direction finding, adcock and automatic	
			direction finders, commutated aerial	
			direction finder. RADIO RANGES:	
			LF/MF four course radio range, VOR,	
			ground equipment & receiver, VOR errors.	
			HYBERBOLIC SYSTEM OF	
			NAVIGATION: LORAN Decca & Omega	
			system.DME&TECAN.	

			_	,	
				Section C AIDS TO APPROACH AND LANDING: ILS, GCA& MLS DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar, frequency trackers, doppler range equation. SATALLITE NAVIGATION SYSTEM: transit system, NAVSTAR, GPS, basic principles of operation, signal structure of NAVSTAR broadcasts, data message, velocity determination, accuracy of GPS & differential navigation, NAVSTAR receiver.	
				Recommended Books: 1. Richards, Mark. A (2014). Fundamentals of Radar Signal Processing. New Delhi:TMH Publication. 2. Nagraja, N. S. (2009). Elements of Electronics Navigation: New Delhi:TMH Publication.	
				3. Peebles Jr. P. Z. (1998). Radar Principles. New Delhi: Wiley Publication. Suggested E-Resources: 1. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-	
31	Mechatronics	After successful completion of the course, student will be able to:		spring-2007 SECTION A Mechatronics and its scope: Basic Structure and Evolution	Addition of new elective.

Develop skills to	Introduction of Transducer & Sensor:	
monitor and control real	Displacement, Pressure, Flow, Level and	
	Temperature Measurements. Signal	
world industrial systems	conditioning: amplification, filtering	
Implement projects for	PC based Control: Smart Sensor, Data	
industrial and home		
automations	Acquisition System, PLC, SCADA, DCS	
Analyze and create own	and HMI System.	
innovative filters and	SECTION B	
signal conditioning	Pneumatic and Hydraulic actuation	
applications	systems: Directional control valves,	
Perform computer based	Pressure control valves and Process control	
controlling of industries	valves and cylinders.	
using PLC, SCADA and	Mechanical actuation system- Kinematic	
HMI	chains, cams, gear-trains, Ratchet & Pawl,	
	dampers, Bearings.	
	Electrical actuation system: Mechanical	
	switches- solenoid operated solid state	
	switches, DC, AC & stepper motors.	
	Electrical Drives: Conventional and	
	Modern electrical drives, Classifications	
	and Applications	
	Closed loop Controllers: Performance	
	Specifications, Delayed First and Second	
	order system, PID Controller, ZN Tuning.	
	SECTION C	
	Case Studies of Mechatronics Systems:	
	Industrial Robot, Automobile Engine	
	Control, Vehicle Suspension Control,	
	MEMS, CNC Machine, Gyro system, 3-D	
	Printer.	
	Recommended Books:	
	1. Isermann, Rolf (2005). Mechatronics	
	Systems. Springer Publication	
	2. Bolton, W. (2003). Mechatronics:	
	electronic control systems in	
	mechanical and electrical engineering.	
	Pearson Education.	
	3. Sawhney A.K. (2015). A Course in	
	Electrical and Electronic	

				Measurements and Instrumentation. Dhanpat Rai & Co Publication 4. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. Tata McGraw Hill Publication	
32	Fiber Optics and Communication	After the completion of course student will be able to: • Explain the light propagation through optical fibers. • Explain the various light sources and optical detectors.	Section A Fiber optics: Introduction, optical fibers - geometrical Optics description, wave propagation, fiber modes, step index, graded index single and multimode fibers, dispersion, limitation on bit rate, fiber bandwidth, fiber loss, fiber manufacturing: design issue, fabrication methods, cables and connectors, fiber splicing and fiber couplers.		Move this course from 2 nd semester to list of Elective No change in course contents.
		Design fiber optic transmitter and receiver system.	Section B Optical Sources and detectors: Light- Emitting diodes: LED characteristics, modulation response, LED structures. Semiconductor Lasers: structures, Laser characteristics, single longitude mode operation, DFB and VCSEL laser, Receivers: photo detector design: P-N, PIN, Schottky barrier and Avalanche photodiode, Phototransistor, receiver noise: noise mechanisms in PIN and APD receivers, Receiver structures.		
			Section C Optical Fiber Systems: optical transmitter circuit: source limitations, LED and Laser drive circuits, Optical receiver circuit, system design considerations, Digital systems, Digital optical receiver, BER, Optical power budgeting, rise time budget, line coding, analog systems: Direct intensity modulation, subcarrier intensity modulation, coherent systems, computer, sensor and military applications.		

			Text Books:	Recommended Books:	
			1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication: PHI, 1995. 3. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. 4. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991.	 Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw Hill Publication. 	
33	Analytical Instrumentation	After the completion of course student will be able	·	Section A	Addition of New Course as
	nisti umentation	Explain majorly pH conductivity & dissolved component analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement. Evaluate the		PH conductivity & dissolved component analyzer Sampling systems – ion selective electrodes – conductivity meters – pH meters - dissolved oxygen analyzer – sodium analyzer – silica analyzer – moisture measurement. GAS ANALYSER Oxygen analyzer – CO monitor, CO2, O2, dust and smoke measurement, thermal conductivity type—thermal analyzer—industrial analyzers.	Elective
		performance of Spectrophotometers, FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometry, and Mass		Spectrophotometers: Spectral methods of analysis – Beer's law UV – visible spectrophotometers – single beam and double beam instruments – source and detectors – IR spectrophotometers – sources and detectors – FTIR spectrometers – atomic absorption spectrophotometer – flame emission	

Spectrophotometers with	spectrophotometers - sources of flame	
their applications.	photometry – applications.	
	Section C	
	Nuclear magnetic resolance and radiation techniques	
	NMR – basic principle – NMR spectrometers – applications – introduction to mass spectrophotometers – nuclear	
	radiation detectors – GM counter – proportional counter – solid state detectors, X-ray spectrometry: Instrumentation for X-ray spectrometry, X-ray diffractometer.	
	Recommended Books:	
	1. Willard., Merritt., Dean., & Settle. (2004). Instrumental Methods of Analysis. New Delhi: CBS Publishers & Distributors. 2. Ewing, Galen.W. (1985). Instrumental	
	Medsurement and Analysis. Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. 3. Liptak, B.G. (1995). Process Measurement and Analysis.	
	Philadelphia: Chilton Book Company. 4. Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical	
	Chemistry. New Delhi: PHI Publication.	
	5. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd.	
	6. Skoog., Holler.,&Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning	
	Publication. Suggested e-resources:	
	1. Modern Instrumental Methods of	
	Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering,	
	Indian Institute of Science, Bangalore.	

				https://nptel.ac.in/courses/103108100/	
34	Audio and Video	After the completion of		Section A	Addition of
34	Systems	course student will be able			New Course as
	Systems	to:	se student will be able	Audio Systems: Types of microphones	Elective
		• Understand the		and speakers, Monophonic, stereophonic	Dicctive
		fundamental concepts of		and quadraphonic audio systems.	
		television transmitter,		Disc and Magnetic Recording and	
		receiver systems and the		Reproduction : Monophonic and stereophonic disc recording and	
		transmission of video		reproducing systems, Magnetic recording,	
		signals and importance of television standards. • Understand different colour television		playback, Biasing & equalization,	
				Recording medium, Magnetic heads-replay	
				& eraser heads, Audio cassettes, Tape	
				speed, Maximum usable frequency, Tape	
		systems used worldwide		transport mechanism, Distortion & noise	
		and its compatibility.		aspects, Hi-Fi stereo system.	
		• Principles of recording		Section B	
		and reproduction of disc		Video Cassette Recorders: Video	
		and video cassete recorders.		recording requirements, Video tape	
		recorders.		formats. Modulation-up conversion and	
				down conversion of video signal, Servo	
				systems, Functional Block diagram of	
				VCR: video recording & playback.	
				Compact Disc Recording and	
				Reproduction: advantages of Compact	
				disc, & its Specifications, CD player,	
				optical recording, CD technology &	
				manufacturing, CDROM, CD video.	
				Section C	
				Video Cameras: Image conversion	
				principle, Plumbicon, Sidicon camera	
				tubes, three tubes colored camera, Block	
				diagram of color camera tube.	
				TV Engineering: Scanning process,	
				Interlaced scanning, Composite video signals, Principle of black & white TV,	
				color TV, Primary colours, Chrominance	
				& luminance signals.	
				Recommended Books:	
				Recommended Dooks;	

				 Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc-Graw Hill Suggested e-resources: 	
				1. Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22	
35	Digital Signal Processing	After the completion of course student will be able to: • Students will be familiar with the most important methods in DSP. • Students will be familiar with design and functioning of digital filter design • Student will be able to transform-domain processing.	Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series-Exponential Fourier Coefficients. Fourier Integral, Energy Spectral Density, Fourier Transforms in		Move this course from 2 nd semester to list of Elective No change in course contents.

the Limit, Fourier Transform Theorems and		
Pairs, System Analysis with Fourier		
Transform, Lap lace Transform		
Theorems, Network Analysis using the Lap		
lace Transform.		
Section B		
Discrete Time Signals and Systems -		
Review of Sampled Data Systems,		
Time Domain Representations of		
Discrete Time Signals, Frequency Domain		
Representation of Discrete Time Signals,		
Discrete Time Signals obtained by sampling,		
Discrete Fourier Transform. Z-Transform -		
Definition and Examples, Inverse Z-		
Transform, Properties of the Z-Transform,		
Introduction to Realization of		
Digital Systems - Block Diagrams and Signal		
Flow Graphs. Introduction to Realization of		
an IIR and FIR systems, Discrete Fourier		
Transforms (DFT) and Fast Fourier		
Transform (FFT).		
Section C		
Design of Digital Filters:		
Introduction to Filters, A		
comparison of IIR and FIR Digital Filters.		
Design of IIR Digital Filters-Impulse		
Invariant Transformation, Bilinear		
Transformation, Design of Digital Butter		
worth and Chebyshev Filters. Design of FIR		
Digital Filters - Windowing and		
Rectangular Window, Filter Designs using		
Windows, Frequency Sampling Technique.		
DSP tools and DSP techniques in various		
applications.		
Text Books:	Recommended Books:	
1. Johnson Johnny R.: Introduction to	1. Johnson, Johnny. R. (1998).	
Signal Processin: Prentice-Hall of India,	Introduction to Signal Processing.	
1998.	New Delhi: phi Publication.	
2. Oppenheim V. Alan: Signal &	2. Oppenheim, V. Alan. (1995). Signal &	
Systems: Prentice-Hall of India, 1995.	Systems. New Delhi: PHI Publication.	

			3. ProakisG.John: Digital Signal Processing: Prentice-Hall of India, 3rd edition, 2002.	3. Proakis, G.John. (2002). Digital Signal Processing. New Delhi: PHI Publication. Suggested E-resource: 1. Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/	
36	Geoinformatics	After the completion of course student will be able to: • Describe spatial database, Co-ordinate and projection system • Analyse vector and raster based analysis in Geographical Information Sciences • Describe different types of satellite system and digital image processing		Section A Geographical Information System: Definition, Components of GIS, Hardware and software requirements for GIS, Coordinate system and projections, Database structure and formats, Spatial data models - raster and vector. Data inputting, Data base design - editing and topology creation. Linkage between spatial and Non spatial data, Query (Attribute/Spatial), Vector based analysis. Raster based analysis. Errors, Digital Elevation Model, Network analysis, Open source and WebGIS.	Addition of New Course as Elective
				Section B Remote Sensing: Definition - components of remote sensing - energy sensor, interacting body; Type - active and passive remote sensing. Satellite System - meteorological, communication and remote sensing. Platforms - aerial and space, synoptivity and repeativity. Electromagnetic Radiation (EMR) - EMR spectrum- visible, infrared [IR) middle IR, thermal IR and microwave. EMR interaction with earth surface material, radiance, irradiance, irradiance, irrident, reflected, absorbed and transmitted energy, spectral	

	response pattern - spectral signature curves
	(water, soil and vegetation].
	Digital Image Processing: Digital Image,
	Satellite Image - characteristics and
	formats. Resolution - spatial, spectral,
	radiometric and temporal; Introduction to
	rectification, enhancement; Classification -
	Unsupervised and Supervised
	classification.
	Section C
	Global Positioning System: Global
	Navigation Satellite System (GNSS), GPS,
	GLONASS, GALILEO, Segments - space,
	control, user, GPS Satellite signals,
	sources of errors and corrections.
	Applications of Remote Sensing and GIS:
	Applications of GIS and Remote Sensing
	in resource management (forestry,
	agriculture, urban telecommunication,
	environment).
	Recommended Books:
	1. Chor, Pang. Lo.,&Albert, K. W. Yeung
	(2006). Concepts and Techniques-of
	Geographic Information Systems. New
	Delhi: PHI Publication.
	2. Heywood, D.I., Cornelius, S. & Carver,
	S. (2009). An Introduction to
	Geographical Information Systems.
	New Delhi: Pearson Publication.
	3. Joseph, G. (2005). Fundamentals of
	remote sensing. Jaipur, Rajasthan:
	Universities Press.
	4. Jensen, John. R. (2015). Introductory
	Digital Image Processing: A Remote
	Sensing Perspective. New Delhi:
	Pearson Publication.
	5. Sabins, Floyd F. (2007). Remote
	Sensing: Principles and Interpretation.
	sensing: Frincipies and Interpretation.

			Long Grove, Illinois: Waveland Press	
			Suggested e-resources:	
			Geoinformatics by University of Twente.	
			https://www.itc.nl/ilwis/applications- guide/	
			2. Geographical Information System by	
			Dr A. K. Gosain, Indian Institute of	
			Technology, Delhi.	
			https://nptel.ac.in/courses/105102015/1	
37	Power Electronics	After the completion of	Section A	Addition of
		course student will be able	Need of power electronics, Introduction to	New Course as
		to:	power electronics devices (static and	Elective
		• To explain various	dynamic characteristics) power diodes,	
		power semiconductor	power transistor, power MOSFETS, IGBT,	
		devices like Thyristor,	MCT, GTOs, Triac. Thyristor SCR:	
		GTO, MOSFET and	 Operational characteristics, Turn ON	
		IGBT	methods, switching characteristics,	
		• Analyze the various	thyristor protection, over voltage	
		rectifiers used in power	protection, over current protection, gate	
		circuits and DC to DC	protection, snubber circuit Firing circuits	
		Converters	for Thyristors, heating, series and parallel	
		• Explain the inverter	combination of Thyristors.	
		operation and how	Section B	
		harmonics are reduced	Commutation Techniques: Load	
		and explain the basic	commutation, resonant- pulse	
		working principle of	commutation, complementary	
		cyclo-converters	commutation, impulse commutation, line	
			commutation, Phase controlled rectifier:	
			 Principal of phase control, single and three	
			phase converters. Effect of source	
			impedance on the performance of	
			converters, dual converter (ideal and	
			practical) DC choppers: Principle, control	
			strategies, step-up and step-down	
			choppers.	
			Section C	
			 Inverters: Single-phase voltage source	
			inverters 180 and 120 mode operation;	
			Fourier analysis of single-phase inverter	

			output voltage. Pulse width modulated inverters. Reduction of harmonics in the	
			inverter output, single-phase current source	
			inverters with ideal switch. Cyclo-	
			converters: Step-up and step-down cyclo-	
			converter, Single phase to single-phase	
			cyclo-converters three-phase half wave	
			cyclo-converters.	
			Recommended Books:	
			1. Rashid, Mohammad. H. (2017). Power	
			Electronics Circuits, Devices and	
			Applications: New Delhi: PHI	
			Publication.	
			2. Bimbhra, P.S. (2012). Power	
			Electronics: New Delhi: Khanna	
			Publication. 3. Moorthy, Rama, (1991). An	
			3. Moorthy, Rama, (1991). An Introduction ToThyristors and Their	
			Application: New Delhi: Affiliated	
			 East-West Press.	
			 Suggested E-Resources:	
			1. Power Electronics by Prof.B.G.	
			Fernandes, Department of Electrical	
			Engineering, Indian Institute of	
			Technology, Bombay.	
			https://nptel.ac.in/courses/108101038/	
			2. Power Electronics by Prof. D. Prasad,	
			Dr. D. Kastha, Prof.Sabyasachi	
			Sengupta, Prof. N. K. De, Dept of	
			Electrical Engineering, IIT Kharagpur.	
			https://nptel.ac.in/courses/108105066/	
38	Robotics and	After completion of this	SECTION A	Addition of
	Automation	course, students will be	BASIC CONCEPTS- Automation and	New Course as
		able to:	Robotics - An over view of Robotics -	Elective
		Develop skills of recting industrial and	present and future applications -	
		creating industrial and mobile robot projects	 classification by coordinate system and	
		Implement robots like	control system, Dynamic stabilization of	
		KUKA, PUMA in real	Robotics.	
		industrial world	POWER SOURCES AND SENSORS-	
		maaana wona	Hydraulic, Pneumatic and electric drivers	

Create innovative robot designs using mathematical concepts of kinematics Develop autonomous mobile robots in surveillance, security, home and office services	 Determination HP of motor and gearing ratio, variable speed arrangements, Path Determination - Machinery Vision - Ranging - Laser - Acoustic, Magnetic Fiber Optic and Tactile Sensor. SECTION B MANIPULATORS- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators. ACTUATORS AND GRIPPERS-Pneumatic, Hydraulic Actuators, Stepper Motor Control Circuits, End Effecter, Various types of Grippers, Design consideration. Differential transformation and manipulators, Jacobians - problems. Dynamics: Lagrange - Euler and Newton - Euler formations - Problems.	
	 SECTION C KINEMATICS- Forward and Inverse Kinematic Problems, Solutions of Inverse Kinematic problems, Multiple Solution, Jacobian Work Envelop – Hill Climbing Techniques. PATH PLANNING- Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages. CASE STUDY- Multiple Robots – Machine Interface – Robots in Manufacturing and Non-Manufacturing applications – Robot Cell Design Selection of a Robot.	
	 Recommended Books: 1. Groover, M. P., Weiss, M., Nagel, R. N., & Odrey, N. G. (2017). Industrial Robotics: Technology. programming.	

and Applications (2/e). McGraw-Hill Education Publication 2. Niku, S. (2010). Introduction to robotics. John Wiley & Sons. 3. Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis.	
 Niku, S. (2010). Introduction to robotics. John Wiley & Sons. Fu, K. S., Gonzalez, R., & Lee, C. G. 	
robotics. John Wiley & Sons. 3. Fu, K. S., Gonzalez, R., & Lee, C. G.	
3. Fu, K. S., Gonzalez, R., & Lee, C. G.	
(1987), Robotics: Control Sensing, Vis.	
Tata McGraw-Hill Education.	
4. Mittal, R. K., & Nagrath, I. J. (2003).	
Robotics and control. Tata McGraw-	
Hill.	
5. Craig, J. J. (2009). Introduction to	
robotics: mechanics and control, 3/E.	
Pearson Education India.	
6. Spong, M. W., & Vidyasagar, M.	
(2008). Robot dynamics and control.	
John Wiley & Sons.	
7. Siciliano, B., Sciavicco, L., Villani, L.,	
& Oriolo, G. (2010). Robotics:	
modelling, planning and control.	
Springer Science & Business Media.	
39 Antenna Analysis After the completion of Section A Addition	of
course student will be able Introduction to antenna, Radiation New Cour	e as
to: Mechanism, Current Distribution on a Thin Electiv	
Recall electromagnetic Wire Antenna	
plane waves. Apply Fundamental parameters of antenna:	
principles of Radiation pattern, Radiation power	
electromagnetic to density, Radiation intensity, Beamwidth,	
explain antenna Directivity, Antenna efficiency, Gain,	
radiation. Explain Beam efficiency, Bandwidth, Polarization,	
various antenna Input impedance, Antenna radiation	
parameters. efficiency, Antenna vector effective	
• Explain antenna as a length, Maximum directivity and	
point source. Design Maximum effective area, Friss	
antenna patterns for transmission equation and radar range	
different cases.	
Explain dipole antennas. Section B	
Establish mathematical Radiation Integrals and Auxiliary Potential	
equations for various Functions: The Vector Potential A for an	
parameters of thin linear Electric Current Source J, The Vector	
Potential F for a Magnetic Current Source	

	M. Diestrie and Manustic Dields for
antenna.	M, Electric and Magnetic Fields for
	Electric (J) and Magnetic (M) Current
	Sources, Solution of the Inhomogeneous
	Vector Potential Wave Equation, Far-field
	radiation, Duality theorem, Reciprocity
	and Reaction theorem, Image Theory
	Linear wire antennas: Infinitesimal dipole,
	Small dipole, Region separation, Finite
	length dipole, Half-wave dipole
	Loop Antennas: Small circular loop,
	Square loop
	Section C
	Introduction to Arrays, two-element array,
	N-element linear array: uniform amplitude
	and spacing, directivity,N-element linear
	array: uniform spacing, non-uniform
	amplitude
	Traveling wave antennas: Long wire
	 antenna, V-antenna, Rhombic antenna
	Broadband antennas: Helical antenna,
	Folded dipole, Yagi-uda array of linear
	elements
	Log-periodic antenna, Introduction to Horn
	antenna: E-plane sectoral horn, H-plane
	sectoral horn, Pyramidal horn
	Recommended Books:
	1. Balanis, C. A. (2005). Antenna Theory
	Analysis and Design. New Delhi: John
	Wiley & Sons.
	2. Eliott, Robert S. (2003). Antenna
	Theory and Design. New Delhi: Wiley-
	IEEE Press.
	 3. Kraus, J. D., &Marhefka, R. H. (2001).
	 Antennas for All Applications,
	Singapore: McGraw-Hill Publication.
	4. Harrington, R. F. (2001). <i>Time-</i>
	Harmonic Electromagnetic Fields.
	New Delhi: Wiley-IEEE Press.
	Suggested E- resources:
	1. Advanced Antenna Theory by Dr

				Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/ Analysis and Design Principles of Microwave Antennas by Prof.Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/ Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/	
40	Communication Networks	After the completion of course student will be able to: • Recognize and describe about the working of Computer Networks. • Illustrate reference models with layers, protocols and interfaces. • Summarize functionalities of different Layers.	Section A Introduction to communication systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure-through wire-copper cable-STP, UTP, coaxial cable, optical fiber. Wireless media-wireless LAN, organization and standards. Wireless devices and topologies. Wireless communication, wireless security.		Move this course from 3 rd semester to list of Elective No change in course contents.
			Section B Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway. Switching Networks-circuit switching, Packet Switching. Networks-Circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting. Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of		

Internetworking. Ethernet (CSMA/CD)	
Token Ring and FDDI, Fast Ethernet.	
Section C	
Layer protocol Structure. Data link control –	
Flow Control, Error Detection, Error Control.	
HDLC. Network layer-ARP, RARP, ICMP.	
Effect of Congestion and Congestion Control	
in Network-(Back pressure, choke packet,	
Implicit Congestion Signaling, Explicit	
Congestion Signaling. Traffic Management-	
Transport layer Protocols-connection oriented	
and connectionless services, TCP, TCP	
Congestion Control and Flow Control. UDP.	
Application Layer Protocols – HTTP, FTP,	
SMTP, SNMP, Telnet. Introduction to ISDN.	
Narrow Band and Broad Band. Introduction	
to WAN Technologies. ATM and Frame	
relay.	
Text Books:	Recommended Books:
1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). Electromagnetic
& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:
2. A.S. Tannanbaum: Computer	
Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer
3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson
Communication: PHI New Delhi, 5th	
edition 1997.	4. Stailling, W. (1997). Data & Computer
4. J. Martin: Computer Networks and	Communication. New Delhi: PHI
Distributed Processing: PHI, 1998.	Publication.
	5. Martin, J. (1998). Computer Networks
	and Distributed Processing Software,
	Techniques, Architecture. New Delhi:
	PHI Publication.
	Suggested E-Resources:
	1. Computer Networks and Internet
	Protocol by Prof.SoumyaKanti Ghosh
	Department of Computer Science and
	Engineering Indian Institute of
	Technology, Kharagpur.
	https://nptel.ac.in/courses/106105183/
	2. Computer Networks by Prof. Sujoy
I .	z. compact fictions of fior. Sujoj

			Ghosh, Department of Computer Science and Technology, IIT KG. https://nptel.ac.in/courses/106105081/ 3. Computer Networks by Prof. Hema A Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/22 78/data-communication	
41	Professional Ethics		The course is intended to provide participants with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: 1. Professional Ethics by Rochester Institute of Technology, http://www.openculture.com/professional-ethics-a-free-online-course. 2. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. Leigh Hafrey, MIT, USA, https://ocw.mit.edu/courses/sloan-	Addition of New Course as Reading Elective

				school-of-management/15-270-ethical- practice-leading-through- professionalism-social-responsibility- and-system-design-spring-2016,	
42	IoT Sensors and Devices	=		This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment — from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: 1. IoT Sensors and Devices by Curtin University. https://www.edx.org/course/sensors-and-devices-in-the-iot. 2. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-of-things-sensing-actuation.	Addition of New Course as Reading Elective
43	Electromagnetic Compatibility	=	=	This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist	Addition of New Course as Reading Elective

			harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden	
44	Electric Vehicles		https://onlinecourses.nptel.ac.in/noc19 ee17/preview Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be	Addition of New Course as Reading Elective
		-	able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure Suggested e-resources: 1. Electric Vehicles Part 1 by IIT Delhi, https://onlinecourses.nptel.ac.in/noc19	

				ee18/preview. 2. Electric Cars: Introduction by Delft University of Technology (TU Delft). https://www.edx.org/course/electric-cars-introduction-0.	
45	Electronic Packaging	•	■	This course is designed to provide a basic knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18 me54.	Addition of New Course as Reading Elective
46	Multimedia Compression and Communication	-	_	The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication.	Addition of New Course as Reading Elective

			The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur. https://nptel.ac.in/syllabus/117105083/.	
47	Telecommunication switching systems and networks	=	The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks. Suggested e-resources: 1. Computer Networks by Department of CSE, IIT Kharagpur https://nptel.ac.in/courses/Webcoursec ontents/IIT%20Kharagpur/Communication%20network/New, index1.html. 2. Data Communication by IIT Kharagpur, https://nptel.ac.in/courses/106105082/19.	Addition of New Course as Reading Elective
48	ELE 205, Semiconductor Devices and Circuits	After completion of this course, students will be able to: • Explain the energy bands, temperature effects, carrier transport of semiconductor devices	Section A P-N junction: thermal equilibrium condition, under forward and reverse bias, space charge region, junction capacitance, p-n junction current, small signal model, diode current equation, junction breakdown, charge storage and transient behavior, metal semiconductor junction:	

- Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences
- Analyze the various feedback circuits and design power amplifiers.

Schottky Barriers and Ohmic Contacts, heterojuntion: energy band diagrams

Section B

Bipolar Junction Transistor: the transistor action, minority carrier distribution, low frequency common-base current gain, MOSFET: The MOS diode, Energy band diagrams, MOSFET fundamentals, MOS Transistor current, Threshold Voltage. FET biasing: fixed-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.

Section C

Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.

Recommended Books:

- S. Simon, M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication
- Millman. J, Halkias. C, Parikh. C. (2017). *Integrated Electronics. (2nd ed)*. New Delhi: TMH Publications.
- 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi: PHI Publications.

4. Smith. S.(2008). Microelectronics Circuits. (5th ed). New Delhi: Oxford press.
Suggested E-Resources:
1. Semiconductor Devices and Circuits by Prof.SanjivSambandan, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore. https://nptel.ac.in/courses/108108112/ 2. Analog Electronic Circuits byProf. S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology Delhi. https://nptel.ac.in/courses/108102095/

Name of Programme: Master of Technology (VLSI Design)

Programme Educational Objectives: The M.Tech. (VLSI Design) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. State-of-the-art VLSI technology requires research in physical devices as well as novel design and development of integrated circuits. The M. Tech. (VLSI Design) programme at Department of Electronics aims to impart knowledge of VLSI system design covering algorithms, hardware description languages, system architectures, physical designs, verification techniques, simulation & synthesis, low power design techniques and etc. The programme offersfoundational subjects like semiconductor devices, digital, analog and RFIC design, embedded system, electronic system packaging etc. Many courses have prominent lab component, offering hands-on training and exercises on numerous practical aspects of crucial importance. The students also get an opportunity to participate in projects related to design and optimization of VLSI circuits and systems.

The main objectives of M.Tech. (VLSI Design) programme are:

- To provide in-depth knowledge of device fundamentals and modern circuits design to gain an ability to analyze, design, and implement VLSI Systems circuits
 and systems.
- To enrich students to excel in research leading to cutting edge technology in VLSI design to create competent, innovative and productive professionals.
- To train them to understand the various recent issues and find the solutions with good scientific and engineering knowledge, so as to comprehend, analyze, design, and create novel products and develop the capability to prepare the scientist report in lucid and articulate form.
- To provide students with an academic environment to develop scientific awareness, leadership, ethical conduct, positive attitude, societal responsibilities and the lifelong learning needed for a successful professional career.
- To develop entrepreneurial skills in starting industries using VLSI technology.
- Practice the ethics of their profession and inculcate a lifelong learning culture.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- PO1. Scholarship of Knowledge: Acquire in-depth knowledge of VLSI technology in wider and global perspective, with an ability to discriminate, evaluate, analyze, synthesize and integrate for enhancement of knowledge. Graduates will be able to apply the knowledge of computing, mathematics, science and electronic engineering for designing VLSI circuits.
- PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using basic principles of mathematics, science and engineering.
- PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Graduates will have an ability to design and conduct experiments, perform analysis and interpret the problems of VLSI design.

Annexure IV (M.Tech. VLSI Design)

- PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern VLSI tools including modeling to complex engineering activities with an understanding of the limitations.
- PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. Engineering Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. Leadership Skills: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Tech. (VLSI Design) Semester - I (December, 2019)

		Existing Scheme					Proposed Scheme						
Course	Code	Course Name	L	T	P	C	Course	Code	Course Name	L	T	P	C
VLSI	507	Digital CMOS IC design	4	0	0	4	VLSI	507	Digital CMOS IC design	4	0	0	4
VLSI	507L	Digital CMOS IC design Lab	0	0	2	1	VLSI	507L	Digital CMOS IC design Lab	0	0	2	1
VLSI	512	HDL Based System Design	4	0	0	4	VLSI	512	HDL Based System Design	4	0	0	4
VLSI	512L	HDL Based System Design Lab	0	0	6	3	VLSI	512L	HDL Based System Design Lab	0	0	6	3
VLSI	516	IC Fabrication Technology	4	0	0	4	VLSI	516	IC Fabrication Technology	4	0	0	4
VLSI	516L	IC Fabrication Technology Lab	0	0	2	1	VLSI	516L	IC Fabrication Technology Lab	0	0	2	1
VLSI	521P	Minor Project (Part - I)	0	0	2	1	VLSI	521P	Minor Project (Part - I)	0	0	2	1
VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4	VLSI	525	Solid States Device Modeling and Simulation	4	0	0	4
		Elective-I	4	0	0	4			Discipline Elective	4	0	0	4
	Semester wise total				12	26			Semester wise total	20	0	12	26

M.Tech. (VLSI Design) Semester - II (April/May, 2020)

		Existing Scheme					Proposed Scheme						
Course	Code	Course Name	L	T	P	C	Course	Code	Course Name	L	T	P	С
VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4	VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4
VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2	VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2
VLSI	504	ASIC Design	4	0	0	4	VLSI	504	ASIC Design	4	0	0	4
VLSI	505	CAD for IC Design	4	0	0	4	VLSI	505	CAD for IC Design	4	0	0	4
VLSI	505L	CAD for IC Design Lab	0	0	4	2	VLSI	505L	CAD for IC Design Lab	0	0	4	2
VLSI	522P	Minor Project (Part - II)	0	0	4	2	VLSI	522P	Minor Project (Part - II)	0	0	4	2
VLSI	524	RF IC Design	4	0	0	4	VLSI	524	RF IC Design	4	0	0	4
		Elective - II	4	0	0	4			Open Elective	4	0	0	4
		Semester wise total	20	0	12	26			Semester wise total	20	0	12	26

List of Discipline Electives:

Course	Code	Course Name	L	T	P	C
CS	429	Pattern Recognition and Image Processing	4	0	0	4
CS	431	Real Time Systems	4	0	0	4
ELE	502	Discrete Time Signal Processing	4	0	0	4
VLSI	501	Advanced Digital Signal Processing	4	0	0	4
VLSI	502	Advanced Digital System Design	4	0	0	4
VLSI	506	Design of Semiconductor Memory	4	0	0	4
VLSI	VLSI 510 Embedded System Design		4	0	0	4
VLSI	VLSI 511 Fault Tolerance in VLSI		4	0	0	4
VLSI	513	High Level System Design and Modeling	4	0	0	4
VLSI	514	High Power Semiconductor Devices	4	0	0	4
VLSI	515	High Speed VLSI Design	4	0	0	4
VLSI	517	Integrated Electronic System Design	4	0	0	4
VLSI	518	Introduction to MEMS	4	0	0	4
VLSI	519	Low Power VLSI Design	4	0	0	4
VLSI	520	Nanoelectronics	4	0	0	4
VLSI	523	Representation and Analysis of Random Signals	4	0	0	4
VLSI	526	Speech Signal Processing	4	0	0	4
		Photonics Integrated Circuits	4	0	0	4

M.Tech. (VLSI Design) Semester - III (December, 2020)

		Existing Scheme		Proposed Scheme									
Course	Code	Course Name	L	T	P	C	Course	Code	Course Name	L	T	P	C
		Reading Elective - I	0	0	4	2			Reading Elective - I	0	0	0	2
VLSI	602P	Project (Part - I)	0	0	48	24	VLSI	602P	Project (Part - I)	0	0	48	24
		Semester wise Total	0	0	52	26			Semester wise Total	0	0	48	26

M.Tech. (VLSI Design) Semester - IV (April/May, 2021)

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
	Reading Elective - II	0	0	4	2		Reading Elective - II	0	0	0	2
VLSI 603P	Project (Part - II)	0	0	48	24	VLSI 603P	Project (Part - II)	0	0	48	24
Semester wise total			0	52	26		Semester wise total	0	0	48	26

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, & II with prior permission of respective heads, time table permitting.

List of Reading Electives:

S. No.	Course Code	Reading Elective
1.	VLSI 601R	High Level Synthesis
2.		Advanced Electronics Packaging
3.		Digital Image Processing
4.	VLSI 604R	VLSI Testing and Design for Testability
5.		Compound Semiconductor Technology
6.		Organic Electronic Devices

^{*} L - Lecture hrs/week; T - Tutorial hrs/week; P - Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C - Credit Points of the Course

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
S. No. 1.	Course List VLSI 507, Digital CMOS IC Design	After completion of this course, students will be able to: • Gain in-depth understanding of designing and analysis of CMOS inverters • Explain the fabrication process and layout design of CMOS digital IC	Text Books: 1. N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993. 2. Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS	Recommended Books: 1. Weste, Neil. H. E.,& Eshraghian, K. (1993). Principles of CMOS VLSI Design.Boston, New York: Addison Wesley Publication. 2. Weste, Neil. H. E., & Eshraghian, K. (1998). Principles of CMOS VLSI	Remarks No Change in course contents.
		To describe the operation of semiconductor memories and power circuits.	VLSI Design", 2nd Edition, Addision Wesley,1998. 3. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1999 4. Sung-Mo Kang, Yusuf Leblebici,, "CMOS Digital Integrated Circuits" - Analysis and design, Tata McGraw-Hill - third edition. 5. Douglas a. Pucknell and K.Eshragian., "Basic VLSI Design" 3rd Edition. PHI, 2000.	Boyce, David. E. (1999). CMOS Circuit Design, Layout and Simulation.New Delhi: PHI Publication.	
				Suggested E-resources:	
				Computation Structures - Part 1: Digital Circuits by Chris Terman https://www.edx.org/course/computati on-structures-part-1-digital-mitx-6- 004-1x-0 CMOS Digital VLSI Design by Prof. S. Dasgupta https://onlinecourses.nptel.ac.in/noc19 _ee25/preview	

2.	VLSI 507L, Digital CMOS IC Design Lab	After completion of this laboratory course, students will be able to: • Understand of Cadence circuit design tool • Understand procedure to analyse DC and Transient behaviour of circuits • Understand procedure to analyse effects of device dimension variation on circuit performance			Learning Outcomes added. No change in Experiment List
3.	VLSI 512, HDL Based System	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Design	Analysis and Design of Synchronous and Asynchronous sequential machines Draw a FSM chart for digital designs and describe it using HDL. Detect and diagnosis different errors in digital circuit descriptions. Design the digital systems through VHDL and Verilog HDL.	 Text and Reference Books: Z. Navabi, VHDL: Analysis and Modeling of Digital Systems, McGraw Hill. J. Bhaskar, A VHDL Primer, Prentice Hall. R. Lipsett, C. Schaefer and C. Ussery, VHDL: Hardware Description and Design, Kluwer. J. Pick, VHDL: Techniques, Experiments and Coveats, McGraw Hill. D. E. Ott and J. J. Wilderotter, Designer's Guide to VHDL Synthesis, Kluwer. S. Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Prentice Hall NJ, USA), 1996. J. Bhaskar, "Verilog HDL Synthesis A Practical Primer", Star Galaxy 	 Recommended Books: Navabi, Z. (1997) VHDL: Analysis and Modelling of Digital Systems. New Delhi: McGraw Hill Publication. Bhaskar, J. (2015). A VHDL Primer. New Delhi: Pearson Publication. Lipsett, R., Schaefer, C.,&Ussery, C. (1993) VHDL Hardware Description and Design. Menlo Park, California: Kluwer Academic Publishers. Pick, J. (1996) VHDL: Techniques, Experiments and Caveats. New Delhi: McGraw Hill Publication. Ott, Douglas E., & Wilderotter, J. (1994). A Designer's Guide to VHDL Synthesis. Berlin: Springer. Palnitkar, S. (2003). Verilog HDL: A Guide to Digital Design and Synthesis. New Delhi: PHI Publication. Smith, M.J.S. (1997). Application- 	Deleted

		Publishing,(Allentown, PA) 1998. 8. M.J.S. Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Longman Inc., 1997	Specific Integrated Circuits.Boston, New York: Addison Wesley Publication. Suggested E-resource: 1. Hardware Modeling using Verilog by Prof. Indranil Sengupta, Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur https://nptel.ac.in/courses/106105165/	
VLSI 512L, HDL Based System Design Lab	After completion of this laboratory course, students will be able to: • describe the IEEE Standard 1076 Hardware Description Language (VHDL) • Model complex digital systems at several levels of abstractions; behavioral and structural, synthesis and rapid system prototyping. • Develop and simulate register-level models of hierarchical digital systems • Develop a formal test bench from informal system requirements	This lab targets to develop an understanding of VLSI design using HDL languages among the students. Different objectives are given to the different group of students to develop a design using Hardware description languages and simulate it using EDA tools.	Design all gates using VHDL, and verify functionality through simulation outcomes Write VHDL program for Half adder circuit, and verify functionality through simulation outcomes Write VHDL program for Full adder circuit, and verify functionality through simulation outcomes Write VHDL program for Multiplexer circuit, and verify functionality through simulation outcomes Write VHDL program for Demultiplexer circuit, and verify functionality through simulation outcomes Write VHDL program for encoder circuit, and verify functionality through simulation outcomes Write VHDL program for decoder circuit, and verify functionality through simulation outcomes Write VHDL program for decoder circuit, and verify functionality through simulation outcomes Write VHDL program for D Flip Flop, and verify functionality through simulation outcomes Write VHDL program for T Flip Flop, and verify functionality through simulation outcomes	Learning Outcomes added Deleted Added

			10. Write VHDL program for SR Flip Flop,	
			and verify functionality through	
			simulation outcomes	
			11. Write VHDL program for JK Flip Flop.	
			and verify functionality through	
			simulation outcomes	
			12. Write VHDL program for modulo 8 up	
			Asynchronous counter circuit, and verify	
			functionality through simulation	
			outcomes	
			13. Write VHDL program for modulo 8 down	
			Asynchronous counter circuit, and verify	
			functionality through simulation	
			outcomes	
			14. Write VHDL program for modulo 8 up	
			synchronous counter circuit, and verify	
			functionality through simulation	
			outcomes	
			15. Write VHDL program for modulo 8 down	
			synchronous counter circuit, and verify	
			functionality through simulation	
			outcomes	
			16. Write VHDL program for shift and add	
			multiplier circuit, and verify functionality	
			through simulation outcomes	
			17. Write VHDL program for 4 bit ALU, and	
			verify functionality through simulation	
			outcomes	
			18. Write VHDL program for parallel adder	
			circuit, and verify functionality through	
			simulation outcomes	
			19. Write VHDL program for sequence	
			detector circuit, and verify functionality	
			through simulation outcomes	
			20. Write VHDL program for serial adder	
			circuit, and verify functionality through	
			simulation outcomes	
5. VLSI 516,	After completion of this			No Change
IC	course, students will be able	_	_	in course

Fabrication	to:			contents.
Technology	Understand thin film deposition and vacuum evaporation process. Differentiate dry and wet oxidation process and printing methods. Perform measurement techniques for extracting electrical properties of devices. Understand diffusion and ion implantation process.	Text Book: 1. S. M. Sze, VLSI Technology, McGraw Hill. Reference Books: 1. S. K. Gandhi, The Theory and Practice of Microelectronics, John Wiley. 2. D. Nagchoudhuri. Microelectronics technology, Pearson. 3. C. Y. Yang and S. M. Sze, VLSI Technology, Tata McGraw Hill. 4. S. M. Sze, Semiconductor Technology.	Recommended Books: 1. Sze, Simon. (2017). VLSI Technology. New Delhi: McGraw Hill Publication 2. Gandhi, S. K. (1994). The Theory and Practice of Microelectronics. New Delhi: John Wiley Publication. 3. Nagchoudhuri, D. (2002). Microelectronics technology. New Delhi: Pearson Publication. 4. Chang, C. Y.,& Sze, Simon. (1996). ULSI Technology. Singapore, Tata McGraw Hill Publication. Suggested E-resources: 1. Introduction to IC fabricationby Prof. Hardik J Pandya S, Department of Electronic Systems Engineering, IISC, Bangalore. https://nptel.ac.in/courses/108108111/3. 2. MOSFET Fabrication for IC by Dr. Nandita Dasgupta Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/171106093/3.	Deleted
6. VLSI 516L, IC Fabrication Technology Lab	After completion of this laboratory course, students will be able to: • Understand fabrication process flow • Understand Silvaco TCAD tool. • understand the procedure to modeling devises and analysing their characteristics	Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode.	All experiments will be performed on Silvaco TCAD Tool. 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of PN junction diode.	Added
7. Minor Project (Part-I)	After completion of this course, students will be able to:			Learning Outcomes Added and

	Formulate the project objectives and deliverables. Estimate the physical resources required, and make plans to obtain the necessary resources. Develop plans with relevant people to achieve the project's goals.			this course has no prescribed syllabus.
8. VLSI 525 Solid Stat Device Modeling		_	_	No Change in course contents.
and Simulatio	densities, charge transport, band diagrams and their relations to the device characteristics. Describe the SPICE device models and apply the basic governing model equations to analyze BJT and MOSFET. Explain and analyze the operation of optical, microwave and quantum effect devices.	S. M. SZE "Semiconductor Devices Physics and Technology" 2nd Edition WILEY student edition Ben G. Streetman and Sanjay Kumar Banerjee "Solid State Electronics devices" Pearson Education Sung - MO kang, Yusuf Leblebice "CMOS Digital Integrated Circuits Analysis & Design, Tata McGrawhill Sedra/Smith" Microelectronics Circuits" forth edition OXFORD PSpice Manuals	 Recommended Books: Sze, S. M. (1985). Semiconductor Devices Physics and Technology. New York: Wiley Publication. Streetman, Ben. G.,&Banerjee, Sanjay.Kumar.(2019). Solid State Electronics Devices. New Delhi: Pearson Publication. Kang, Sung-Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and Design. New Delhi: Tata McGraw-Hill Publication. Smith, Sedra. (2013). Microelectronics Circuits. New Delhi: Oxford University Press. Suggested E-resources: Solid State Devicesby Dr. S.	Deleted

Analog and Mixed Signal IC Design Design Design Design to current s mirrors a circuit. Explain s and design in comparate samplifier. Design a comparate sample-a circuits. Illustrate of comme conversion.	tability issues in compensated ional s. Ind analyze ore sand ind-hold independent on circuits. The operation only used data on circuits. The operation of this integrated circuits in the operation on circuits. The operation of this integrated circuit integrated circuit in the operation of this integrated circuit	real and Douglas R. analog circuit design, press, 2nd edition. and Martin, Analog t Design, John Wiley, 10S Mixed Signal Fress (2002) I G C Temes, Analog Circuits for Signal Wiley, 1986. and Robert G Meyer, Design of Analog ts, John Wiley. E Allen and N R lesign Techniques for tal Circuits, MGraw Suggested 1. Analog Prof. N of Elect of https://neurrent mirror and 1. Design 1. Allen, F (2002). New Yo (2002).	neering, Indian Institute of mology, Delhi.:://nptel.ac.in/courses/117102061/ — Meded Books: Phillip.E.,& Holberg, Douglas. R. CMOS Analog Circuit Design. New York: Oxford University Press. D. A., & Martin, Key (1997). Integrated Circuit Design. New ohn Wiley and Sons. R.J. (2008). CMOS Mixed Signal Design. New York: Wiley/IEEE an, R.,& Temes, G. C.(1986). MOS Integrated Circuits for Processing. New York: John Paul. B., & Meyer, Robert.G. Analysis and Design of Analog ted Circuits. New York: John Paul. B., & Meyer, Robert.G. Analysis and Design of Analog ted Circuits. New York: John Paul. B., & Meyer, Robert.G. Analysis and Design of Analog ted Circuits. New York: John Paul. B., & Meyer, Robert.G. Analysis and Design of Analog ted Circuits. New York: John Publication. R. L., Allen, P. E., & Strader, N. D., VLSI Design Techniques for & Digital Circuits. New Delhi: Hill Publication. E-resource: Integrated Circuit Design by Integrated Circuits Design by Integrated Circuits Integrated Circuits Integrated Circuit Design by Integrated Circuits Integrated Circuit Design by Integrated Circuits Integrated Circuit Design by Integrated Circuits Integrat	No Change in course contents.
503L, laboratory c Analog and will be able to			length of 1 µm and 180 nm and C analysis. Compare the results at	

Mixed	•	Analyse and interpret the	determine small signal output resistance.		two different channel lengths.	
Signal IC		waveform, comparison	3. Design differential amplifier and study its	2.		
Design Lab		of simulation results with	DC and transient response.		current mirror and determine small signal	Learning
		the theoretical analysis.	4. Study of AC response and bandwidth		output resistance. Comparison of small	Outcomes
	•	Ability to use the	calculation of differential amplifier.		signal resistance at different channel	Added
		simulation software for	5. Study of AC and transient response of		lengths. Discuss the results.	
		performing the	differential amplifier.	3.	Draw the schematic of NMOS	
		experiments.	6. Design Common Source (CS) amplifier		CASCODE current mirror for channel	Added
	•	Ability to design and test	and study its DC and Transient response.		length of $1 \square m$ and analyze DC response.	
		various amplifier	7. Study of frequency response of CS		Do the same for 180 nm channel length.	
		circuits, which meets the	amplifier.		Compare and discuss the results.	
		desired specifications.	8. Design source follower and study its DC	4.	Analyze AC characteristics of the	
		•	and Transient and AC response.		CASCODE current mirror and determine	
			9. Design two stage Op-Amp and study of its		small signal output resistance.	
			DC and Transient characteristics and		Comparison the small signal resistance	
			determine Slew rate.		with simple current mirror. Discuss the	
			10. AC characteristics, UGB and Phase	_	results.	
			Margin estimation of two stage Op-Amp	5.	Design CMOS differential amplifier for a	
					given channel length and draw the	
					schematic cell view of differential	
					amplifier.	
				6.	Create the symbol for the differential	
					amplifier and build the differential	
				7	amplifier test design.	
				/.	Set up and run simulations (AC, DC and	
					Transient) on the Differential Amplifier	
				0	Test design. Calculate the gain, bandwidth and CMRR	
				8.	of Differential pair. Discuss the results.	
				0	Design of current source loaded common	
				9.	source amplifier. create a new cell view	
					and build Common Source Amplifier.	
					Create a symbol for the Common Source	
					Amplifier	
				10	Build cs amplifier test circuit using your	
				10	cs amplifier, set up and run	
					simulations(AC, DC and Transient) on	
					the cs amplifier test design.	
				11	Determine the gain, bandwidth and	
				11	. Determine the gam, bandwidth and	

				voltage swing of CS amplifier. Comment on the results. 12. Create a new cell view and build Common Drain (CD) Amplifier. Build CD amplifier test circuit using your CD amplifier. Set up and run simulations(AC, DC and Transient) on the CD amplifier test design. 13. Determine the gain, bandwidth and voltage swing, output resistance of CS amplifier. Comment on the results. 14. Build schematic capture of two stage operational amplifier (OP-AMP) using the previously created symbols of CS amplifier and CD amplifier. Thereafter Create a symbol for the OP-AMP. 15. To build op-amp_test circuit using your op-amp. Set up and run simulations(AC, DC and Transient) of op-amp_test circuit. 16. Determine voltage gain, slew rate, UGB and Phase Margin of two stage Op-Amp and compare with the design specifications. Comments on the results	
11.	VLSI 504, ASIC Design	After completion of this course, students will be able to: • Analyze the concept of Full Custom ASIC and Semi-Custom ASIC, Cell Libraries, Data Logic Cells, Low-level Design Entry and Low Level Design Entry and Low Level Design Languages • Explain ASIC I/O Cell: DC Output, AC Output, DC Input, AC Input, Clock Input, Power	Text Books: 1. Mohammed Ismail, Terri Fiez, "Analog VLSI signal and Information processing", McGraw-Hill International Editions, 1994. 2. M.J.S. Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Long man Inc., 1997 3. Wayne Wolf, FPGA based system design, Pearson education, 2005. Reference Books:	Text Books: 1. Smith M. J. S. (2006). Application Specific Integrated Circuits USA: Pearson Publication 2. Ismail, Mohammed. &Terri, Fiez. (1994). Analog VLSI signal and Information processing. New York: McGraw-Hill Publication. 3. Wolf, Wayne. (2005). FPGA based System Design. New Delhi: PHI Publication. 4. Brown, Andrew. (1991). VLSI Circuits	No Change in course contents. Deleted

		Input and PLA Tools. Describe Programmable ASIC Logic Cell, FPGA Logic Cells, and Programmable Interconnects to Solve the RC delay of routing resources for each ASIC.	 Malcom R.Haskard, Lan C.May, "Analog VLSI Design - NMOS and CMOS" Prentice Hall, 1998. Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", Mc Graw Hill International Company, 1990. Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal processing", Prentice Hall, 1994. Andrew Brown, - "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991. S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays" - Kluwer Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing ", Mc Graw Hill, 1994. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal 	and Systems in Silicon. New York: McGraw-Hill Publication. 5. Haskard, Malcom. R., & May, Lan C. (1998). Analog VLSI Design - NMOS and CMOS. New Delhi: PHI Publication. 6. Geiger, Randall. L., Allen, Phillip E., & Strader, Noel.K. (1990). VLSI Design Techniques for Analog and Digital Circuits. New Delhi: PHI Publication. 7. France, Jose.E.,& Tsividis, Yannis. (1994). Design of Analog-Digital VLSI Circuits for Telecommunication and Signal Processing. New Delhi: PHI Publication. 8. Brown, S.D.,Francis, R.J., Rox, J., &Uranesic, Z.G. (1992). Field Programmable Gate Arrays. Menlo Park,California: Kluwer Academic Publishers. Suggested E-resource: 1. Digital VLSI Systems Designby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106092/	
			Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.		
12.	VLSI 505, CAD for IC Design	After completion of this course, students will be able to:	_	_	No Change in course contents.
	_	Student will understand Basic concept of describing VLSI design problems Student will understand graph	Text Books: 1. S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002. 2. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar	Recommended Books: 1. Gerez, S.H. (2002). Algorithms for VLSI Design Automation. New York: John Wiley Publication. 2. Sherwani, N.A. (2002). Algorithms for VLSI Physical Design Automation. Boston, New York: Kluwar Academic	Deleted

		theory and its utilization in finding solution for VLSI design problems. To understand algorithms to solve various VLSI design problem like floorplaning, scheduling, placement, routing etc.	Academic Publishers, 2002. 3. Drechsler, R., "Evolutionary Algorithms for VLSI CAD, Kluwer Academic Publishers, Boston, 1998. 4. Hill, D., D. Shugard, J. Fishburn and K. Keutzer, Algorithms and Techniques for VLSI Layout Synthesis, Kluwer Academic Publishers, Boston, 1989. 5. Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits" TMH. 6. Sadiq M. Sait and Habib Youssef, "VLSI PHYSICAL DESIGN AUTOMATION Theory and Practice" IEEE PRESS.	Publishers. 3. Drechsler, R. (1998). Evolutionary Algorithms for VLSI CAD. Boston, New York: Kluwer Academic Publishers. 4. Hill, D., Shugard, D., Fishburn, J.,& Keutzer, K. (1989). Algorithms and Techniques for VLSI Layout Synthesis. Boston, New York: Kluwer Academic Publishers. 5. Micheli, Giovanni.De.(2003). Synthesis and Optimization of Digital Circuits. New Delhi: TMH Publication. Suggested E-resource: 1. CAD for VLSI Design I by Prof. Prof. V. Kamakoti and Prof Shankar Balachandran, Department of Computer Science and Engineering, Indian Institute of Technology, Madras	
505 f	VLSI 5L, CAD for IC ssign Lab	After completion of this laboratory course, students will be able to: • Understand the VLSI design automation. • Understand the process to develop and analyse synthesis outcomes. • Demonstrate knowledge of computational and optimization algorithms and tools, applicable to solving CAD related problems.	This lab targets to develop an understanding of design automation among the students. Different objectives are given to the different group of students to develop a design, simulate and synthesize it using EDA tools.	https://nptel.ac.in/courses/106106088/ 1. NETLIST generation and analysis of Half Adder 2. NETLIST generation and analysis of Full Adder 3. NETLIST generation and analysis of Half Subtractor 4. NETLIST generation and analysis of Full Subtractor 5. NETLIST generation and analysis of Multiplexer 6. NETLIST generation and analysis of Demultiplexer 7. NETLIST generation and analysis of D Flip Flop 8. NETLIST generation and analysis of T Flip Flop 9. NETLIST generation and analysis of JK Flip Flop 10. NETLIST generation and analysis of SR	Learning Outcomes Added Added

	W.			Flip Flop 11. NETLIST generation and analysis of Four bit Binary Counter 12. NETLIST generation and analysis of Serial in Serial Out Shift Register 13. NETLIST generation and analysis of Parallel in Serial Out Shift Register 14. NETLIST generation and analysis of Serial in Parallel Out Shift Register 15. NETLIST generation and analysis of Ripple Carry Adder	
14.	Minor Project (Part-II)	After completion of this course, students will be able to: Identify, formulate, and solve VLSI design problems using advanced level manufacturing and design techniques Apply advanced level knowledge, techniques, skills and modern tools of VLSI Design. Understand the complexities and design methodologies of current and advanced VLSI design technologies.			Learning Outcomes Added and this course has no prescribed syllabus.
15.	VLSI 524, RF IC Design	After completion of this course, students will be able to:	_	_	No Change in course contents.
	-	Understand basics concepts of radio frequency integrated systems and their performance parameters. Identify design trade-off	Texts/Reference Books: 1. B.Razavi, RF Microelectronics, Prentice-Hall PTR, 1998 2. T.H.Lee, The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press, 1998.	Recommended Books: 1. Razavi, B. (2011). RF Microelectronics. New Delhi: PHI Publication. 2. Lee, T.H. (1998). The Design of CMOS Radio-Frequency Integrated Circuits. New York: Cambridge University Press. 3. Baker, R.Jacob., Li, H.W., & Boyce, D.E.	

16. Project (Part-I)	used in various transmitters and receivers architecture with wireless standards. Perform VLSI implementation of oscillators, Mixers and Power amplifiers. After completion of this course, students will be able to: Recognize the need to engage in lifelong learning through continuing education and research. Formulate the project objectives and deliverables. Estimate the physical resources required, and make plans to obtain the necessary resources. Develop plans with relevant people to achieve the project's	 R.Jacob Baker,H.W.Li, and D.E. Boyce, CMOS Circuit Design ,Layout and Simulation, Prentice-Hall of India,1998. Y.P. Tsividis Mixed Analog and Digital VLSI Devices and Technology, McGraw Hill, 1996. 	(1998). CMOS Circuit Design, Layout and Simulation. New Delhi: PHI Publication. 4. Tsividis, Y.P. (1996). Mixed Analog and Digital VLSI Devices and Technology. New York: McGraw Hill Publication. Suggested E-resources: 1. RF System - Basic Architectures by Prof. Dr. S. Chatterjee, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102012/. 2. RF integrated Circuits by S. Aniruddhan, Department of Electrical Engineering, IIT Madras.http://www.ee.iitm.ac.in/~ani/2011/ee6240/pdf/ee6240_lec32.pdf.	Learning Outcomes Added and this course has no prescribed syllabus.
17. Project				Learning

10	(Part-II)	course, students will be able to: Demonstrate knowledge of contemporary issues in the area of VLSI design. Manage projects related to VLSI design in multidisciplinary environments. Understanding the Functioning with multidisciplinary teams, working cooperatively, respectfully, creatively and responsibly as a member of a team.			Outcomes Added and this course has no prescribed syllabus.
18.	CS 429,	After completion of this			No Change
	Pattern Recognition	course, students will be able to:	_	_	in course contents.
	and Image	Explain the concept of	Text Books:	Recommended Books:	contents.
	Processing	Image Processing, Mathematical preliminary of Image Processing and various Image Representations. Analyze the methods of Image Enhancement and Image Filtering, Identify different image analysis and pattern recognition methods and apply them in problem areas also develop an abundance of Image Processing applications that can serve mankind with the available and	 Jain A. K., Fundamentals of digital image Processing, PHI Publications. Gozalez Rafel, Woods Richard, Digital Image Processing, Pearson Education. Reference Books: Rosenfield, A and Kak A. C, Picture Processing, Academic Press N.Y. 1982 Pratt, W. K., Digital Image Processing, John Willey and sons, New York. Duda R., Hart Peter, Stork D., Pattern Classification, Willey Interscience Publication. Manahem Friedman, Abraham Kandel, Introduction to Pattern Recognition, World Scientific. 	 Jain A. K. (2015). Fundamentals of Digital Iimage Processing. New Delhi: PHI Publication. Rafel, Gozalez.,& Richard, Woods. (2016). Digital Image Processing. New Delhi: Pearson Publication. Rosenfield, A., & Kak, A. C.(1982). Picture Processing. Orlando, Florida: Academic Press. Pratt, W. K. (2007). Digital Image Processing. Hoboken, New Jersey: John Willey and sons, Publication. Friedman, Manahem.,& Kandel, Abraham.(1999). Introduction to Pattern Recognition. Singapore: World Scientific. Charniak, E.,& Mcdermott, D. (1985). Introduction to Artificial Intelligence. 	

		anticipated technology in the near future.	5. E. Charniak, D. Mcdermott, Introduction to Artificial Intelligence, Addison Wesley.	Boston, New York: Addison Wesley. Suggested E-resources: 1. Pattern Recognition and Application by Prof. P. K. Biswas, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105101/	
19	CS 431, Real Time Systems	After completion of this course, students will be able to: To present the mathematical model of	Text Book:	Recommended Books: 1. Krishna, C.M., & Shen, K.G. (2008).	No Change in course contents.
		Analyse multi task scheduling algorithms To explain Reliability Evaluation techniques and Real time communication algorithms	Krishna C.M, Shen K.G, Real Time Systems, Mc. Graw Hill, References Books: Lawrence P.D, Mauch, K, Real Time Microcomputer Design: An Introduction, Mc. Graw Hill, Joseph Mathai, Real Time systems: Specification, verification & analysis, Prentice Hall Inc. Bennet Stuart, Real Time computer control, Prentice Hall Inc., Young S. J., Real time languages, John willey & sons.	 Krisina, C.M., & Shen, K.G. (2008). Real Time Systems. New Delhi: McGraw Hill Publication. Lawrence, P.D., & Mauch, K.(1998). Real Time Microcomputer Design: An Introduction. New York: McGraw Hill Publication. Mathai, Joseph.(1996). Real Time systems: Specification, Verification & Analysis. London, PHI Publication. Stuart, Bennet.(1994). Real Time Computer Control. ,New Jersey: PHI Publication. 	
20	ELE 502, Discrete Time Signal	After completion of this course, students will be able to:	_	_	No Change in course contents.
	Processing	Apply discrete-time signal processing techniques analysis to perform various signal operations. Apply the principles of Fourier transform	Text Books: 1. J.G.Proakis and D.G.Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Third Edition, PH, 1996. 2. I.J.Nagarath, S.N.Sharan, R.Ranjan	Recommended Books: 1. Proakis, J.G.& Manolakis, D.G. (2014). Digital Signal Processing: Principles, Algorithms and Applications.New Jersey: Pearson Publication. 2. Nagarath, I.J.,Sharan, S.N.,Ranjan, R.,& Kumar, S. (2009). Signals and Systems,	Deleted

		analysis to describe the frequency, and characteristics of discrete-time signals and systems. • Understand the design techniques of various digital and analog filters.	and S.Kumar, Signals and Systems, TMH, 2001. 3. A.V.Oppenheim, R.W.Schafer and J.R.Buck, Discrete-Time Signal Processing, Second Edition, PH, 1998. 4. S.K.Mitra, Digital signal processing: A computer Based Approach, Second Edition, MH, 2000.	New Delhi: TMH Publication. 3. Oppenheim, A.V., Schafer, R.W., & Buck, J.R. (1998). Discrete-Time Signal Processing. New Jersey: PHI Publication. Suggested E-resources: 1. Discrete Time Signal Processing by Prof. Mrityunjoy Chakraborty, Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105134/. 2. Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/.	
21	VLSI 501, Advanced Digital Signals Processing	After completion of this course, students will be able to: • Modelling of random filter and identification of different parameters. • Realization of Kalman filters and concept of spatial smoothing. • Adaptive implementation of wiener filter and Adaptive noise cancelling.	Text Books: 1. S.J.Orfanids, Optimum Signal Processing: An Introduction, Second edition, MacMillian/MH, 1988. (Out of Print) 2. J.G.Proakis, C.M.Rader,F.Ling and C.I.Nikias, Advanced Digital Signal Processing,MacMillian,1992.(Out of Print) References Books: 1. D.G.Manolakis, V.Ingle and S.Kogon, Statically and Adaptive Signal Processing, MH, 2000. 2. J.G.Proakis, C.M.Rader, F.Ling, M.Moonen, I.K.Proudler and C.I.Nikias, Algorithms for Statistical	Recommended Books: 1. Orfanids, S.J. (1988). Optimum Signal Processing: An Introduction. New York: Collier Macmillan Publication. Suggested E-resource: 1. State space Models by Professor Anna Mikusheva Paul Schrimpf. https://ocw.mit.edu/courses//14/MI T14_384F13_lec21.pdf 2. Adaptive signal Processing by Prof. Mrityunjoy Chakraborty, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105075/5	No Change in course contents. Deleted

			Signal Processing, PH/Pearson, 2002.		
			3. J.V.Candy, Signal Processing,		
			MH,1986.(Out of Print)		
			4. B.Mulgrew and C.F.Cowan, Adaptive		
			Filters and Equalizers,		
			Kulwer,1998.(Out of print)		
22	VLSI 502,	After completion of this			No Change
	Advanced	course, students will be able	_	_	in course
	Digital	to:	Text Books:	Recommended Books:	contents.
	System Design	• Formulate and solve problems in Digital		1. Biswas, Nripendra.N. (2001) Logic	Deleted
	Design	Systems design.	1. Brian Holdworth & Clive Wood,	Design theory. New Delhi: PHI	
		Knowledge about the	"Digital logic Design" - Elsevier-2005.	Publication.	
		properties of symmetric	2. Nripendra N. Biswas, "Logic Design	2. Kohavi, ZVI. (2010) Switching and Finite	
		networks and apply	theory, "PHI, 2005.	Automata theory. New York: Cambridge	
		threshold logic on digital	3. ZVI Kohavi, "Switching and Finite	University Press.	
		circuits.	Automata theory", second edition, Tata	3. Fletcher, William. I. (1997) An	
		Analyze digital system	Mcgraw Hill, 2001.	Engineering Approach to Digital Design.	
		design using PLD.	4. William I. Fletcher, "An Engineering	New Delhi: PHI Publication. 4. Geiger, Randall. L., Phillip E. Allen., &	
			Approach to Digital Design, PHI,	Strader, Noel. R. (1989) VLSI Design	
			2003.	Techniques for Analog and Digital	
			5. Randall L. Geiger, Phillip E. Allen,	Circuits. Boston, Massachusetts: McGraw	
			Noel k strader, "VLSI Design	Hill Publication.	
			Techniques for Analog Digital circuits,	Suggested E-resources:	
			"McGraw hill, 1990.	1. Programmable logic devices Prof. D.	
			6. John F. Warkerly, "Digital Design	Roychoudhury Department of Computer	
			Principles & practices, III editions,	Science and Engineering Indian Institute of Technology, Kharagpur.	
			Pearson, education, 2005.	of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/26.	
				2. Digital Systems Design with PLDs and	
				FPGAs Kuruvilla Varghese Department	
				of Electronic Systems Engineering Indian	
				Institute of Science, Bangalore.	
				https://nptel.ac.in/courses/117108040/.	
23	VLSI 506,	After completion of this			No Change
	Design of	course, students will be able	_	_	in course
	Semiconduc	to:			contents.

tor Memory	Know about architecture of semiconductor memories and methodologies adopted in data storage. Analyze the difference in volatile and non-volatile memory, and their building blocks. Know memory fault tolerance and testing methodology.		Recommended Books: 1. Betty, Prince. (1996). Semiconductor Memories: A Handbook of Design, Manufacture and Application. New York: Willey Publication. Suggested E-resources: 1. Design of memory circuits by Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/31.	Added
24 VLSI 510, Embedded System	After completion of this course, students will be able to:	_	_	No Change in course contents.
Design	Explain the challenges in the design of embedded system Describe the Hardware and Software Tools for Embedded System Describe the Features of OS and language for Embedded System	1. W. Wolf, Computers as Components: Principles of Embedded Computer System Design, Morgan Kaufmann, 2000. 2 F.Vahid and T.D Givargis, Embedded System Design: A unified Hardware/ software Introduction, Wiley.2002. Reference Books: 1. S.Health, Embedded System Design, Second Edition Butterworth- Heinemann, 2002 2. D. Patterson and J. Hennessy .Computer Organization and Design: The Hardware/software Interface, Second Edition, Morgan Kauffman ,1997 3. A.S.Berger, Embedded System Design A. S.Berger, Embedded System Design	Recommended Books: 1. Wolf, M. (2012). Computers as components: principles of embedded computing system design. Elsevier. 2. Vahid, F., & Givargis, T.D.(2002) Embedded System Design:A unified Hardware/ software Introduction. New Jersey: Wiley Publication. 3. Gannsle, J. (2008) The Art of Designing Embedded System. New Delhi: Newnes Publication. 4. Staunstrup, J.,& Wolf,W. (1997) Hardware/software Codesign: Principles and Practice. Boston, Massachusetts: Springer Publications. 5. Gajski, D.D., Vahid, F., Narayan, S., & Gong, j. (2007). Specification design of Embedded System. New Delhi: Pearson Education India. Suggested E-resources: 1. Embedded Systems - Shape The World: Microcontroller Input/Output	Deleted

			and technique. CMP Books, 2001.	(UTAustinX),	
			4. J. Gannsle,The art of Designing Embedded System ,Newnes. 1999.	https://www.edx.org/course/embedded- systems-shape-the-world-microcontroller- inputoutput	
			5. L. Edwards, Embedded System Design on a Shestring ,Newnes .2003	2. Embedded Systems by Georgia Tech as CS, 8803	
			6. J. Catsoulis. Designing embedded Hardware, ORA,2002	https://in.udacity.com/course/embedded- systemsud169 3. Embedded System Design with ARM by	
			7. J. <u>J. Labrosse, Embedded System</u> <u>Building Blocks .CMP Books ,1999.</u>	Dr. Kamalika Datta Indian Institute of Technology, Kharagpur, https://onlineourses.nptel.ac.in/noc19 cs	
			 J. Staunstrup and W.Wolf, Hardware /software Codesign: Peinciples and Practice, Kluwer 1997. 	22/preview	
			 D.D.Gajski.F.Vahid ,S.Narayan and j.gong ,specification and Design of Embedded System ,PH/Pearson, 1994. 		
			10. G.de Mieheli, R.Ernst and W.Wolf Reading in Hareware/software Codesign ,Morgan Kaufmann ,2001		
25	VLSI 511, Fault Tolerance	After completion of this course, students will be able to:	_	_	No Change in course contents.
	in VLSI	Diagnose and measure different type of Faults. Explain the detection, correction techniques and fault-tolerant networks Analyze fault tolerance strategies and enhance capabilities about applications of fault tolerant designs in arithmetic units and systems.	1. Victor P. Nelson and Bill D. Carroll, Tutorial: Fault-Tolerant Computing, IEEE Computer Society Press, 1987, ISBN: 0-8186-06770 2. D.K. Pradhan (ed.), Fault Tolerant Computer System Design, Prentice-Hall, 1996. 3. D.P. Siewiorek and R.S. Swarz, A.K. Peters, Reliable Computer Systems: Design and Evaluation, 1998.	Recommended Books: 1. Nelson, Victor. P.,&Carroll, Bill. D. (1987). Tutorial: Fault-Tolerant Computing, Maryland: IEEE Computer Society Press. 2. Pradhan, D.K. (1996). Fault Tolerant Computer System Design. New Jersey: PHI Publication. 3. Johnson, B.W. (1989) Design and Analysis of Fault-Tolerant Digital Systems. Boston, Massachusetts: Addison-Wesley.	Deleted

		Explain the basic mechanisms of fault- tolerance methods and fault tolerant computer systems.	4. B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley, 1989	Suggested E-resources: 1. VLSI Design Verification and Test by Prof. Jatindra Kumar Deka and Dr. Santosh Biswas, Department of CSE, IIT Guwahati.https://nptel.ac.in/courses/106 103016/	
26	VLSI 513, High Level System Design and Modeling	After completion of this course, students will be able to: • Understand describing a system • Understand about information system and models • Understand system analysis and system design	Books:- 1. Embedded System Design- Modeling, Synthesis, Verification by Dainel D.Gajaski, Samer Abdi Springer. 2. Specification and Design of Embedded Systems by Daniel D. Gajski, PTR Prentice Hall Englewood New Jersey	Recommended Books: 1. Dainel D.Gajaski., & Abdi, Samer. (2009). Embedded System Design-Modeling, Synthesis. New York: Springer Publication. 2. Daniel D. Gajski. (1994). Specification and Design of Embedded Systems. New Jersey: PHI Publication.	No Change in course contents.
27	VLSI 514, High Power Semiconduc tor Devices	After completion of this course, students will be able to: • Get knowledge of power semiconductor devices under extreme operation conditions like high voltage, high current and high temperature which are encountered under typical power electronic environment. • Understand knowledge developed from this, will help in designing power devices with desired specifications. • Get knowledge of VMOS, CMOS, DMOS Devices.	Texts/References Book: S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 1981	Recommended Books: 1. Sze, S.M. (1981). Physics of Semiconductor Devices. New York: Wiley Publication. Suggested E-resources: 1. Basic Device models by Prof. Roshan Bhosh Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105084/. 2. Semiconductor Device Modeling by Prof. Shreepad Karmalkar Department of Electrical Engineering Indian Institute of Technology- Madras, https://nptel.ac.in/courses/117106033/.	No Change in course contents.

28	VLSI 515, High Speed VLSI Design	After completion of this course, students will be able to: • Design Clocked logic styles non clocked logic styles. • Understand knowledge of circuit designing margining. • Get knowledge of Clock generation and distribution.	Reference Books: 1. Kerry Bernstein & et. al., High Speed CMOS Design Styles, Kluwer, 1999. 2. Evan Sutherland, Bob stroll, David Harris, Logical Efforts, Designing Fast CMOS Circuits, Kluwer, 1999. 3. David Harris, Skew Tolerant Domino Design.	Recommended Books: 1. Bernstein, Kerry. (1999). High Speed CMOS Design Styles. New Jersey: Kluwer Academic Publishers. 2. Sutherland, Evan., Stroll,Bob.,& Harris, David.(1999) Logical Efforts, Designing Fast CMOS Circuits. Boston, Massachusetts: Kluwer Academic Publishers. 3. Harris, David.(2000). Skew Tolerant Domino Design. New Delhi: Elsevier. Suggested E-resources: 1. High Speed Devices and Circuits by Prof. K. N. Bhat Department of Electrical Engineering Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106089/ 2. CMOS VLSI Circuit by Prof. A. N. Chandorkar Department of Electrical Engineering Indian Institute of Technology, Bombay.	No Change in course contents.
29	VLSI 517, Integrated Electronic System Design	After completion of this course, students will be able to: • Understanding, gathering and processing of electronics system through basic Motherboard, PCB and IC technologies. • Design their own circuits based on the knowledge learnt from class. • Get the opportunity to become proficient in using	Text Books: 1. W.J.Dally and J.W.Poulton, Digital System Engineering, CUP, 1998. 2. N.Storey, Electronics: A System Approach, AW/Pearson, 1998/2000. 3. S.D.Burd, System Architectures, Thomson, 2001. Reference Books:	https://nptel.ac.in/courses/117101004/ — Text Books: 1. Burd, S.D. (2001). System Architectures. New Delhi: Thomson learning Publication. 2. Cady, F.M. (2009) Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering. New York: Oxford University Press. 3. Predko, M. (1998) Handbook of Microcontrollers. New York: McGraw-	No Change in course contents. Deleted

	the 8051 microcontroller for circuit modeling and analysis.	G.Lipovski, Introduction to Micro-Controllers (MC 68HC12), AP, 1999. G.Lipovski, Single and Multi-Chip Micro-Controller Interfacing (MC 68HC12), AP, 1999. F.M.Cady, Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering, OUP, 1997. M.Predko, Handbook of Microcontrollers, MH, 1998.	Hill. Suggested E-resources: 1. Microprocessors and Microcontrollers by Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105102/23 2. Principles of Communication Systems - Part II by Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104098/7	N. G.
30 VLSI 518, Introduction to MEMS	After completion of this course, students will be able to: • Be familiar with the important concepts applicable to MEMS, their fabrication. • Be fluent with the design, analysis and testing of MEMS. • Get knowledge of micro fabrication, micro actuators and surface micromachining and applications.	Text & References Books: 1. Stephen D. Senturia, "Microsystem Design" by, Kluwer Academic Publishers, 2001. 2. Marc Madou, "Fundamentals of Microfabrication" by, CRC Press, 1997. 3. Gregory Kovacs, "Micromachined Transducers Sourcebook" WCB McGraw-Hill, Boston, 1998. 4. MH. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes" by Elsevier, New York, 2000.	Recommended Books: 1. Senturia, Stephen. D. (2001) Microsystem Design. Norwell, Massachusetts:Kluwer Academic Publishers. 2. Madou, Marc.(1997). Fundamentals of Microfabrication. California: CRC Press. 3. Kovacs, Gregory. (1998) Micromachined Transducers Sourcebook. Boston, Massachusetts: WCB McGraw-Hill Publication. 4. Bao, MH. (2000). Micromechanical Transducers: Pressure Sensors, Accelerometers, and Gyroscopes. New York: Elsevier Publication Suggested E-resources: 1. MEMS and Microsystems Prof. Santiram Kal Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105082/4	No Change in course contents.

31	VLSI 519, Low Power VLSI Design	After completion of this course, students will be able to: • Learn the design techniques low voltage and low power CMOS circuits for various applications. • Design and implementation of various design structures of flip flop for low power applications. • Design the different types of memory circuits and various CMOS static and dynamic logic circuits • Understand the mechanisms of power estimation and datapath width adjustment	Text and Reference Books: 1. M. Pedramand J. Rabaey (Editors), Power Aware Design Methodologies, Kluwer Academic Publishers, Boston, 2002 2. Sung - Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated circuits-Analysis and Design", TMH, 3rd Edition.	2. Microsensors by Prof. G.K. Ananthasuresh, Department of Mechanical Engineering Indian Institute of Science Bangalore. https://nptel.ac.in/courses/112108092/module1/lec03.pdf Recommended Books: 1. Roy, Kaushik. & Prasad, Sharat. C. (2009). Low Power CMOS VLSI Circuit Design. Dublin: Willey Publications. 2. Pal, Ajit. (2015). Low Power VLSI Circuit Springer Publications. 3. Pedramand, M.,& Rabaey, J.M.(2002). Power Aware Design Methodologies. Boston, Massachusetts: Kluwer Academic Publishers. 4. Kang, Sung – Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated circuits- Analysis and Design. New Delhi: TMH Publications. Suggested E-Resources: 1. Low Power VLSI Circuits and Systems by Prof. Ajit Pal, Department of Computer Science and Engineering, IIT Kharagpur. https://nptel.ac.in/syllabus/106105034/	No Change in course contents. Added
32	VLSI 520, Nanoelectro nics	After completion of this course, students will be able to:	_	_	No Change in course contents.
		• Get knowledge in	Reference Books:	Recommended Books:	Deleted
		electronics has been driven by miniaturization. • Understand CMOS and MOSFET scaling,	Introduction to Nanotechnology, C.P. Poole Jr., F.J. Owens, Wiley (2003). Nanoelectronics and Information Technology (Advanced Electronic	 Poole , C.P., & Owens, F.J. (2003). Introduction to Nanotechnology. New York: Wiley Publications. Waser, R. (Ed.). (2012). Nanoelectronics 	

		Understand the electronic properties of molecules, carbon nanotubes and crystals.	Materials and Novel Devices), Waser Ranier, Wiley-VCH (2003) 3. Nanosystems, K.E. Drexler, Wiley (1992) 4. The Physics of Low-Dimensional Semiconductors, John H. Davies, Cambridge University Press, 1998 5. Research Papers	and information technology. John Wiley & Sons. 3. Drexler, K.E. (1992). Nanosystems. New York: Wiley Publications. 4. Davies, John. H. (1998). The Physics of Low-Dimensional Semiconductors. New York: Cambridge University Press. Suggested E-resources: 1. Nanostructures and Nanomaterials: Characterization and Properties by Prof. Anandh Subramaniam and Prof. Kantesh Balani Department of Materials Science & Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/118104008/ 2. Nanoelectronics: Devices and Materials by Prof. Navakanta Bhat Centre for Nano Science and Engineering Indian Institute of Science, Bangalore. http://textofvideo.nptel.ac.in/117108047/1 ecl.pdf	
33	VLSI 523, Representat ion and Analysis of Random Signals	After completion of this course, students will be able to: • understand the theory and application of probability, random variables and random processes • understand to study and analyze analytical expression	Text Book: • Michel .K Ochi, Applied Probability and Stochastic Processes in Engineering and Physical Sciences, Wiley, 1992. Reference Books: 1. A. Papoulis, Probability, Random Variables and Stochastic Processes, MH, 1985. 2. K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Application, PH, 1982.	Recommended Books: 1. Ochi, Michel .K. (1990) Applied Probability and Stochastic Processes in Engineering and Physical Sciences. New York: Wiley Publications. 2. Papoulis, A. (2002). Probability, Random Variables and Stochastic Processes. New York: TMH Publications. 3. 2. Trivedi ,K.S. (2001). Probability and Statistics with Reliability, Queuing and Computer Science Application. New York: Wiley Publications.	No Change in course contents.

34	VLSI 526, Speech Signal Processing	After completion of this course, students will be able to: • Describe the fundamentals of digital speech processing and digital model for speech signal process. • Illustrate and analyze the time domain model and Fourier representation for speech processing. • Explain basic principles of LPC equations and solutions.	Text Books: 1. L.R.Rabiner and R.W.Schafer, Digital Processing of Speech Signals, PH, 1978. 2. C.Plett, J.W.M.Rogers and M.A.Copeland, Radio Frequency Integrated Circuit Design,Artech,2003 3. R.E.Best, Phase-Locked Loops: Design, Simulation and Application, Fifth Edition,MH,2003 4. D.H.Wolaver, Phase locked Loop Circuit Design, PH, 1991. Reference Books: 1. J.R. Deller ,J.H.L .Hansen and J.G. Proakis, Discrete-time Processing of Speech signals, Wiley/IEEE,2000. 2. T.F. Quatieri, Discrete-Time Speech Processing: Principles and Practices, PH, 2001.	Recommended Books: 1. Rabiner, L.R., & Schafer, R.W. (1978). Digital Processing of Speech Signals. New Delhi: PHI Publications. 2. Plett, C.,Rogers, J.W.M., &Copeland, M.A. (2003). Radio Frequency Integrated Circuit. New Jersey: Design Artech House Publishers. 3. Best, R.E. (2003). Phase-Locked Loops: Design, Simulation and Application. New York: TMH Publication. 4. Deller, J.R., HansenJ.H.L., & Proakis, J.G. (1999). Discrete-time processing of Speech Signals. New York: Wiley-IEEE Press. 5. Quatieri, T.F. (2001). Discrete-Time Speech Processing: Principles and Practices. Massachusetts: PHI Publications. Suggested E-resource: 1. Digital Speech Processing by Prof. S. K. Das Mandal Centre for Educational Technology Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105145/19	No Change in course contents. Deleted
35	Photonics Integrated Circuits	After completion of this course, students will be able to: • Describe the optical waveguides and optical couplers with the help of coupled mode theory		Section A Optical Waveguide Modes, Planar Waveguides, Symmetric and Asymmetric, Slab and channel waveguides, Optical Couplers: Prism Couplers, Gräting Couplers, Tapered Couplers, Fiber to Waveguide Couplers, Multilayer Planar Waveguide Couplers, Dual-Channel Directional	New Course Added as elective.

Explain the basic operating	Couplers, Coupled-Mode Theory.	
mechanisms of optical	Section B	
switches and modulators	Section B	
Identify the performance	Electro Ontio Medulatore, Perio Oneratina	
limiting factors and	Electro-Optic Modulators: Basic Operating Characteristics of Switches and Modulators.	
applications of integrated	,	
optics	The Electro-Optic Effect, Single-Waveguide	
optics	Electro-Optic Modulators, Dual-Channel	
	Waveguide Electro-Optic Modulators.	
	Acousto-Optic Modulators: Acousto-Optic	
	Effect, Raman-Nath-and Bragg Type	
	Modulators, Acousto-Optic Frequency Shifters.	
	Section C	
	Distributed-Feedback Lasers: Theoretical	
	Considerations and performance	
	characteristics, Integrated Optical Detectors:	
	Depletion Layer Photodiodes, Specialized	
	Photodiode Structures, Techniques for	
	Modifying Spectral Response, performance	
	limiting factors. Applications of Integrated	
	Optics and Current Trends: Opto-Electronic	
	Integrated Circuits and future projections.	
	Recommended Books:	
	1. Hunsperger, Robert. G. (1995).	
	Integrated Optics Theory and	
	Technology. Berlin, New York: Springer.	
	2. Nishihara, Hiroshi. Haruna,	
	Masamitsu.,& Suhara, Toshiaki. (1989).	
	Optical integrated circuits. New York:	
	McGraw-Hill Publication.	
	3. Reed, Graham. T., & Knights, Andrew. P.	
	(2004). Silicon photonics: An	
	Introduction. New York: John Wiley &	
	Sons.	
	4. Tamir,T.(1990). Guided wave Opto-	
	electronics. Berlin, Heidelberg: Springer.	
	Suggested E- resource:	

36	VLSI 601R, High Level Synthesis	Section A Introduction: Level of Abstraction, Need for Design Automation on Higher Abstraction Levels, Essential issues in Synthesis. Architectural Models in Synthesis. Combinational Logic, Finite State Machines. Quality Measures: Area and Performance measures. Other Measures. Section B Design Description Language: HDLs, Hardware Specific Features, Formats, HDLs for DSP, Simulation Based HDLs, Modeling Guidelines for HDLs.	1. Photonic Integrated Circuits by Dr. Srinivas Talabatulla, Department of Electronics & Communication Engineering, IISc, Bangalore. https://nptel.ac.in/courses/117108142/ This course expose students to the advanced HDL design techniques, methodology and industrial standard EDA tools in electronic design. This course also discusses the new ideas and techniques in high level synthesis, essential issues in synthesis, architectural model, and guidelines for HDL design. Students will be expected to explore design methodology for high level synthesis, chip synthesis and physical design methodology.
		Design Representation and Transformations: Partitioning. Scheduling. Allocation. Section C Design Methodology for High-Level Synthesis: Generic Synthesis, System Synthesis, Chip Synthesis, Logic and Sequential Synthesis, Physical-Design Methodology, System and component Databases, Conceptualization Environment.	
		High Level Synthesis of ASICs. High-Level Synthesis for Real-Time Digital Signal Processing.	
		Text and Reference Books: 1. Daniel D. Gajski, Nikil D. Dutt, Alien C-H Wu, Steve Y-L Lin And High- Level Synthesis: Introduction to Chip	Suggested E- resources: 1. High level Synthesis by IIT Guwahati. https://nptel.ac.in/courses/117103125/4. 2. Synthesis of Digital Systems byDr.

		and System Design, Kluwer Academic Publishers. 2. Wayne Wolf, High-Level VLSI Synthesis, Raul Camposano, Kluwer Academic Publishers. 3. David C. Ku, Giovanni de Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints, Kluwer Academic Publishers 4. Jan Vanhoof, Karl Van Rompaey, Ivo Bolsens, Gert Goossens, Hugo De Man, High-Level Synthesis for Real-Time Digital Signal Processing, The CATHEDRAL-11 Silicon Compiler, Kluwer Academic Publishers.	Preethi Ranjan Panda, Department of Computer Science & Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/106102181/7	
37	VLSI 604R, VLSI Testing and Design for Testability	SECTION-A Physical defects and their modeling; stuck at faults; Bridging Faults; Fault collapsing Fault Simulation Deductive, Parallel and Concurrent; Critical Path Tracing; Test Generation for Combinational Circuits: D-Algorithm, Boolean Difference, PODEM Random, Exhaustive and Weighted Random Test Pattern Generations Aliasing and its effect on Fault coverage SECTION-B PLA Testing: cross-point Fault Model, Test Generation, easily testable design, Memory testing: Permanent Intermittent and Pattern Sensitive Faults; Delay Faults and Hazards; Test Generation Techniques	The course attempts to expose the students to the most recent, yet fundamental, VLSI test principles in an effort to help them design better quality products that can be reliably manufactured in large quantity. The course explores the issue related to the physical defects, test generation technique for combinational and sequential circuits, controllability and obeservability and redundancy.	

		an amany a		
		Test Generation for Sequential Circuits: Time Frame Expansion; Controllability and Obeservability Scan Design.Scan path and LSSD, boundary Scan, BILBO, Bounday Scan For Board Level Diagnosis. Concept of Redundancy, spatial redundancy. Time redundancy.		
		References: 1. M. Abramovici, M.A. Breuer and R.D. Friedman, Digital Systems Testing and Testable Design, Revised Edition, IEEE Press, 1995. 2. V. Agarwal and S. C. Seth, Test Generation for VLSI Chips, IEEE CS Press, 1989. 3. E. J. McCluskey, Logic Design Principles, Prentice Hall, 1986.	Suggested E-resources: 1. Digital VLSI Testing by Prof. Santanu Chattopadhyay Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc17_ec 02/preview. 2. Testing and Verification of VLSI Circuits by Prof. Virendra Singh IIT Mumbai. https://www.ee.iitb.ac.in/~viren/Courses/2012/EE709.htm	
38	Advanced Electronic Packaging		This course is designed to equip students with the required knowledge and concepts in mechanical, thermal, and reliability concern of modern electronic packaging. Emphasis is on IC packaging performance and its achievement through the proper material selection. The course will explore the multichip module, electrical autonomy IC assembly, challenges in the electronic packaging, and can recognize the various methods available and selection of appropriate packaging solution for particular applications. Suggested e-resource: 1. An Introduction to Electronics Systems	

		Packaging by IISC Bangalore.	
		https://nptel.ac.in/courses/108108031/	
39	Compound	This course provides students with the basic	
	Semiconduc	understanding of Non-Silicon MOSFET	
	tor	technology. The students should be able to	
	Technology	use properties and trade-offs of compound	
		semiconductors (GaAs, InAs, InP and InSb)	
		for design of high performance MOSFETs.	
		The students will be able to explain the	
		challenges and power performance of	
		strained III-V MOSFETs, the high k	
		dielectric based MOSFETs. Students should	
		also be able to discuss the Future Scaled	
		CMOS and hybrid CMOS technology.	
		Suggested e-resources:	
		1. Nanoelectronics: Devices and	
		Materials by Prof. K. N. Bhat Centre for	
		Nano Science and Engineering.	
		https://nptel.ac.in/courses/117108047/28.	
		2. Compound Semiconductor Devices by	
		Prof. C. G. Fonstad, MIT, USA.	
		https://ocw.mit.edu/courses/electrical-	
		engineering-and-computer-science/6-772-	
		compound-semiconductor-devices-	
40	D	spring-2003/lecture-notes/. This course provides an introduction to basic	
40	Digital	concepts, methodologies and algorithms of	
	Image Processing	digital image processing focusing on image	
	Processing	analysis and image enhancement and	
		restoration for easier interpretation of images.	
		The course provides overview of digital	
		image processing including visual perception,	
		Image Digitization, Basic Transformations,	
		Interpolation and Resampling, Image	
		Interpolation, Image Transformation, Image	
		Enhancement, Image Segmentation,	
		Morphology, Object Representation and	
		Description, object Representation and	
		course focuses on to create an ability in	
L		course focuses on to create an ability in	

students to analyze a problem in this domain and identify the computing requirements appropriate for its solution; an ability to design, implement and evaluate a computer-based system, process, component or program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://mptel.ac.in/courses/117105079/ Organic Electronic Electronic Devices Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to the molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-lectronic/devices-purpleys-ananos-158			T	
appropriate for its solution; an ability to design, implement and evaluate a computer-based system, process, component of program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://mptela.e.in/courses/117105079/ Organic Electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells, Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic_				students to analyze a problem in this domain
design, implement and evaluate a computer-based system, process, component of program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://nptel.ac.in/courses/117105079/ Organic Electronic Devices Organic delectronic making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells, Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				and identify the computing requirements
based system, process, component or program to meet desired needs Sugested e-resource: 1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://nptel.ac.in/courses/117105079/ Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				appropriate for its solution; an ability to
The program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://nptel.ac.in/courses/IT/105079/ Organic electronic Devices Organic electronic Devices Dev				design, implement and evaluate a computer-
Suggested e-resource: 1. Digital Image Processing by Prof.P. K. Biswas, IIT Kharagpur, https://nptel.ac.in/courses/117105079 Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high- resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				based system, process, component or
1. Digital Image Processing by Prof. P. K. Biswas, IIT Kharagpur, https://nptel.ac.in/courses/117105079/ Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high- resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				program to meet desired needs.
Biswas, IIT Kharagpur, https://pptel.ac.in/courses/11705079 Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				Suggested e-resource:
Biswas, IIT Kharagpur, https://mptel.ac.in/courses/11705079/ Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				1. Digital Image Processing by Prof .P. K.
Organic Electronic Devices Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				
making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				https://nptel.ac.in/courses/117105079/
making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-	41	Organic		Organic electronic devices are quickly
with innovative thin mobile devices, high- resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				making their way into the commercial world,
Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-		Devices		
Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				resolution displays, and photovoltaic cells.
highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices, Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				Purpose of the course is to learn about this
on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				highly promising technology, which is based
discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				
organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopie device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				
organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopie device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				implemented successfully in established
students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University, https://www.edx.org/course/organic-				
device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				students will gain the ability to tie molecular
device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				transport phenomena with macroscopic
prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				
the next generation of organic electronic materials and devices. Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				
Suggested e-resources: 1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				
1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				materials and devices.
1. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				Suggested e-resources:
Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic-				
https://www.edx.org/course/organic-				
				electronic-devices-purduex-nano515x

Annexure V

Name of Programme: B.Sc.

- Disciplinary Course-Physics
 Programme Educational Objectives:

 To provide necessary knowledge and leadership skills for a successful professional career.
 - To provide necessary knowledge and leadership skills for a successful professional career.

 To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
 - > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- Function with multidisciplinary teams.

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 103	Electricity and Electronics	6	0	0	6	PHY 103	Electricity and Electronics	6	0	0	6
PHY 104L	Electronics Lab	0	0	4	2	PHY 104L	Electronics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020) Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 107	Optics	6	0	0	6	PHY 107	Optics	6	0	0	6
PHY 107L	Optics Lab	0	0	4	2	PHY 107L	Optics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
PHY 201	Mechanics	6	0	0	6	PHY 201	Mechanics	6	0	0	6
PHY 201L	Mechanics Lab	0	0	4	2	PHY 201L	Mechanics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme						
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C		
PHY 203	Statistical and Mathematical Physics	6	0	0	6		Thermodynamics, Statistical and Mathematical Physics	6	0	0	6		
PHY 202L	Physics Lab	0	0	4	2		Physics Lab	0	0	4	2		
	Total	6	0	4	8		Tota	6	0	4	8		

B.Sc. (Mathematics) Semester - V (December, 2021) Disciplinary Course-Physics

	Quantum Atomic Molecular					Proposed Scheme					
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
5.1	~						*Discipline Elective-I	6	0	0	6
	Atomic Physics Lab						* Discipline Elective-I Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022) Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	T	P	C	Course Code	Course Name	L	T	P	C
6.1	Nuclear and Solid State Physics						*Discipline Elective-II	6	0	0	6
	Nuclear and Solid State Physics Lab						* Discipline Elective-II lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

Discipline Electives

S. No.	Course code	Name of Course	L	T	P	С
1.		Quantum Mechanics and Spectroscopy	6	0	0	6
2.		Quantum Mechanics and Spectroscopy Lab	0	0	4	2
3.		Advance Quantum Mechanics	6	0	0	6
4.		Advance Quantum Mechanics Lab	0	0	4	2
5.		Nuclear and Solid State Physics	6	0	0	6
6.		Nuclear and Solid State Physics Lab	0	0	4	2
7.		Advanced Semiconductor Devices	6	0	0	6
8.		Advanced Semiconductor Devices lab	0	0	4	2

Note: Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

Course Details:

S. N.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	PHY103	After completion of this course,	Recommended Books:		No
	Electricity and	the students will be able to-	 Tayal D C (2005) Electricity and Magnetism, Himalaya Publishing House. 		change in the entire course
	Electronics	 learn fundamentals and 	Saxena M. P. (1997) Electricity and Magnetism, College Book House.		
		concepts of electricity	3. Bhargava N N (2000), Basic Electronic, Tata McG	a McGraw Hill.	Update e-Resources
		and electronics learn about the basic 4.	 Mehta V.K.(2002), Principles of Electronics, 	, S. Chand publisher.	
		concepts of electronic	References Books:		
		and electrical circuit . Sadiku Mathew N.O.(2005) Elements of Electromagnetics, New Delhi, Oxford Univ. Press			
		analysis techniques	. Purcell, E. M. (1963). Berkeley physics course. Electricity and magnetism.		
		 apply the above 	 Millman, J., & Halkias, C. C. (1972). Integ 		
		motioned concept to design a range of	McGraw-Hill.		
		design a range of electronic devices and			
		circuit configurations.			
		Suggested web-resources: https://www.coursera.org/browse/physical-science-and-engineering/electrical-engineering			
			https://www.edx.org/learn/electronics		

	1			1	
2.	PHY 104L		Determine the energy gap using junction diode		50 % of the syllabus deals with
			Study the characteristics of junction diode and		electricity and electromagnetism so
					experiment no. 11 and 12 is removed
			Study the voltage regulation and ripple factor of	Study the voltage regulation and ripple factor of half and	from the existing list and 4 new
		laboratory and analyze	half and full wave rectifier		experiment is introduced in proposed
		the measurements to	 Study the bridge rectifier with filters 	Study the bridge rectifier with filters	list.
		draw valid conclusions.	Study the characteristics of PNP/NPN junction	Study the characteristics of PNP/NPN junction transistor	
		 have oral and written 	transistor	Study the characteristics of FET	
		scientific communication,	Study the characteristics of FET	7. Study a voltage multiplier circuit to generate high voltage	
		and to think critically and	7. Study a voltage multiplier circuit to generate	DC from AC	
		work independently.	high voltage DC from AC	8. Study the characteristics of optoelectronic devices (LED,	
		 to understand principles 	8. Study the characteristics of optoelectronic	Photodiode and Phototransistor)	
		of law of electricity	devices (LED, Photodiode and Phototransistor)	9. Study the OPAMP in (i) inverting mod (ii) noninverting	
		magnetism.	9. Study the OPAMP in (i) inverting mod (ii)	mod (iii) integrator (iv) differentiator	
			noninverting mod (iii) integrator (iv) differentiator	10. Study AND, OR, NOT, NOR and NAND logic gates and	
			10. Study AND, OR, NOT, NOR and NAND logic	verify the truth tables	
			gates and verify the truth tables	11. Study of electromagnetic induction by oscillation of bar	
			11. Study the voltage gain and frequency response	magnet.	
			of a double stage RC coupled transistor amplifier	Mutual induction by direct method.	
			12. Study the characteristics of a thermistor	Verification of Faraday's law and Lenz's law.	
				B-H Curve using Magnetometer.	
				15. To determine Self Inductance of a Coil by Anderson's	
				Bridge using AC	
				16. To determine Self Inductance of a Coil by Rayleigh's	
				Method.	
				17. Determination of mutual inductance of a pair of coils	
				using BG.	

3	١.	PHY 107	Y 107 After completion of this course, Recommended Books:				
		Optics	the students will be able to-	change in the entire course			
			 appreciate the efficacy of 1. Khandelwal D.P. (1973), Text book of optics and Atomic Physics, Pub. Shivlal Darwal, Agra. 				
				Update e-Resources			
			their application to physical systems. Ghatak, A., & Thyagarajan, K. (1998). <i>An introduction to fiber optics</i> . Cambridge university press.				
			 understand the role of the4. wave equation and Ghatak, A. K. (1971). An introduction to modern optics. An introduction to modern optics, by Ghatak, AK. New York, NY (USA): McGraw-Hill. 				
			appreciate the universal Reference Books:				
			nature of wave motion in a range of physical 1. Ghatak, A. K. (2012). Contemporary optics. Springer Science & Business Media.				
			systems 2. Hecht, J., & Long, L. (1993). Understanding fiber optics (Vol. 3). Prentice Hall.				
			 understand dispersion in 3. Cherin, A. H., & Short, L. (1983). An introduction to optical fibers (p. 135). New York: McGraw-Hill. 				
			waves and model 4. Hecht E (2006) Optics, Pearson Education.				
			theory. 5. Ghatak, A. K., & Thyagarajan, K. (1989). Optical electronics. Cambridge University Press.				
			understand diffraction and				
			imaging in terms of Suggested web-resources: Fourier optics and gain https://www.coursera.org/courses?query=optics				
			physical and intuitive https://swayam.gov.in/courses/4906-july-2018-modern-optics				
			insight in a range of				
			physics via the spatial Fourier Transform.				
			Tourier Transform.				

4.	PHY 107 L	After completion of this course,	No
	Optics Lab	the students will be able to-	change in the entire course
		 demonstrate laboratory 	
		skills in physics	
		laboratory and analyze	
		the measurements to draw valid conclusions.	
		 have oral and written 	
		scientific communication,	
		and to think critically and	
		work independently.	
		to understand principles	
		of Optics and wave nature	
		of light.	
	1		

5. PF	HY 201	After completion of this course, Recommended Books:	No
M	Iechanics	the students will be able to- 1. Saxena M. P. Rawat S S (2000) Mechanics, College Book House.	change in the entire course
		 demonstrate proficiency in mathematics and the mathematical concepts needed for a proper understanding of physics. show that they have learned laboratory skills. enabling them to take measurements in a physics laboratory and analyze the measurements to draw valid conclusions. have oral and written terminations of the measurements of the measurem	Update e-Resources

6.		After completion of this course,	No
	Mechanics Lab	the students will be able to-	change in the entire course
		 demonstrate laboratory 	
		skills in physics	
		laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		 have oral and written 	
		scientific communication,	
		and to think critically and	
		work independently.	
		 to understand principles 	
		of Newtonian mechanics,	
		friction, and motion of	
		bodies.	

	fter completion of this course, R		No change in the entire cours
	e students will be able to-		contents, but the title of th
Mathematical	 understand the laws of 	 Zeemansky M.W. (1968) Heat and Thermodynamics, McGraw Hill, 5th ed. 	course has been changed
Physics	thermodynamics in their	2. Singhal, Agrawal Prakash (2007)Heat and Thermodynamics, Pragati Prakashan.	TI I. D
	various forms and explain their physical	3. Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre	Update e-Resources
	their physical significance.	Jaipur.	
lew Proposed	state the thermodynamic	4. Rajput B S. (2005), Mathematical Physics, Pragati Prakashan.	
Γitle-	potentials and recognize _R	reference Books:	
Thermodynamic s, Statistical and	the most appropriate potential for application	1. Reif, F. (2009). Fundamentals of statistical and thermal physics. Waveland Press.	
Mathematical	to a particular problem.	2. Holman, J. P. (1974). Thermodynamics McGraw-Hill. New York.	
hysics	 derive and state the 	3. Lokanathan, S., & Gambhir, R. S. (1991). Statistical and Thermal Physics: an Introduction. Prentice Hall.	
	Boltzmann, Fermi-Dirac and Bose-Einstein	4. French, A. P. (2017). Special relativity. CRC Press.	
	distributions.	5. Arfken, G. B., & Weber, H. J. (1999). Mathematical methods for physicists, Elsevier.	
	• know the key links	uggested web-resources:	
	between thermodynamicsht	ttps://cosmolearning.org/courses/thermal-statistical-physics/	
		ttps://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/video-	
		ectures/lecture-1-thermodynamics-part-1/	
	<u>ht</u>	ttps://programsandcourses.anu.edu.au/course/PHYS2020	

_			
8.	PHY 202L	After completion of this course,	Determine the mechanical equivalent of heat (J) Determine the mechanical equivalent of heat (J) by using Experiment No. 6, 10, 11, 12 a
		the students will be able to-	by using Calendar and Barn's constant flow Calendar and Barn's constant flow meter.
		 demonstrate laboratory 	meter. 2. To Determine the thermal conductivity of bad conductorstrengthen the laboratory
		skills in physics ²	To Determine the thermal conductivity of bad (samples may be Glass or Ply Wood or Cardboard) using practices. Expt. No. 9 and 10 i
		laboratory and analyze	conductor (samples may be Glass or Ply Wood Lee's disc method.
		the measurements to	or Cardboard) using Lee's disc method. B. Determine the melting point of given material using removed due to unmatched wi
		draw valid conclusions.	Determine the melting point of given material platinum resistance thermometer.
		 have oral and written 	using platinum resistance thermometer. 1. Plot thermo emf Vs temperature graph and find the
		scientific communication,	Plot thermo emf Vs temperature graph and find inversion temperature and neutral temperature
		and to think critically and	the inversion temperature and neutral. To determine the thermodynamic constant (C_p/C_v) using
		work independently.	temperature Clement and Desorme's method.
		 to understand principles 	To determine the thermodynamic constants. To verify the Stefan's law by electrical method.
		of thermodynamic laws	(C_p/C_v) using Clement and Desorme's method. 7. To determine the value of stefan's constant.
		experimentally	Study of the variation of total thermal radiation. Verify certain laws of probability.
			with temperature and verify the stefan's law. 1. To determine the resistance per unit length of Carey Fosters
		7	To determine the value of stefan's constant. bridge and finds the resistance of a given wire (Unknown
		8	Verify certain laws of probability. resistance).
		<u> </u>	To study the RC transmission line.
		1). To study the LC transmission line. () of the given sample. Compare and verification of
		1	1. To determine the resistance per unit length of (copper)<(brass)<(aluminum).
			Carey Fosters bridge and finds the resistance of 1. To determine mechanical equivalent of heat (J) Joule's
			a given wire (Unknown resistance). constant by electrical method.
			2. Determine the resistance per unit length of bridge wire and
			then determine the temperature coefficient of Platinum
			resistance thermometer (PTR).
			3. To demonstrate Seebeck Effect with the help of
			Thermocouple module.
- 1	1	The state of the s	

0 51	A Grand and Annie of this course December 1 de Declar	No about in the autimoration
9. 5.1 Quantum Atomic Molecular Physics Quantum Mechanics an Spectroscopy	 kakani S. L., Hemrajni C. (1995) Elementary Quantum Mechanics and Spectroscopy, College Book Centre, Jaipur. solve the Schrödinger equation for model systems of relevance within chemistry and physics describe many-electron atoms with the independent particle model describe the structure of the periodic system and the connections between the properties of the elements and their electron configurations describe the bases behind Kakani S. L., Hemrajni C. (1995) Elementary Quantum Mechanics and Spectroscopy, College Book Centre, Jaipur. Ray Kumar (1997), Atomic and Molecular Spectera, Kedar Nath Ram Nath publisher. Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre, Jaipur. Reference Books: Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: in fundamentals of physics, Tata McGraw-Hill. 	course has been changed Update e-Resources
10. 5.2 Atomi Physics Lab	matter and account for the most common spectroscopic methods for studies of molecules in the IR and UV/Vis areas IcAfter completion of this course, the students will be able to- • demonstrate measurements skills in a physics laboratory • analyze the measurement results to draw valid states of the students will be able to- • demonstrate measurements in the value of Planck constant using solar study the absorption spectrum of lodine Molecule. • Study the absorption spectrum of lodine Molecule. • Study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the absorption spectrum of lodine Molecule. • Study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using solar study the Franck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the Branck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the Franck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the Franck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the Planck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the Planck Hertz experiment and determine the value of Planck constant using Photo cell. • Study the	have been removed from the existing experiments list due to unmatched with the theory course in the relevant semester.

			deflection method.	To determine the workfunction of given metal by	
11.	Advanced Quantum Mechanics	After completion of this course, the students will be able to- solve the Schrödinger equation for complex systems describe the structure of the periodic system and the connections between the properties of the elements and their electron configurations understand the effect of external parameters on the quantum systems		Unit-1 Postulates of Quantum Mechanics, Planck's Quantum theory, Einstein's explanation, Compton Effect, Wave Particle Duality, de-Broglie waves, Electron Diffraction Experiment, Uncertainty Principle: Formulation and its applications, Bohr's principle of complementarity, Time dependent and time independent forms of Schrodinger's equation: need and justification Unit-2 Wave Function, its physical significance and properties, Schrodinger and Born interpretation, Probability Current Density, eigenvalues and eigenfunctions, degeneracy, parity and orthogonality of eigenfunctions, expectation values of dynamical variables-position, momentum, energy, Ehrenfest Theorem, Time independent schrodinger equation and stationary state solution, particle in one dimensional box: eigenfunctions and eigenvalues Unit-3 Discrete energy levels, generalization to three dimensions and degeneracy of levels, Potential step and rectangular potential barrier, Calculation of reflection and transmission coefficients, Alpha Decay, Square Well Potential Problem(attractive), Calculation of	

Schrodinger Equation in Spherically symmetric systems: Rigid Rotator and Hydrogen Atom Unit-4 Operators in quantum mechanics: Definition, Orthogonal Sets, Completeness, Eigen values and Eigenfunction, Operator Formalism, Commutation Algebra, Linear and Hermitian Operators, Commutativity and simultaneous eigenfunctions, Hilbert Space, Operators as matrix, Matrix form of wave equation, Schrodinger, Heisenberg and Interaction matrix representation, Dirac's Bra and Ket vectors, Direct Sum and product of Hilbert space, Co-ordinate and momentum representation Unit-5
Approximation Methods: perturbation theory, motivation of approximation methods, Variational methods, WKB Approximation, Applications of Variational and WKB methods. Time dependent perturbation theory, Harmonic perturbation. Recommended Books:
1. Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand. Ghatak, A. & Lokanathan S. (2001) Quantum Mechanics (McMillan India Ltd.) Sakurai J. J. (2005) Modern Quantum Mechanics (Pearson Education) Griffiths D. (2006) Introduction to Quantum Mechanics (Pearson Education)
 Bjorken J. D. and S. D. Drell (1997) Relativistic Quantum Mechanics (McGraw Hill) Greiner, W and Bromley D. A. (2003) Relativistic Quantum Mechanics (Springer)

transmission and reflection coefficients, Applications of

	Reference Books: 1. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan. 2. Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill. 3. White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132.
12. 5.2 Advanced After completion of this course,	Suggested web-resources: https://swayam.gov.in/course/4250-quantum-chemistry- spectroscopy-photochemistry https://www.edx.org/course/quantum-mechanics-molecular- structures-utokyox-utokyo003x-1 1. Determine the specific charge (e/m) using Thomson
Quantum Mechanics Lab the students will be able to demonstrate measurements skills in a physics laboratory analyze the measurement results to draw valid conclusions. have oral and written scientific communication, and think critically and work independently.	method. 2. Determine the specific charge (e/m) using helical method. 3. Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method 4. Determine the electrical charge (e/m) using Millikan's oil drop method. 5. To study the hydrogen spectrum and determination of Rydberg's constant. 6. Verify the inverse square law using photocell. 7. Determine the value of Planck constant using Photo cell. 8. Determine the value of Planck constant using solar cell. 9. Study the absorption spectrum of Iodine Molecule. 10. Study the Franck Hertz experiment and determine the ionization potential of inert gas.
	Determine the value of Planck constant using LED. To determine the workfunction of given metal by suitable method.

13.	6.1	After completion of this course, Recommended Books:	No
		the students will be able to- 1. Tayal D C (1992) Nuclear physics, Himalya Pub. House, Bombay.	change in the entire course
	Solid State Physics	forces and bonds 2. Kapian, I. (1903). Nuclear physics, Oxford & IBH Pub.	Update e-Resources
		 have a basic knowledge 3. Pillai S O. (2005), Solid State Physics, New Age International. 	•
		of crystal systems and 4. Singhal R. L. Alvi P. A. (2015) Solid State Physics, Kedarnath Ramnath, Meerut.	
		spatial symmetries Reference Books:	
		account for how crystalline materials are Singru, R. M. (1974). Introduction to experimental nuclear physics, Wiley Eastern Pvt. Ltd.	
		studied using diffraction, 2. Ghoshal S. N. (2006) Nuclear Physics by S. N., S. Chand.	
		including concepts like 3. Kittel, C. (1976). Introduction to solid state physics (Vol. 8). New York: Wiley.	
		form factor, structure factor, and scattering 4. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics, Cornell University Saunders College	
		amplitude. Publishing.	
		understand the concepts Suggested web-resources:	
		of nuclear physics https://swayam.gov.in/course/3817-solid-state-physics	
		understand the elementary https://nptel.ac.in/courses/115105099/	
		particles and their https://ocw.mit.edu/courses/nuclear-engineering/	
		interactions	

14.		pletion of this course,	No
		s will be able to-	change in the entire course
		monstrate	
	Physics Lab n	easurements skills in a	
	l p	ysics laboratory	
	• :	alyze the measurement	
	r	sults to draw valid	
	c	nclusions.	
	• h	ve oral and written	
		entific communication,	
	a	d think critically and	
	ν	ork independently.	
		understand the laws of	
		clear and solid state	
		ysics	
	1		
- 1			

Advanced	course, the students will be	<u>Unit-1</u>
Semiconduct	tor able to-	Energy Bands, direct and indirect semiconductors,
Devices	 understand the 	effective mass, Intrinsic and Extrinsic semiconductors,
	mechanism of	Occupation Probability and carrier concentration,
	semiconductor devices	Temperature Dependence of carrier concentration, Fermi
	 understand the 	Level, Quasi Fermi Level, mobility and conductivity, Hall
	applications of	effect, four probe method of resistivity measurement
	semiconductor devices in	Unit-2
	routine life	Generation and Recombination of Charges, Diffusion,
	make advancement in	Continuity Equation, Injected Minority charge carriers,
	these devices	potential variation within a graded semiconductor,
	these devices	Schottky Junction and Ohmic Contact, pn junction diode,
		Zener diode, Zener and avalanche breakdown, Tunnel
		diode, Semiconductor Photodiode and Light Emitting
		Diode
		Unit-3
		Avalanche Photodiode: Structure, Materials,
		Characteristics and device performance
		Bipolar Junction Transistor: Types, Current components,
		CB,CC,CE configuration, Ebers-Moll model of transistors.
		Concept of Load Line and Operating Point, Thermal
		stability of transistor, Fixed Bias, Emitter Bias, Voltage
		Divider Bias, Collector Feedback Configuration
		Unit-4
		Junction Field Effect transistor, depletion and
		enhancement type MOSFET, V-I characteristic, operation
		methods, FET biasing: Fixed, self and Voltage Divider
		Bias
		Four Layer Diode (p-n-p-n), SCR, Principle of operation,
		transistor analogy, methods of turning on and turning off
		(only reference), Gate characteristic, DIAC, TRIAC, light
		activated thyristor
		Unit-5
		Operational Amplifier and its applications, inverting and
		non-inverting amplifiers, adder, integrator, differentiator,

	wave-form generator, comparator, Schmitt trigger. Recommended Books: 1. Millaman J. and Halkias C. (1972) Integrated Electronics (McGraw Hill, New York), 2. Malvino L. (1999) Electronic Devices and circuits 3. Sterectman B. G. (1995) Solid State Electronic Devices and Integrated Circuits (Prentice Hall Inc.). 4. Sze S.M. (1999) Physics of Semiconductors Devices by (John Wiley & Sons).
	Suggested e-resources: 1. https://nptel.ac.in/courses/115102014/ 2. https://nptel.ac.in/courses/113106062/ 3. https://nptel.ac.in/courses/117106091/

Advanced After completion of this Semiconductor course, the students will be Devices LAB • assess the validity of physical theories through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the tools, methodologies, language and conventions of physics to test and communicate ideas and explanations To study the V-I characteristics of TRLC.					
Devices LAB • assess the validity of physical theories through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas	16.		1	To study the V-I characteristics of FET using discrete	
assess the validity of physical theories through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). connect a digital oscilloscope to a computer and record data, use the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test a and communicate ideas and com					
assess the validity of physical theories through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and c			able to-		
physical theories through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and contended to the violation of the createst of the violation of the createst of physics to the violation of the createst of the violation of the violation of the createst of the violation of violation o		LAB		3 To study the output and transfer characteristics of FET.	
through the design and execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and content in the communicate ideas and content in the conte			 assess the validity of 		
execution of an experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			physical theories	5 To study the V-I characteristics of DIAC.	
experiment, the analysis of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			through the design and	6 To study the V-I characteristics of TRIAC.	
of uncertainties associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			execution of an	7 To study the V-I characteristics of SCR.	
associated with the measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			experiment, the analysis	8 To study the characteristics of optocoupler and draw its	
measurement of data and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			of uncertainties		
and the interpretation of the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			associated with the	9 To study the V-I characteristics of Photodiode.	
the data to draw valid scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			measurement of data	10 To study the V-I characteristics of p-n junction diode	
scientific conclusions (lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			and the interpretation of	using discrete components on bread board.	
(lab skills). • connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			the data to draw valid	11 To study the V-I characteristics of pnp or npn transistor	
 connect a digital oscilloscope to a computer and record a signal with an appropriate sampling rate; generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and 			scientific conclusions	using discrete components on bread board.	
oscilloscope to a computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			(lab skills).		
computer and record a signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			 connect a digital 		
signal with an appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			oscilloscope to a		
appropriate sampling rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			computer and record a		
rate; • generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			signal with an		
generate and interpret the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			appropriate sampling		
the power spectrum of the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			rate;		
the recorded data, use the tools, methodologies, language and conventions of physics to test and communicate ideas and			 generate and interpret 		
the tools, methodologies, language and conventions of physics to test and communicate ideas and			the power spectrum of		
methodologies, language and conventions of physics to test and communicate ideas and			the recorded data, use		
language and conventions of physics to test and communicate ideas and			the tools,		
conventions of physics to test and communicate ideas and			methodologies,		
to test and communicate ideas and					
communicate ideas and			conventions of physics		
explanations			communicate ideas and		
			explanations		

Name of Programme: M. Sc. (Physics)

Programme Educational Objectives

Among various science subjects, Physics is a natural science which deals with the behavior of matter, energy and the natural laws. The core theories of Physics are: Classical Mechanics, Electromagnetism, Thermodynamics and Statistical Mechanics, Quantum Mechanics and Relativity. There are many more branches of Physics like including astronomy, biophysics, atmospheric physics, nuclear physics etc. Therefore, Physics plays a key role in the future progress of humankind either in education or research in the world because of its characteristics features.

Keeping in views the entire scientific development of the student through covering almost all the courses, the M.Sc. (Physics) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in Physics through learning the designed studies with high quality and significance. However, the main objectives of the programmes are as follows:

- To provide the fundamental concepts of nature in terms of physics with their utilizations
- To produce MSc students who are very knowledgeable and theoretically sound and are able to
 apply these for the analysis and solution of problems where these leads to new or substantially
 improved insights and performances.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent physicists at national and international level
- To produce MSc students with high integrity having social values and who are ethically professional
- To produce MSc students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To produce MSc students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To produce MSc students who can adapt to changes in environment and practice lifelong learning
- To provide the ideas about pollution control and environment sustainability through exemplary education

Programme Outcomes

PO1: Physics Knowledge: Possess fundamental knowledge of various core courses of physics to solve complex scientific problems of the society. Also, the students will be able to apply theoretical knowledge of principles and concepts of Physics to practical problems

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills.

PO3: Expert of Advanced Tool: Expertise in new and advanced techniques like photo-sepectrometer, XRD, FESEM, Raman, DSC etc. through project component of the programme.

PO4: Problem analysis ability-Ability to apply physics principles alongwith other scientific conceptual attitude to analyze the problems related to society and to show the caliber for finding the solution.

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through learning of time management and team work skill.

PO6: Professional Identity- Possess ability to prove professional identity in any institution and industry at national and international level

PO9 7: Physics and society-Ability to explain the understanding of impact of physics study on the society including pollution, environment, health and ecosystem. In addition, the students will be able to propagate their knowledge to address problems of social relevance such as energy, and environment through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate the role of physics to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through project and laboratory practices

PO10: Life-long learning- Possess the knowledge of current issues and ability to engage in life-long learning

Master of Science (Physics)

${\bf Programme\ Scheme:}$

Semester (I):

	Existing											
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C	
Code						Code						
CS 416	Computer Programming	4	0	0	4	CS 416	Computer Programming	4	0	0	4	
ELE 406	Principle of Digital Electronics	4	0	0	4	ELE 406	Principle of Digital Electronics	4	0	0	4	
PHY 403	Classical Mechanics	4	0	0	4		Classical Mechanics	4	0	0	4	
PHY 404	Mathematical Physics	4	0	0	4		Mathematical Physics	4	0	0	4	
PHY 406	Quantum Mechanics-I	4	0	0	4	PHY 406	Quantum Mechanics-I	4	0	0	4	
CS 416L	Computer Programming Lab	0	0	8	4	CS 416L	Computer Programming Lab	0	0	8	4	
	Principle of Digital Electronics Lab	0	0	4	2		Principle of Digital Electronics Lab	0	0	4	2	
	Total:	20	0	12	26		Total:	20	0	12	26	

Semester (II):

	Existing					Proposed							
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C		
Code						Code							
CS 414	Computer oriented numerical and statistical methods	4	0	0	4	CS 414	Computer oriented numerical and statistical methods	4	0	0	4		
PHY 401	Atomic and Molecular Physics	4	0	0	4	PHY 401	Atomic and Molecular Physics	4	0	0	4		
PHY 402	Classical Electrodynamics-I	4	0	0	4	-	Classical Electrodynamics-I	4	0	0	4		
PHY 407	Quantum Mechanics-II	4	0	0	4	-	Quantum Mechanics-II	4	0	0	4		
PHY 408	Statistical Mechanics	4	0	0	4	PHY 408	Statistical Mechanics	4	0	0	4		
TSKL 403	Communication Skills	2	0	0	2	-	Communication Skills	2	0	0	2		
CS 414L	Computer oriented numerical and statistical methods Lab		0	4	2	CS 414L	Computer oriented numerical and statistical methods Lab		0	4	2		
PHY 405L	Physics Lab-I	0	0	8	4	PHY 405I	Physics Lab-I	0	0	8	4		
	Total:	22	0	12	28		Total:	22	0	12	28		

Semester (III):

Existing Course						Proposed							
Course Code	Course Name	L	Т	Р	С	Semeste	er - III						
	Course Nume	_	Ľ			Course	Course Name	L	Т	Р	С		
PHY		١.				Code							
530	Solid State Physics	4	0	0	4	PHY							
PHY	Classical Electrodynamics-					530	Solid State Physics	4	0	0	4		
504	ll .	4	0	0	4								
						PHY	Classical						
PHY						504	Electrodynamics-II	4	0	0	4		
516	Nuclear Physics-I	4	0	0	4	PHY							
PHY	Physics of Laser and Laser				-	516	Nuclear Physics-I	4	0	0	4		
520	Applications	4	0	0	4	310	reacted in thysics i	•		0	'		
320	принации		ਁ	ľ			Physics of Laser and						
PHY							Laser Applications	4	0	0	4		
518L	Physics Lab-II	0	0	8	4	\vdash	51			•			
	-1	_	_				Physics Lab-II	0	0	8	4		
	Elective-I	4	0	0	4				_	_			
PHY							Discipline Elective	4	0	0	4		
527S	Seminar	0	o	2	1		Reading Elective	0	0	0	2		
							medanig Elective	J		J	_		
	Total:	20	0	14	27	PHY							
					<u> </u>	527S	Seminar	0	0	2	1		
							Semester Wise Total:	20	0	10	27		

Semester (IV):

	Existing						Proposed				
Course	Course Name	L	T	P	C	Semeste	er - IV				
Code						Course Code	Course Name	L	Т	Р	С
PHY 529	Solid State Electronics Devices	4	0	0	4	PHY 529	Solid State Electronics Devices	4	0	0	4
ELE 307	Microwave Electronics	4	0	0	4	ELE					
PHY 517	Nuclear Physics-II	4	0	0	4	307	Microwave Electronics	4	0	0	4
PHY 519L	Physics Lab-III	0	0	8	4	PHY 517	Nuclear Physics-II	4	0	0	4
	Elective-II	4	0	0	4	PHY 525P	Project	0	0	8	4
PHY	Project	0	0	8	4		Physics Lab-III	0	0	8	4
323P	Ü	_		0	4	_	Open Elective	4	0	0	4
	Total	16	0	16	24	Semester	Wise Total:	16	0	16	24

Discipline Electives					Reading Electives
Fibre Optics Communication	4	0	0	4	Optical materials and Devices
Physics of Nano-structure & Nanotechnology-I	4	0	0	4	Solar Energy: photovoltaic systems
Plasma Physics-I	4	0	0	4	Introduction to photonics
High Energy Physics-I	4	0	0	4	
Nonlinear Physics-I	4	0	0	4	
Condensed Matter Physics-I	4	0	0	4	
Science and Technology of Solar Hydrogen and other Renewable Energies	4	0	0	4	
Bio Physics-I	4	0	0	4	
Analog and Digital Communication	4	0	0	4	
Physics of Nano-structure & Nanotechnology-II	4	0	0	4	
Plasma Physics-II	4	0	0	4	
High Energy Physics-II	4	0	0	4	
Nonlinear Physics-II	4	0	0	4	
Condensed Matter Physics-II	4	0	0	4	
Solar Energy: Principles of Solar Thermal Devices	4	0	0	4	
Bio Physics-II	4	0	0	4	

Name of Programme: M. Tech. (Nanotechnology)

Programme Educational Objectives

Banasthali Vidyapith has made a significant contribution in the technology education by introducing the M.Tech. (Nanotechnology) programme. Nanotechnology is not being considered simply a technology like other technologies which are confined almost in a limited area. In fact, the nanotechnology leads to a mission through which the whole country can be promoted in terms of sciences and technology. Keeping in view such a mission, The M. Tech. (Nanotechnology) programme has been designed by the department of Physics. Actually, M. Tech. (Nanotechnology) is an umbrella programme for capacity building which envisages the overall development of this field of research in the country and to tap some of its applied potential for nation's development.

Keeping in views the entire scientific and technological development of the student through covering almost all the courses, the M. Tech. (Nanotechnology) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in the direction of technology through learning the designed courses with high quality and significance. However, the main objectives of the programmes are as follows:

- To prepare the students to outshine in academics and research in different motifs of Nanoscience and Nanotechnology.
- To train the students with good theoretical and practical knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent technologists at national and international level
- To provide students with an academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career
- To produce the students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To prepare the students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To coach students in professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.
- To provide the ideas about environment sustainability and pollution control through exemplary and practical educations

Programme Outcomes

PO1: Knowledge about Technology: Able to apply knowledge and skills to solve complex technical problems which calls for insight into the latest technologies and best engineering practices including behavioral, social, and manufacturing practices.

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills

PO3: Problem analysis ability-Ability to apply scientific attitude to analyze the society problems and to apply information systematically for the solution

PO4: Modern Tool usage: Ability to handle new techniques and advanced tools like XRD, FESEM etc, which derive the nanosciences and nanotechnology

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through the management related courses.

PO6: Professional Identity- able to show professional identity as competent technologists at national and international level

PO9 7: Technology and society-Ability to show the understanding of impact of nanomaterials on the society including environment, health and ecosystem. On the other side, the Graduates will be able to propagate their knowledge to address problems of social relevance such as energy, environment and medicine through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through laboratory practices

PO10: Life-long learning- Possess the knowledge of contemporary issues and ability to engage in life-long learning

M.Tech (Nanotechnology)

Programme Scheme:

Semester (I):

	Existing														
Course	Course Name	L	T	P	•		Course	Course Name	L	T	P	C			
Code							Code								
ELE 506	Nano-Photonics & Optoelectronics	4	0	0	4	_		Nano-Photonics & Optoelectronics	4	0	0	4			
PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4	- -	PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4			
PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4	_ -	PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4			
PHY 511	Introduction to Materials Science	4	0	0	4	_ -	PHY 511	Introduction to Materials Science	4	0	0	4			
PHY 531	Surface, Interface and Thin films	4	0	0	4	_ -	PHY 531	Surface, Interface and Thin films	4	0	0	4			
NANO 502L	Simulation Lab-I	0	0	6	3	- [Simulation Lab-I	0	0	6	3			
PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3	_	PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3			
	Total:	20	0	12	20	-]		Total:	20	0	12	26			

Semester (II):

	Existing					Proposed						
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C	
Code						Code						
ELE 501	Advanced Nano-electronics	4	0	0	4	ELE 501	Advanced Nano-electronics	4	0	0	4	
	Mathematical Modeling and Simulation	4	0	0	4	MATH 514	Mathematical Modeling and Simulation	4	0	0	4	
	Quantum Computations and Information Processing	4	0	0	4	NANO 501	Quantum Computations and Information Processing	4	0	0	4	
PHY 501	Advanced Characterization Techniques	4	0	0	4	PHY 501	Advanced Characterization Techniques	4	0	0	4	
NANO 503L	Simulation Lab-II	0	0	6	3		Simulation Lab-II	0	0	6	3	
	Nano Fabrication and Characterization Lab-II	0	0	6	3	PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3	
	Elective	4	0	0	4		Discipline Elective	4	0	0	4	
	Total:	20	0	12	26		Total:	20	0	12	26	

Discipline Electives	L	T	Р	С
Nano-Engineering of Biological Systems	4	0	0	4
Organic and Polymer Technology	4	0	0	4
MEMS and NEMS Technology	4	0	0	4

Semester (III):

	Existing					Proposed							
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C		
Code						Code							
	Reading Elective-I	0	0	4	2	PHY 601P	Project (Part-I)	0	0	48	24		
PHY 601P	Project (Part-I)	0	0	48	24		Reading Elective-I	0	0	4	2		
	Total:	0	0	52	26		Total:	0	0	52	26		

Semester (IV):

	Existing					Proposed								
Course	Course Name	L	T	P	C	Course	Course Name	L	T	P	C			
Code						Code								
PHY 601P	Project (Part-I)	0	0	48	24	PHY 601P	Project (Part-I)	0	0	48	24			
	Reading Elective-II	0	0	4	2		Reading Elective-II	0	0	4	2			
	Total:	0	0	52	26		Total:	0	0	52	26			

Reading Electives				
Nanotechnology in Healthcare and Environment	0	0	4	2
Development of Nanotechnology: A Global Aspect	0	0	4	2
Nanotechnology and Society	0	0	4	2
Tissue Engineering	0	0	4	2
Nano-Catalysis	0	0	4	2
RF and MMIC Design Reading	0	0	4	2

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, with prior permission of respective heads, time table permiting.

Annexure VIII

Name of Programme: M.Tech. (Nanotechnology)

Course Details:

S. N.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1			SECTION-A	SECTION-A	
1.			III-V semiconductor quantum wells, Quantum	SECTION-A	Defining the topics to be studied in a clear form.
			Dots, Nonlinear Optical Properties, Quantum	III-V semiconductors;	in a cicai form.
					T.T., dations the comment
	Optoelectronic		Confined Stark effect, Dielectric confinement	Absorption in Semiconductors: Indirect Intrinsic	Updating the course:
	S		effect, Superlattices, Core shell Quantum	transitions, Exciton absorption, Donor acceptor and	Photonic Crystals moved to
		1	Dots,Quantum Dot Quantum wells, Quantum confined	Impurity Band Absorption;	Section-C
			structures as lasing media Photonic Crystals, 1D,2D,3D photonic	Effect of electric field on absorption: Franz Keldysh	
		heterojunction laser	atmostures Footures of photonic arrestals	and Stark effect;	
			structures, Features of photonic crystals, Microcavity effect Methods of Fabrication,	Quantum confinement; Quantum Dots; Quantum wells	
		design	Photonic crystal optical circuitry Nonlinear	Absorption in Quantum Wells and Quantum Confined	
		• understand fundamentals of	Photonic crystals, Photonic Crystal Fibre,	Stark effect; Radiation in Semiconductors: Relation	
			Photonic Crystal Sensor	between absorption and emission spectra, Near	
		liquid crystal displays	r notonic Crystai Sensor	Bandgap radiative transitions, Deep-level transitions	
		 get an overview of 	SECTION-B	Auger recombination; Dielectric confinement effect	
		nhotonic systems	Introduction to Lasers, Guided Waves, Gain in	Superlattices; Core shell Quantum Dots; Quantum	1
			two level lasing medium, Lasing Condition and	confined structures as lasing media	
			Gain in semiconductors, Selective		
			Amplification and Coherence, Threshold	SECTION-B	
			1	Introduction to Lasers; Gain in two level lasing	
			condition for lasing, Lineshape function and		Defining the topics to be studied
			line broadening mechanisms, Lasing threshold	F	in a clear form
			in two level system, LED: Basics, Choice of	Coherence; Threshold condition for lasing; Lineshape	
			Materials, Light Output from LED,		Updating the course: portion on
			Semiconductor Lasers: Basic principles,		LED is deleted as not relevant.
			Heterojunction Lasers: Energy Band diagram	Broadening; Semiconductor Lasers: Basic principles	
			and Power output, Quantum Well and	Heterojunction Lasers: Energy Band diagram and	
			Quantum Dot lasers, Surface emitting lasers,	Power output; Quantum Well and Quantum Dot lasers	
			Unipolar Devices, Quantum Cascade laser:	Multiple Quantum Well laser; Quantum Cascade laser:	

	Photodiodes, Avalanche Photodiodes, Structure, Materials, Characteristics, Device performance, Infrared Quantum detectors, QWIPs, Operation Principles, design and material choices, Quantum dot Infrared Photodetectors, Extending QWIPs into shorter and longer wavelengths	Features of photonic crystals, Optical microcavites, Methods of Fabrication, Nonlinear Photonic crystals, Photonic Crystal Fibre, Photonic Crystal Sensor; Surface Plasmons: Drude–Sommerfeld theory, Surface plasmon polaritons at plane interfaces, Properties of surface plasmon polaritons, Surface plasmon sensors, Surface plasmons in nano-optics, Plasmons supported	
		Recommended Books 1. Bhattacharya P. (2002) Semiconductor Optoelectronic Devices (Prentice Hall India, IInd edition) 2. Prasad P. N. (2004) Nanophotonics (Wiley Interscience, USA). 3. Silvfast W.T. (1998) Laser Fundamentals by, (Cambridge University Press, UK) 4. Ghatak A, Thyagarajan, K (2010) Lasers, Fundamentals and applications (Springer Science+Business Media, USA) 5. Novotny L., Hecht B. (2006) Principles of Nano-Optics (Cambridge University Press, UK) Suggested e-Resources: NPTEL: Semiconductor optoelectronics https://nptel.ac.in/courses/115102103/ NPTEL: Nanophotonics https://nptel.ac.in/courses/118106021/1	

Structure and Principle of Operation

Structure and Principle of Operation

2.	PHY 502	After	completion of this	No change in entire course
	Advanced	-	the students will be	
	Synthesis	able to-	- Recommended Books	Update e-resources
	Processes and	d.		
	Devices	•	have a firm foundation in 1. Gabor L. Hornyak, Dutta J. Tibbals H.F., Rao A (2008) Introduction to Nanoscience (CRC Press)	
			the fundamentals and Vajtai, R. (Ed.). (2013). Springer handbook of nanomaterials. Springer Science & Business Media.	
			application of current 1	
			chemical and scientific	
			theories including those 4. Jackson, M. J. (Ed.). (2005). Microfabrication and nanomanufacturing. CRC press.	
			in Analytical, Inorganic, 5. Neamen, D. A. (2012). Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill,	
			Organic and Physical synthesis processes. 6. Manasreh, O. (2011). Introduction to nanomaterials and devices. John Wiley & Sons.	
		•	have skills in problem	
			solving, critical thinking Suggested -e-resources	
			and analytical reasoning https://nptel.ac.in/courses/117106109/1	
			as applied to scientific https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall-	
			problems. 2005/lecture-notes/cvd.pdf	
		•	communicate the results	
			of scientific work in oral,	
			written and electronic	
			formats to both scientists	
			and the public at large.	
		•	explore new areas of	
			research in both	
			chemistry and allied	
			fields of science and	
			technology.	
3.	PHY 508	After	completion of this	No change in entire course
	Fundamentals	course,	the students will be	Update e-resources
	of Nano	able to	- Recommended Books	_
	sciences an	d •	have knowledge of the 1. Sulabha, K., & Kulkarni, K. (2007). Nanotechnology: principles and practices.	
	Nano-		conoral principles of	
	technology		physics chemistry 2. Guozinong, C. (2004). Nanostructures and Nanomaleriais: synthesis, properties and applications.	
			electronics and biology World scientific.	

		that play a role on the 3. Köhler, M., & Fritzsche, W. (2008). Nanotechnology: an introduction to nanostructuring nanometer scale techniques. John Wiley & Sons	
		have insight into the materials, fabrication and other experimental Royal Society of Chemistry. Royal Society of Chemistry.	
		techniques that can be Suggested -e- resources	
		used on the nanoscale https://ocw.mit.edu/search/ocwsearch.htm?q=quantum%20dots	
		as well as their https://nptel.ac.in/courses/103103026/8	
		limitations	
		understand of the	
		formation of complex	
		macro systems which	
		are unique in their	
		operations and possess	
		new functionalities	
		have in-depth	
		knowledge of at least	
		one specialisation area	
		within the field of	
		nanoscience and	
ŀ	4. PHY 511	nanotechnology	N. 1
ľ		After completion of this Recommended Books occurse, the students will be	No change in entire course
	Materials	able to- 1. Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an	Indata a rasauraas
	Science	• apply knowledge of introduction (Vol. 7, pp. 665-715). New York: John wiley & sons.	Opdate e-resources
	Science		
		Jones, D. R., & Ashoy, W. 1. (2012). Engineering materials 2. an introduction to microstructures	
		and engineering to and processing. Butterworth-Heinemann.	
		to materials science and	
		engineering. Suggested -e resources	
		design new https://ocw.mit.edu/courses/materials-science-and-engineering/3-012-fundamentals-of-materials-science-fall-2005/lecture-notes/lec17b.pdf new 2005/lecture-notes/lec17b.pdf	
		nanomaterials, as well https://nptel.ac.in/courses/112104039/53	
		as characterize the new	
- 1		material.	
		material.	

		•	collaborate effectively		
			on multidisciplinary teams.		
			communicate		
			effectively in written		
			and oral formats.		
5.	PHY 531	After	completion of this		No change in entire course
	Surface,	course	the students will be Recommend	led Books	Update e-resources
	Interface and	lable to			•
	Thin films	•	understand and describe 1. Prutton I	M. (1994) Introduction to surface science, (Cambridge University Press)	
				J., & Gibaud, A. (Eds.). (2008). X-ray and neutron reflectivity: principles and	1
			surfaces, such as application	ons (Vol. 770). Springer	
			surface tension, 3. Delchar.	T. A. (1993). Vacuum physics and techniques. Chapman and Hall	
			capillarity, wetting and	1 7	
			spreading.		
			Suggested -	e resources .:in/courses/112101004/downloads/(36-8-1)%20NPTEL%20-%20Vacuum%20Technology.pdf	
		•	electrical phenomena at https://ocw.mi	t edu/search/ocwsearch.htm?g=stm	
				Account of the Constitution of the Constitutio	
			surfaces, such as surface charge, surface		
			potential, the electrical		
			double layer, and basic		
			electrochemical		
			concepts.		
		•	describe the phase		
			behaviour and		
			aggregation of		
			amphiphiles in solution		
			and at interfaces.		
		•	desribe intermolecular		
			forces, forces acting		
		1	between molecules and		

		surfaces, and surface
_		forces.
6.	NANO 502L	After completion of this To perform various experiments Atomistix Toolkit Introduction to Programming, problem analysis and Knowledge of Software
	Simulation	course, the students will be Virtual NanoLab (ATK-VNL) simulation package algorithms. One programming language (C++, Python programming tools and programmin
	Lab-I	able to- is used. ATK-VNL produces very fast and reliable Fortran, Java), Programming Software: Mathematica, language is necessary of any
		• learn programming simulation results for various 1,2 and 3 dimensional MATLAB, Visualisation packages.
		language hano-structures and nano-devices which will rather
		and static libraries and understand the electronic, optical, thermal, 3. Problems based on array, data type, data analysis, conceptual understanding
		few package on mechanical and other properties of various nano-
		simulations related to structures and materials at the atomic level. 5. Problems based on pointer, parameter passing invarious tools. A single software ca
		nano-materials function. Recursion not fulfil are the requirements.
		understand various Simulation Lab-I 6. Problems based on object oriented programming.
		mechanism at nano-
		scale intolign
		simulations affinity of benzene molecule in isolated (gas phase) and in SET environment.
		2. To calculate binding energy of armehair command line arguments and shell scripting,
		introduction to some open source simulation tools that the
		Cu edge terminated armehair graphene nanoused to model nanostructure at the levels of classical and quantum mechanics.
		4. To analyse Band structure of Cu edge doped
		armchair graphene nano-ribbons.
		5. To calculate binding energy of zigzag graphene
		nano ribbons.
		6. To draw band structure of pristine and Cu
		terminated zigzag graphene nano ribbons.
		7. To draw band structure of pristine and Cu edge
		doped zigzag graphene nano-ribbons.
		8. To calculate and analyse Density of states of a
		molecule based nano davice
		9. To study molecular projected self-consistent
		Hamiltonian of a molecule based nano-device.
		To study HOMO, LUMO energy levels for a single
		molecule junction.
7.	PHY 512L	After completion of this

	Nano	course	, the students will be		
	Fabrication and	able to)-		No change in entire course
	Characterizatio	•	synthesize the nano-		
	n Lab-I		materials		
		•	characterize the		
			synthesized materials		
			using several advanced		
			characterizing tools		
		•	seek potential of the		
			materials for several		
			industrial technological		
			applications.		
8.		After	completion of this		No change in entire course
			, the students will be		Update e-resources
		able to		Recommended Books	
	electronics	•	cope up with certain	 Hu, C. C. (2011). Modern Semiconductor Devices for Integrated Circuits. Part 1: Electrons and holes in a semiconductor. 	
			nanoelectronic systems and building blocks		
			and building blocks such as: low-	2. Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press.	
			dimensional	3. Heinzel, T. (2008). Mesoscopic electronics in solid state nanostructures. John Wiley & Sons.	
				4. Waser, R. (Ed.). (2012). Nanoelectronics and information technology. John Wiley & Sons	
			heterostructures, carbon nanotubes, quantum dots, nanowires etc.	 Lundstrom, M., & Guo, J. (2006). Nanoscale transistors: device physics, modeling and simulation. Springer Science & Business Media. 	
		•	set up and solve the	6. Hanson, G. W. (2008). Fundamentals of nanoelectronics. Upper Saddle River: Pearson/Prentice	
			Schrödinger equation	Hall.	
			for diferent types of	Reference Books:	
			potentials in one dimension as well as in	 Heikkilä, T. T. (2013). The physics of nanoelectronics: transport and fluctuation phenomena at low temperatures (Vol. 21). Oxford University Press. 	
			2 or 3 dimensions for	2. Park, B. G., Hwang, S. W., & Park, Y. J. (2012). Nanoelectronic devices. CRC Press.	
		•	specific cases. use matrix methods for	 Mitin, V. V., Kochelap, V. A., & Stroscio, M. A. (2008). Introduction to nanoelectronics. Science, Nanotechnology, Engineering, and Applications (Cambridge Univ. press, Cambridge, 2008). 	
			solving transport		
			problems such as	5. Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge university press.	

			tunneling, resonant		
			tunneling and know the	Suggested –e resources	
				https://nptel.ac.in/courses/113104004/	
			conductance.	https://nptel.ac.in/courses/113104004/29	
		•	familiarize with		
			searching for scientific		
			information in their		
			subject area, practice		
			report writing and		
			presenting their project		
			in a seminar		
9.	MATH 514	After	completion of this		No change in entire course
			, the students will be		Two change in entire course
	Modeling and				Update e-resources
	Simulation	•	characterize		- F
				1. Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. Boston: McGraw-Hill	
			terms of their essential		
			elements, purpose,		
			parameters, constraints,	2. Plenker, D., & Shin, B. (2001). Understanding molecular simulation. From digorithms to	
			performance	applications (Vol. 1). Elsevier.	
			requirements, sub-	3. Ohno, K., Esfarjani, K., & Kawazoe, Y. (2018). Computational materials science: from ab initio to	
			systems,	Monte Carlo methods. Springer	
			interconnections and	Suggested –e resources	
		•	model and solve the	https://nptel.ac.in/courses/103106119/	
			relationship between	https://ocw.mit.edu/search/ocwsearch.htm?q=ab%20initio	
			theoretical,		
			mathematical, and		
			computational		
			modelling for		
			predicting and		
			optimizing performance		
			and objective.		
		•	develop solutions and		

	extract results from the information generate in the context of the engineering domain the assist engineering decision making. • interpret the model and apply the results the resolve critical issues in the information of	d c o g d	
	a real worl		
	environment.		
100	requirements for sample suitable for each technique • perform simple an routine operations on the experimental setups.	eRecommended Books 1. Ajayan, P. M., Schadler, L. S., & Braun, P. V. (2006). Nanocomposite science and technology. John Wiley & Sons. 2. Wang Z.L (2000) Characterization of nanophase materials – (Wiley-VCH, New York). 3. Rao, C. N. R., Müller, A., & Cheetham, A. K. (Eds.). (2006). The chemistry of nanomaterials: synthesis, properties and applications. John Wiley & Sons. 3. Cullity, B. D. (1978). Elements of X-ray Diffraction. 4. Cullity, B. D. (1978). Elements of X-ray Diffraction. 5. Rose, R.M., Shepard L.A., and. Wulff, (1966) The Structure and Properties of Materials (Wiley Eastern Ltd.) 6. Suggested —web resources 6. https://ocw.mit.edu/courses/117106109/1 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall-2005/lecture-notes/cvd.pdf	No change in entire course Update e-Resources
11		STo perform various experiments Atomistix Toolkit- Virtual NanoLab (ATK-VNL) simulation package is used. ATK-VNL produces very fast and reliable	

		write computer codes	simulation results for various 1,2 and 3 dimensional			scientific training today.
		for caigntific real problems	nano-structures and nano-devices which will rather		rite the Computer program to:	
		using various numerical	requires a very large and expansive laboratory at the	1.	Find the roots of a polynomial or transcendental	Without writing codes for all the
		and simulation methods.	experimental level. A FK-V NL nerps students to		equation using Bisection, Iteration, Newton-	numerical methods studied in the
		have command over the	understand the electronic, optical, thermal, mechanical		Raphson, Ramanujan's, Quotient-difference	course will be useless. Students will
		numerical analysis	and other properties of various nano structures and			be required to write their own coded
		numericai analysis	materials at the atomic level.	2.	Interpolate data using forward, backward and	
			Simulation Lab-II		central difference, Newton's general and Lagrange interpolation methods.	the class.
			Simulation Eab-II	2	Find the least square fit using Straight line and	
			1. To study transport properties of armchair graphene	٥.	polynomial.	
			nano ribbon devices.	4	Differentiate and integrate functions using Cubic	
			2. To study transport properties of zigzag graphene	٦.	spline, Trapezoidal, Simpson's, Gaussian	
			nano-ribbon devices.		integration. To calculate double integral.	
			3. To analyse chlorine sensing properties of zigzag	5.	Simple Linear Algebra manipulations and	
			boron phosphide nano-ribbons through electronic		calculating inverse and eigenvalue problems using	
			properties.		inbuilt libraries.	
			4. To analyse chlorine sensing properties of zigzag	6.	Solve single and couple ordinary differential	
			boron phosphide nano ribbons through transport		equations using Euler's and Runge-Kutta	
			properties.		method.	
			5. To calculate binding energy of boron nitride nano-	7.	Solving Partial differential equations.	
			ribbons.	. L		
			6. To calculate ionization energy and affine energy of	•	One dimensional single orbital tight-bonding	
			boron doped benzene molecule in isolated (gas		del, with random onsite energies. Calculate the	
			phase) and in SET environment.		envalues, density of states and site dependent	
			7. To calculate and analyse transmission spectra of a molecule based nano-device.	ele	ctronic occupation for given electron density.	
			8. To calculate magnetic moment of a molecular Junction.	9. (Compare results for different strength of disorder.	
			9. To study I V characteristic for a molecular	10	S. A A	
			Junction.		Setup a metropolis algorithm based Monte Carlo	
					nulation of 1d ferromagnetic ising model. Calculate	
			molecule junction.		nperature dependence of total energy, specific at, magnetization and magnetic susceptibility.	
12.	PHY 513L	After completion of this	v	nez	at, magnetization and magnetic susceptibility.	
12.		course, the students will be				No shange in entire serves
	Fabrication and					No change in entire course
	Characterizatio	 understand basic 				

	n Lab-II	principles of the techniques presented in the course, their advantages and limitations. Furthermore, the student should understand the requirements for samples suitable for each technique. • perform simple and routine operations on the experimental setups.	
13.		After completion of this course, the students will be	No change in entire course
	Engineering of	·	Update e-Resources
	Biological	explain the concepts of 1. Enderle, J., & Bronzino, J. (2012). Introduction to biomedical engineering. Academic press.	epade e resources
	Systems	nanotechnology and	
		nanoscience and Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals. CRC press.	
		account for the Supplementary Reading:	
		importance of which in 1. Bronzino, J. D., & Peterson, D. R. (2014). Biomedical engineering fundamentals. CRC press.	
		the development of Cromwell I Weihell E I & Pfeiffer E A (2018) Piomedical instrumentation and	
		biomedical surface massurements (Vol. 1) Pearson	
		science,	
		explain the interdisciplinary pature	
		interdisciplinary nature Suggested -web resources of nanotechnology.	
		using examples from https://ocw.mit.edu/search/ocwsearch.htm?q=ph%20sensorss	
		biology, medicine, https://ocw.mit.edu/search.htm?q=cell/structure	
		chemistry and physics,	
		evaluate the different	
		technologies used in the	
		synthesis and analysis	
L		of nanostructures, and	

		also the phenomena that		
		determine the		
		interactions between		
		nano objects and		
		biological and artificial		
		interfaces		
14.	CHEM 508	After completion of this		No change in entire course
	Organic and	course, the students will be	Recommended Books	_
	Polymer	able to-		
	Technology	 isolate the key design 	1. Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley &	
		features of a product which	Sons	
		relate directly to the	2. Subbl, G. K., & Subbl, G. K. (1997). The physics of polymers (vol. 2). Berlin. Springer	Update e-Resources
		material(s) used in its construction	3. Fried, J. R. (2014). Polymer science and technology. Pearson Education	
		 describe the role of 	Suggested -web resources	
		rubber-toughening in		
		improving the mechanical	https://nptel.ac.in/courses/113105028/	
		properties of polymers	https://ocw.mit.edu/search/ocwsearch.htm?q=metal%20containing%20polymers	
		 identify the repeat units 		
		of particular polymers and		
		specify the isomeric		
		structures which can exist		
		for those repeat units		
		 estimate the number- 		
		and weight-average		
		molecular masses of		
		polymer samples given the		
		degree of polymerisation		
		and mass fraction of chains		
		present.		
15.	ELE 504	After completion of this		No change in entire course
	MEMS and	course, the students will be	Recommended Books	
	NEMS	able to-	1. Senturia, S. D. (2007). <i>Microsystem design</i> . Springer Science & Business Media.	
	Technology	 understand the 	2. Alvi, P. A. (2014). MEMS Pressure Sensors: Fabrication and Process Optimization.	Update e-Resources

		operation of micro devices, micro systems and their applications gain a knowledge basic approaches for various actuator design gain the technical knowledge required for computer-aided design, fabrication, analysis and characterization of nano-structured materials, micro- and nano-scale devices. 3. Gad-el-Hak, M. (2001). The MEMS handbook. CRC press. 4. Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons. Suggested —web resources of https://ope.mit.edu/search/ocwsearch.htm?q=mems by typical properties of https://ope.mit.edu/search/ocwsearch.htm?q=mems of https://ope.mit.edu/search/ocwsea	
	Reading Electi		
16.		After completion of this course, the students will be Recommended Books	No change in entire course
	y in Healthcare and Environment		
		 demonstrate the knowledge and skills needed to improve the environmental sustainability of health systems. discuss how the duty of a doctor to protect and Supplementary Reading: Goddard III, W. A., Brenner, D., Lyshevski, S. E., & Iafrate, G. J. (Eds.). (2007). Handbook of nanoscience, engineering, and technology. CRC press. Bhushan, B. (Ed.). (2017). Springer handbook of nanotechnology. Springer. 	

		promote health isSuggested -web resources	
		shaped by the https://www.futurelearn.com/courses/nanotechnology-health	
		dependence of humanhttps://elearninguoa.org/course/health-nanotechnology-nanomedicine/nanotechnology-and-nanomedicine	
		health on the local and https://www.edx.org/learn/nanotechnology	
		global environment.	
17.	MGMT 601R	After completion of this course	No change in entire course
	Development	the student will be able to: Recommended Books	8
	of	 understand the I. Maclurcan, D., & Radywyl, N. (Eds.). (2011). Nanotechnology and global sustainability. CRC 	Update e-Resources
	Nanotechnolog		•
	y: A Global		
	Aspect	in various Press).	
	•	acreate clohally	
		 cope up the Difference in Development?. Routledge. 	
		advancement in Suggested -web resources	
		new Suggested -web resources	
		technologies http://www.greeknewsagenda.gr/index.php/topics/business-r-d/6583-university-of-athens-online-	
		using courses-on-nanotechnology-and-nanomedicine	
		nanotechnology https://www.coursera.org/learn/nanotechnology	
		intps://www.courseta.org/tearin/nanotechnology	
18.	MGMT 602R	After completion of this course Recommended Books	No change in entire course
		the student will be able to: 1. Fritz, S., & Roukes, M. L. (2002). Understanding nanotechnology: from the editors of Scientific	
	y and Society	• understand the impact American. Warner Books	Update e-Resources
		of nanotechnology in 2. Ratner, M. A., & Ratner, D. (2003). Nanotechnology: A gentle introduction to the next big idea.	
		routine life Prentice Hall Professional.	
		• understand the impact3. Jasanoff, S., Markle, G. E., Peterson, J. C., & Pinch, T. (Eds.). (2001). Handbook of science and	
		of nanotechnology on technology studies. Sage publications	
		society 4. MacKenzie, D., & Wajcman, J. (1999). The social shaping of technology (No. 2nd). Open	
		university press.	
		Pickering, A. (Ed.). (1992). Science as practice and culture. University of Chicago Press.	
		Suggested -web resources	
		https://www.mrs.org/docs/default-source/programs-and-outreach/strange-matter.green-earth/nanotechnology-and-	
		society-a-practical-guide-to-engaging-museum-visitors-in-conversations.pdf?sfvrsn=bf66fa11_0	
		http://www.cns.ucsb.edu/about/nanotechnology-society.html	

	Reading Electiv	/e-II*	
19.	BIO 604R	No change in entire course	
	Tissue t Engineering	the student will be able to- understand the basic 1. Palsson, B. O., Bhatia, S. N., & Prentice, P. (2004). Reviewed by Kam W. Leong. <i>Molecular Therapy</i> , 9(4).	Update e-Resources
		mechanism of biological systems using nano-science and of biologic	op
		technology. Supplementary Readings:	
		 understand concept of tissue engineering Joseph D., Bronzino (2006) The Biomedical Engineering –Handbook, (CRC; 3rd edition) 	
		Suggested -web resources	
		https://nptel.ac.in/courses/102106036/	
		https://ocw.mit.edu/search/ocwsearch.htm?q=bio%20materials	
).		After completion of this course Recommended Books	No change in entire course
I	Nano-Catalysis	the student will be able to- 1. Levenspiel, O. (1999). Chemical reaction engineering. Industrial & engineering chemistry	W. L
		• understand the basic research, 38(11), 4140-4143	Update e-Resources
		mechanism of chemical 2. Carberry, J. J. (2001). Chemical and catalytic reaction engineering. Courier Corporation.	
		reaction 3. Satterfield, C. N. (1970). Mass transfer in heterogeneous catalysis. The MIT Press.	
		• understand the role of Suggested –web resources	
		nano-catalysis. https://ocw.mit.edu/search/ocwsearch.htm?q=%20nano%20catalysis	
		https://nptel.ac.in/courses/103108097/28	
	ELE 601R	After completion of this course Recommended Books	No change in entire course
	RF and MMIC	the student will be able to- 1. Robertson, I. D., & Lucyszyn, S. (Eds.). (2001). RFIC and MMIC Design and Technology (No. 13).	
	Design	• understand radio let.	Update e-Resources
		frequency systems Suggested -web resources	
		design the new https://ocw.mit.edu/search/ocwsearch.htm?q=mesfet electronic devices. https://nptel.ac.in/courses/117107095/20	
		decasile devices.	

Offg. Secretary
Banaethall Vidyapith
P.O. Banesthall Vidyapith
Diatt. Tonk (Rej.)-304022