Department of Mathematics and Statistics Banasthali Vidyapith, Banasthali

Minutes of the Board of Studies held on 23.04.2016 at 10.30 A.M in CMS Conference Hall, Banasthali Vidyapith.

PRESENT

1.	Prof. G.N. Purohit	:	Internal Member
2.	Ms. GargiTyagi	:	Internal Member
3.	Dr. Gulab Singh	:	Internal Member
4.	Dr. IshaSangal	:	Internal Member
5.	Prof. J.L. Arora	:	Internal Member
6.	Dr. Kiran Gaur	:	Internal Member
7.	Dr. Madhuri Jain	:	Internal Member
8.	Dr. Naresh Chandra	:	Internal Member
9.	Dr. Piyush Kant Rai	:	Internal Member
10.	Dr. Prashant Kushwah	:	Internal Member
11.	Dr. Shalini Chandra	:	Internal Member
12.	Dr. Ujjwal Pandey	:	Internal Member
13.	Dr. C.K. Jha	:	Special Invitee
14.	MsAkankshaSekhsariya	:	Special Invitee
15.	MsGopika Sharma	:	Special Invitee
16	Prof. M.M.Tripathi ,Varanasi	:	External Member
17.	Prof. SarlaPareek	:	Convener

Note:Internal Members: Mr. Ashish Kumar Sharma, Dr. Geetanjali Sharma, Dr. Manoj Kumar, Dr. Narendra Singh Thakur, Mrs. Preeti Jain, Ms. Preeti Sharma, Dr. S.C.Pandey , Ms. ShanuGoyal, Dr. Usha Sharma and **External Members**: Prof. R.K. Sharma, New Delhi and Dr. R. K.Singh, Lucknow could not attend the meeting.

1. The board took up the minutes of its last meeting held on March11, 2012 and resolved that the minutes be confirmed in the light of the Academic Council's decisions taken in its last meeting.

- 2. The board reviewed the existing panel of examiners and suggested to update the address and phone numbers of the existing examiners for each examination up to and inclusive of all Master's degree examination keeping in view the by-law 15.03.02 of the Vidyapith. Updated panel is sent to the examination and secrecy section.
- **3.** The board reviewed the Study/Curricula and scheme of examination for the following examinations:

1.	First Semester Examination, December, 2016	No Change
2.	Second Semester Examination, April/May, 2017	No Change
3.	Third Semester Examination, December, 2017	No Change
4.	Fourth Semester Examination, April/May, 2018	Change*
5.	Fifth Semester Examination, December, 2018	No Change
6.	Sixth Semester Examination, April/May, 2019	No Change

I. B.A./B.Sc.(Mathematics) Examinations:

* Board suggested to rearrange the topics of "Linear Algebra" for its proper sequencing. The revised syllabus of Linear Algebra and list of books in above mentioned syllabus are given in **Annexure-I.**

Board also recommended implementing the proposed revision in syllabus of "Linear Algebra" by fourth semester examination, April-May, 2017.

BBA/BCA/BA Examinations:

BCA/BA papers in respect of Mathematics and Statistics - No Change.

Some changes are suggested in Syllabus, "Mathematics for Management" of BBA V Semester and "Mathematics for Business Applications" of B.Com.II Semester by theBoard.The revised syllabus is enclosed in **Annexure-II**.

II. M.Sc. (Mathematical Science) Examinations:

Scheme of M. Sc. (Mathematical Sciences) has been revised and is enclosed as an Annexure-III) and board has agreed upon the following changes:

Pure Mathematics:

1.	First Semester Examination, December, 2016	Change ¹
2.	Second Semester Examination, April/May, 2017	Change ²
3.	Third Semester Examination, December, 2017	Change ³
4.	Fourth Semester Examination, April/May, 2018	Change ⁴

- 1. The syllabus of "Abstract Algebra" and "Probability and Statistics" has been revised and enclosed as **Annexure-IV**.
- 2. A paper of "Topology"to be shifted from third semester to second semester in the place of "Data Structure & Object Oriented Programming". The syllabus of "Differential Equations" and "Linear Algebra" has been revised. In addition a Laboratory Practices is added to the course in Numerical Analysis with the help of MATLAB. The revised syllabi and List of practical is enclosed in **Annexure-V**.
- 3. In place of Topology a new paper "Advanced Calculus" is proposed. The paper. "Partial Differential Equations and Special Functions" is replaced by "Integral Transforms and Special Functions". The syllabus of "Mathematical Programming" is revised. Syllabi of the related papers are enclosed in Annexure-VI.
- 4. A paper, "Integral Transform" is replaced by "Partial Differential Equations". The syllabus of the same is enclosed in **Annexure- VII**.

Theoretical Computer Science:

1.	First Semester Examination, December, 2016	Change ⁵
2.	Second Semester Examination, April/May, 2017	Change ⁶
3.	Third Semester Examination, December, 2017	Change ⁷
4.	Fourth Semester Examination, April/May, 2018	No Change

- 5. The syllabus of "Abstract Algebra" and "Probability and Statistics" has been revised and already enclosed in **Annexure-IV**.
- 6. The syllabus of "Linear Algebra" is revised and Laboratory Practices is added to the course in Numerical Analysis with the help of MATLAB. The revised syllabus and List of practical is already enclosed in Annexure-V. The Course,Data Structure & Object Oriented Programminghas been renamed as "Data Structures" with some changes in the syllabus which is enclosed in Annexure-VIII.

 The paper "Algorithms" is renamed as "Design and Analysis of Algorithms". Also, the syllabus of "Mathematical Programming" is revised and already enclosed in Annexure-VI.

Operations Research:

1.	First Semester Examination, December, 2016	Change ⁸
2.	Second Semester Examination, April/May, 2017	Change ⁹
3.	Third Semester Examination, December, 2017	Change ¹⁰
4.	Fourth Semester Examination, April/May, 2018	No Change

- 8. The syllabus of "Abstract Algebra" and "Probability and Statistics" has been revised and already enclosed in **Annexure-IV**.
- 9. The syllabus of "Linear Algebra" is revised and Laboratory Practices is added to the course in Numerical Analysis with the help of MATLAB. The revised syllabus of "Linear Algebra" and List of practical is already enclosed in Annexure-V. The course in "Data Structure & Object Oriented Programming" has been renamed as "Data Structures" with some changes in the syllabus which is already enclosed in Annexure-VIII.
- 10. The syllabus of "Mathematical Programming" is revised and already enclosed in Annexure-VI.

Statistics:

1.	First Semester Examination, December, 2016	Change ¹¹
2.	Second Semester Examination, April/May, 2017	Change ¹²
3.	Third Semester Examination, December, 2017	Change ¹³
4.	Fourth Semester Examination, April/May, 2018	Change ¹⁴

- 11. The syllabus of "Abstract Algebra" and "Probability and Statistics" has been revised and already enclosed in **Annexure-IV**.
- 12. The syllabus of "Linear Algebra" is revised and Laboratory Practices is added to the course in Numerical Analysis with the help of MATLAB. The revised syllabus and List of practical is already enclosed in **Annexure-V**. In the place of Data Structure & Object Oriented Programming a new paper "Statistical Inference" is proposed. Its syllabus is enclosed in **Annexure-IX**.

- 13. The syllabus of "Mathematical Programming" is revised and already enclosed in **Annexure-VI**.
- 14. The syllabus of "Advanced Inference" has been revised and enclosed in Annexure-X.
- The Syllabus of following electives have been also revised and enclosed in Annexure-XI.
 - 1. Econometrics
 - 2. Integral Equations and Calculus of Variations

Board agreed and recommended implementation of revised electives from Session 2016-2017.

- ➢ Following new electives are proposed:
 - "Analytical and Algebraic Number Theory" for the students of Pure Mathematics (In place of Number Theory)
 - "Number Theory and Cryptography" for the students of Pure Mathematics (In place of Mathematical Cryptography)
 - 3. Regression Analysis for the students of Statistics (New)
 - 4. Statistical Computing for the students of Statistics (New)

Board agreed and also recommended implementation of proposed electives from Session 2016-2017. The syllabi are enclosed in **Annexure-XII**.

III. M.Phil. (Mathematical Sciences) Examination

The Board reviewed the scheme and syllabi of M. Phil. (Mathematical Sciences) in the light of its one and half (36 months) years of duration and a new examination scheme is proposed.Detailed Course structure and Scheme of Examination are enclosed in **Annexure-XIII.**

IV. Certificate Examination

1. Certificate Course in statistical techniques and Applications, 2017:

(No change in Syllabus and Scheme of the Examination)

To make course more effective and insightful it is proposed to increase the duration of the course to one year in the place of six months. So, fee of the course should be Rs. 5500/ per year accordingly.

- 2. Certificate Course in Actuarial Science, 2017: (No Change)
- 3. Diploma Course in Actuarial Science, 2017: (No Change)

- 4. Board reviewed the reports received from the examiners of the different examinations of 2013, 2014 and 2015. All the reports were found to be with good remarks only three out of 24 found with "not satisfactory" comments. Board emphasized on the need of more practices by students and teachers are advised to encourage students for the same. Analysis of Examiner Reports is enclosed in Annexure–XIV.
- 5. The board evaluated the semester examination papers and found that most of them were analytic and application based depending on the nature of course. In some of the papers, few typographical errors and incomplete questions were found. To overcome this problem Board suggested to adopt moderation policy.Board advised to convey this message to Examination and Secrecy section. The Analysis summary of question papers is enclosed in **Annexure–XV**.
- 6. Under bye-law 9.2.03 to co-opt external members of the Board of Studies for a fresh term of three years commencing from 1st January, 2017 ,Board recommends following three eminent professors as external members of Board of Studies of Mathematics and Statistics:
 - 1. Prof. C.S. Arvinda TIFR Centre for Applicable Mathematics, Bangalore
 - **2.** Prof. Arvind Mishra B.H.U. Varanasi
 - **3.** Prof. Sharad Gore Pune University

Meeting ended with vote of thanks.

M.Phil. (Mathematical Science)

Eligibility: M.A./M.Sc. in Mathematical Sciences/ Mathematics/ Statistics/ Operations Research/Applied Mathematics from the Vidyapith or a recognized examination equivalent thereto with aggregate equal to or more than 55% marks.

Admission: Based on Entrance exam.

Course structure:

- **1.** A three-semester course, with one core course, one elective and one reading elective in first and second semesters, and
- **2. Dissertation:** Student must carry out a Dissertation (submitted in the end of third semester) under the supervision of faculty of Banasthali Vidyapith.

Dissertation Phase – I:

In this phase students have to decide the area on which they want to do their Dissertation work. The aim of the work must be clear. In the last week of October the selected topic need to be defended before the faculty members. The students will present a report specifying the area of dissertation with list of reviewed generals, articles and referred books.

Dissertation Phase – II:

In the first week of March, the student has to submit a synopsis of her Dissertation and the internal examiners committee is to be appointed. The synopsis must also bear the certificate by the supervisor/guide. Student will defend the synopsis in front of internal examiners committee

Dissertation Phase – III:

At the mid of the third semester a report of research work done, is to be submitted and defended in front of internal committee.

Dissertation Phase – IV:

At the end of the third semester final report is to be submitted and a presentation and viva-voce will be held.

Dissertation Phase – V:

Dissertation to be sent for external evaluation. The list of three external examiners will be made available by the supervisor in consent with the Head of the department.

Financial Assistance:

M.Phil. students are eligible for financial assistance as follows: **TA/RA ship:**

Candidates admitted to the M.Phil. Program will be offered the teaching Assistantship (TA) or Research Assistantship provided they have secured at least 55 percent mark (50 percent for SC/ST candidates) in their qualifying degree examination and provided they are willing to assist in the teaching of undergraduate courses. A teaching assistant can be asked to conduct labs and can also be asked to teach tutorial sessions to the undergraduate students.

A research assistant can also be asked to support the department in various academic activities. It could be providing help in maintaining and upgrading department laboratories, downloading, installing software, etc. A candidate can also be assigned to faculty members to help them in their research effort.

The assistantship amount will be as per the amount provided to the Assistant Professor in self-financed certificate/diploma courses.

Scheme of Examination

- 1. The course of study for M.Phil. Examination shall extend over a period of one and half year divided into three semesters. First two semesters contains coursework with an examination at the end of each semester. Third semester contains submission of dissertation with a viva voice.
- 2. The Examination shall be conducted by means of Continuous assessment/Written Papers/ Practical/Dissertation/Project Report.

I SE	MILSILK										
	Course		Contact Cont. Ass. Ann. Ass. Hours/ Marks Marks week		Ass. rks	Total Marks		Min.			
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р
1.	Mathematical	4	0	20	0	40	0	60	0	22	0
	Modelling										
2.	Elective I	4	-	20	-	40	-	60	-	22	-
3.	Reading Elective I	0	-	-	-	60	-	60	-	22	-
4.	Dissertation Phase I	2	-	30	-	-	-	30	-	15	-
5.	Total			70	-	140	-	210	-	81	-

The following shall be the Scheme of Examination:

II SEMESTER

	Course		Contact Con Hours/ M week		ont. Ass. Ann. Marks Ma		Ass. To rks Ma		tal Min. rks		n.
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р
1.	Advanced Analysis	4	0	20	0	40	0	60	0	22	0
	(for Mathematics)										
	Advance Probability	Theo	ry (Ne	w Cours	se)						
	(for Stats/OR)										
2.	Elective II	4	-	20	-	40	-	60	-	22	-
3.	Reading Elective II	0	-	-	-	60	-	60	-	22	-
4.	Dissertation Phase II	2	-	30	-	-	-	30	-	15	-
5.	Total			70	-	140	-	210	-	81	-

III SEMESTER

	Course	Contact Hours/ week		Cont Ma	Cont. Ass. Marks		Ann. Ass. Marks		Total Marks		Min.	
		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	
1.	Dissertation Phase III	-	-	30	-	-	-	30	-	15	-	
2.	Dissertation Phase IV	-	-	30	-	-	-	30	-	15	-	
3.	Dissertation Phase V	-	-	-	-	-	-	120	-	60	-	
4.	Total			90	-	-	-	180	-	90	-	

Grand Total =210 + 210 + 180 = 600

Elective must be relevant to the Area of Dissertation/ Project.

Students could not be allowed to take the course as an elective, which she had already done in M.A./M. Sc.

Electives:

\mathbf{L} i	ist of Electives O	Contact hours/week				
		Т	Р			
E-1	Abstract Algebra	4	0			
E-2	Finsler Geometry	4	0			
E-3	Advanced Graph Theory	4	0			
E-4	Discrete Mathematics	4	0			
E-5	Functional Analysis	4	0			
E-6	Fuzzy Logic and Belief Theory	4	0			
E-7	Analytic and Algebraic Number					
	Theory	4	0			
E-8	Rings and Modules	4	0			
E-9	Tensor Analysis and Geometry	of				
	Manifolds	4	0			
E-10	Topology	4	0			
E-11	Mathematical Cryptography	4 0				
E-12	Advanced Inference	4	0			
E-13	Bayesian & Multivariate Analys	sis 4	0			
E-14	Bayesian Inference	4	0			
E-15	Reliability & Renewal Theory	4	0			
E-16	Time Series and Stochastic Proc	ess 4	0			
E-17	Time Series Modeling	4	0			
E-18	Financial Mathematics	4	0			
E-19	Information Theory	4	0			
E-20	Network Analysis	4	0			
E-21	Clinical Trials	4	0			
E-22	Decision Theory	4	0			
E-23	Demography and Advanced San	npling 4	0			
E-24	Design of Experiments and Line	ear				
	Model	4	0			
E-25	Distribution Theory	4	0			
E-26	Econometrics	4	0			
E-27	Inventory Theory	4	0			

E-28	Non-parametric Inference and Sequential	4	0
	Analysis		
E-29	Population Sciences	4	0
E-30	Queueing Theory	4	0
E-31	Soft Computing	4	0
E-32	Regression Analysis	4	0

List of Reading Electives:

- RE-1: Numerical Solutions of Partial Differential Equations (New Course)
- RE-2: Operator theory (New Course)
- RE-3: Supply Chain Management (New Course)
- RE-4: Marketing Management (New Course)
- RE-5: Inventory and Production Management (New Course)
- RE-6: Decision and Game Theory (New Course)
- RE-7: Algebraic Geometry (New Course)
- RE-8: Algebraic Aspects of Cryptography (New Course)
- RE-9: Advanced Cryptography (New Course)
- RE-10: Finite Element Methods (New Course)
- RE-11: Finite Field Theory (New Course)
- RE-12: Special Functions (New Course)
- RE-13: Algebraic Topology (New Course)
- RE-14: Advanced Queueing Models (New Course)
- RE-15: Advanced Reliability Theory
- RE-16: Statistical Computing (New Course)
- RE-17: Demographic Models (New Course)
- RE-18: Intelligent Transport System (New Course)
- RE-19: Generalised Linear Models (New Course)
- RE-20: SurvivalAnalysis (New Course)
- RE-21: Biostatistics

Mathematical Modelling

Contact Hours: 60

SectionA

Mathematical modelling: Need, techniques, classification, characteristics of mathematical models, limitations of mathematical modelling.

Mathematical modelling through ordinary differential equations of first order and system of ordinary differential equations of first order: Linear growth and decay models, Non-linear growth and decay models, Compartmental models

SectionB

Mathematical modelling through ordinary differential equations of second order: Planetary motion, circular motions.

Mathematical modelling through difference equations: Basic theory of linear difference equations with constants coefficients, Models used in Economics, Finance, Population Dynamics, Genetics.

Mathematical modelling through partial differential equations: Methods to obtain PDE models.

SectionC

Mathematical modelling through graphs: Modelling by directed graphs, signed graphs and weighted digraphs. Mathematical modelling through differential difference equations, Linear programming, Nonlinear programming, Dynamic programming, Maximum principle, Principle of maximum entropy.

Suggested Text Books:

1. J.N. Kapur, Matematical Modelling, Wiley Eastern Ltd., 1990.

Suggested Reference books :

- 1. J. Caldwell and Y.M. Ram, Mathematical Modelling: Concepts and Case Studies, Springer, 1999.
- 2. A.A. Samarskii and A.P. Mikhailov, **Principles of Mathematical Modelling**, **Ideas**, **Methods**, **Examples**, Taylor and Francis, 2002

Advanced Analysis

Contact Hours: 60

SectionA

Normed linear spaces &Banach spaces, bounded linear transformations, multi linear mappings, inner product spaces, Hilbert spaces, orthonormal systems, the space of bounded functions, the space of continues functions, Stone-Weierstrass approximates theorem, equi continuous sets.

Section B

The derivative, directional derivative, partial derivative, mean value theorem, continuously differentiable maps, Higher derivatives, Taylor's Theorem, existence theorem on differentiable maps, Fixed point theorem, step functions, regulated functions.

Section C

Spectral theory in finite dimensional normed spaces, Spectral properties of bounded linear operators, further properties of Resolvent& Spectral, Banach Algebras, Compact linear operators and their properties, Spectral properties of compact linear operation.

Suggested Text/ Reference Books:

- 1. J. Dieudonne, Treatise on Analysis Volume I: Foundations of Modern Analysis, Academic Press New York.
- 2. H. Cartan, Differential Calculus, Kershaw Publishing Company Pvt. Ltd. London.
- 3. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer Verlag, New York.
- 4. K. Yosida, Functional Analysis, Springer Verlag, Berlin.
- 5. Erwin Kreyszig, **Introductory Functional Analysis with Applications**, John Wiley & Sons, New York, 1989.
- 6. G. Bachman & L. Naric, Functional Analysis, Dover Publication, 2000.

Advance Probability Theory

Contact Hours: 60

Section – A

Classes of sets, Fields and Sigma-fields, Limit of sequences of subsets, Sigma-field generated by a class of subsets, Borel fields, Probability measure on a sigma-field, Probability space, Continuity of a probability measure, Real and vector- valued random variables. Distributions of functions of random variables.

Section B

Inequalities: Basic inequality, Chebyschev's inequality, Cr- inequality, Cauchy-Schwartz inequalities, Holder inequalities, Minkowski inequality, Jensen inequality.. Convergence of sequence of random variables: Convergence in distribution, Convergence in probability, Almost sure convergence, Convergence in mean square. Helly bray theorem, Borel-Cantelli lemma and zero one law. Inversion and Continuity theorem.

Section C

Weak and strong law of large numbers: Khintchine, Kolmogorov theorem. One dimensional central limit theorem - Lindeberg levy, Lyapunov, Lindeberg Feller theorem. Representation of distribution function as a mixture of discrete and continuous distribution function, Convolutions, marginal and conditional distributions of bivariate distributions.

Text Books:

- 1. Chung, K. L. (2001). A Course in Probability Theory, Third Edition, Academic Press, London.
- 2. Bhat, B. R. (2007). Modern Probability Theory: An Introductory Text Book, New Age International.

Reference Books:

- 1. Feller, W.: An Introduction to Probability Theory and Applications. Vol I & Vol II.
- 2. Ash, R. B. (2000). Probability & Measure Theory, Academic Press
- 3. Rohtagi, V.K.: An Introduction to Probability and Mathematical Statistics, wiley Eastern Limited.
- 4. Halmos, P.R (1978).: Measure Theory., Springer.

E-1 Abstract Algebra

Contact Hours: 60

Section A

Groups: Dihedral groups, symmetric groups, matrix groups; subgroups generated by subsets of a group, Homomorphism and Normal Subgroups, Isomorphism theorems, group actions, stabilizers and kernels of group actions, cycle decompositions, Conjugates, Conjugacy in S_n , Class equation for a Group, Sylow's Theorems, Applications of Sylow's theorem, Simplicity of Alternating Group A_n for n>5, Commutator, Series of Subgroups, Jordan Holder Theorem, Solvable Groups.

Section B

Rings, ring homomorphism and quotient rings, Ideals: Prime and Maximal, rings of fractions, Divisibility, Euclidean and Principal Ideal Domains, Unique Factorization Domains, Polynomial Rings over fields, irreducibility criteria, polynomial in several variables, Noetherian ring, Hilbert basis theorem, Grobner basis, solving algebraic equation

Section C

Field Theory: characteristic of a field, prime subfield, extension fields, Algebraic Extensions, Splitting fields and algebraic closures, Normal and Separable Extensions, Fundamental Theorem of Galois Theory.

Text Book:

1. Dummit, D. S. and Foote, R. M.: Abstract Algebra, 3rd Ed., Wiley, 2004.

Reference Books:

- 1. Herstein, I.N.: Topics in Algebra, 2nd Ed., Wiley Eastern, New Delhi, 1991.
- 2. Gallian, J. A.: Contemporary Abstract Algebra, 8th Ed. Cengage Learning, 2006.

- 3. Jacobson, N.: Lectures in Abstract Algebra, D. Van Nostrand, New York, 1964.
- 4. Jacobson, N.: Basic Algebra-I, Hindustan Publishing, Delhi, 1984.
- 5. P. B. Bhattacharya, S.K. Jain and S.R. Nagpal, **Basic Abstract Algebra**. 2nd ed. Cambridge University Prees, 1990.

E-2 Finsler Geometry

Contact Hours: 60

Section A

Minkowski norms, Finsler Metrics, Riemannian metrics, Product Finsler metric, Funk metric, Length Structure and Volume form, Zermelo Navigation Problem, Cartan Torsion, Matsumoto torsion.

Section B

Chern connections, Structural equations, Finsler metrics of Constant flag curvature, Bianchi Identities, Sprays, Shortest paths, projectively equivalent Finsler metrics, Projectively flat metrics.

Section C

Parallel vector fields, Parallel translations, Berwald metrics, Landsberg metrics, S-curvature, Distorsion and S-curvature, Randers metrics of Isotropic S-curvature, Riemannian Curvature, Flag curvature.

Text Books:

S. S. Chern and Z. Shen, Riemann Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6. World Scientific Publishing Co. Pte. Ltd., 2005.

Reference Books:

- 1. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann Finsler Geometry, Graduate texts in Mathematics 200, Springer- Verlag New York, 2000.
- 2. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, *The theory of sprays and Finsler spaces with Applications in Physics and Biology*, FTPH 58, Kluwer Academic Publishers, 1993.
- 3. M. Matsumoto, *Foundations of Finsler geometry and Special Finsler Spaces*, Kaiseisha Press, Saikawa, Japan, 1986.
- 4. H. Rund. The Differential Geometry of Finsler spaces, Springer- VerlagBerlin, 1959.

E-3 Advanced Graph Theory

Contact Hours: 60

Section A

Basic concepts of graph theory, Directed graph, Euler graph, Hamiltonian graph, Matrix representation of graphs, Shortest path in a weighted graph, K-connected and K-edge-connected graphs, Planar graphs, Coloring of graphs, Vertex coloring of graphs, Edge coloring of graphs, Vizing's theorem.

Trees: Rooted trees, Spanning tree and Cut set, Minimum-spanning tree, Flow network in a graph, max-flow- min cut theorem.

Section **B**

Blocks: Bridges and blocks, Block graph and cut-point graph, Partitions, Factorization: 1-Factorization, 2-Factorization, Arboricity.

Covering: Covering and independence, Critical points and lines.

Groups: The automorphism group of a graph, Operations on Permutation graphs, the group of a composite graph, Graphs with a given group, Symmetric graphs, Highly symmetric graphs (self reading).

Section C

Enumeration: Labeled Graphs, Polya's enumeration theorem, Enumeration of graphs, Enumeration of trees, Matchings in bipartite graphs, Hall's matching theorem, Ramsey's theorem, Ramsey numbers, Eigenvalues of graphs.

Suggested Text/ Reference Books:

- 1. NarsinghDeo, Graph Theory, Prentice Hall of India, 2002.
- 2. D.B. West, Introduction to Graph Theory, Prentice-Hall of India, 2001.
- 3. F. Harary, Graph Theory, Narosa Pub. House.
- 4. G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2011.

E-4 Discrete Mathematics

Contact Hours: 60

Section A

Sets and multisets, partial order relations, Chains and antichains. Permutation and combination of multisets. Pigeon hole Principle, Inclusion-Exclusion Principle, Derangements. Discrete numeric functions, Generating functions, Recurrence relations, linear recurrence relation with constant coefficients and their solutions. Solution by the method of generating functions. Boolean algebra, Lattices, Uniqueness of finite Boolean Lattices, Boolean functions and Boolean expression. Propositional Calculus.

Section B

Basic concepts of graph theory.Directed graph. Euler graph. Hamiltonian graph. Matrix representation of graphs. Shortest path in a weighted graph. E-connected and K-edge-connected graphs. Planar graphs. Coloring of graphs: Coloring of Graphs, Vertex colouring of graphs, Edge colouring of graphs, Vizing's theorem. Trees: Rooted trees, Spanning tree and cut set, Minimum-spanning tree. Flow network in a graph, max-flowmin cut theorem.

Section C

Types of Enumeration, Counting Labeled Trees, Burnside's lemma, Polya's counting theorem, Graph enumeration with Polya's theorem.

Matchings in bipartite graphs, Hall's matching theorem, Min-Max theorem, Independent sets. Factorization: 1-Factorization, 2-Factorization, Arboricity.

Suggested Test/ References Books:

- 1. C.L. Liu, **Elements of Discrete Mathematics**, McGraw Hill, International editions, 1985.
- 2. NarsinghDeo, Graph Theory, Prentice Hall of India, 2002.
- 3. Kenneth H. Rosen, Discrete mathematics Applications, McGraw Hill, 1999.
- 4. K.D. Joshi, Foundation of Discrete Mathematics, Wiley Eastern Ltd., 1989.
- 5. D.B. West, Introduction to Graph Theory, Prentice-Hall of India, 2001.

6. F. Harary, Graph Theory, Narosa Pub. House.

E-5 Functional Analysis

Contact Hours: 60

Section A

Normed spaces, Banach spaces, further properties of Normed spaces, subspaces, linear operators, linear functionals, bounded and continuous linear operators, Normed spaces of operators, Dual spaces.

Section B

Hahn-Banach theorem (Extension of linear functionals) for normed spaces, application to bounded linear functionals on C[a, b], adjoint operators, reflexive spaces, uniform boundedness theorem, convergence of sequence of operators and functionals, Open mapping theorem, closed linear operators, Closed Graph Theorem.

Section C

Inner product spaces, Hilbert spaces, further properties of inner product spaces, orthogonal complements and direct sums, orthonormal sets and sequences, total orthonormal sets and sequences, representation of functionals on Hilbert spaces, Hilbert adjoint operators, Self adjoint, unitary and normal operators.

Suggested Text/ Reference Books:

- 1. E. Kreyszig, Introductory Functional Analysis with Application, John Willey and Sons, 1989.
- 2. P.K. Jain, O.P. Ahuja and Ahmed Khalil, **Functional Analysis**, New Age International, New Delhi 1991.
- 3. Bachman and Naricel, Functional Analysis.
- 4. G.F. Simmons, **Introduction to Topology and Modern Analysis**, McGraw -Hill Book Company.
- 5. W. Rudin, Functional Analysis, Tata McGraw-Hill, 1973.

E-6 Fuzzy Logic and Belief Theory

Contact Hours: 60

Section A

Basic Concepts of Fuzzy Logic: Introduction, Crisp sets and Fuzzy sets, the notation of Fuzzy sets, Fuzzy Logic, Linguistic Variables, Possibility Distribution.

Operations on Fuzzy Sets:Union, intersection, combinations of operations, general aggregation operations, geometrical interpretation of Fuzzy sets.

Properties of Fuzzy Sets:Cardinality, Height: Normal versus Subnormal, Support and Alphalevel Cuts Convex Fuzzy Sets.

Fuzzy Relations: Crisp and fuzzy relations, binary relations, binary relation on a single set, equivalence and similarity relations, compatibility and tolerance relation, Ordering, Fuzzy Relation equations, Fuzzy Graphs.

Fuzzy Numbers: Definitions, computing of fuzzy numbers, triangular fuzzy numbers, functions with fuzzy arguments, arithmetic operations on fuzzy numbers.

Section B

Fuzzy If –Then Rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules Fuzzy Rule-based Models for Function Approximation: Fuzzy Partition, Mapping a Fuzzy subspace to a local model, Fusion of local models through interpolative reasoning, Defuzzification.

Types of Fuzzy Rule-based Models: The Mamdani Model, The TSK model

Fuzzy Implications and Approximate Reasoning: Fuzzy implication, Approximate reasoning, Criteria for Fuzzy implication, Families of Fuzzy implications, Major Fuzzy implication Functions.

Section C

Fuzzy Logic and Probability Theory: Possibility versus Probability, Probability of a Fuzzy Event, Fuzzy Probability, Probabilistic interpretation of Fuzzy sets, Bayes' theorem for Fuzzy Events.

Fuzzy Measures: Belief and Plausibility Measures, Probability measures, Possibility and Necessity Measures, Relationship among classes of Fuzzy measures.

Belief Theory: Evidence Theory- Mathematical Theory of Evidence, Introduction to Shafer's Belief Theory, Belief Representation: mass of belief, belief measure, plausibility measure, properties of belief function-relation between belief measure and plausibilityeasure, Dempster's Rule of Combination

Suggested Text/ Reference Books:

- 1. George J. Klir, Tina A. Floger, **Fuzzy Sets, Uncertainty and Information**, PHI, New Delhi, 1993.
- 2. John Yen & Reza Langari, Fuzzy Logic Intelligence, Control and Information, Pearson Education, New Delhi, 2005.
- 3. George J. Klir, Bo. Yuan, **Fuzzy Sets and Fuzzy Logic: Theory and Applications**, PHI, New Delhi, 2000.
- 4. Glenn Shafer, **A mathematical theory of evidence**, Princeton Univ. Press, Princeton, N. J, USA.

E-7Analytic and Algebraic Number Theory

Contact Hours: 60

Section A

Arithmetic functions, Dirichlet product of arithmetical functions, Multiplicative functions, Bell series of an arithmetical function, The Selberg identity, Euler's summation formula, Chebyshev's functions, equivalent forms of the prime number theorem, Dirichlet Series, Euler Products, Analytic Proof of the Prime Number Theorem

Section B

Algebraic numbers, conjugates and discriminants, algebraic integers, integral basis, norms and traces, ring of integers, quadratic fields, cyclotomic fields, trivial factorization, factorization into irreducibles, Non-unique factorization, consequences of unique factorization, Ramanujan-Nagell Theorem

Section C

Prime factorization of ideal, norm of an ideal, non-unique factorization in cyclotomic fields, lattices, quotient torus, Minkowski's theorem, two square theorem, four square theorem, class-group, finiteness of the class-group,Unique factorization of elements in an extension ring. **Text Books:**

- 1. I. N. Stewart and D. O. Tall, Algebraic Number Theory, Chapman and Hall, London, 1987.
- 2. Tom M. Apostol, Introduction to Analytic Number Theory, Springer

Reference Books:

- 1. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1990.
- 2. S. Lang, Algebraic Number Theory, Springer-Verlag, New York Inc., 1994.
- 3. D. A. Marcus, Number Fields, Springer-Verlag, New York Inc., 1987.

E-8 Rings and Modules

Contact Hours: 60

Section A

Rings, Matrix rings, Polynomial rings, Skew Polynomial rings, Laurant rings, Boolean rings, opposite ring, Characteristic of a ring, Direct Products.

Ideals, homomorphism of rings, Endomerphism rings, Field of fractions, Prime fields, PIDS and UFDS.

Section B

Modules Direct product, Direct sum of modules, free modules, homomorphisms, Maxima submodule, Minimal submodule, Simple modules, Schurs lemma, Annihilator of a Subset of a module.

Modules over PID's, Torsion modules, Torsion free modules.

Section C

Chain conditions, Artinian modules, Northerian modules, Composition series, Modules of finite length, Jordan Holder Theorem.

Artimian rings, Noetherian rings, Hilbert Basis Theorem, I.S.Cohen's Theorem, Introduction of Nil radical and Jacobson radical.

Suggested Text/ Reference Books:

- 1. C. Musili, Introduction to Rings and Modules, Narosa.
- 2. K.R. Gooderal and R.B. Warfield, Introduction to Non-commutative Rings.
- 3. N. McCoy, **Ring Theory**.

E-9 Tensor Analysis and Geometry of Manifolds

Contact Hours: 60

Section A

Tensor algebra: Contravariant and covariant vectors, Tensor product of vector spaces, Tensors, Contravariant, covariant and mixed tensors of second order, Tensors of type (r, s), Tensor product of Tensors, Contraction, symmetric and skew-symmetric tensors. Differential forms: Exterior algebra of order two, order p and of order p+q, Contraction of a form (inner product), Exterior derivative and Cartan's structural equations.

Section B

Differentiable Manifolds: Definition and examples, Differentiable functions on a manifold, Differentiable mapping between two manifolds, Differentiable curves, Tangent vectors, Tangent space, Tangent bundle, vector field, Lie bracket, sub manifolds, Lie groups (Definition and examples only).

Section C

Covariant differentiation of tensors, Linear connections: Invariant viewpoint of connections, covariant ∇P , Torsion and curvature tensors, Difference tensor of two connections, Lie derivatives, Riemannian metric, Riemannian connection, curvature tensor with respect to Chritoffel symbols, sectional curvature.

Suggested Text/ Reference Books:

- 1. W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, 2003, 2nd edition.
- 2. L. Conlon, Differentiable Manifolds, 2nd edition, Modern Birkhauskar classics, 2009.
- 3. H. S. Shukla, B. N. Prasad & D. Naraiyan, Differential Geometry of Manifolds, VandanaPrakashan Gorakhpur, 2007.
- 4. N. J. Hicks, Notes of Differential Geometry, Van Nostrand Reinhold Company, New York, 1965.
- 5. K. S. Amur, D. J. Shetty and C. S. Bagewadi, An introduction to Differential geometry, Narosa Publishing House, New Delhi, 2010.
- 6. T. J. Willmore, An Introduction to Differential Geometry, Oxford University Press London, 1930.
- 7. U. C. De, A. A. Shaikh, Differential Geometry of Manifolds, Narosa Publishing House, New Delhi, 2007.
- 8. L. P. Eisenhart, An Introduction to Differential Geometry, Princeton Univ. Press, 1947.

E-10 Topology

Contact Hours: 60

Section A

Infinite sets and axiom of choice, well ordered sets, the maximum principle, Topological spaces, Bases for a Topology, The order Topology, The Product Topology, The Subspace Topology, Closed sets and Limit points, continuous Function.Continuity of a function, Homeomorphism, Construction of continuous functions, Metric Topology, The quotient Topology (Introduction only).

Section **B**

Connectedness and Compactness: Connected Spaces, Connected sets in the Real line, Components and path components, Local Connectedness, Compact spaces, Compact sets in the Real line limit point compactness.

Section C

The Tietze extension Theorem, The UrysohnMetrization Theorem, The Tychnoff Theorem, The completely regular spaces, The Stone-cechcompactification (Statement only), Complete Metric Spaces and Function spaces: Complete Metric Spaces, Compactness in Metric spaces, Point wise and compact convergence, the Compact Open Topology, Baire Spaces.

Suggested Text/ References Books:

- 1. J.R. Munkers, **Topology- A First Course**, Prentice Hall of India, (The scope is indicated by the chapters 1, 2, 3, 4, 5, 6 & 7)
- 2. J.N. Sharma, Topology, Krishna Prakashan, Meerut.
- 3. K.D. Joshi, General Topology.
- 4. M.G. Murdeshwar, General Topology.

5. G.F. Simmons, Introduction to Topology & Modern Analysis.

E-11Mathematical Cryptography

Contact Hours: 60

Section A

Basics of Number theory & Complexity theory, Introduction to cryptography, Classical cryptosystems and their cryptanalysis, Perfect Secrecy, One way and trapdoor functions, Discrete logarithm problem, Integer factorization problem, Pseudo random bit generators, Block ciphers; DES, Triple DES.

Section **B**

Deffie-Hellman key exchange protocol, Public key encryption, RSA cryptosystem, Rabin's public key cryptosystem, El-Gamal cryptosystem, Knapsacks cryptosystem, Attack Models, Hash functions, Message authentication Code.

Section C

Digital Signatures; RSA, El-Gamal, DSA, Rabin's signature schemes, Entity Authentication, Zero knowledge protocols, Secret Sharing Schemes, Digital Cash, Elliptic curves, Identity based encryption and signature.

Suggested Text/ Reference Books:

- 1. Forozan and Mukhopadhyay:Cryptography and Network Security, 2nd ed., McGraw Hill, 2010.
- 2. N. Koblit: A Course in Number Theory and Cryptography, Springer 1987.
- 3. Menezes, Oorschot and Vanstone:Handbook of Applied Cryptography, CRC Press, 1997.
- 4. W. Stallings:Cryptography and Network Security Principles and Practices, Pearson Education, 3rd Edition, 2003.
- 5. Katz and Lindell:Introduction to Modern Cryptography, Chapman & Hall/CRC, Taylor & Francis Group, 2008.

E-12 Advanced Inference

Contact Hours: 60

Section A

Sufficient statistics and completeness, UMVUE, Cramer Rao inequality along with underlying conditions, Modification and extension of CR inequality, Rao Blackwell theorem, Lehman SehmanScheffe theorem. Introduction to Bhattacharya bounds.

Section B

Consistency of an estimator, Maximum Likelihood estimation and its large sample properties, BAN, CAN, Pitmann estimator and its efficiency.

Section C

Best critical region, GeneraliszedNeymann Pearson lemma, UMP tests for distribution with MLR, LR tests and their properties, unbiased tests, Locally most powerful tests. Similar regions and test of Neymann structure.

Suggested Text Book:

1. Mood, Graybill and Boes, An Introduction to the theory of Statistics, 3rd edition. Suggested Reference Books:

1. Stuart Kendal, The advanced theory of Statistics vol. II, Charles Griffin.

- 2. E.L. Lehman, **Testing of Statistical hypothesis**, John Wiley & Wiley eastern.
- 3. E.L. Lehman, Theory of point estimation, John Wiley & Wiley eastern.
- 4. S. Zach, The theory of Statistical inference, John Wiley & Wiley eastern.
- 5. V.K. Rohtagi, An Introduction to probability Theory and mathematical statistics, John Wiley & Wiley eastern.

E-13 Bayesian and Multivariate Analysis

Contact Hours: 60

Section A

Bayes theorem for radom variables. Prior and posterior distributions. Types of prior: non informative and improper priors for location, scale and location scale parameters.

Loss functions, decision rule and risk functions. Bayes estimation, Bayes principle, Bayes risk, Bayes test.

Section **B**

Multivariate Normal distribution, marginal and conditional distributions, characteristics functions Wishart distributions and its properties. Hotelling T2, Mahalanobis D2 and their applications.

Section C

Classification and discriminant analysis. Principal Component analysis. Canonical Correlations and variables. Factor analysis.

Suggested Text Books:

- 1. J.O. Berger, Statistical Decision Theory and Bayesian Analysis.
- 2. T.W. Anderson, Multivariate analysis, John Wiley & Wiley eastern.

Suggested Reference Books:

- 1. J.M. Bemado, A.F.M. Smith, **Bayesian Theory**.
- 2. Johnson & Wichem, Applied Multivariate Analysis, Wiley & Wiley Eastern.

E-14 Bayesian Inference

Contact Hours: 60

Section A

Bayes Theorem for random variables; non-informative and improper prior distributions for location, scale and location scale parameters; Jeffery's priors. Hartingan's priors, maximum entropy priors; Bayes sufficiency, Factorization theorem; natural conjugate priors; posteriors distribution and normal approximations to posterior distribution, Bayes principle and Bayes risk; generalized maximum likelihood estimation; Bayes point estimate; Credible regions; H.P.D. credible regions.

SectionB

Finite action problem and hypothesis testing; prior and posterior odds ratio; Bayes factor; Lindley's paradox, two sample testing problems for the parameters of normal population; predictive density function; point and interval predictors.

SectionC

Empirical Bayes estimation, determination of prior distribution from past data; linear Bayes estimate, hierarchical Bayes analysis (Normal context); Preposterior analysis and determination of optimal fixed sample size; general discussion on Bayes computation (without proof).

Suggested Text/ Reference Books:

- 1. J. Aitchison and I.R. Dunsmore, Statistical Prediction Analysis.
- 2. J.O. Berger, Statistical Decision Theory and Bayesian Analysis.
- 3. G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis.
- 4. M.H. Degroot, **Optimal Statistical Decisions**.
- 5. P.M. Lee, Bayesian Statistics.
- 6. J.M. Bernards and A.F.M. Smith, **Bayesian Theory**.

E-15 Reliability& Renewal Theory

Contact Hours: 60

Section A

Concept of reliability, classes of life time distributions, evaluation of reliability function, shape of reliability function, system reliability evaluation: series & parallel system, partially redundant system, standby system with perfect switching/ imperfect switching, (k, n) system, bridge structure, availability theory and its molding for various configurations, introduction to software reliability.

Section **B**

Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies: Age, Block Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging.

Section C

Renewal Theory, Distribution of number of renewals & moments, Recurrence time & its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability.

Text Books:

- 1. Reliability and Life Testing:S. K. Sinha. Wiley Eastern Limited.
- 2. Reliability Theory. I. Gertsbakh. Springer International Edition 2009.
- 3. Renewal Theory.D. R. Cox.Matheun London, 1962.
- 4. Introduction to Reliability Engineering:E. E. Lewis: 2nd edition. John Wiley & Sons, 1994.

Reference Books:

- 1. R.E. Barlow and F. Proschan, Mathematical theory of Reliability, John Wiley and Sons, New York, 1965.
- 2. John G. Rau, **Optimization and Probability in Systems Engineering**, Van Nostrand Reinhold Company, 1970.
- 3. E.E. Lewis, **Introduction to Reliability Engineering**, 2nd edition, John Wiley & Sons, 1994.
- 4. R.E. Barlow and F. Proschan, **Statistical Theory of Reliability and Life Testing**, Holt, Rinehart & Winston Inc., 1975.
- 5. D.R. Cox., Renewal Theory, Matheun London (Chapters 1-5), 1962
- 6. A.K.S. Jardine, **Maintenance, Replacement and Reliability**, Pitman Publication (U.K.) (Chapter 6), 1973
- 7. P.M. Morse, Queues, Inventories and Maintenance, John Wiley and Sons, 1958.

- 8. Billinton Roy and W. Allan Ronald, **Reliability Evaluation of Engineering Systems**, Pitman Publication, 1983.
- 9. J.D. Musa, Antony Lannino, K. Okunoto, **Software Reliability Measurement**, **Prediction and Applications**, McGraw Hill, 1987.
- 10. P.K. Kapur, Santosh Kumar and R.B. Garg, Contributions to Hardware and Software Reliability, World Scientific, 1999.

E-16 Time Series and Stochastic Process

Contact Hours: 60

Section A

Time series as a stationary or non-stationary stochastic process, time domain analysis based on correlogram, sample autocovariance function and autocorrelation function at lag K, lag correlation.

Measurement of cyclic fluctuations: Periodogram and its relation with acvf, Harmonic analysis. Measurement of irregular component: Variate difference method.

AR(p) process, MA(q) process, mixed ARMA(p,q) process, Stationarity and inevitability conditions, ARIMA (p, d, q) model, estimation of parameters, tests for stationarity Stochastic – Process.

Section B

Markov Chain having two states, n-step transition probabilities, Classification of states, recurrent and transient states, Chapman-Kolmogorov equations, Stationary probability theorems and limit theorem for ergodic chains, martingales.

Section C

Poisson process, birth and death process, Random walk and Gambler's Ruin problem, Wiener process, Renewal theory and its application, Branching chains: Discrete Process (Galton-Watson), Continuous process (Markov Branching), Fundamental theorem of Extinction.

Suggested Text/ Reference Books :

- 1. P.G. Hoel, S.C. Port, C.J. Stone, **Introduction to stochastic processes**, Universal Book Store, New Delhi.
- 2. S.K. Srinivasan, K.M. Mehata, **Stochastic Processes**, Tata McGraw-Hill Publishing Company limited, New Delhi.
- 3. J. Medhi, Stochastic Processes.
- 4. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control.
- 5. C. Chatfield, The Analysis of Time Series: Theory and Practice.

E-17 Time series Modeling

ContactHours: 60

Section A

Review of Time series analysis: Estimation and elimination of of trend and Seasonal component. Simple time series models and their applications, Wald decomposition theorem, Estimation of AR/MA/ARMA models, Autocorrelation and partial autocorrelation functions. Diagnostic tests (AIC, BIC criterion), Forecasting ARMA processes.

Section **B**

Non stationary time series models (ARIMA): Estimation and forecasting. Testing of parameter stability, Multivariate time series models (ARMA), Cointegration: a general cointegrated system,

two variable model: Engle-Granger method, Johansen procedure; error correction model and tests for cointegration.

Section C

Vector autoregression and Granger causality. Non-linear models: Volatility, Autoregressive conditional heteroscedastic (ARCH/GARCH) models, different interpretations, various generalizations, estimation and testing.

Suggested Text/ Reference Books:

- 1. Peter J. Brockwell, Davis, A. Richard, **Introduction to Time series and Forecasting**, 2nd Edition, Springer, 2008.
- 2. A. Fuller Wayne, **Introduction to Statistical Time Series**, Wiley Series in Probability and Statistics, 2nd edition, 1996.
- 3. C. Chatifield (Reader in Statistics, The University of Bath, UK), The Analysis of Time Series An introduction, 5th edition.
- 4. C. Mills Terence, **Time series techniques for economists**, Midland Montagu Centre for Financial Markets, City University Business School

E-18 Financial Mathematics

Contact Hours: 60

Section A

Role of Financial Management. Financial Analysis and planning. Working Capital Management. Cost of Capital, Capital Structure and Dividend Policies, Short term and Long term Financial Planning.

Section B

Analytical Approach to Finance. Technique of Goal Programming and its Application to Profit Planning and Financial Budgeting. Capital Expenditure Decision under Risk.

Section C

Financing Decision: Problem of determining optimal capital structure, Leasing, Debt Management, Analysis of commitment of funds and risk of cash insolvency; Receivables and Inventory Management Approaches, Simulation Approach to Working Capital Management.

Suggested Text/ References Books:

- 1. J.C. Van Horne, Fundamentals of Financial Management, Prentice Hall of India, 1998.
- 2. E.F. Brigham, L.C. Gapenski and C.E. Michael, **Financial Management: Theory and Practice**, The Dryden Press, 9th Ed., 1998.
- 3. M.Y. Khan and P.K. Jain, **Financial Management**, Tata McGraw Hill Pub. Co., New Delhi, 2000.
- 4. J.J. Clark, T.J. Hendland and R.E. Pritchard, **Capital Budgeting Planning and Control** of **Capital Expenditures**, Prentice Hall, Englewood Cliffs, NJ, 1986.
- 5. G. Donaldson and F. Bertrand, Corporate Debt Capacity: A Study of Corporate Debt Policy and the Determination of Corporate Debt Capacity, Beard Books, 2000.
- 6. R.H. Fogler and S. Ganpathy, **Financial Econometrics**, Prentice Hall, Englewood Cliffs, NJ, 1982.
- 7. H. Levy and M. Sarnat, **Capital Investment and Financial Decisions**, Prentice Hall, Englewood Cliffs, NJ, 1982.
- 8. J.C.T. Mao, Quantitative Decision of Financial Decisions, Macmillan, NY, 1969.

- 9. J.C. Van Horne, **Financial Management and Policy**, Prentice Hall, Englewood Cliffs, NJ, 11th Ed., 1997.
- 10. R.A. Yadav, Financial Ratios and the Prediction of Corporate Failure, Concept, New Delhi, 1987.

E-19 Information Theory

Contact Hours: 60

Section A

Information theory: Origin, concept and review of probability, Definition and implications of entropy, Shannon's entropy, Discrete information source: Discrete memoryless information source, Source coding, coding strategies, Most probable messages, Discrete information source with memory, Markov processes, coding aspect, Discrete communication channel: capacity of noiseless and noisy channels, error probability and equivocation, coding theorem.

SectionB

Continuous information sources: stochastic signals, continuous information measures, Information power, Continuous communication channel: capacity, capacity in the case of additive Gaussian white noise, capacity bound in the case of additive Gaussian white noise, Channel coding theorem.

SectionC

Rate distortion theory: Discrete rate distortion function and their properties, Source coding and information transmission theorems, The continuous rate distortion function, Network information theory: multi-access communication channel, Broadcast channels, Two-way channels.

Suggested Text/ Reference Books:

- 1. Van der Lubbe, J.C.A., Information Theory, Cambridge University Press, 1988.
- 2. T.M. Cover and J.A. Thomas, **Elements of Information Theory**, Wiley Interscience, 1991.
- 3. R.B. Ash, Information Theory, Dover Publications, 1990.
- 4. C.E. Shannon and W. Weaver, **The Mathematical Theory of Communication**, University of Illinois Press, 1963.
- 5. I. Csiszar and J. Koerner, **Information Theory: Coding Theorems for Discrete Memoryless Systems**,2nd ed., AkademiaiKlado, Budapest, 1997.

E-20Network Analysis

Contact Hours: 60

Section A

Flows in Network, Maximal Flow - Minimal Cut theorem using the concept of Duality, Maximal Flow problem, feasibility theorems, General Minimal Cost Flow problem, Hitchcock problem, Bottleneck Assignment problem, Out-of-Kilter algorithm, Shortest path problem, Minimal spanning tree.

Section B

PERT & CPM: Critical path, Activity floats, Project crashing, Resource leveling and Resource scheduling.

Section C

Sequencing problem; Finite sequencing for a single machine Flow shop and Job-shop problem, Sequencing with Stochastic processing times and parallel processing.

Suggested Text/ Reference Books :

- 1. R.K. Ahuja, T.L. Magnati and B. Orlin, Network Flows-Theory, Algorithm and Applications, Prentice Hall, New Jersey, 1993.
- 2. M.S. Bazaraa and J.J. Jarvis, Linear programming and Network Flows, 2nd Ed, John Wiley, New York, 1977.
- 3. S.D. Sharma, **Operations Research**, S. Chand and Co., New Delhi, 1988
- 4. L.R. Ford and D.R. Gulkerson, Flows in Networks, Princeton University press, 1962.
- 5. R.W. Conway, W.L. Maxwell and L.W. Miller, **Theory of Scheduling**, Addison Wesley, 1967.
- 6. S. Fiench, Sequencing and Scheduling, Ellis Horwood Ltd., 1982.
- 7. J.J. Modder, and C.R. Philips, **Project Management with PERT and CPM**, VanNostrand Reinhold Co., 1970.
- 8. P.A. Jenson and J.W. Barmes, **Network Flow Programming**, John Wiley and Sons, 1980.
- 9. S.E. Elmaghraby, Activity Network, Project Planning and Control, John Wiley and Sons, NY, 1977.
- 10. R. Panneerselvam, Operations Research, PHI, New Delhi, 2003

E-21Clinical Trials

Contact Hours: 60

Section A

Introduction to clinical trials, new drug application and clinical development, Bias and variability of primary clinical endpoint. Design consideration of clinical trials: Patient selection, selection of controls, statistical consideration, Randomisation and blinding.

Section B

Overview of phase I-IV trials. Designs for clinical trials: Parallel, crossover, Cross-sectional, longitudinal, titration, enrichment designs, Classification of clinical trials: Multicentre, active control combination, equivalence trials, Concept of surrogate endpoints. An introduction to meta analysis of clinical trials.

Section C

Group sequential methods in clinical trials, Pollock's and O'Brien & Fleming's tests (with properties), Group sequential tests for binary data, survival data, Analysis for categorical data.

Suggested Text/ Reference Books:

- 1. S. Piantadosi, Clinical Trials; A Methodological Perspective, Wiley and Sons, 1997.
- 2. C. Jennison and B.W. Turnbull, Group Sequential Methods with Applications to Clinical Trials, CRC Press, 1999.
- 3. L.M.C. Furburg& D.L. Demets, **Fundamentals of Clinical Trials**, Springer Verlag,1998.
- 4. J.L. Fleiss, The Design and Analysis of Clinical Experiments, Wiley & Sons, 1989.
- 5. E. Marubeni and M.G. Chi, Analysing Survival Data from Clinical Trials and Observational Studies, Wiley & Sons, 1994.

E-22Decision Theory

Contact Hours: 60

Section A

Concepts of process, Bayesian Procedure, Decision Functions, Different Decision Criterion for Decision Problems under risk and Uncertainty. Regret versus Loss Function, Expected Value of perfect Information, Utility and its Application in Decision Problems.

Section **B**

Multilevel (Multi-Stage) Decision problem, Principles of Diagramming and Locating of Optimal Strategy. Decision Analysis with Continuous Distribution for the Events.

Decision Process with Sampling Information: Simple Sampling and Binomial Sampling and with Updating the Prior Distribution of the Events (Use of Posterior Distribution). Decision Process and Normal Distribution of Event.

Section C

Basic Concepts of the Sampling time Markov Decision process Examples, Stationary Policies, Average Cost Criterion, Policy- Iteration Algorithm, Linear Programming Formulation Procedure and Comparison of Linear Programming Formulation Procedure and Policy Iteration Algorithm for Solving an Infinite Stage Markov Decision Problem. Simple Concept of Semi Markov Decision Process. Application of Markov Decision Process to Inventory Management, Maintenance, Manufacturing Process, Telecommunication and Queueing theory.

Suggested Text/ References Books:

- 1. Bruce F. Baird, Managerial Decision under Uncertainty- An Introduction to the Analysis of Decision Making (chapters- 7,8,10,12), John Wiley, 1989.
- 2. J.T. Buchanan, Discrete and Dynamic Decision Analysis (chapters-7, 9), 1982.
- 3. D.W. Bunn, Applied Decision Analysis, McGraw Hill Book Co., 1986.
- 4. French, Simon, **Decision Theory: An Introduction to the Mathematics of Nationality**, Ellis Horwood ltd., 1986.
- 5. Johns Mogran, Introduction to Decision Theory (chapters-5,6,8,9,10,11).
- 6. H.C. Tijms, Stochastic model –An Algorithmic Approach (chapters-2 & 3), John Wiley (1994).

E-23Demography and Advanced Sampling

Contact Hours: 60

Section A

Logistic models, measures of morbidity, mortality graduation, methods of construction of abridged life tables and its applications, population estimates and projection.

Section **B**

- Cluster sampling with equal clusters.
- Ratio and Regression estimators.
- Sampling with varying probability of selection (WR and WOR)
- Cumulative Total and Lahiri's method of selection.
- Estimation of population mean.
- Desraj Ordered estimates.
- Horwitz Thompson estimates.
- Midzunosen and Narain Methods of sampling.

Section C

- Post stratification and deep stratification.
- Double sampling in ratio and regression estimation.
- Two stage and multistage sampling.
- Basic idea of randomised response technique.
- Non sampling errors: Interpenetrating samples.

Suggested Text/ Reference Books:

- 1. P.V. Sukhatme, B.V. Sukhatme, C. Ashok, **Sampling Theory of Surveys with Applications**, 2nd Ed., Piyush Publication Delhi.
- 2. K.B. Pathak and F. Ram, **Techniques of Demographic Analysis**, II Revised ed., Himalaya Publishing House, Mumbai.
- 3. M.N. Murthy, Sampling Theory and Methods, Sage Pub., New Delhi.
- 4. Des Raj. and P. Chandok; Sampling Survey Theory, ND Narosa.
- 5. D. Singh and F.S. Chaudhary, **Theory and Analysis of Sample survey Design**, NewAge International Publication.
- 6. K. Srinivasan, **Demographic and Socio Economic Aspects of the Child in India**, Himalaya Publication.

E-24Design of Experiments & Linear Models

Contact Hours: 60

Section A

Estimable functions, estimation and error space, linear models and regression, Standard Gauss Markov Models, Best linear unbiased estimate (BLUE), Method of least squares and Gauss - Markov theorem, Variance covariance matrix of BLUES, use of g-inverse.

Section B

General two – way classification, Analysis of covariance (2n, 32 and 33) factorial experiments, complete and partial confounding. Split and strip plot designs.

Section C

Balanced Incomplete Block design (BIBD) Construction of BIBD, Intra block and inter block Analysis, BIBD with recovery of inter block information, partially balanced Incomplete block design (PBIBD), quasi-Latin square design.

Suggested Text/ Reference Books:

- 1. D.D. Joshi, Linear Estimation and Design of Experiments, Wiley Eastern.
- 2. N.C. Giri, Analysis of Variance, South Asian Publishers, 1986.
- 3. M.N. Das and N.C. Giri, **Design and analysis of experiments**, Wiley Eastern.
- 4. C.R. Rao, Linear statistical inference, John Wiley, Singapore 2nd Ed.
- 5. AlokDey, Theory of block designs, Wiley Eastern.

E-25Distribution Theory

Contact Hours: 60

Section A

Random Experiments and its sample space, random vatriables, cdf, pdf and pmf, absolutely continuous and discrete distributions, mixtures of probability distributions. Some common distributions like Bernoulli, uniform, binomial, Poisson, geometric, rectangular, exponential,

normal, Cauchy, hypergeometric, multinomial, Laplace, negative binomial, beta, gamma, lognormal and compound. Poisson distribution, Weibull distribution.

Section **B**

Distributions of functions of random variables. Transformations, moments, m.g.f., p.g.f. Independence of random variables, convolutions, conditional expectations and variances.

Random vectors, joint distributions, joint m.g.f., mixed moments and variance- covariance matrix. Correlation and regression.

Section C

Sampling distributions of statistics from univariate normal random samples such as linear and quadratic forms. Fisher's Cochran theorem. Non central chi-square, t and F distributions.

Suggested Text/ Reference Books:

- 1. Mood, Graybill and Boes, An Introduction to Statistics, Tata McGraw-Hill publisher
- 2. Kotz, Balakrishnan and Johnson, **Continuous Univariate Distributions Vol II**, A Wiley Interscience Publication, 2nd ed., 2000.
- 3. Kotz, Balakrishnan and Johnson, **Discrete Univariate Distributions**, A Wiley Interscience Publication, 2nd ed., 2000.

E-26Econometrics

Contact Hours: 60

Section A

Review of multiple linear regression models, Polynomial Regression, Stepwise Regression, Lasso Regression, Model Selection Methods: AIC, BIC, Mallow's Cp, Cross-validation, Regression regularization methods.

Section **B**

Distributed lag models: Finite polynomial lags, determination of the degree of polynomial. Infinite distributed lags, adaptive expectations and partial adjustment models, determination of lag length. Methods of estimation.

Introduction to logistic and Poisson regression

Section C

Simultaneous equation model: concept of structural and reduced forms, problem of identification, rank and order conditions of identifiability, indirect least squares; two stage least squares, Maximum likelihood estimation.

Suggested Text/ References Books:

- 1. J. Johnston, Econometric Methods, Tata McGraw-Hill.
- 2. C.G. Judge, W.E. Griffiths, R.C. Hill, Hitkepohl and T.C. Lee, **The Theory and Practice** of Econometrics.
- 3. D.N. Gujrati, **Basic Econometrics**, McGraw-Hill.

E-27Inventory Theory

Contact Hours: 60

Section A

Analytical structure of Production and Inventory problems, Inventory related costs, Properties of Inventory system, Factors influencing inventories.

Deterministic inventory models and extensions without and with lead time, Inventory models with partial backlogging and sales, Models with continuous production and non-constant demand

with known production capacity, Inventory models with constraints, Quantity discounts; All units and incremental. Sensitivity of the lot size system, N-products and M-Machines model.

Section B

Stochastic Inventory Models and Extension without and with lead time, Use of transformation from time-dependent for continuous and discrete demand, Power demand pattern Inventory Model, Safety stock and Buffer stock.

Section C

Simulation in Inventory system, Production scheduling, Classification of items viz; BAC, VED, FNS, Two-way analysis of ABC & FNS, Case studies.

Suggested Text/ Reference Books:

- 1. E. Koenigsber, J.E. Buchan, Scientific Inventory Management, Prentice Hall, 1963.
- 2. G. Hadley, T.M. Whitin, Analysis of Inventory Systems, Prentice Hall, 1963.
- 3. Hansman, Fred, **Operations Research in Production and Inventory Control**, John Wiley, 1968.
- 4. E. Naddor, Inventory System, John Wiley, 1966.
- 5. L.A. Johnson, D.C. Montgomery, **Operations Research in Production Planning**, **Scheduling and Inventory Control**, John Wiley, 1974.
- 6. L. Stephen, **Inventory Control**, McGraw Hill, 1979.
- 7. E. Silver and R. Perterson, **Decision System for Inventory Management and Production Control**, Wiley, NY, 1985.

E-28Non-parametric Statistical Inference and Sequential Analysis

Contact Hours: 60

Section A

Distribution free and non-parametric methods, order statistics, joint distribution of order statistics, marginal distribution of order statistics, distribution of median and range, exact moments, confidence interval, estimates for population quantities, Exact null distribution of R moments of the null distribution of R, test based on total number of runs, chi-square goodness of fit test, empirical distribution function.

Section B

Ordinary sign test, Wilcoxon signed rank test, Kolmogorov Smirnov one sample & two sample test and their merits and demerits, Median test, Kruskal- Wallis one way analysis of variance by ranks, McNemar change test.

Section C

Sequential analysis Wald's SPRT, properties of SPRT, OC and ASN functions of SPRT, Applications of SPRT, Testing of mean of a binomial distribution, Testing of mean of a normal distribution with known & unknown standard deviations.

Suggested Text/ Reference Books:

- 1. Siegel, Sidney and Castellan Jr. N. John, **Non-parametric Statistics for the Behavioral Sciences**, McGraw Hill,International edition 1988.
- 2. G. Casella and R.L. Berger, Statistical Inference, Duxbury Press, California, 1990.
- 3. A. Wald, Sequential Analysis, John Wiley and Sons, 1947.
- 4. J.D. Gibbons and SubhabrataChakraborti, **Non-parametric Statistical Inference**, Marcel Dekker Inc., 3rd Edition.

E-29Population Sciences

Contact Hours: 60

Section A

Definition of demography, Population Sciences, Source of population data, Census, Civil Registration System (CRS), Sample Registration Scheme (SRS), National Sample Survey (NSS), Demographic surveys and other sources (Nature and limitation of the data from each of the sources), Population Composition and change, Concept of aging, Population Theories- Theories of population growth-Malthus to Modern, theory of Demographic Transition, Theories related to fertility, migration and urbanization, Population, Development and Environment, Population and Gender, HDI.

Section B

Nuptiality& Fertility (Concepts, Measures Determinants of fertility). Mortality, Morbidity& Health (Concepts &Measures). Life Tables (Basic concepts, type and forms of life table),lexis diagram, Model life table. Reproductive Health, Migration and Urbanization (basic concepts, types, measures). Determinants and Consequences of migration, trends and pattern of urbanization in India, Issues in urbanization and urban problems in developing countries with focus on India.

Section C

Population estimation: Inter-Censual & Post Censual, Methods of population projection population policies and programmes. Population policies in the context of growth, structure, distribution and quality of life:policies related to medical termination of pregnancy (MTP), age at marriage, Sex Determination tests. National & state population policies in India. Evolution of family welfare programme in India. Programme Component and organization at different levels (National, State, District). Goals and achievements of the family welfare programme. Impact Assessment.

Suggested Text/ Reference Books:

- 1. P.R. Cox, **Demography Methods and Materials of Demography Vol. I**, UNO Publication.
- 2. K.B. Pathak and F. Ram, Techniques of Demography Analysis, II Revised Ed.
- 3. K. Srinivasan, Demographic & Socio Economic Aspects of the Child in India.
- 4. Ramkumar, **Demography India**.

E-30Queueing Theory

Contact Hours: 60

Section A

Concept of stochastic processes, Markov Chains discrete and continuous time parameter, Objectives and different characteristics of a Queueing system, Performance measures. Steady state solution of Markovian Models (M/M/1, M/M/c, M/Ek/1, Ek/M/1).

Section B

Analytical method and use of randomization technique to find the transient solution of M/M/1, M/M/c and $M/M/\mu$ Queueing models including busy period distribution.

Section C

Imbedded markov chain technique and its use to the Queueing models: M/G/1, GI/M/1 and M/D/c, Bulk queueing models, Different design and control policies ((O, N) and vacation policies) for MarkovianQueueing models. Introduction to discrete time Queueing system. Simulation procedures: Data generation and Book- keeping aspects.

Suggested Text/ Reference Books:

- 1. D. Gross and C.M. Harris, **Fundamentals of Queueing Theory**, 2nd ed., John Wiley, 1985.
- 2. Michel E. Woodward, Communication and Computer Networks Modeling with Discrete Time Queues, IEEE Computer Society Press, 1994. (Chapter 4)
- 3. R.B. Cooper, Introduction to Queueing Theory, 2nd Ed, North Holland, 1981
- 4. D.R. Cox and W.L. Smith, **Queues**, Mathuen, 1961.
- 5. L. Kleinrock, Queueing Systems, Vol. I, John Wiley, 1975.
- 6. J. Medhi, Stochastic Model in Queueing theory, Academic Press, 1991.
- 7. T.L. Satty, Elements of Queueing Theory with Applications, Mc-Graw Hill, 1961.

E-31Soft Computing

Contact Hours: 60

Section A

Neural Network (NN) Paradigms: Introduction, Neuron model, Neural network architectures, Learning Rules (Hebbian, Competitive, Baltzmann, Supervised, unsupervised) Types of neural networks: Perceptron, MLP, radial basis function network, recurrent network, self-organizing Feature maps, Boltzamann m/c, Applications of NN.

Section **B**

Fuzzy Logic: Introduction, Fuzzy sets, Basic operations on fuzzy sets, relations, rule based models and linguistic variables, fuzzy control, interpolation in fuzzy rule base, Applications of Fuzzy logic.

Section C

Evolutionary Computations: Introduction, Genetic Algorithm (GA), Evolutionary programming, Classifier systems, genetic programming parse trees, Mathematical foundation of GA variants of GA (hybrid GA, Fuzzy GA Enhancements of genetic programming, application).

Suggested Text/ Reference Books:

- 1. Zimmermann, Fuzzy set theory and its application.
- 2. S. Haykins, Neural Networks.
- 3. H. Li. and M.M. Gupta, Fuzzy logic and intelligent systems.
- 4. L.C. Jain, Soft Computing Techniques in knowledge-based intelligent engineering systems, approaches and application.
- 5. Geyer-Schulz Andrers, **Fuzzy Rule-Based Export Systems and Genetic Machine** Learning, Second revised and enlarged edition.
- 6. B. Yegnanrayana, Artificial Neural Networks.
- 7. B. Rao Valluru and V. RaoHayagriva, C++ Neural Networks and Fuzzy Logic.
- 8. D. Ruan, Fuzzy Systems and Soft Computing in Nuclear Engineering.
- 9. J.A. Anderbon, An introduction to Neural Network.
- 10. B. Kosko, Neural Networks and Fuzzy Systems, A Dynamically Systems approaches to machine intelligence.

E-32 Regression Analysis

Total Contact Hours : 60

Section – A

Review of the two-variable linear model, p-variable linear model: underlying assumption, ordinary least squares estimators, set of linear hypothesis: Testing a single coefficient, testing the significance of a subset of coefficients, testing the significance of the complete regression. Confidence estimation, R2 and adjusted R2. Residual Analysis.

Section B

Problems of multicollinearity: its detection and remedies, ridge estimator, PCR estimator, Use of extraneous information in terms of exact and stochastic linear restrictions. Estimation of parameters by generalized least squares in models with non-spherical disturbances: heteroscedasticity of disturbances and the problem of autocorrelation.

Section C

Dummy Variables in Linear Regression Models, tests for structural break, Specification Errors, Nonlinear Associations and Interaction Terms, Influential Observations: Leverage Points and Outliers, A Brief Introduction to Logistic Regression.

Reference Books:

1. John P. Hoffmann, Linear Regression Analysis: Applications and Assumptions, Second Edition.

2. Draper, N. R. and Smith, H. (1998). Applied Regression Analysis (John Wiley) Third Edition.

RE-1: Numerical Solutions of Partial Differential Equations

Numerical solutions of parabolic PDE in one space: two and three levels explicit and implicit difference scheme. Numerical solution of parabolic PDE of second order in two dimensional space implicit methods, alternating direction implicit (ADI) methods, Non-linear initial BVP.

Difference schemes for parabolic PDE in spherical and cylindrical coordinate systems in one dimension. Numerical solution of hyperbolic PDE in one and two space dimension: explicit and implicit schemes. Lax's equivalence theorem, Finite difference schemes for initial and boundary value problems - FTCS, backward Euler and Crank-Nicolson schemes, Difference schemes for first order equations.

Numerical solutions of elliptic equations, approximations of Laplace and biharmonic operators. Solutions of Dirichlet, Neuman and mixed type problems.

Recommended Books:

- 1. M.K. Jain, S.R.K. Iyenger and R. K. Jain, Computational methods for Partial Differential Equation, Willey Eastern, 1994.
- 2. M..K. Jain, Numerical solution of Differential Equations, 2^n edition, Wiley Eastern.
- 3. S. S. Sastry, Introductory Methods of Numerical Analysis, Prentice-Hall of India, 2002.
- 4. D.V. Griffiths and I.M. Smith, Numerical Methods of Engineers, Oxford University Press, 1993.
- 5. C.F. General and P.O. Wheatley, Applied Numerical Analysis, Addison-Wesley, 1998.
- 6. G.D. Smith, Numerical Solutions to Partial Differential Equations, Oxford University Press, 3rdEdn., 1986.

RE-2: Operator theory

Dual space considerations: Representation of duals of the spaces with p-norms, and c with supremum-norm, C[a,b] and . Reflexivity, Weak and weak* convergences. Best Approximation in Reflexive spaces.

Operators on Banach and Hilbert spaces: Compact operators and its properties; Integral operators as compact operators; Adjoint of operators between Hilbert spaces; Self-adjoint, Normal and unitary operators; Numerical range and numerical radius; Hilbert--Schmidt operators.

Spectral results for Banach and Hilbert space operators: Eigen spectrum, Approximate eigen spectrum, Spectrum and resolvent; Spectral radius formula, Spectral mapping theorem; Riesz-Schauder theory, Spectral results for normal, Self-adjoint and unitary operators; Functions of self-adjoint operators.

Text books:

1. M.T. Nair, Functional Analysis: A first course, Prentice Hall of India, 2002.

References books:

- 1. B.V. Limaye, Functional Analysis, Second Edition, New Age Internationals, 1996.
- 2. J.B. Conway, A Course in Functional Analysis, 2nd ed., Springer, Berlin, 1990.
- 3. C. Goffman and G. Pedrick, First Course in Functional Analysis, Prentice Hall, 1974.
- 4. I. Gohberg and S. Goldberg, Basic Operator Theory, Birkhauser, 1981.

- 5. E. Kreyzig, Introduction to Functional Analysis with Applications, Wiley, 1989.
- 6. G. Bachman, L. Narici, Functional analysis, Academic Press, N.Y., 1964.

RE-3: Supply Chain Management

Building Blocks of a Supply Chain Network, Business Process in Supply Chains, Types of Supply Chains and Examples, Strategic, Tactical, and Operational Decisions in Supply Chains, Supply Chain Performance Measures.

Supply Chain Inventory Management: Newsboy, Base-stock, and (Q,r) Models, Multi-Echelon Supply Chains, Performance of Supply Chains using Markov Chains and Queueing Networks. Mathematical Programming Models for Supply Chain Planning, Design and Optimization, Internet- Enabled Supply Chains ERP and Supply Chains, Customer Relationship Management.

Suggested Books:

- 1. S.Chopra and Peter Meindel, Supply Chain Management: Strategy, Planning, and Operation, Prentice Hall of India, 2002.
- 2. Jeremy F. Shapiro. Modelling the Supply Chain, Duxbury Thomson Learning, 2001.
- 3. N. Viswanadham. Analysis of Manufacturing Enterprises, Kluwer Academic Publishers, 2000.
- 4. Sridhar Tayur, Ram Ganeshan, Michael Magazine (editors). Quantitative Models for Supply Chain Management, Kluwer Academic Publishers, 1999.
- 5. R.B. Handfield and E.L. Nochols, Jr. Introduction to Supply Chain Management, PrenticeHall, 1999.
- 6. N. Viswanadham and Y. Narahari, Performance Modeling of Automated manufacturing Systems, Prentice Hall of India, 1998.
- 7. Relevant Research Papers

RE-4: Marketing Management

Consumer Behavior, Contribution of Consumer Behavior in Marketing Management; Market Segmentation; Purchasing Decision with Market price Increase Anticipated; Purchasing under Varying marketing Parameters viz: Price, Quality, Promotional Effort and Distribution Expenses; Promotional and Pricing Decisions under Competition; Planning Suitable Channels of Distribution appropriate to various Classes of Goods and Customers; Media Planning and Media Allocation Models Determining the Optimal Return on Investment for an Advertising Campaign. Diffusion of Products with Limited Supply and Known Expiration Date. Diffusion of Innovation under Supply Constraints.

Suggested Books:

- 1. Perry Bliss, Marketing and Behavioral Sciences.
- 2. Frank M. Bass, Charles King and EgarPessemier, Application of Sciences to Marketing Management, John Wiley & Sons-New York.
- 3. Gary L. Lilien and ArvindRangaswamy, Marketing Engineering, Person Education, Singapore, (2003).
- 4. Robert G. Murdick, Mathematical Models in Marketing, Intext Educational Publisher, (1971).
- 5. Graham J. Hooley and Michael K Hussey, Quantitative Methods in Marketing International Thomson Business Press (1999).
- 6. Relevant Research Papers

RE-5: Inventory and Production Management

Deterministic Inventory Lot-Size Model with Time proportional demand. Deterministic joint replenishment policy. Inventory Control of deteriorating items (discrete and Continuous). Inventory control under inflationary conditions. Inventory models with stock dependent demand. Interaction of inventory and trade credit policies. Impact with marketing policies on inventory decisions. Joint buyer-seller inventory model. The distribution free newsboy problem and its extensions.

Introduction to VMI and Supply chain.

Interaction of Inventory, Queues and Reliability.

Aggregate Production Planning Fixed and Variable Work Force Model. Inventory Location Model. Production Planning with Time Varying Demand.

Suggested Books:

- 1. Walters, C.D. J., 2003, Inventory Control & Management, John Wiley & Sons
- 2. Heizer, J. and Render, B., 2001, Principles of Operation Management, Prentice Hall.
- 3. Zipkin, P.H., 2000, Foundations of Inventory Management, McGraw-Hill/Irwin.
- 4. NJ Bernard, P. 1999, Integrated Inventory Management, John Wiley and Sons, New York.
- 5. Silver, E., Pyke, D., and Peterson, R. 1998. Inventory Management and Production and Scheduling, John Wiley and Sons, New York.
- 6. Tony Wild, 1998, Best Practice in Inventory Management, John Wiley & Sons.
- 7. Bedworth and Bailey, 1987, Integrated Production Control Systems, John Wiley & Sons, New York.
- 8. Plossl, G., 1985, Production and Inventory Control, Principles and Techniques, Prentice hall, Englewood Cliffs, NJ.
- 9. Relevant Research Papers.

RE-6: Decision and Game Theory

Finite Games, Equilibrium Points, Games with Infinitely many Strategies, Infinite Games, Concave-Convex Games, Multistages Games, Stochastic Games, Two Person General-Sum Games, Bimatrix Games, Non-Atomic Games.

Differential Games, Nash Equilibrium, Identifying Nash Equilibria, Solution of n-persons games with and without zero-sun restriction. Lanchester's equations and their application to games of strategy, Statistical Games, General Techniques for Solving Statistical Games.

Bayesian Decision Theory, Preposterior and Sequential Analysis, Group Decisions and Social Choice, Influence Diagrams, Mulyi Attribute Utility.

Suggested Books:

1. G. Owen, Game Theory, Second Edition, Academic press, 1982.

- 2. Mekinsey J.C.C., Introduction to the Theory Of Games, McGraw-Hill Book Company, INC, 1952.
- 3. Neyerson, R, Game Theory: Analysis of Conflict, Harvard University Press, Cambridge Mass, 1991.
- 4. Steffen J. and Georges, Z., Differential Games in Marketing, Kluwer Academic Publishers, 2004.
- 5. J.Q. Smith, Decision Analysis- A Bayesian Approach Chapman & Hall, 1988.
- 6. D.V. Lindley, making Decisions, Second Edition, Wiley, 1985.
- 7. S. French, Decision Theory-An Introduction to the Mathematics of Rationality, Ellis Horeood, Chichester, 1986.
- 8. M.H. Degroot, Optimal Statistical Decisions, Second Edition, McGraw Hill, 1970.
- 9. R.T. Clemen, Making Hard Decision, Second Edition, Duxbury Press, 1995.

RE-7Algebraic Geometry

Algebraic curves in plane, closed subset of affine space, rational functions, projective and quasi projective varieties, projective spaces, hypersurfaces, product and maps of quasiprojective varieties, Normal varieties.

Dimension and degree, singular and non-singular points, singularities of a map, divisors, divisors on curves, plane cubic, algebraic group, differential forms, Riemann-Roch theorem on curves.

Reference Books:

- 1. Shafarevich: Basic Algebraic geometry I, Springer 1994. Cox-Little-O'Shea (CLO) "Ideals, Varieties, Algorithms", Springer 1992.
- 2. Hartshorne, Robin. Algebraic Geometry. New York, NY: Springer, 1997.
- 3. Schenck (S) "Computational Algebraic Geometry", Cambridge 2003.
- 4. Harris (H) "Algebraic Geometry: a first course", Springer 1992.

RE-8 Algebraic Aspects of Cryptography

Finite field arithmetic: Introduction to finite fields, Prime field arithmetic, Binary field arithmetic, optimal extension field arithmetic.

Elliptic Curves: Group law, projective coordinate and Jacobian coordinates, Endomorphisms, Torsion points, Divisors and Tate pairings, Supersingular and singular elliptic curves Elliptic curves over finite field, Elliptic Curve Cryptography.

Lattices: Basic definitions and properties, Short vectors in lattices, Babai's Algorithm, NTRU public key cryptosystem, Lattice based digital signature algorithm, Lattice reduction algorithm.

Reference Books:

- 1. Hankerson, D., Menezes, A. and Vanstone, S.: Guide to Elliptic Curve Cryptography, Springer-Verlag, New York, 2004. (Chapter 2)
- 2. Washington, L. C.: Elliptic Curves, Number Theory and Cryptography, 2nd Ed., Taylor & Francis, 2008. (Chapter 2, 3, 4, 6)
- 3. Martin, L.: Introduction to Identity based Encryption, Artech House, London, 2008. (Chapter 3, 4, 6)

4. Hoffstein, J., Pipher, J. and Silverman: An introduction to Mathematical Cryptography, 2nd Ed., Springer, 2014. (Chapter 7)

RE-9 Advanced Cryptography

Digital signatures: Definitions, formal definition of security, relations between security notions, strong unforgeability, one time signature, signature from one-way function, hash-and-sign paradigm, security of RSA signature, Schnorr signature scheme, Certificates and public key infrastructure.

Signcryption: Definitions, security models for signcryption, signcryption scheme based on Diffie-Hellman Problem.

Identity Based Cryptography: Cocks, Boneh-Franklin, Boneh-Boyen, Sakai-Kasahara identity based encryption schemes.

Suggested Books:

- 1. Katz, J.: Digital Signature, Springer, 2010. (Chapter 1, 3)
- 2. Katz, J. and Lindell, Y.: Introduction to Modern Cryptography, 2nd Ed., Chapman & Hall/CRC, Taylor & Francis Group, 2015. (Chapter 12)
- 3. Dent, A. W. and Zheng, Y.: Practical signcryption, Springer, 2010. (Chapter 2, 3, 4)
- 4. Martin, L.: Introduction to Identity based Encryption, Artech House, London, 2008. (chapter 7, 8, 9, 10)

RE-10 Finite Element Methods

The fundamentals of finite element methods, Discritization of the bounded area, stiffness matrix, assembly of stiffness matrices, Global stiffness matrix.

Shape function: Linear and higher order shape functions for linear, triangular and rectangular elements, Variational Formulation, Rayleigh-Ritz method and Weighted residue method, Galerkin's method

Finite Element formulation for PDE, Laplace equation, wave equation and diffusion equation.

Suggested Text/ Reference Books:

- 1. J.N. Raddy, **Finite Element Methods**, 2nded, McGraw Hill, 1993.
- 2. D.H. Norrie and G. Devries, Introduction to Finite Element Methods, Academic Press.
- 3. K.E. Brenner and R. Scott, **The Mathematical Theory of Finite Element Methods**, Springer-Verang, Berlin, 1994.
- 4. P.G. Ciarlet, **The Finite Element Methods for Elliptic Problems**, North Holand, Amsterdam, 1978.
- 5. C. Johnson, Numerical Solution of Partial Differential Equations by Finite Element Methods, Cambridge University Press, Cambridge, 1987.
- C. Mercier, Lectures on Topics in Finite Element Solution of Elliptic Problems, TIFR Lectures on Mathematics and Physics, Vol. 63, Narosa Publ. House, New Delhi, 1979.

RE-11 Finite Field Theory

Introduction to finite fields, extension fields, trace and norm function, bases linearized polynomial, irreducible polynomial, primitive polynomial, factorization of polynomials, normal bases, Completely normal bases, Gauss, Jacobi, and Kloosterman sums, exponential and character sums, Some applications of character sums

Suggested Books:

- 1. Mullen, G. L. and Panario, D.: Handbook of finite fields, CRC Press, 2013.
- 2. Lidl, R and Niederreiter, H.: Introduction to finite fields and their applications, Cambridge University Press, 1986.
- 3. Menezes, A. J.: Applications of finite fields, Springer, 1993.

RE-12Special Functions

The Gamma and Beta Functions: Eulers' integral for (z), the beta function, factorial function, Legendre's duplication formula, Gauss's multiplication theorem, summation formula due to Euler, behavior of log (z) for large |z|. The Hypergeometric function: An integral representation, differential equation and solutions. F(a,b,c;1) as a function of the parameters, evaluation of F(a,b,c;1), contiguous function relations

The hypergeometric differential equation, logarithmic solutions of the hypergeometric equation, F(a,b,c;z) as a function of its parameters, Elementary series manipulations, simple transformations, relation between functions of (z) and, (1-z) quadratric transformations, theorem due to Kummer, additional properties. The Confluent Hypergeometric function: Basic properties of 1F1, Kummer's first formula. Kummer's second formula, Generalized Hypergeometric Series: The function pFq, the exponential and binomial functions, differential equation, contiguous function relations, integral representation pFq, with unit argument, Saalshutz' theorem, Whipple's theorem, Dixon's theorem, Contour integrals of Barnes' type.

Bessel Functions: Definition, Differential equation, differential recurrence relations, pure recurrence relation, generating function, Bessel's Integral, index half an odd integer, modified Bessel functions,

Introduction to Legendre function, Meijer G-function and some basic properties, Fox's H-Function.

Text/Reference Books:

- 1. Earl. D. Ranvillie: Special Functions, Macmillan, 1960.
- 2. L.C. Andrews: Special Functions of Mathematics for Engineers, SPIE Press, 1992.
- 3. Gabor Szego: Orthogonal Polynomials, American mathematical society, 1939.
- 4. L. J. Slater: Generalized Hypergeometric Functions, Cambridge University Press, 2008.
- 5. A.M. Mathai, H.J. Haubold: Special Functions for Applied Scientists, Springer, 2008.

RE-13 Algebraic Topology

Homotopy of paths, fundamental group of a space, homomorphism between fundamental groups induced by a map between spaces, homotopy equivalence and homotopy type, the Seifert-van Kampen's theorem and its applications.

Covering spaces: Definition and examples, lifting of paths, fundamental group of a covering space, lifting of maps, deck transformations and group actions, regular covering spaces and quotient spaces.

Homology: Simplicial homology, singular homology, invariance of homology groups under homotopy.

Texts/References:

- 1. W. S. Massey, A Basic Course in Algebraic Topology, Springer, 1991.
- 2. A. Hatcher, Algebraic Topology, Cambridge, 2002.
- 3. J. R. Munkres, Elements of Algebraic Topology, Perseus Publishing, 1984.

RE-14 Advanced Queueing Models

Time dependent solution of M/M/1 queueing model: Difference equation techniques, Probability generating function techniques, Pegden and Rosenshine technique, Catastrophized M/M/1 queue: Cresenzo et.al technique, Kumar B. K. et.al technique. Steady state solution of M/G/1 and M/G/1/N using supplementary variable technique; GI/M/1, Geo/M/1 using embedded Markov chain technique.

Reference Books:

- 1. Bunday B. D., "An Introduction to Queueing Theory", Arnold Publisher(1996).
- 2. Crescenzo, A. Di et.al, "On the M/M/1 queue with catastrophes and its continuous approximation", Queueing System, Vol. 43, pp. 329- 347, (2003)
- 3. Conolly B.W., "A difference equation techniques applied to the simple queue", Journal of Royal Statistical Society, Series B. Vol. 20, pp. 165-167,(1957).
- 4. Gross D. Harris C.M., "Fundamental of queueing theory", Wiley 2nd edition (2003).
- 5. Hideaki Takagi, "Queueing Analysis Vol. I, II and III", Elevier Sci. Publisher (1993).
- 6. Kumar B.K. et.al, "Transient solution of an M/M/1 queue with catastrophes", Computer and mathematics with application, Vol. 40, pp. 1233-1244,(2000).
- 7. Pegden C. D. and Rosenshine. M., "Some new results for the M/M/1 queue, Management Science, Vol 28 pp. 821-828, (1982).
- 8. Saaty T. L., " Elements of Queueing theory with Application", McGraw Hill, New York (1983).

RE-15 Advanced Reliability Theory

Concept of Reliability: Definition of reliability and its measures, Importance of reliability, Concept of failure, Fault tree analysis.

Lifetime Models: Notion of aging, concept of hazard rate for life time distributions (exponential, Weibull, Log-Normal, Gamma, Inverse Gaussian), Increasing failure rate (IFR) and Decreasing failure rate (DFR) class of life distributions, Bath-tub failure curve.

Life Testing and inference: Life testing, Complete data and censored data, Type-I, Type-II, hybrid and random censoring schemes. Parametric inference based on complete and censored data, Nonparametric estimate (Life table and Kaplan-Meier) of reliability, Graphical methods (PP, QQ and TTT plots) and standard statistical tests for model validation.

Bayesian Reliability: Bayesian approximations and Reliability estimation, Bayesian intervals for parameters and Reliability functions.

Reference:

- 1. Statistical Theory of Reliability and Life Testing Probability Models; Barlow R.E. & Proschan, F., Holt, Rinehart and Winston, New York.
- 2. Mathematical Theory of Reliability; Barlow, R.E. and Proschan, F, John Wiley, New York. Page 18 of 35
- 3. System Reliability Theory: Models and Statistical Methods; Hoyland, A. AndRausand M., John Wiley, New York.
- 4. Reliability in Engineering Design; Kapur, K.C. and Lamberson, L.R., John Wiley, New York.
- 5. Statistical Models and Methods for Lifetime Data; Lawless, J.F., Wiley, New York,
- 6. Life Time Data: Statistical Models and Methods; Deshpande, J. V. And Purohit, S. G., World Scientific, Singapore.
- 7. Statistical Methods for Reliability Data; Meeker, W. Q. and Escobar, L. A., John Wiley, New York.
- 8. Applied Life Data Analysis; Nelson, W. Wiley, New York.
- 9. Reliability and Life Testing; Sinha, S. K. (1986), Wiley Eastern Limited, New Delhi.

RE-16 Statistical Computing

Random numbers, Pseudo random number generation: Inverse transform method, Acceptancerejection, Transformations. Tests for randomness. Multivariate probability calculation, Simulation and Monte Carlo integration, Variance reduction, Importance sampling.

Markov-Chain Monte Carlo: Metropolis-Hastings algorithm, Gibbs sampling, Jack-knife method, Bootstrap method, Bootstrap confidence intervals, Likelihood estimation, Bootstrap of dependent data.

Density estimation: Univariate and Multivariate estimation, Bayesian posterior density estimation, Monte Carlo EM.

Text Books

1. GIvens, H.G. and Hoeting, J.A. (2013), Computational Statistics, 2nd Edition, Wiley. **Reference Books**

1. Law, A. M. and Kelton, W.D. (2000), Simulation, Modelling and Analysis 3rd Ed. Tata McGraw Hill.

2. Thisted, R.A. (1988), Elements of Statistical Computing, Chapman and Hall.

3. Robert, C. and Casella, G. (2009), Introducing Monte Carlo Methods with R, Springer Verlag.

RE-17 Demographic Models

Preliminaries: Introduction to matrix algebra, Review of unstructured population models and life table analysis. Demography: Measures of mortality, description of life table, construction of complete and abridged life tables, maximum likelihood, MVU and CAN estimators of life table parameters.

Age-structured (leslie matrix) models: model formulation and parameterization, population growth rate, stable age distribution, reproductive values, sensitivity analysis, Measures of fertility: models for population growth, intrinsic growth rate, stable population analysis, population projection by component method and using Leslie matrix.

Parameter estimation: estimation of survival and transition probabilities, estimation of reproductive parameters.Stochastic models.

Text Book:

1. Caswell, Hal. 2001. Matrix population models: Construction, analysis and interpretation. 2d ed. Sunderland, MA: Sinauer Associates.

Reference books:

- 1. DeAngelis, Donald L., and Loui J. Gross. 1992. Individual-based models and approaches in ecology: Populations, communities and ecosystems. New York: Chapman and Hall.
- 2. Murdoch, William W., Cheryl J. Briggs, and Roger M. Nisbet. 2003. Consumer-resource dynamics. Population Monographs Series 36. Princeton, NJ: Princeton Univ. Press.
- 3. Daley, D.J. and Gani, J. 1999. Epidemic Modelling. Cambridge Univ. Press.
- 4. Tuljapurkar, S. and Caswell, H. (Ed.). Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Chapman and Hall, New York.

RE-18 Intelligent Transport System

Definition of ITS, historical context of ITS from both public policy and market economic perspectives, Types of ITS; Benefits of ITS.

Importance of telecommunications in the ITS. Information Management, Traffic Management Centers (TMC). Application of sensors to Traffic management; ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), GIS, video data collection.

ITS User Needs and Services and Functional areas: Introduction, Advanced Traffic Management systems (ATMS), Advanced Traveler Information systems (ATIS), Advanced Vehicle Control systems (AVCS), Advanced Public Transportation systems (APTS), ITS and safety, ITS and security,ITS planning.

ITS applications:Traffic and incident management systems; ITS and sustainable mobility, travel demand management, electronic toll collection, ITS and road-pricing.; public transportation applications; ITS and regional strategic transportation planning, ITS Programs in the World – Overview of ITS implementations in developed countries, ITS in developing countries.

References:

1. Fundamentals of intelligent transportation systems planning By Mashrur A. Chowdhury, Adel WadidSadek

2. Lawrence A. Klein, Sensor technologies and Data requirements of ITS.

3. ITS Hand Book 2000: *Recommendations for World Road Association (PIARC)* by Kan Paul Chen, John Miles.

4. Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.

5. National ITS Architecture Documentation, US Department of Transportation, 2007.

RE-19 Generalised Linear Models

Logistic Regression: Logit transform. ML estimation. Tests of hypotheses, Wald test, LR test, score test, test for overall regression, multiple logistic regression, forward, backward method, interpretation of parameters, relation with categorical data analysis.

Poisson Regression: Introduction to Poisson regression, MLE for Poisson regression, Applications in Poisson regressions.

Family of Generalized Linear Models: Exponential family of distributions, Formal structurefor the class of GLMs, Likelihood equations, Quasi likelihood, Link functions, Important distributions for GLMs, Power class link function.

Reference Books:

1. Christensen, R. (1997). Log-linear Models and Logistic Regression, Second Edition, Springer.

2. Dobson, A.J. and Barnett, A.G. (2008). Introduction to Generalized Linear Models, Third Edition, Chapman and Hall/CRC. London.

3. Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Second Edition, Chapman and Hall, New York.

4. Hosmer, D.W. and Lemeshow, S. (2000). Applied Logistic Regression, Second Edition. Wiley, New York.

5. Lindsey, J. K. (1997). Applying generalized linear models, Springer-Verlag, New York. 6.McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, Second Edition, Chapman and Hall.

7. McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear and Mixed Models, John Wiley & Sons, Inc. New York.

8. Myers, R.H., Montgomery, D.C and Vining, G.G. (2002). Generalized Linear Models with Applications in Engineering and the Sciences, John Wiley & Sons.

RE-20 SurvivalAnalysis

Concepts of time, order and random censoring. Life distributions - exponential gamma, Lognormal, pareto, linear failure rate. Life tables, failure rate, mean residual life and their elementary properties. Ageing classes - IFR, IFRA, NBU, NBUE, HNBUE and their duals, Bathtub failure rate.

Estimation of survival function - Actuarial estimator, Kaplan - Meier estimator. Estimation under the assumption of IFR/DFR.

Semi-parametric regression for failure rate - Cox's proportional hazards model. Competing risk models. Repair models. Probabilistic models. Joint distribution of failure times. Unconditional tests for the time truncated case. Tests for exponentiality, two sample non-parametric problem.

Reference Books:

1. Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data, Chapman and Hall.

2. Deshpande, J.V. and Purohit S.G. (2005). Life Time Data: Statistical Models and Methods, Word Scientific.

3. Duchateau, L. and Johnson, P. (2008). The Frailty Model. Springer: New York.

4. Gross A.J. and Clark, V. A. (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences, John Wiley and Sons.

5 Hanagal, D. D. (2011). Modeling Survival Data Using Frailty Models. CRC Press: New York.

6. Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer: New York.

RE-21 Biostatistics

Measuring the occurrence of disease: Measures of morbidity - prevalence and incidence rate, association between prevalence and incidence, uses of prevalence and incidence, problems with incidence and prevalence measurements; Clinical agreement: kappa statistics, intra-class correlation; Surveillance;

Assessing the validity and reliability of diagnostic and screening test: Validity of screening test – sensitivity, specificity, positive predictive value and negative predictive value; Reliability; Relationship between validity and reliability; ROC curve and its applications; Overall accuracy;

Issues in epidemiology: Association; causation; causal inference; Errors and bias; Confounding; Controlling confounding; Measurement of interactions; Generalizability;

Odds ratios for retrospective studies; Odds ratios approximating the prospective RR; Exact inference for odds ratio analysis of matched case-control data;

Reference Books:

1. Altman D G: Practical Statistics for Medical Research, London: Chapman and Hall, 2006.

2. Rosner B: Fundamentals of Biostatistics, ed. 6, 2006.

Derified Derified

Offg. Secretary Banasthali Vidyapith P.O. Banasthali Vidyapith Distt. Tonk (Raj.)-304022

Department of Mathematics and Statistics Banasthali Vidyapith, Banasthali

Minutes of the Board of Studies held on 26.12.2018 at 11.00 A.M in the CMS Conference Hall, Banasthali Vidyapith.

Present

1.	Dr. Abhishek Singh	:	Internal Member
2.	Dr. Amit Kumar	:	Internal Member
3.	Mr. Ankush Goel	:	Internal Member
4.	Ms. Anu Sirohi	:	Internal Member
5.	Ms. Bhawna Jha	:	Internal Member
6.	Prof. G.N. Purohit	:	Internal Member
7.	Dr. GargiTyagi	:	Internal Member
8.	Dr. Geetanjali Sharma	:	Internal Member
9.	Dr. Gulab Singh	:	Internal Member
10.	Dr. IshaSangal	:	Internal Member
11.	Dr. Madhuri Jain	:	Internal Member
12.	Mr. Manish Raghav	:	Internal Member
13.	Ms. Manju Suresh Prasad	:	Internal Member
14.	Dr. Manoj Kumar Singh	:	Internal Member
15.	Dr. Naresh Chandra	:	Internal Member
16.	Dr. Prashant Kushwah	:	Internal Member
17.	Dr. Preeti Jain	:	Internal Member
18.	Mr. Ramdayal Kushwaha	:	Internal Member
19.	Ms. Renu Naresh	:	Internal Member
20.	Dr. Sandeep Kumar Maurya	:	Internal Member
21.	Prof. SarlaPareek	:	Internal Member
22.	Prof. Shalini Chandra	:	Convener
23.	Dr. Shanu Goyal	:	Internal Member
24.	Dr. Shared Chand Pandey	:	Internal Member
25.	Ms. Teena Goyal	:	Internal Member
26.	Dr. Usha Sharma	:	Internal Member
27.	Prof. Sharad Gore	:	External Member

Note:Prof. C.S. Aravinda, TIFR Mumbai, Prof. Arvind Mishra, B.H.U. Varanasi(External Members)and Dr. Narendra Singh Thakur (Internal Member)could not attend the meeting.

The meeting started with a welcome of the members, by the convener of Board of Studies for Mathematics and Statistics, Prof. Shalini Chandra, Head, Department of Mathematics and Statistics, Banasthali Vidyapith, Rajasthan

1. The board took up the minutes of its last meeting held on April, 23, 2016.

The Board resolved that the minutes to be confirmed.

- 2. The board reviewed the existing panel of examiners and suggested to update the address and phone numbers of the existing examiners for each examination up to and inclusive of all Master's degree examination keeping in view the by-law 15.03.02 of the Vidyapith. Updated panel is sent to the examination and secrecy section.
- 3. The board reviewed the Study/Curricula, scheme of examination and proposed revisions in various courses of study as follows:

3 IB.A./B.Sc. (Mathematics) Examinations:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change ^{a,b}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^c
v.	Fifth Semester Examination, December, 2021	Revised ^{d, e}
vi.	Sixth Semester Examination, April/May, 2022	Revised ^{d, f}

The Board reviewed the objectives, schemes, syllabi and learning outcomes of the B.A./B.Sc. (Mathematics) programmes.

(a)In B.A./B.Sc. (Mathematics)III Semester, revision in the syllabus of *Abstract Algebra*(Course Code: MATH 201) was proposed. Board discussed the revision proposed and agreed upon the suggested syllabus. Board also recommended implementing the proposed revision in syllabus of *Abstract Algebra* by III Semester Examination, **December, 2019**.

(**b**)In B.A./B.Sc. (Statistics as a discipline)III Semester, Board reviewed the syllabus of *Numerical Analysis and Sampling Distribution* (Course Code: STAT 203) and *Numerical Analysis and Sampling Distribution Lab* (Course Code: STAT 203L). It was found that students of Statistics also study Numerical Analysis in VI semester. Board suggested removing numerical analysis portion from this course and strengthens the sampling distribution. The title of the course should be Sampling Distributions. Therefore, in B.A./B.Sc. (Statistics)III Semester, the course *Numerical Analysis and Sampling Distribution* (Course

Code: STAT 203) should be replaced by *Sampling Distributions* (Course Code: *to be generated*) and *Numerical Analysis and Sampling Distribution Lab* (Course Code: STAT 203L) should be replaced by *Sampling Distributions Lab* (Course Code: *to be generated*).Board recommended implementing the proposed revision of the III Semester Examination, **December, 2020**.

(c) In B.A./B.Sc. (Mathematics) IV Semester, Board suggested to replace the course *Introduction to Mechanics* (Course Code: MATH 203) by the course *Complex Analysis* (Course Code: MATH 301). Board recommended implementing the proposed change in scheme by IV Semester Examination, April, 2021.

(d) In B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) 3rd Year, Board suggested to include discipline electives in the scheme. Following is the list of electives

B.A./B.Sc. (Mathematics) discipline electives:

Introduction to Mechanics Linear Programing & Its Applications Vector Calculus Number Theory

B.A./B.Sc.(Mathematics) discipline electives for (Statistics/ Applied Statistics):

Sampling Techniques and Design of Experiments Applied Statistics Financial Statistics Health Statistics & Population Dynamics

Board recommend the implementation of electives form **Session 2021-2022**.

The course *Introduction to Discrete Mathematics* (Course Code: MATH 302) and *Introduction to Numerical Analysis* (Course Code: MATH 303) are the core course in B.A./B.Sc. (Mathematics) V and VI Semester respectively with the following suggestions.

(e) The Board had a discussion on the course *Introduction to Discrete Mathematics* (Course Code: MATH 302) which is running in B.A./B.Sc. (Mathematics) V Semester, B.Tech. (CS) V Semester and MCA II Semester. To bring uniformity in the syllabus of the course across the various programs, board suggested revisionsin the syllabus of *Introduction to Discrete Mathematics*. Board also recommended implementing the proposed revision by V Semester Examination, **December, 2019**.

(f) In B.A./B.Sc. (Mathematics) VI Semester, revision in the syllabus and recommended books of *Introduction to Numerical Analysis* (Course Code: MATH 303) was proposed. Board discussed the revision and found that proposed syllabus is more elaborated and well arranged with the inclusion of some topics. It will help student to find the flow of study and understand the topics in the syllabus. Board agreed upon the revised syllabus and also recommended implementing the proposed revision in the syllabus of *Introduction to Numerical Analysis* by VI Semester Examination, April/May, 2020.

Programme specific outcomes and the list of disciplinary courses of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as **Annexure-I.**

The revised syllabus, learning outcomes and e-learning material of the B.A./B.Sc. (Mathematics) and B.A. (Applied Statistics as a discipline) programmes are attached and marked as **Annexure-II**.

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Change ^a
v.	Fifth Semester Examination, December, 2021	Change ^{b,c}
vi.	Sixth Semester Examination, April/May, 2022	Change ^c
vii.	Seventh Semester Examination, December, 2022	No Change
viii.	Eighth Semester Examination, April/May, 2023	No Change

3 II. B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR) Examination:

(a) The Board discussed the various course running in B.Tech. Programme of Vidyapith by the department. Board recommended a tutorial in every course. Board suggested to revise the L-T-P-C of course *Differential Equation* (Course Code: MATH 208) from 4-0-0-4 to 3-1-0-4 and Complex Variables (Course Code: MATH 207) from 3-0-0-3 to 3-1-0-4. Board recommended implementing the proposed revision by **Session 2019-2020**.

(b)As discussed in 3.I (d), in B.Tech. (CS)V Semester, board recommended implementing the revised syllabus of *"Introduction to Discrete Mathematics"* by V Semester Examination, **December, 2019**.

(c)Syllabus of "Probability and Statistical Methods" and "Numerical Methods" in B.Tech. third year were proposed. Both the papers have L-T-P-C 3-1-0-4.Board discussed the syllabus and agreed upon implementing new syllabi from session 2019-2020.

(d)TheBoard reviewed all the syllabi of Mathematics and Statistics courses running in B. Tech. programme in respect of learning outcomes and suggested readings.

Learning outcomes, proposed revised/ new syllabi, suggested books and suggested e-learning material of the B.Tech. (BT/CE/CS/IT/ECE/EEE/EIE/MCTR)courses is attached and marked as**Annexure-III.**

3 III. M.Sc. (Mathematical Science) Examination:

The Board discussed the recent trends in mathematical science education at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, more weightageshould be given to self-learning and independent research activities. In the light of the above-mentioned suggestions, the board proposed revisions in the scheme of M.Sc. (Mathematical Science) with specialization in pure mathematics/statistics/operations research/theoretical computer science.

3 IIIA M.Sc. (Mathematical Science - Pure Mathematics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* II Semester Examination, **April/May, 2020**.

(b)TheBoard had detailed discussion on the *Term Paper* (MATH 528P). To improve the quality of Term Paper and to inculcate best practices in the students, formal guidelines were proposed including the evaluation scheme. The proposed guidelines are given in **Annexure-IV**. Board also recommended implementing the proposed guidelines by III Semester Examination, **December, 2019**.

(c)TheBoard also has proposed new electives in the curricula as follows:

- Coding Theory (New Course)
- Fixed Point Theory (New Course)
- Introduction to Dynamical System (New Course)

- Bio Mathematics (New Course)
- Algebraic Topology (New Course)
- Combinatorial Optimization (New Course)
- Transportation System Analysis (New Course)
- Integral Transform and Special Functions (New Course)
- Fields and Galois Theory (New Course)

Board recommended implementing the new electives by Session 2020-2021.

(d)TheBoard proposed to omit Rings and Modules (MATH 524) from the list of electives of pure mathematics. Board recommended implementing the change by**Session 2020-2021**.

(e)TheBoard has proposed following new reading electives in the curricula:

- Network Biology (New Course)
- Fractional Calculus (New Course)
- Quantum Graphs (New Course)
- Point set topology (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by Session 2020-2021.

(f) To ensure the quality of Dissertation, formal guidelines are given in Annexure-IV

3 IIIB M.Sc. (Mathematical Science – Statistics) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a)TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May, 2020**.

(b)TheBoard had detailed discussion on the *Seminar* (Course Code: STAT 514S). To improve the quality of *Seminar* and to inculcate best practices in the students, a formal guideline was proposed including the evaluation scheme. The proposed guidelines are attached and marked as **Annexure-IV**. Board

also recommended implementing the proposed guideline by III Semester Examination, **December**, 2019.

(c) TheBoard reviewed the process of *Project* (Course Code: STAT 512P) and recommended formal guidelines for it. The proposed guidelines with evaluation scheme are attached and marked as **Annexure-IV**. Board also recommended implementing the proposed guidelines by IV Semester Examination, **April/May**, 2020.

(d)TheBoard reviewed the list of electives and found that the title of *Econometrics Models* (Course Code: MATH 510) should be replaced by *Econometric Models*. Board also suggested that some more models should be added. Board recommended implementing the proposed revision in syllabus of *Econometric Models* by **Session 2019-2020**.

(e)TheBoard also has proposed some new electives in the curricula as follows:

- Stochastic Models (New Course)
- Demography (New Course)
- Actuarial Statistics (New Course)
- Survival Analysis (New Course)
- Reliability and Renewal Theory (New Course)
- Operations Research (New Course)

Board recommended implementing the new electives by Session 2020-2021.

(f) TheBoard proposed following new reading electives in the curricula:

- Step-Stress Modelling (New Course)
- Categorical Data Analysis (New Course)
- Official Statistics (New Course)
- Robust Estimation in Non-Linear Models (New Course)
- Operational Research Applications (New Course)

Board recommended implementing the reading electives by **Session 2020-2021**.

3 III M.Sc. (Mathematical Science – Operations Research) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) TheBoard reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in

their graduation. It was suggested to introduce advanced techniques in numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May**, **2020**.

(b)TheBoard suggested that similar guidelines as suggested for *Seminar* (Course Code: STAT 514S), should be followed for Seminar (Course Code: MATH 525S). Board also recommended implementing the proposed guidelines by III Semester Examination, **December**, **2019**.

(c) TheBoard suggested that similar guidelines as suggested for *Project* (STAT 512P), should be followed for Project (Course Code: MATH 520P). Board also recommended implementing the proposed guidelines by IV Semester Examination, April/May, 2020.

(d)TheBoard also has proposed some electives in the curricula as follows:

- Combinatorial Optimization
- Transportation System Analysis (New Course)
- Stochastic Models (New Course)
- Fuzzy logic and Belief Theory
- Partial Differential Equations (New Course)

Board recommended implementing the new electives by the Session 2020-2021.

(e)TheBoard has proposed following reading electives in the curricula:

- Selected Applications of Stochastic Models
- Operational Research Applications
- Step-Stress Modelling
- Categorical Data Analysis

Board recommended implementing the reading electives by **Session 2020-2021**.

3 III D M.Sc. (Mathematical Science – Theoretical Computer Science) Examination

i.	First Semester Examination, December, 2019	Revised
ii.	Second Semester Examination, April/May, 2020	Revised
iii.	Third Semester Examination, December, 2020	Revised
iv.	Fourth Semester Examination, April/May, 2021	Revised

(a) Board reviewed the syllabi of *Numerical Analysis* (Course Code: MATH 409) and *Numerical Analysis Lab* (Course Code: MATH 409L), it was found that students had already studied an introductory course on numerical analysis in their graduation. It was suggested to introduce advanced techniques in

numerical analysis at post graduate level while covering the essential basics. Board recommended implementing the proposed revision in syllabus of *Numerical Analysis* by II Semester Examination, **April/May**, **2020**.

(b) Board has proposed following reading electives in the curricula:

- Operational Research Applications (New Course)
- Categorical Data Analysis (New Course)
- Network Biology (New Course)
- Fractional Calculus
- Quantum Graphs

The Board also recommended implementing the reading electives by **Session 2020-2021**.

(c) To bring uniformity in the credits of elective courses, Board suggested to remove following electives form the list of electives of M.A./M.Sc. (Mathematical Sciences – Theoretical Computer Science)

Web Development and .Net Framework

Web Development and .Net Framework Lab

Advanced communication Networks

Advanced communication Networks Lab

Data Communication and Networking

Data Communication and Networking Lab

The Board also recommended implementing the suggestion by **Session 2019-2020**.

Programmeeducational objectives and outcomes and the scheme of M.A./M.Sc. (Mathematical Sciences) programmeare attached and marked as **Annexure-V**

The revised syllabus, learning outcomes and e-learning material of the M.A./M.Sc. (Mathematical Sciences) programme is attached and marked as **Annexure-VI.**

3 IV. M. Phil. (Mathematical Science) Examination

Board discussed the curriculum structure of M. Phil. (Mathematical Science) and advised to restructure the programme in the light of one-year duration.

3 V. Certificate Examinations:

(a) The board suggested minor changes in the syllabus of *Certificate Course in Statistical Techniques and Applications*. Board recommended implementing the revised syllabus by **Examination**, **2020**.

(b) Board discussed the syllabus of *Certificate Course in Actuarial Sciences* and suggested few changes. The revised syllabus is attached and marked as**Annexure-VII.** Board recommended implementing the revised syllabus by **April,2020**.

3 VI. Diploma Examinations:

The board suggested minor changes in the syllabus of *Diploma Course in Actuarial Sciences*. The revised syllabus is attached and marked as **Annexure-VII.** Board recommended implementing the revised syllabus by **Examination, 2020**.

4. Board reviewed the curriculum for the courses running in the other programs of the Vidyapith. Following suggestions were given

Bachelor of Business Administration						
MATH 306	Mathematics for Management	No Change				
STAT 108	Statistics for Management No Change					
STAT 108L	Statistics for Management Lab	No Change				
Bachelor of C	ommerce					
MATH 109	Mathematics for Business Applications	No Change				
STAT 201	Business Statistics	No Change				
STAT 201L	Business Statistics Lab	No Change				
Bachelor of C	omputer Applications					
MATH 108	Mathematics -I	No Change				
MATH 204	Mathematics -II	No Change				
MATH 302	Introduction to Discrete Mathematics	No Change				
MATH 308	No Change					
Bachelor of P	harmacy					
MATH 110	Remedial Mathematics	No Change				
Bachelor of S	cience (Aviation Science)					
MATH 102	Basic Mathematics	No Change				
Master of Con	mputer Applications					
MATH 302	Introduction to Discrete Mathematics	Change ^a				
Master of Scie	ence (Bioinformatics)					
MATH 406	Introductory Mathematics	No Change				
STAT 405	Statistical Techniques	No Change				
STAT 405L	Statistical Techniques Lab	No Change				
Master of Sci	ence (Chemistry)					
MATH 407	Mathematics for Chemists	No Change				
Master of Technology (Biotechnology)						

MATH 506 Engineering Mathematics

(a)As discussed in 3.I (c), forM.C.A.II Semester, board recommended implementing the revised syllabus of *"Introduction to Discrete Mathematics"* by II Semester Examination, **April/May**, **2019**.

(b)Board reviewed all the syllabi of Mathematics and Statistics courses running in other programmesof the Vidyapithin respect of learning outcomes and suggested readings. Course outcomes, suggested books and suggested e-learning material of remaining courses attached and marked as**Annexure-VIII.**

- **5.** Board reviewed the reports received from the examiners of different examinations of 2017 and 2018. All the reports were found to be satisfactory except three. The analysis of the reports received is enclosed in **Annexure-IX**.
- **6.** The board evaluated the semester examination papers and found that most of them were analytic, descriptive and application based depending on the nature of course. The analysis of question papers is enclosed in **Annexure-X**.
- 7. The Board suggested starting two new P. G. programmes in Mathematics & Statistics along with M.Sc. (Mathematical Sciences) for the students who have interest in conventional degrees like M.Sc. (Mathematics) and M.Sc. (Statistics). The proposed schemes and courses are attached and marked as Annexure-V and Annexure VI, respectively.
- 8. Board suggested seeing the feasibility of beginning a certificate course on Data Science with linkage to industry which will have direct bearing on employability.
- **9.** Board also suggested starting internship program of two months for statistics students at post graduate level to give them exposure of field surveys.

Meeting ended with vote of thanks.

Name of Programmes:B.Sc (Mathematics)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. At the undergraduate level, Vidyapith promotes the development of a balanced and harmonious personality of the students through it's 'Panchmukhi Shiksha'. Panchmukhi Shiksha attempts a balance of the five aspects of education, namely Physical, Practical, Aesthetic, Moral and Intellectual. The educational objective of the B.Sc. (Mathematics)programme is to provide high quality education in mathematics, statistics, physics, electronics and computer science in order to prepare students for professional careers or higher education in science and related fields.

The main objectives of the B.Sc. programme are:

- To develop an understanding of mathematics and related areas opt by them.
- To develop an ability to identify, formulate, analyze and solve scientific problems.
- To develop a capacity to integrate knowledge from more than one subject and to apply appropriates mathematical principles to arrive at correct and effective solutions.
- To develop communication skills which enables them to effective multidisciplinary teamwork
- To develop their skillswhich will enable them to become a multi facet personality shining in any chosen field.

ProgrammeOutcomes: B.Sc. (Mathematics)

PO1: Knowledge Domain: Demonstrate an understanding of the basic concepts in mathematics, statistics, physics, electronics and computer scienceand their importance in the solution of some real-world problems.

PO2: Technical Skills: Understand tools of appropriate laboratory and perform experiments that support the development of scientific theory.

PO3: Ethics: Applyknowledge and moral principles by using a systematic approach of rational arguments.Understand the responsibility and the way our perception of right and wrong can play a part in politics and society.

PO4: Communication: Effectively communicate information by speaking, writing, or using some other mediumwith their peer and society at large, such as, being able to comprehend and write effective reports and make effective presentations.

PO5: Life- long learning: Demonstrate the ability to read and learn on their own that encourage the continuingdevelopment of knowledge and skills throughout their lives.

Programme Specific Outcomes (Applied Statistics)

- **PSO1:** Understand the basic concepts of sequence, series, sets, calculus, matrix theory, probability, inference, sample surveys and design of experiments and their applications.
- **PSO2:** Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.
- **PSO3:** Develop an understanding of importance of statistical methods and techniques.
- **PSO4:** Learn statistical software as exploratory, visualization, and computational tools.

Programme Specific Outcomes (Mathematics)

- **PSO1:** Understand the basic concepts of calculus, geometry, analysis, algebra and their applications. Solve arithmetic, algebraic, geometric expressions, equations, functions and problems using appropriate methods.
- **PSO2:** Analyse the relationships among structures in mathematics (e.g. sets, functions, groups, rings, vector spaces) and their importance within and outside the discipline.
- **PSO3:** Develop an understanding of importance of axioms, proofs and theorems.
- **PSO4:** Recognize and appreciate the connections between theory and applications.

Programme Specific Outcomes (Statistics)

- **PSO1:** Understand the basic concepts of probability theory, inference, sample surveys and design of experiments and their applications.
- **PSO2:** Interpret statistical summaries such as formulas, functions, graphs, tables, and schematics, drawing conclusions and making inferences based on the summaries.
- **PSO3:** Develop an understanding of importance of statistical methods and techniques.
- **PSO4:** Learn statistical software as exploratory, visualization, and computational tools.

AnnexureI

Programme Scheme: B.A./B.Sc. (Mathematics) /B.A-B.Ed./B.Sc.-B.Ed.

Semester – I

Applied Statistics

	Existing							Proposed				
Course	Course Name	L	Т	Р	С		Course	Course Name	L	Т	Р	С
Code							Code					
MATH	Basic Mathematics	4	0	0	4		MATH	Basic	4	0	0	4
102							102	Mathematics				
STAT	Basic Statistics	4	0	0	4]	STAT	Basic Statistics	4	0	0	4
101						1	101					

Mathematics

Existing

Course	Course Name		L	Т	Р	С
Code						
MATH	Introduction	to	4	0	0	4
106	Calculus					
STAT	Introduction	to	4	0	0	4
104	Probability	and				
	Statistics					

	Propos	ed				
Course	Course Name		L	Т	Р	С
Code						
MATH	Introduction	to	4	0	0	4
106	Calculus					
STAT	Introduction	to	4	0	0	4
104	Probability	and				
	Statistics					

Statistics

Existing									
Course	CourseCourse NameLTPC								
Code									
STAT	Probability and	6	0	0	6				
106	Descriptive Statistics								
STAT	Probability and	0	0	4	2				
106L	Descriptive Statistics								
	Lab								

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
STAT	Probability and	6	0	4	8
106	Descriptive Statistics				

Semester – II

Applied Statistics

	Existing				
Course	Course Name	L	Т	Р	С
Code					
STAT	Statistical Methods	6	0	0	6
107					
STAT	Statistical Methods	0	0	4	2
107L	Lab				

Proposed									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Statistical	6	0	4	8				
107	Methods								

Mathematics

	Existing				
Course	Course Name	L	Т	Р	С
Code					
MATH	Analytic Solid	4	0	0	4
101	Geometry				

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
MATH	Analytic Solid	4	0	0	4
101	Geometry				

AnnexureI

STAT	Differential Equations	4	0	0	4
104					

STAT	Differential Equations	4	0	0	4
104	-				

Statistics

Existing										
Course	Course Name		L	Т	Р	С				
Code										
STAT	Measures	of	6	0	0	6				
105	Association	and								
	Probability									
	Distributions									
STAT	Measures	of	0	0	4	2				
105L	Association	and								
	Probability									
	Distributions La	ab								

	Propos	ed				
Course	Course Name		L	Т	Р	С
Code						
STAT	Measures	of	6	0	4	8
105	Association	and				
	Probability					
	Distributions					

Semester – III

Applied Statistics

	Existing				
Course	Course Name	L	Т	Р	С
Code					
STAT	Probability	6	0	0	6
205	Distributions and				
	Numerical Analysis				
STAT	Probability	0	0	4	2
205L	Distributions and				
	Numerical Analysis				
	Lab				

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
STAT	Probability	6	0	4	8
205	Distributions and				
	Numerical Analysis				

Mathematics

	Existing				
Course	Course Name	L	Т	Р	С
Code					
MATH	Abstract Algebra	4	0	0	4
201					
MATH	Real Analysis	4	0	0	4
206	-				

	Proposed				
Course	Course Name	L	Т	Р	С
Code					
MATH	Abstract Algebra	4	0	0	4
201					
MATH	Real Analysis	4	0	0	4
206					

Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Numerical Analysis &	6	0	0	6				
203	Sampling Distribution								
STAT	Numerical Analysis &	0	0	4	2				
203L	Sampling Distribution								
	Lab								

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Sampling Distributions	6	0	4	8

Semester – IV

Applied Statistics

Existing										
Course	Course Name	L	Т	P	С					
Code										
STAT	Inferential Statistics	6	0	0	6					
202	and Quality Control									
STAT	Inferential Statistics	0	0	4	2					

Proposed									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Inferential Statistics	6	0	4	8				
202	and Quality Control								

202L	and	Quality	Control		
	Lab				

Mathematics

Existing										
Course	Course Name	L	Т	Р	С					
Code										
MATH	Introduction to Linear	4	0	0	4					
202	Algebra									
MATH	Introduction to	4	0	0	4					
203	Mechanics									

Proposed									
Course	Course Name	L	Т	Р	С				
Code									
MATH	Introduction to	4	0	0	4				
202	Linear Algebra								
MATH	Complex	4	0	0	4				
301	Analysis								

Statistics

Existing										
Course	Course Name	L	Т	P	С					
Code										
STAT	Statistical Inference	6	0	0	6					
207	and Quality Control									
STAT	Statistical Inference	0	0	4	2					
207L	and Quality Control									
	Lab									

Proposed										
Course	Course Name	L	Т	Р	С					
Code										
STAT	Statistical Inference	6	0	4	8					
207	and Quality Control									

Semester – V

Applied Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Sampling Techniques	6	0	0	6				
302	and Design of								
	Experiments								
STAT	Sampling Techniques	0	0	4	2				
302L	and Design of								
	Experiments Lab								

Proposed										
Course	Course Name	L	Т	Р	С					
Code										
	Discipline Elective I	6	0	4	8					

Mathematics

Existing										
Course	Course Name	L	Т	Р	С					
Code										
MATH	Introduction to	4	0	0	4					
302	Discrete Mathematics									
MATH	Linear Programing &	4	0	0	4					
304	Its Applications									

Proposed									
Course	Course Name	L	Т	Р	С				
Code									
MATH	Introduction to	4	0	0	4				
302	Discrete Mathematics								
	Discipline Elective I	4	0	0	4				

Statistics

Existing									
Course	Course Name	L	Т	Р	С				
Code									
STAT	Sampling Techniques	6	0	0	6				
302	and Design of								
	Experiments								
STAT	Sampling Techniques	0	0	4	2				
302L	and Design of								
	Experiments Lab								

Proposed								
Course	Course Name	L	Т	Р	С			
Coue	Discipline Elective I	6	0	4	8			

Semester – VI

Applied Statistics

Course Code	Course Name	L	Т	Р	С
STAT 301	Applied Statistics	6	0	0	6
STAT 301L	Applied Statistics Lab	0	0	4	2

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Discipline Elective II	6	0	4	8

Mathematics

Existing									
Course	Course Name		L	Т	Р	С			
Code									
MATH	Complex Analysis		4	0	0	4			
301									
MATH	Introduction	to	4	0	0	4			
303	Numerical Analysis								

Proposed										
Course	Course Name	L	Т	Р	С					
Code										
MATH	Introduction to	4	0	0	4					
303	Numerical Analysis									
	Discipline Elective II	4	0	0	4					

Statistics

Existing										
Course	Course Name	L	Т	Р	С					
Code										
STAT	Applied Statistics	6	0	0	6					
301										
STAT	Applied Statistics Lab	0	0	4	2					
301L										

	Proposed				
Course Code	Course Name	L	Т	Р	С
	Discipline Elective II	6	0	4	8

List of Discipline Electives

Applied Statistics

Course Code	Course Name	L	Т	Р	С
STAT 302	Sampling Techniques and Design of Experiments	6	0	4	8
STAT 301	Applied Statistics	6	0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics & Population Dynamics (New Course)	6	0	4	8

Mathematics

Course Code	Course Name	L	Т	Р	С
MATH 203	Introduction to Mechanics	4	0	0	4
MATH 304	Linear Programing & Its Applications	4	0	0	4
	Vector Calculus (New Course)	4	0	0	4
	Number Theory (New Course)	4	0	0	4

Statistics

Course Code	Course Name	L	Т	Р	С
STAT 302	Sampling Techniques and Design of Experiments		0	4	8
STAT 301	Applied Statistics		0	4	8
	Financial Statistics (New Course)	6	0	4	8
	Health Statistics & Population Dynamics (New Course)	6	0	4	8

Student can opt for at most 2 additional Open (Generic) audit/credit Electives from any discipline opting at most 1 per semester from Semesters III onwards with prior permission of respective heads and time table permitting.

CourseDetails: (SeeannexureII)

Name of Programmes: B.A./B.A.-B.Ed./B.Sc.(Mathematics)/B.Sc.-B.Ed. Course Details:

FIRST SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 102 Basic Mathematics	 On successful completion of the course, students will be able to, Understand the basic rules of logic, including the role of axioms or assumptions. Appreciate the role of mathematical proof in formal deductive reasoning. Distinguish a coherent argument from a fallacious one, both in mathematical reasoning and in everyday life. Understand the differences between inductive and deductive reasoning. Proficiently construct logical arguments and rigorous proofs. Formulate and solve abstract mathematical problems. 	-	Suggested E-learning material 1. Matrix https://www.askiitians.com/iit-jee- algebra/matrices-and-determinants. 2. Sequence and Series ncert.nic.in/ncerts/1/keep209.pdf 3. Set, Function, Relation ncert.nic.in/ncerts/1/keep201.pdf 4. LPP https://www.analyticsvidhya.com//lint roductory-guide-on-linear-programming- explain	No change in the syllabus
2.	STAT 101 Basic Statistics	 On successful completion of the course, students will be able to, Distinguish between qualitative variables and quantitative variables. Differentiate between discrete and 	-	Suggested E-learning material 1. Probability and its concept- <u>https://ocw.mit.edu/courses/mathematics</u> /18-05-introduction-to-probability-and- <u>statistics-spring-2014/</u>	No change in the syllabus

continuous variables.	2. Elementary Statistics -
Construct/draft questionnaire.	https://newonlinecourses.science.psu.edu
• Identify the need of Classification and	/statprogram/stat200
Tabulation.	3. Probability and Statistics-
• Construct frequency tables, interprets the	https://nptel.ac.in/courses/111105041/
data, and identifies the importance of	4. Permutation and Combination-
diagrammatic presentation of data.	https://nptel.ac.in/courses/106106094/28
• Explain and evaluate various measures of	5. Matrices-
central tendency.	https://nptel.ac.in/courses/122104018/
• Evaluate and interpret partition values -	
Quartiles, Deciles and Percentiles	

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 106	On completion of the course, students will be	-	Suggested E-learning material:	No
	Introduction	able to,		1. Single Variable Calculus	change
	to Calculus	• Apply the concept and principles of		https://ocw.mit.edu/courses/mathematics	in the
		differential and integral calculus to solve		/18-01sc-single-variable-calculus-fall-2010/	syllabus
		geometric and physical problems.		2. Differentiation of two variables	
		• Evaluate various limit problems both		https://nptel.ac.in/courses/111104085/21	
		algebraically and graphically.		3. Multiple Integral	
		• Differentiate and integrate the functions		https://nptel.ac.in/courses/111104085/29	
		which are applicable in real life situations.			
		• Interpret the geometric meaning of			
		differential and integral calculus.			
		• Apply differentiation to find linear			
		approximation, extrema, monotonicity, and			
		concavity of functions.			

2.	STAT 104	On completion of the course, students will be	- Suggested E-learning material:	No
	Introductiont	able to,	1. Probability and Mathematical Statistics;	change
	oProbability	• Compute numerical quantities that	Platform:	in the
	& Statistics	measure the central tendency and	http://www.math.louisville.edu/~pksaho	syllabus
		dispersion of a set of data.	01/teaching/Math662TB-09S.pdf	
		• Understand basic probability axioms and		
		rules and the moments of discrete and		
		continuous random variables as well as be		
		familiar with common named discrete and		
		continuous random variables.		
		• Apply general properties of the expectation		
		and variance operators.		
		• Understand the properties and fitting of the		
		Normal, Binomial and Poisson distribution.		
		• Fit the straight line, second degree parabola		
		and curves of type: ab ^x and ax ^b		
		• Understand the concept of Correlation		
		(Karl Pearson) and Linear Regression.		

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 106	On completion of the course, students will be -		Suggested E-learning material:	No
	Probability	able to,		1. Video lectures on Probability and Statistics:	change
	and	• Understand and differentiate between		https://nptel.ac.in/courses/111105090/	in the
	Descriptive	population and sample, variables and		2. Video lectures on Introduction to Data	syllabus
	Statistics	attributes in any survey.		Analytics:	
		• Represent the data using suitable tabular		https://nptel.ac.in/courses/110106072/	
		and/or graphical method.			
		• Identify and calculate appropriate			
		summary statistics for the data.			

		• Understand the concept of probability, probability mass and density functions.	
		• Define a random variable and obtain its properties.	
2.	STAT 106L Probability and Descriptive Statistics Lab	On completion of the course, students will be able to, - • Express raw data in terms of frequency table by using exclusive and inclusive method of classification for continuous/discrete variable. - • Apply and justify the use of, various graphical representations such as Histogram, Frequency polygon etc. - • Interpret and analyze the data using various averages such as arithmetic Mean, Median and Mode. - • Compare different data sets using methods such as standard deviation, mean deviation, quartile deviation and coefficient of variation. - • Employ and interpret the measures of Skewness and Kurtosis. -	No change in the syllabus

SECOND SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 107	On successful completion of the course,		Suggested E-learning material	No
	Statistical	students will be able to,		1. Introduction to Probability and Statistics-	change
	Methods	• Explain the purpose of measures of		https://ocw.mit.edu/courses/mathematics	in the
		dispersion, and the information they		/18-05-introduction-to-probability-and-	syllabus
		convey.		statistics-spring-2014/	
		 Select an appropriate measure of dispersion 		2. <u>Elementary Statistics-</u>	
		and correctly calculate and interpret the		https://newonlinecourses.science.psu.edu	
		statistic.		<u>/statprogram/stat200</u>	
		• Describe and explain the mathematical		3. Probability and Statistics-	
		characteristics of the standard deviation.		https://nptel.ac.in/courses/111105041/	
		• Apply the definition of independence to			
		attempt to determine whether an			
		assumption of independence is justifiable in			
		a given situation.			
		• Find probabilities of single events,			
		complementary events and the unions and			
		intersections of collections of events.			
		• Describe the main properties of probability			
		distributions and random variables.			
		• Identify the random variable(s) of interest			
		in a given scenario.			

2.	STAT 107L	On successful completion of the course,	-	-	No
	Statistical	students will be able to,			change
	Methods Lab	 Make the frequency distribution for inclusive and exclusive type of class intervals on excel. Construct the table for given raw data. Draw the graphs for the given data like histogram, frequency polygon, frequency curve and ogives. Draw the diagrams like bar diagram and pie charts etc. Calculate the measures of central tendency and dispersion on excel for given set of observations. Fit the curves like straight line, parabola, exponential and power curve by using 			in the syllabus
		excel.			

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 101	On completion of this course, student will be		Suggested E-learning material:	No
	Analytical	able to,		1. Plane and solid Geometry:	change
	Solid	• Understand the basic applications of		http://www.aproged.pt/biblioteca/planea	in the
	Geometry	analytic and solid geometry.		ndsolidgeometry.pdf	syllabus
		 Understand geometrical terminology for planes, tetrahedron, spheres, paraboloids, hyperboloids and ellipsoids. Visualize and represent geometric figures and classify different geometric solids. 		 2. Solid Geometry introduction: <u>http://altairuniversity.com/wp-</u> <u>content/uploads/2014/02/HM_SolidGeo</u> <u>mintro.pdf</u> 3. Math handbook of formulas, Process 	
				&Trics:	

			<u>http://www.mathguy.us/Handbooks/Ge</u> <u>ometryHandbook.pdf</u>	
2.	MATH 104 Differential Equations	 On completion of this course the student will be able to: Identify the type of a given differential equation and select and apply the appropriate analytical technique for finding the solution. Student will be able to solve first order differential equations utilizing the standard techniques for separable, exact, linear, homogeneous, or Bernoulli cases. Create and analyze mathematical models using first order differential equations to the linear and nonlinear ordinary differential equations of first and second order. Determine the complete solution of a differential equation with constant coefficients by variation of parameters Evaluate the Laplace and Inverse Laplace transform of functions of one variable 	- Suggested E-learning material: 1. Separable, homogeneous, exact, Linear differential equations, Laplace transformhttps://nptel.ac.in/courses/1221 04018/7 2. Open course in Differential Equations (All topics)https://nptel.ac.in/courses/1111061 00/ 3. Open course in Differential Equations (All topics)https://swayam.gov.in/course/378 7-differential-equations 4. Second order linear differential equation with constant coefficient thttps://ocw.mit.edu/courses/mathematic s/18-03sc-differential-equations-fall-2011/ 5. Laplace transformhttps://www.math.ust.hk/~mac has/differential-equations.pdf	No change in the syllabus

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 105	On completion of the course, students will be	-	Suggested E-learning material:	No
	Measures of	able to,		1. Probability and Random variables. MIT	change
	Association	• Fit the linear regression equation for real		Open Course.	in the
	and	data sets arising in various fields of the		https://ocw.mit.edu/courses/mathematics	syllabus
	Probability	populations.		/18-440-probability-and-random-variables-	
	Distributions	• Understand the concept of multiple and		spring-2014/lecture-notes/	
		partial correlation.		2. Probability and Statistics, NPTEL.	
		• Apply selected probability distributions to		https://nptel.ac.in/courses/111105041/27	
		solve problems		<u></u>	
		• Understand how to check the			
		independence of attributes.			
		• Fit the Binomial, Poisson and Normal			
		distribution for real life data.			
2.	STAT 105L	On completion of the course, students will be	_	-	No
	Measures of	able to,			change
	Association	• Apply and use fitting of various curves			in the
	and	such as Straight line, parabola, exponential			syllabus
	Probability	curve etc.			
	Distributions	• Effectively distinguish between and			
	Lab	compute, correlation and rank correlation,			
		Partial and Multiple correlations.			
		• Understand and perform the fitting of			
		Binomial. Poisson and Normal distribution			
		Binomial, Poisson and Normal distribution			

THIRD SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 205	On successful completion of the course,	-	Suggested E-learning material	No
	Probability	students will be able to:		1. Introduction to Numerical Analysis » Lecture	change
	Distributions	• Understand the basic principles of		notes.	in the
	and	Probability, sample space, conditional		https://ocw.mit.edu/courses/mathematic	syllabus
	Numerical	probability.		s/18-330-introduction-to-numerical-	
	Analysis	• Differentiate between basic discrete &		analysis-spring-2004/lecture-notes/	
		continuous distributions & how to work		2 Probability and Random Variables	
		with them.		2. Trobability and Kandolit Variables	
		• Understand cumulative distribution		<u>https://ocw.mit.edu/courses/mathematic</u>	
		function, expectation and distributions for		<u>s/18-440-probability-and-random-</u>	
		functions of random variables.		<u>variables-spring-2014/</u>	
		• Work with bivariate distributions & basic		3. <u>Numerical Analysis-</u>	
		two variable statistics.		https://nptel.ac.in/courses/111107062/	
		• Derive numerical methods for various		4. Probability -	
		mathematical operations and tasks, such as		https://nptel.ac.in/courses/111104032/	
		interpolation, differentiation, integration,		5 Probability distributions-	
		the solution of linear and nonlinear		bttps://pptsl.sc.ip/courses/11110E0/1/8	
		equations, and the solution of differential		<u>https://hptel.ac.ii/courses/111105041/8</u>	
		equations and apply them to obtain			
		approximate solutions to mathematical			
2		problems.			NT-
2.	SIAI 205L	On successful completion of the course,	-	-	INO -l
	Distributions	Students will be able to:			change
	Distributions	• Fit the probability distributions by using			m me
	Numerical	Excel.			synabus
	Apolycic Lob	• Find out the missing values using			
	Analysis Lab	interpolation			
		• Get the approximate values of			
differentiation and integration by using					
---	--				
excel.					
Obtain the solution of linear and nonlinear					
equations and the solution of differential					
equations and apply them to obtain					
approximate solutions to mathematical					
problems.					

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 201	On completing the course, students are able	Unit 1 [<i>Set, Relations, Functions and</i>] Binary	Unit 1 Divisibility in Z, division algorithm,	1. Studen
	Abstract	to,	operations, [Binary operations in contrast to	greatest common divisor, Euclidean	t learn
	Algebra	• Demonstrate the mathematical maturity of	<i>unary and ternary operations,</i>] Group:	Algorithm, modular arithmetic, Binary	the
		understanding the proof.	Definition, examples and simple properties of	Operations, Group: Definition, examples	concep
		· Iledanstand the definition of a survey and	group and <mark>subgroup</mark> .	and properties of group	ts of
		• Understand the definition of a group and	Unit 2 Permutation group, Cyclic group, Cosets,	Linit 2 Subgroups Cyclic groups Pormutation	sets,
		be able to test a set with binary operation	Lagrange's theorem. Homomorphism and	onn 2 Subgroups, Cyclic groups, Ternitian	relatio
		to determine if it is a group.	Isomorphism of group, Cayley's theorem.	group, symmetric and alternating groups of	functio
		• Find the order of elements of groups.	Unit 3 Normal subgroup and [Quotient] group,	degree n, external direct products of	ns in
		· Identify subgroups of a sizen group grade	Fundamental theorem of homomorphism of	groups.	the
		• Identify subgroups of a given group, cycle	group (First, Second and third theorem of	Unit 3 Cosets, Lagrange's theorem,	real
		groups, normai groups.	isomorphism).	Homomorphism and Isomorphism of	analysi
		• Understand permutation groups and be	Unit 4 Rings: Definition, and example, [<i>Residue classes</i>	group, Cayley's theorem,Normal	s
		able to decompose permutations into 2-	ring, Special classes of ring,] Integral Domain,	subgroups and Factor groups.	course.
		cycles.	Division ring (ring, field[), Simple properties of	Unit 4 Fundamental theorem of homomorphism of	2. To
		• Crean the significance of the concents of	ring, Subring, Subfield], Ring homomorphism and	group (First, Second and third theorem of	better
		• Grasp the significance of the concepts of	ring isomorphism.	isomorphism).	unders
		nomomorphism, isomorphism, and	Unit 5 Ideal, Principal ideal, Principal ideal [<i>ring</i> ,	Rings: Definition and examples, Integral	tand
		automorphism and be able to check a	Quotient] ring, Prime ideal, Maximal ideal,	Domain, Division ring, fields	the
		given function is one of these.	Euclidean ring and its properties, Polynomial	Unit 5 Ideal, Principal ideal, Principal ideal	examp
				domain, Factor ring, Prime ideal, Maximal	les of

Classify groups up to isomorphism.	ring.	ideal, Ring homomorphism and ring	groups
• Identify a set with to binary operation forms a ring or not.	Suggested Text Books:	isomorphism.	such as Z_n , U(n)
Understand the special types of rings and	1. V.K. Khanna and S.K. Bhambri, A Course in Abstract Algebra: Vikas Pub. House, New	Text Books:	G (2, n)
the old ones.	Delhi, 2 nd rev. ed. 1998.	algebra. (8 th Ed.). Boston, MA: Brooks/Cole	concep ts of
• Check a subset of a ring is an ideal or not and be able to identify proper and	2. A.R. Vashistha, Modern Algebra: Krishna Prakashan Mandir, Meerut, 2 nd rev. ed., 1971.	Cengage Learning.	divisib ility
maximal ideal.	Suggested Reference Book :	Reference Books:	and
	1. I.N. Herstein, Topics in Algebra: Wiley Eastern, New Delhi, 2 nd ed. 1975.	 Dummit, D. S. & Foote, R. M. (2004) <i>Abstract algebra</i>(3rd Ed.). New Jersey: Wiley. Hungerford, T. W. (2014) <i>Abstract algebra:</i> <i>An introduction</i> (3rd Ed.). Australia: Brooks/Cole Cengage Learning. 	ar arithm etic is import ant.
		 Hillman A. P. &Alexandersor, G. L. (2015) <i>Abstract algebra: A first undergraduate</i> <i>course</i>(5th Ed.). CBS Publishers & Distributors Pvt. Ltd. 	3. Extern al direct produ ct is
		4. Fraleigh, J. B. (2003) <i>A first course in abstract algebra</i> (7 th Ed.). Harlow: Pearson.	neede d to
		 Sen, M. K., Ghosh, S., Mukhopadhyay, P. &Maity, S. K. (2019) <i>Topics in abstract algebra</i> (3rd Ed.). University Press. 	tand the classifi
		 Herstein, I. N. (1991) Topics in algebra (2nd Ed.). New Delhi: Wiley Eastern. 	of of
		7. Khanna, V.K. & Bhambri, S. K. (2008) <i>A</i> course in abstract algebra, (3 rd Ed.). New	upto isomor
		Deini: Vikas Pub. House.	pnism. 4. Some

			Suggested E-learning material:	advan
			1. Lecture Notes:	ced
			https://ocw.mit.edu/courses/mathematics	topics
			/18-703-modern-algebra-spring-	such
			2013/related-resources/	as
			2. Video Lectures:	Euclid
			https://www.extension.harvard.edu/open	ean
			-learning-initiative/abstract-algebra	ring
				and
				polyno
				rings
				are
				remov
				ed
				from
				Unit
				V.
2.	MATH 206	On completion of the course, students will be	- Suggested E-learning material	No
	Real Analysis	able to,	1. Real Analysis;NPTEL:	change
		• Think about basic proof techniques and	https://nptel.ac.in/courses/111106053/	in the
		\bullet THUR ADOLE DASK DEDUCT LECTINULES AND		
		fundamental definitions related to the real		syllabus
		fundamental definitions related to the real number system.		syllabus
		 Innik about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued 		syllabus
		 Innik about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and 		syllabus
		 Innix about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. 		syllabus
		 Finite about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series. 		syllabus
		 Finite about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series forms 		syllabus
		 Think about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series forms. Demonstrate some of the fundamental series forms. 		syllabus
		 Finite about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series forms. Demonstrate some of the fundamental theorems of englysis 		syllabus
		 Finite about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series forms. Demonstrate some of the fundamental theorems of analysis. 		syllabus
		 Finite about basic proof techniques and fundamental definitions related to the real number system. Understand the concept of real-valued functions, limit, continuity, and differentiability. Find expansions of real functions in series forms. Demonstrate some of the fundamental theorems of analysis. Develop the capacity to solve real integral 		syllabus

	functions.	

Subject: Statistics

S.N. Course List	rse List Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
 STAT (to be generated) Sampling Distributions 	 (to be ated) On completion of the course, students will be able to, Understand the difference between probability distribution and sampling distribution. Understand the sampling distribution of the mean of a sample from a Normal Population. Understand the properties of the sampling distribution of the sampling distribution of the sample mean in general situations, using the Central Limit Theorem. Understand the concepts of the t, F and x2 distributions. Apply t, F and x2 tests on real life data. 		 Unit 1Limit laws: convergence in probability, almost sure convergence, convergence in mean square and convergence in distribution and their inter relations, Chebyshev's inequality, W.L.L.N., S.L.L.N. and their applications, De-Moivre Laplace theorem, Central Limit Theorem (C.L.T.) for i.i.d. variates, applications of C.L.T. and Liapunov Theorem (without proof). Unit 2Basic concept of Sampling and sampling distribution, sampling distribution, sampling distribution, sampling distribution, standard errors of sample mean, sample variance and sample proportion. Null and alternative hypotheses, level of significance, Type I and Type II errors, their probabilities and critical region. Concept of p-values. Unit 3Large sample tests of significance: Sampling for attributes and confidence intervals for proportion, difference of 	This paper is a replace ment of the paper STAT 203 Numeric al Analysis and Samplin g Distribu tion.

	two proportions, single mean, difference of two means, standard deviation and difference of standard deviations.
	Unit 4 Chi-square distribution with its moment generating function, moments and cumulant, Additive property of chi- square variates, Limiting case of chi- square distribution. Tests of significance and confidence intervals based on Chi- Square distribution. Yates Correction for 2x2 contingency
	table. Unit 5 Students 't' and Fishers 't' statistics and their distributions Application of 't' test for one sample and two sample
	problems and for testing the significance of a sample, Correlation coefficient Paired 't' test, F-statistic and
	testing the equality of variance, Fisher's transformation and its uses. Relationship between 't' and 'F'
	statistics and F and Chi-square statistics Note: Use of scientific calculator is permissible.
	 Text Books: 1. Hogg, R. V., & Tanis, E. (2009). <i>Probability and Statistical Inference.</i> Prentice Hall. 2. Goon, A. M., Gupta, B. D. & M. K.

			Gupta.(1968). <i>Fundamental of</i> <i>Statistics</i> . (Vol. I).The World Press Pvt.	
			Ltd. Kolkata.	
			 Reference Books: 1. Mood, A. M., Graybill, F. A., &Boes, D. C. (1974). Introduction to Theory of Statistics. McGraw- Hill International. 2. Gupta, S. C., & Kapoor, V. K. (2013). Fundamental of Mathematical Statistics (11thed.). New Delhi: Sultan Chand Publication. 3. Gupta, S.P. (2014). Statistical Methods (44th. ed.). Sultan Chand & Sons. 4. Freund, J. E. (2004). Modern Elementary Statistics (12th. ed.). New Jersey: Pearson Prentice Hall. 	
			1. Sampling distribution and central limit;	
			Platform: Colorado State University	
			https://www.stat.colostate.edu//~vollmer	
2		On completion of the course, students will be	/stat30/pdis/LN5_2017.pdi	
Ζ.	SIAI (to be	able to	1. Testing of significance and confidence	napor is
	generateu)	Effectively compute and understand	intervals for single proportion and	a paper 15
	Sampling	testing of significance and confidence	difference of two proportions for large	replace
	Distributions	intervals in various contexts such as, for	sample.	ment of
	Lab	single proportion, difference of two	2. Testing of significance and confidence	the
		proportions for large sample, for single	intervals for single mean and difference	paper
		mean, difference of two means for large	of two means for large sample.	STAT
		sample.	3. Testing of significance and confidence	203LNu
			ior mean and uncrence of means	1

• Proficiently test for goodness of fit,	(paired and unpaired cases) and for	merical
independence of attributes.	correlation coefficient	Analysis
• Understand how and when to use testing	4. Testing of significance and confidence	and
for equality of two population variances	intervals for difference of two standard	Samplin
	deviations.	g
	5. Testing if the population variance has a	Distribu
	specific value and its confidence	tion Lab.
	6. Testing of goodness of fit.	
	7. Testing of independence of attributes.	
	8. Testing based on 2 X 2 contingency	
	table without and with Yates'	
	corrections.	
	9. Testing of significance and confidence	
	intervals of an observed sample	
	correlation coefficient.	
	10.Testing and confidence intervals of	
	equality of two population variances	
	Note: (i) The above list is only for the	
	guidance of the students.	
	(ii) Whenever it is feasible, students	
	should be asked to collect the	
	required data themselves to use it	
	in their practical.	
	(iii) Where it is feasible practical	
	practice should be done through	
	spreadsheet, package or	
	programming.	
	r- of an0.	

FOURTH SEMESTER

Subject: Applied Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
S.N. 1.	Course List STAT 202 Inferential Statistics and Quality Control	 Learning Outcomes On successful completion of the course, students will be able to, Define estimator, its unbiasedness and efficiency. Obtain maximum likelihood estimates of parameters of some simple distributions. Perform testing of significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. Understand the concept of non-parametric testing. 	-	Suggested SyllabusSuggested E-learning material:1. Lecture notes and video on "Parameters, Statistics, and Sampling Error": http://www.statisticslectures.com/topics/ parametersstatistics/2. Video lectures on Introduction to Data Analytics: https://nptel.ac.in/courses/110106064/3. Lecture notes and video on "Quality Control in Textile Industry": https://nptel.ac.in/courses/116102019/	Remark No change in the syllabus
		 Apply the non-parametric methods to test for single population and two populations. Understand the concept of statistical quality control. Construct control charts for variables and attributes. 			
2.	STAT 202L Inferential Statistics and Quality Control Lab	 On successful completion of the course, students will be able to, Test the significance of single mean, proportion, s. d. and difference of two means, proportions, s. d. and variances for small and large samples. Understand when and how to use various non-parametric tests such as Sign 	-	-	No change

test, Run test, Median test etc. for single	
population and two populations.	
Plot various control charts for variables and	
attributes such as X, R, and s charts and	
determine whether the given procedure is	
in statistical control or out of statistical	
control.	

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 202	After completing this course, students will be	- St	aggested E-learning Material:	No
	Introduction	able to	1	. <u>Video</u>	change
	to Linear	• Understand vector spaces over a field and		Lectures:https://www.edx.org/learn/linea	in the
	Algebra	subspaces and apply their properties.		<u>r-algebra</u>	syllabus
		Understand linear independence and	2	. <u>Video</u>	
		dependence.		Lectures:https://ocw.mit.edu/courses/ma	
		• Find basis and dimension of a vector		thematics/18-06-linear-algebra-spring-	
		space, and understand change of basis.		2010/	
		Compute linear transformations, kernel	3.	. <u>Video</u>	
		and range, and inverse linear		Lectures:https://onlinecourses.nptel.ac.in/	
		transformations, and find matrices of		noc17_ma04/preview_	
		general linear transformations.			
		• Find eigenvalues and eigenvectors of a			
		matrix and of linear transformation.			
		• Understand inner product on a vector			
		space.			

		 Understand the concept of orthogonality in inner product spaces. Create orthogonal and orthonormal bases: Gram-Schmidt process. 		
2.	MATH 301	On completion of the course, students will be	- Suggested E-learning material	No
	Analusia	able to,	1. Complex Analysis, NFTEL	change in the
	Analysis	• Demonstrate understanding of the basic	https://nptel.ac.in/courses/111103070/	in the
		concepts and fundamental definitions		synabus
		underlying complex analysis.		Shifted
		• Investigate complex functions, concept of		from VI
		limit, continuity and differentiability of		Semeste
		complex functions.		r to IV
		• Demonstrate capacity for mathematical		Semeste
		reasoning through analyzing analytic		r.
		functions.		
		• Prove and explain concepts of series and		
		integration complex functions.		
		• Understand problem-solving using		
		complex analysis techniques.		
		• Enjoy the roll of complex functions today's		
		mathematics and applied contexts.		

Subject: Statistics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	STAT 207	On completion of the course, students will be	-	Suggested E-learning material	No
	Statistical	able to,		1 Statistical Inference: Platform:	change
	Inference and	• Apply various basic parametric, non-			in the

	Quality	parametric and sequential estimation	MITOPENCOURSEWARE	syllabus
	Control	techniques and testing procedures to deal	https://ocw.mit.edu/index.htm	
		with real life problems.	2. Statistical Inference; Platform: Coursera	
		• Understand the concept of confidence	https://www.coursera.org	
		interval in case of normal distribution,	3. Statistical Inference: Platform: e-PG	
		Neyman-Pearson fundamental lemma,	Pathshala <u>https://epgp.inflibnet.ac.in</u>	
		UMP test.		
		• Understand SPRT, OC and ASN function.		
		• Understand the non-parametric techniques		
		such as sign, median and run test.		
2.	STAT 207L	On completion of the course, students will be		No
	Statistical	able to,		change
	Inference and	• Understand when and how to use various		
	Quality	control charts such as <i>X</i> , R, and s charts.		
	Control Lab	• Effectively understand and determine the		
		AOQ and AOQL plots.		
		• Understand when and how to use various		
		non - parametric tests such as Sign test,		
		Run test, Median test etc.		

FIFTH SEMESTER

Subject: Mathematics (Core Course)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 302	On completion of the course, students will be	Unit 1 Sets and Multisets, Relations and Functions,	Unit 1 Sets and Multisets, Relations and	Conventi
	Introduction to	able to,	Equivalence relations, Partial order	Functions, Equivalence relations, Partial	onal
	Discrete	• Write an argument using logical notation	relations, Chains and Antichains.	order relations, Chains and Antichains.	terminol
	Wathematics	and determine if the argument is or is not	Permutations, Combinations, selection with	Permutations, Combinations, selection	necessary
		valid.	& without replacement, Permutation and	with & without replacement,	for the
		• Demonstrate the ability to write and	probability. The rules of sum and product	Permutation and Combinations of	concerne
		evaluate a proof or outline the basic		multisets. Discrete probability. The	d unit are
		structure of and give examples of each	Unit 2 Basic concepts of graph theory, Multi-	rules of sum and product.	included.
		proof technique described.	Matrix representation of graphs, Fulerian	Unit 2 Basic concepts of graph theory, Multi-	
		• Understand the basic principles of sets and	path and circuits. Hamiltonian path and	graphs, Paths & Circuits, Eulerian path	
		operations in sets.	circuits. Shortest path in weighted graph.	and circuits. Hamiltonian path and	
		Prove basic set equalities.	Planar graphs.	circuits weighted graphs Shortest path	
		• Apply counting principles to determine	Unit 3 [K-connected and K-edge connected graphs.	in weighted graph Planar graphs	
		probabilities.	<i>Chromatic number,</i>] Edge coloring of graphs,	Vortey connectivity and adge	
		• Demonstrate an understanding of relations	Vizing's theorem. Trees and cut sets- Trees,	connectivity of graphs	
		and functions and be able to determine	Rooted tree, Path lengths in rooted trees,	Unit 2 Warten and and a day and a day	
		their properties.	Spanning tree and cut set, Minimum	Unit 3 vertex coloring and edge coloring of	
		• Determine when a function is 1-1 and	spanning tree.	graphs, Vizing's theorem, Irees and cut	
		"onto".	Unit 4 Pigeon hole principle, Inclusion-exclusion	sets- Trees, Rooted tree, Path lengths in	
		• Demonstrate different traversal methods	principle. Discrete numeric functions-	rooted trees, Spanning tree and cut set,	
		for trees and graphs.	manipulation of numeric functions.	Minimum spanning tree, Matrix	
		Model problems in Computer Science using	Asymptotic behavior of numeric functions.	representation of graphs.	
		graphs and trees.	Generating functions and recurrence	Unit 4 Pigeon hole principle, Inclusion-	
			relations. Linear recurrence relation with	exclusion principle. Discrete numeric	
			constant coefficients and their solutions.		

	U	nit 5 Lattices and Boolean algebra. Uniqueness of	functions-manipulation of numeric
		finite Boolean algebra. Boolean functions and	functions. Asymptotic behavior of
		Boolean expressions. Propositional Calculus.	numeric functions. Generating
	T	ext Books :	functions and recurrence relations.
	1.	C.L. Liu, Elements of Discrete mathematics:	Linear recurrence relation with constant
		McGraw Hill, International editions, 2008.	coefficients and their solutions
	2.	Narsingh Deo, Graph Theory: Prentice Hall of	
		India, 2004.	Unit 5 Mathematical logic: Basic Connectives,
	R	eference Books:	normal forms (CNF and DNF), proof of
	1	NI Biggs Disgrata Mathematics: Oxford	Validity, Predicate logic, Lattices and
	1.	Science Publication 1985	Boolean algebra. Uniqueness of finite
	2	Konnoth II Desen Disputs Mathematics and	Boolean algebra. Boolean functions and
	2.	its Applications: McCrow Hill 1000	Boolean expressions. Propositional
			Calculus.
	3.	1. Koshy, Discrete Mathematics with	Toxt Books
		Applications: Academic Press, 2005.	1 Roson K H (1900) Discrete mathematics
			and it's amplications McGraw Hill
			2 Liu CI & Mohapatra DP (2008)
			Elements of discrete mathematics. Tata
			McGraw Hill.
			3. Deo, N. (2004). Graph theory., New Delhi:
			Prentice Hall of India.
			Reference Books:
			1. Biggs, N.L. (1985). Discrete mathematics.
			Oxford Science Publication.
			2. Koshy, T. (2005). Discrete mathematics with
			applications. Academic Press.
			Suggested E-learning material:
			1. Notes on Graph Theory:
			https://www.geeksforgeeks.org/engineer
			ing-mathematics-tutorials/

Subject: Mathematics (Core Course)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 303 Introduction to Numerical Analysis	 On completion of the course, students will be able to, Apply numerical methods to obtain approximate solutions to mathematical problems. Solve the nonlinear equations, system of linear equations and interpolation problems using numerical methods. Examine the appropriate numerical differentiation and integration methods to solve problems. Apply the numerical methods to solve differential equations. Uni 	 1 Error- its sources, propagation and analysis, Numerical solution of system of linear equations, Direct methods-The matrix inversion method, Gauss elimination method, Gauss-Jordan method, Iterative methods: Gauss-Jacobi Method, Gauss Siedel method. 2 Differences, Relation between difference and derivatives, Differences of polynomials, Newton's formula for forward and backward interpolation, Divided differences and simple differences, Newton's general interpolation formula, Lagrange's interpolation formula, Error in interpolation. 3 Numerical differentiation and numerical integration- Simpson's, Weddle's and Trapezoidal rules, Newton's Cotes Quadrature formula, Gauss Quadrature formula, Gauss Quadrature formula, Simple differences, Newton's cotes Quadrature formula, Gauss Quadrature formula, Gauss Method, Regula-Falsi method, Newton Raphson's method, order of convergence. 	 Unit 1 Error analysis: Exact and approximate numbers, rounding of numbers, Significant digits, various types of errors encountered in computations, error in function approximation, the general error formula, Taylor's series, error in series approximation. Numerical solution of system of linear equations: Direct methods: The matrix inversion method, Gauss elimination method with pivoting strategies, Gauss-Jordan method, Factorization methods (LU- Doolittle, Crout, LDL^T, Cholesky), computing inverse of a matrix. Iterative methods: Gauss-Jacobi Method, Gauss-Siedel method. Unit 2 Finite differences: forward, backward, central and divided difference operators, their properties and difference tables, propagation of error in difference table, missing data calculation, Relation between differences of polynomials. Polynomial 	Subtopics of the existing topic, necessary for the efficient teaching, are elaborate d in proposed syllabus. Factoriza tion methods have been added as these are importan t to solve some matrix based problems

 Unit 5 Numerical solution of first and second order differential equations, Euler's Method, Picard's Method, Taylor's series approximation, Runge-Kutta'sMethod. Suggested Text Books: S.S. Sastri, An Introductory Methods in Numerical Analysis: P.H.I, New Delhi, 4th edition 2005. J.L. Bansal, J.P.N. Ojha, Numerical Analysis: JPH, Jaipur, 1991. Reference Books: Kendall E. Atkinson, An Introduction to Numerical Analysis: John Wiley, New York, 2nd edition 2001. P.K. De, Computer Based Numerical Methods and Statistical Techniques:CBS Publication, New Delhi, 1st edition 2006. 	Unit 3 Unit 4	interpolation: Newton-Gregory forward and backward interpolation, Gauss's forward and backward, Stirling's, Bessel's interpolation, Lagrange's and Newton's divided differences interpolation, inverse interpolation, computation errors in these formulae and analysis of errors. Numerical integration: Newton's Cotes Quadrature formula, Simpson's, Weddle's and Trapezoidal rules, Gauss Quadrature formula. Root finding for nonlinear equations (Transcendental and Algebraic equations), Iterative method, Bisection method, Regula-Falsi method, Nowton Baphson's method, order of
	Unit 5 Text Bo 1. Sast num Lear	Newton Kaphson's method, order of convergence. Numerical solution of first and second order differential equations: Euler's Method, Picard's Method, Taylor's series approximation, Runge- Kutta's Method. Ooks: ry, S.S. (2012). <i>Introductory methods of</i> <i>verical analysis</i> . New Delhi, ND: PHI cning Private Limited.

2. Chauhan, D. S., Vyas, P., &Soni, V. (2005).
Studies in numerical analysis. Jaipur, Jaipur
Publishing House.
Reference Books:
 Jain, M. K., Iyengar, S. R. K., & Jain, R. K. (2007). Numerical methods for scientific and engineering computations. New Delhi, ND: New Age International.
 Rajaraman, V. (1984). Computer oriented numerical methods. New Delhi, ND: Prentice Hall of India.
 Phillips, G.M., & Taylor, P.J. (1996). Theory and applications of numerical analysis. Academic Press, Elsevier.
 Burden, R.L., Faires, D.J., Burden, A.M. (2016). Numerical Analysis. Cengage learning.
Suggested E-learning material:
1. Elementary Numerical Analysis; Platform:
Nptel <u>https://nptel.ac.in/courses/111101003/</u>
2. Numerical Differentiation and Numerical Integration; Platform: MIT open courseware
https://ocw.mit.edu/courses/mechanical- engineering/2-993j-introduction-to-numerical-
analysis-for-engineering-13-002j-spring-
2005/lecture-notes/lect_9.pdf
3. Computational Error; Platform:
Nptel <u>https://nptel.ac.in/courses/11110/06</u>

Discipline Electives

Subject: Mathematics

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1	MATH 203	On completion of the course, students will be		Suggested E-learning material:	No
	Introduction to Mechanics	 e Explain the geometry of the motion of particle in plane curve, i.e. position, velocity, and acceleration, and how those quantities are related through calculus. e Learn Newton's laws of motion and examines their application to a wide variety of problems. e Learn the basic concept of composition and resolution of forces and friction. e Understand and visualize the real physical problem in terms of Mathematics. e Learn one-dimensional (SHM), multidimensional (Projectile motion), and constrained motion, motion of particle with or without connecting with string. 		 Engineering Mechanics: Statics & Dynamics; Platform: cosmolearning, <u>https://cosmolearning.org/courses/engin</u> <u>eering-mechanics-statics-dynamics/</u> Engineering Mechanics: Statics & Dynamics; Platform: nptel <u>https://nptel.ac.in/courses/112106180/</u> Engineering Dynamics; Platform: MIT Open courseware, <u>https://ocw.mit.edu/courses/mechanical- engineering/2-003sc-engineering- dynamics-fall-2011/</u> 	change in the syllabus
2.	MATH 304	On completion of the course, students will be	-	Suggested E-learning material	No
	Linear	able to,		1.Linear Programming, a CPLEX	change
	Programming	• Formulate the LPP.		tutorialhttps://ibmdecisionoptimization.gith	in the
	& Its Applications	• Conceptualize the feasible region.		ub.io/tutorials/html/Linear_Programming.	syllabus

	• Solve the LPP with two variables using	<u>html</u>	
	graphical method.	2.Linear Programming Tutorial Sophia	
	• Solve the LPP using simplex method.	Learning	
	• Formulate the dual problem from primal.	https://www.sophia.org/tutorials/linear-	
	Solve Transportation and Assignment	programming5	
	problems	3.Lectures – nptel:	
	• Solve the problems of competitive	https://nptel.ac.in/courses/111102012/	
	situations between two competitors.		
3.	MATH (code On completion of the course, students will be	Unit I Ne	ew
	to be able to,	Definition and examples of vector and scalar; Co	ourse
	generated) • Manipulate vectors to perform	Basic operations: addition, subtraction,	
	Vector geometrical calculations in three	multiplication and scalar product of vectors,	
	dimensions.	geometric representation of vectors,	
	• Use Green's theorem and the	cross product	
	Divergence theorem to compute	Unit II	
	integrals. Explain how Green's	Scalar and vector product of three vectors,	
	Theorem is a generalization of the	product of four vectors, vector-valued	
	Fundamental Theorem of Calculus.	function; Scalar-valued function, limit,	
	Communicate Calculus and other	Continuity, differentiability and Integration of	
	mathematical ideas effectively in	vector-valued functions of one variable.	
	speech and in writing	Partial derivatives: chain rule exact	
	Recognize when it is appropriate to use	differentials, Del Applied to scalar valued	
	a scalar and when to use a vector in	Function (gradient), Del applied to vector	
	problem solving	point function (Divergence, Curl), Physical	
	problem solving.	interpretation of divergence, Physical	
		interpretation of curl, Irrotational and	
		Solenoidal vector-valued function.	
		Directional derivative tangent planes and	
		Directional derivative, tangent planes and	

			normal lines, Tangential lin Circulation, Work, Independen Conservative fields, Normal Surf Flux across a surface. Unit V Vector fields, characterization of and Solenoidal vector fields, Gree in a plane, Gauss divergence to Stoke's theorem, Simple application	ne integral, ne of path, face integral, of Irrotational een's theorem theorem and ons.
			 TEXT / REFERENCE BOOKS 1. Thomas, G.B., Weir, M.D., & Ha Thomas' Calculus(11thedition Education. 2. Grewal ,B.S., & Grewal, J.S. Engineering Mathematics(37th Delhi: Khanna Publishers. 3. Davis, H. F., & Snider (1998).Introduction to Analysis(7thedition). William Publication. 4. Matthews, P. C. Calculus.Springer-Verlag. Suggested E-learning material https://www.brightstorm.com/ta 	Tass, J. (2011). n). Pearson (2005). <i>Higher</i> Pedition).New r, A. D. <i>Vector</i> C Brown (1998). <i>Vector</i>
4.	MATH (code to be generated) Number Theory	 On completion of the course, students will be able to, Understand the concept of divisibility and able to find greatest common divisor of large integers using Euclidean algorithm. 	Unit I Integers, well-ordering principle Fibonacci numbers, divisibilit Common Divisor, least common Euclidean algorithm, prime distribution of primes, fundament	e, induction, New e, induction, Course ty, Greatest on multiple, e numbers, ental theorem
		Appreciate the importance of prime	of arithmetic.	

numbers and their distribution.	Unit II
 Solve linear congruences and system of 	Congruences, linear congruences, Chinese
linear congruences.	remainder theorem, congurences with prime
• Know Fuller's theorem. Fermat's theorem	power modulai. linear Diophantine equations.
and Wilson's theorem	Unit III
Demonstrate the applications of number	Arithmetic functions, Euler's Theorem,
• Demonstrate the applications of number	Fermat's little theorem, Wilson's theorem,
theory in cryptography.	primality testing and pseudoprimes and
	Group of units Fuler's function primitive
	root, the group U_p^e and U_2^e . Mobius inversion
	formula, Ouadratic residues, Legendre
	symbol, Gauss's lemma, quadratic reciprocity,
	Unit V
	Perfect numbers, Fermat and Mersenne prime.
	Applications of number theory in
	cryptography.
	Text Books:
	1. Burton, D. M. (2012). Elementary number
	<i>theory</i> . McGraw-Hill Education (India).
	1 Niven I Zuckerman H S
	Montgomery, H. L. (2013) An introduction
	to the theory of numbers. New York: Wiley.
	2. Rosen, K. H. (2005). Elementary number
	theory and its applications. Boston:
	Pearson/Addison Wesley.
	Suggested E-learning Material:
	1. Lecture Notes: NPTEL:
	https://nptel.ac.in/courses/111103020/

2. Lecture Notes: MIT OPEN COURSE WARE:
https://ocw.mit.edu/courses/mathematic
s/18-781-theory-of-numbers-spring-
<u>2012/index.htm</u>

Subject: Statistics/Applied Statistics

S.N. Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1. STAT 302 Sampling Techniques and Design of Experiments	 On completion of the course, students will be able to, Understand the methods for designing and selecting a sample from a population. Estimate finite population parameters e.g. totals and means, for some standard sampling schemes. Analyze the results of a designed experiment in order to conduct the appropriate statistical analysis of the data. Describe how the analysis of the data from the experiment should be carried out. Develop understanding of the principles and methods used to design survey sampling schemes focusing on methodology for survey-based estimation for population totals and related quantities for some standard sample designs and statistical sampling techniques that are 		Suggested E-learning material Sampling Theory, NPTEL. https://nptel.ac.in/courses/111104073/ Biostatistics and Design of Experiments, NPTEL, https://nptel.ac.in/courses/102106051/ Design of Experiments and sample Survey. ePATHSHALA. https://epgp.inflibnet.ac.in/ahl.php?csrno= <u>34</u> 	No change in the syllabus

		used to make inferences about a		
		population.		
		• Understand why the sampling design is		
		essential for data collection and to		
		determine how we choose to graph the		
		data, estimate certain parameters, and		
		quantify the uncertainty in these estimates		
		with a margin of error.		
2.	STAT 302L	On successful completion of the course, _	-	No
	Sampling	students will be able to,		change
	Techniques	Comprehend the basic principles		
	and Design of	underlying survey design and estimation.		
	Experiments	• Describe how to draw a random sample by		
	LaD	using with and with replacement sampling		
		technique in excel.		
		Calculate the sampling mean and sampling		
		variance in case of SRSWR and SRSWOR.		
		• Draw a random sample from stratified and		
		systematic sampling and also to compare		
		the efficiencies of these sampling		
		techniques with respect to each other.		
		• Analyze the results of a designed		
		experiment in order to conduct the		
		appropriate statistical analysis of the data.		
		• Compare several means by using the		
		technique of one way and twoway		
		ANOVA.		

		• Compare the three designs named CRD, RBD and LSD in terms of their efficiencies.		
3.	STAT 301 Applied Statistics	 On completion of the course, students will be able to, Understand the concept of time series data and its application in various fields. Identify principle sources of demographic data and assess their strengths and weaknesses. 		No change
4.	STAT 301L Applied Statistics Lab	 On completion of the course, students will be able to, Measure trend and seasonal fluctuations, based on real life data. Compute and interpret different death and birth rates such as CDR, CBR, etc. Compute and differentiate between different index numbers such as Laspeyre's index, Pasche's index and Fisher's index. Compute and understand different scores, reliability of test scores and IQ. 		No change
5.	STAT (code to be generated) Financial Statistics	 On completion of the course, the students will be able to, Understand acquisition of financial data Describe financial data using distributions Find relation between two or more financial series 	- UNIT I Essential practical familiarization with financial data. Typical challenges with real financial data. Basics on data acquisition, manipulation,filtering,graphicalrepresenta- tion and plotting. UNIT II Statistical distribution of returns. Moments of	

 Understand the concept of stochastic process Apply basic stochastic models in financial data. 	the distribution. Non-Normal distributions and fat-tails. Large fluctuations and tail risk. Stable distributions. Generalized extreme value distribution. Estimation methods to characterize the tails of the distributions. Calibration and validation. Applications to measures of risk.
	UNIT III Measures of dependency: linear and non- linear correlations. Lagged correlations and causality. Information theoretic perspective: mutual information, transfer entrophy. Spurious correlations. Correlation filtering through networks. Calibration, validation and application issues.
	UNIT IV Stochastic Process: Concept, types, properties. Discrete Stochastic Processes, Binomial processes, Gaussian Process. Random walk, General random walks, Geometric random walks, Binomial models with state dependent increments.
	UNIT V Stochastic Models in Finance: Discrete time process- binomial model with period one. Stochastic Models in Finance: Continuous time process- geometric Brownian motion.

			 Suggested Books: Franke, J., Hardle, W.K. And Hafner, C.M. (2011): Statistics of Financial Markets: An Introduction, 3rd Edition, Springer Publications. Stanley L. S. (2012): A Course on Statistics for Finance, Chapman and Hall/CRC. Casella G. & Berger R. L. (2002). Statistical Inference, Brooks/Coles. Bouchaud, J P. & Potters, M. (2003). Theory of Financial Risk and Darivative Pricing: from Statistical Physics 	
			 <i>Derivative Pricing: from Statistical Physics</i> to Risk Management, Cambridge University Press. 5. Lehmann, E. L. & Romano, J. P. (2006). <i>Testing Statistical Hypotheses</i>, Springer, 2006. Reference Books 1. Coles, S. (2001). An Introduction to 	
			 Statistical Modeling of Extreme Values, Springer. 2. Gumbel, E. J. (2013). Statistics of Extremes, Echo Point Books & Media. 	
6.	STAT (code to be generated) Financial Statistics Lab	 On completion of this course, the students will be able to, Understand the behavior of financial data through graphs Describe the nature of financial data Calculate risk through financial data 	 (Using spreadsheet/ R) 1. Graphical representation of financial data 2. Fit non-normal distributions to financial data 3. Obtain characteristics of the distribution 	

	 Find relationship between financial series Model financial data using some simple stochastic models. 	 4. Find measures of risk 5. Measure relationships between financial series. 6. Apply stochastic processes for a financial data
7.	 STAT (code to be generated) Health Statistics And Population Dynamics On completion of this course, the students will be able to, Understand different measures related to health statistic, Able to calculate morbidity measures, Identify principle sources of demographic data and assess their strengths and weaknesses. Discuss the demographic significance of age and sex structures and the implications of variations in age & sex structure. Construct and interpret life tables. Calculation and interpret life tables. Calculation and interpret life tables. Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Estimate and project the population by different methods. 	Unit 1Health statistics:Introduction, utilization ofbasic data, sources of health statistics, problemsin the collection of sickness data, measurementofsickness, hospital statistics and theinternational classification of diseases, differentmeasures: incidence rates, prevalence rate, attackrate, case fatality rate. Measures of accuracy orvalidity, sensitivity index, specificity index.Unit 2Sources of demographic data in India: census,vital events, registration, survey, extent of underregistration, Population pyramids and its use.Population growth rates: arithmetic, geometricand exponential growth rates, populationestimation and projection.Unit 3Mortality and its measures: Crude, direct andindirect standardization of death rates, agespecific death rate, infant mortality rate, neo-natal mortality rate, definitions and theirevaluation.Fertility and its measures: CBR, ASBR, measuresof reproduction: GFR, TFR,GRR, NRR, cohortfertility analysis.

Unit 4	
--------	--

Measures of migration crude, specific and standardized rates survival ratio and national growth rate method.

Urbanization - Growth and distribution of rural - urban population in developed and developing countries.

Unit 5

Life tables and their application: construction of complete and abridged life tables and their interrelationship, force of mortality, evaluation of probabilities of survival and death from life table.

Text Books

1.	Rao, P.S.S.Sundar, & Richard, J. (2004). An
	introduction to Biostatistics (A manual for
	students in health sciences), Prentice Hall of
	India, Pvt. Ltd.

- 2. Misra, B.D. (2004). *An introduction to the study of population,* South Asian Publishers Pvt. Ltd.
- 3. Ramkumar, R. (2006). *Technical Demography*. New Age International.
- 4. Pathak, K.B.& Ram, F. (2019). *Techniques of Demographic Analysis* (2nd. ed.). Himalaya Publishing House.

Reference Books

1. Keyfitz.N. (2013). Applied Mathematical

			Demography, New York: John Wiley.
			2. Bhinde, A. A. & Kanitker, T. (2018).
			Principles of Population Studies (19th.
			ed.). Himalaya Publishing House.
			 Suggested E- Learning Material Demographic data; Platform: National Family Health Survey, India http://rchiips.org Population Studies; Platform; e-PG Pathshala https://epgp.inflibnet.ac.in Demography; Platform: University Library - The University of Adelaide https://www.adelaide.edu.au/library/ Demography; Platform: MITOPENCOURSEWARE https://ocw.mit.edu/index.htm
8	STAT (code	On completion of this course, the students	(Using spreadsheet/R)
	to be generated) Health	 Calculate various measures of morbidity and their accuracy Construct population pyramid and 	 Measures of morbidity Measures of accuracy or validity, sensitivity index specificity index
	Statistics And	• Construct population pyramid and identify its features	3 Construction of population pyramid
	Population Dynamics	Estimate population growth rates and project for future	4 Population growth rate
	Lab	 Calculate measures of mortality and fertility for a given population 	5. Measures based on mortality

Calculate simple measures of life ta and analyze it.	ble	 Measures based based on fertility Construction of Life table 	

Name of the Programme: M.Sc. (Mathematical Science)

Programme Educational Objectives:

Banasthali's education ideology is to nurture women leaders in all walks of life with strong value base. Mathematical Sciencesis the most important discipline in today's world which open doors in engineering, business, finance, computing, data science, health sciences and environmental sciences. The educational objective of the M.Sc. Mathematical Sciencesprogramme is to provide high quality education in mathematics, statistics, operations research and theoretical computer science in order to prepare students for professional careers in mathematical sciences and related fields.

The aim of the programme is to equip students with mathematical and statistical knowledge to define mathematical concepts, calculate quantities, estimate solutions, design data collection, analyze data appropriately and interpret to draw conclusions from these data. It emphasizes on both theory and applications of mathematics and statistics and is structured to provide knowledge and skills in depth necessary for the employability of students in industry, other organizations, as well as in academics.

The main objectives of the M.Sc. (Mathematical Sciences) programme are:

- To develop an understanding of the mathematics, statistics, operations research and theoretical computer science as a unifying language of science.
- To use mathematical and statistical techniques to solve well-defined real-world problems and understand the limitations.
- To provide exposure to various mathematical and statistical software packages, including analysis and programming.
- To develop communication and technical writing skills which enables them to present mathematical and statistical ideas clearly in oral and written forms using appropriate technical terms and deliver data analysis results.
- To nurture skills in effective multidisciplinary teamwork and adherence to principles of professional accountability and ethics.

Programme Outcomes:

PO1: Knowledge Domain:Demonstrate an understanding of the basic concepts in mathematics, statistics, operations research and theoretical computer science and their importance in the solution of some real-world problems.

PO2: Problem Analysis:Analyze and solve the well-defined problems in mathematics statistics, operations research and theoretical computer science. Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, while solving problems and making decision. Find, analyze, evaluate and apply information systematically and shall make defensible decisions.

PO3:Presentation and Interpretation of Data: Demonstrate the ability to manipulate and visualize data and to compute standard statistical summaries.

PO4: Modern tool usage: Learn, select, and apply appropriate methods and procedures, resources, and computing tools such as Excel, MATLAB, MATHEMATICA, SPSS, R etc. with an understanding of the limitations.

PO5: Technical Skills: Understand tools of modeling, simulation, and data analysis to bear on real-world problems, producing solutions with the power to predict and explain complex phenomena.

PO6: Ethics:Analyze relevant academic, professional and research ethical problems and commit to professional ethics and responsibilities with applicable norms of the data analysis and research practices.

PO7: Communication:Effectively communicate about their field of expertise on their activities, with their peer and society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations.

PO8: Project Management: Apply knowledge and understanding of principles of mathematics and statistics effectively as an individual, and as a member or leader in diverse teams to manage projects in multidisciplinary environment.

PO9: Research Proposal:Define, design and deliver a significant piece of research work that is clear and concise. Demonstrate the necessary skills and knowledge of deeper understanding of their chosen research area. Understand the philosophy of research in mathematical sciences and appreciate the value of its development.

PO10: Life- long learning:Demonstrate the ability to read and learn mathematical and statistical tools on their own that encourage independent exploration in the specific area of mathematics, statistics, operations research and theoretical computer science. Continue to acquire mathematical and statistical knowledge and skills appropriate to professional activities in the context of technological change.

Programme Scheme: (With specialization in pure mathematics)

Semester I

	Existing				
Course Code	Course Name	L	Т	Р	С
MATH 401	Algebra-I	6	0	0	6
MATH 403	Analysis-I	6	0	0	6
MATH 405	Discrete Mathematics	6	0	0	6
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
STAT 402L	Probability and Statistics Lab	0	0	4	2
CS 415L	Computer Programming Lab	0	0	4	2
	Total:	26	0	8	30

	Proposed				
Course Code	CourseName	L	Т	Р	C
	Algebra-I	5	0	0	5
	Analysis-I	5	0	0	5
	Discrete Mathematics	4	0	0	4
STAT 402	Probability and Statistics	4	0	0	4
CS 415	Computer Programming	4	0	0	4
CS 415L	Computer Programming Lab	0	0	4	2
	Computational Lab-I	0	0	4	2
	Total:	22	0	8	26

Semester II

Existing								
Course Code	Course Name	L	Т	Р	С			
MATH 402	Algebra-II	6	0	0	6			
MATH 404	Analysis-II	6	0	0	6			
MATH 410	Ordinary Differential Equations	6	0	0	6			
MATH 411	Topology	6	0	0	6			
MATH 409	Numerical Analysis	4	0	0	4			
MATH 409L	Numerical Analysis Lab	0	0	4	2			
	Total:	28	0	4	30			

	Proposed							
Course Code	CourseName	L	Т	Р	C			
	Algebra-II	5	0	0	5			
	Analysis-II	5	0	0	5			
	Ordinary Differential Equations	4	0	0	4			
	Topology	4	0	0	4			
MATH 409	Numerical Analysis	4	0	0	4			
MATH 409L	Numerical Analysis Lab	0	0	4	2			
	Computational Lab-II	0	0	4	2			
	Total:	22	0	8	26			

Semester III

Existing							
Course Code	Course Name	L	Т	Р	С		
MATH 502	Advanced Calculus	6	0	0	6		
MATH 508	Functional Analysis	6	0	0	6		
MATH 511	Integral Transform and Special Functions	6	0	0	6		
MATH 515	Mathematical Programming	6	0	0	6		
	Elective-I	4	0	0	4		
MATH 528P	Term Paper	0	0	4	2		
	Total:	28	0	4	30		

	Proposed								
Course Code	CourseName	L	Т	Р	C				
	Advanced Calculus	4	0	0	4				
	Functional Analysis	4	0	0	4				
	Operations Research		0	0	4				
	Discipline Elective-I	4	0	0	4				
	DisciplineElective-II	4	0	0	4				
	Reading Elective-I	0	0	0	2				
MATH 528P	Term Paper	0	0	8	4				
	Total:	20	0	8	26				

Semester IV

	Existing							Proposed				
Course Code	Course Name	L	Т	Р	С		Course Code	CourseName	L	Т	Р	С
MATH 518	Operations Research	6	0	0	6			Differential Geometry	4	0	0	4
MATH 505	Differential Geometry	6	0	0	6			Partial Differential Equations	4	0	0	4
MATH 519	Partial differential Equations	6	0	0	6			DisciplineElective-III	4	0	0	4
	Elective-II	4	0	0	4	1		Open Elective	4	0	0	4
	Elective-III	4	0	0	4			Reading Elective-II	0	0	0	2
MATH 523P	Research Paper	0	0	8	4			Dissertation	0	0	16	8
	Total:	26	0	8	30			Total:	16	0	16	26

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

List of Discipline Electives

CourseCode	Course	L	Т	Р	C
CS 315	Theory of Computation	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 501	Advanced Analysis (Analysis on abstract spaces)	4	0	0	4
MATH 503	Advanced Functional Analysis	4	0	0	4
MATH 504	Analytic and Algebraic Number Theory	4	0	0	4
MATH 510	Integral equations and Calculus of Variations	4	0	0	4
MATH 517	Number Theory and Cryptography	4	0	0	4
MATH 527	Tensor Analysis and Geometry of Manifolds	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
MATH 530	Viscous Fluid Dynamics	4	0	0	4
	Fuzzy Logic and Belief Theory	4	0	0	4
	Inventory Theory	4	0	0	4
	Queuing Theory	4	0	0	4
	Integral Transforms and Special Functions	4	0	0	4
	Measure Theory and Advanced Probability	4	0	0	4
	Time series and Stochastic Process	4	0	0	4
	Coding Theory	4	0	0	4
	Fixed Point Theory	4	0	0	4
	Introduction to Dynamical System	4	0	0	4
	Bio Mathematics	4	0	0	4
	Algebraic Topology	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Fields and Galois Theory	4	0	0	4

List of Reading Electives

CourseCode	Course	L	Т	Р	C
	Network Biology	0	0	0	2
	Fractional Calculus	0	0	0	2
	Quantum Graphs	0	0	0	2
	Point set topology	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in Statistics)

Semester I

	Existing								
Course Code	Course Name	L	Т	Р	С				
MATH 401	Algebra-I	6	0	0	6				
MATH 403	Analysis-I	6	0	0	6				
MATH 405	Discrete Mathematics	6	0	0	6				
STAT 402	Probability and Statistics	4	0	0	4				
CS 415	Computer Programming	4	0	0	4				
STAT 402L	Probability and Statistics Lab	0	0	4	2				
CS 415L	Computer Programming Lab	0	0	4	2				
	Total:	26	0	8	30				

	Proposed						
Course Code	CourseName	L	Т	Р	C		
	Algebra-I	5	0	0	5		
	Analysis-I	5	0	0	5		
	Discrete Mathematics	4	0	0	4		
STAT 402	Probability and Statistics	4	0	0	4		
CS 415	Computer Programming	4	0	0	4		
CS 415L	Computer Programming Lab	0	0	4	2		
	Computational Lab-I	0	0	4	2		
	Total:	22	0	8	26		

Semester II

	Existing				
Course Code	Course Name	L	Т	Р	C
MATH 402	Algebra-II	6	0	0	6
STAT 403	Statistical Inference	6	0	0	6
STAT 401	Measure Theory & Advanced Probability	6	0	0	6
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	26	0	8	30

	Proposed						
Course Code	CourseName	L	Т	Р	C		
	Analysis-II	5	0	0	5		
	Statistical Inference	5	0	0	5		
	Measure Theory & Advanced Probability	4	0	0	4		
MATH 409	Numerical Analysis	4	0	0	4		
CS 417	Database Management Systems	4	0	0	4		
MATH 409L	Numerical Analysis Lab	0	0	4	2		
CS 417L	Database Management Systems Lab	0	0	4	2		
	Total:	22	0	8	26		

Semester III

Existing							
Course Code	Course Name	L	Т	Р	C		
MATH 515	Mathematical Programming	6	0	0	6		
STAT 517	Time Series and Stochastic Process	6	0	0	6		
STAT 507	Design of Experiments and Linear Models	4	0	0	4		
STAT 506	Demography and Advanced Sampling	4	0	0	4		
STAT 507L	Design of Experiments and Linear ModelsLab	0	0	4	2		
STAT 506L	Demography and Advanced Sampling Lab	0	0	4	2		
	Elective-I	4	0	0	4		
STAT 514S	Seminar	0	0	4	2		
	Total:	24	0	12	30		

Proposed						
Course Code	CourseName	L	Т	Р	C	
	Survey Sampling	4	0	0	4	
	Time Series and Stochastic Process	4	0	0	4	
STAT 507	Design of Experiments and Linear Models	4	0	0	4	
	Computational Lab-III	0	0	4	2	
	DisciplineElective-I	4	0	0	4	
	DisciplineElective-II	4	0	0	4	
	Reading Elective-I	0	0	0	2	
	Seminar	0	0	4	2	
	Total:	20	0	8	26	

Semester IV

Existing						
Course Code	Course Name	L	Т	Р	С	Course Code
MATH 518	Operations Research	6	0	0	6	
STAT 501	Advanced Inference	6	0	0	6	STAT 502
STAT 502	Bayesian & Multivariate Analysis	4	0	0	4	STAT 502L
STAT 502 L	Bayesian & Multivariate Analysis Lab	0	0	4	2	
	Elective-II	4	0	0	4	
	Elective-III	4	0	0	4	
STAT 512P	Project	0	0	8	4	
	Total:	24	0	8	30	

Proposed						
Course Code	CourseName	L	Т	Р	C	
	Advanced Inference	4	0	0	4	
STAT 502	Bayesian and Multivariate Analysis	4	0	0	4	
STAT 502L	Bayesian & Multivariate Analysis Lab	0	0	4	2	
	DisciplineElective-III	4	0	0	4	
	Open Elective	4	0	0	4	
	Reading Elective-I	0	0	0	2	
	Project	0	0	12	6	
	Total:	16	0	16	26	

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.
Course Code	Course Name	L	Т	Р	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 516	Network Analysis and Goal Programming	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 504	Clinical Trials	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 508	Distribution Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 511	Non-Parametric Inference and Sequential Analysis	4	0	0	4
STAT 513	Regression Analysis	4	0	0	4
STAT 515	Statistical Computing	4	0	0	4
	Queuing Theory	4	0	0	4
	Stochastic Models	4	0	0	4
	Demography	4	0	0	4
	Actuarial Statistics	4	0	0	4
	Survival Analysis	4	0	0	4
	Reliability and Renewal Theory	4	0	0	4
	Operations Research	4	0	0	4
	Inventory Theory	4	0	0	4

List of DisciplineElectives

List of ReadingElectives

Course Code	Course Name	L	Т	Р	C
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2
	Official Statistics	0	0	0	2
	Robust Estimation in Non-Linear Models	0	0	0	2
	Operational Research Applications	0	0	0	2

Programme Scheme: (With specialization in operations research)

Semester I

Existing							
Course Code	Course Name	L	Т	Р	С		
MATH 401	Algebra-I	6	0	0	6		
MATH 403	Analysis-I	6	0	0	6		
MATH 405	Discrete Mathematics	6	0	0	6		
STAT 402	Probability and Statistics	4	0	0	4		
CS 415	Computer Programming	4	0	0	4		
STAT 402L	Probability and Statistics Lab	0	0	4	2		
CS 415L	Computer Programming Lab	0	0	4	2		
	Total:	26	0	8	30		

	Proposed						
Course Code	Course Name	L	Т	Р	C		
	Algebra-I	5	0	0	5		
	Analysis-I	5	0	0	5		
	Discrete Mathematics	4	0	0	4		
STAT 402	Probability and Statistics	4	0	0	4		
CS 415	Computer Programming	4	0	0	4		
CS 415L	Computer Programming Lab	0	0	4	2		
	Computational Lab-I	0	0	4	2		
	Total:	22	0	8	26		

Semester II

	Existing							
Course Code	Course Name	L	Т	Р	C			
MATH 402	Algebra-II	6	0	0	6			
MATH 404	Analysis-II	6	0	0	6			
CS 209	Data Structures	4	0	0	4			
MATH 409	Numerical Analysis	4	0	0	4			
CS 417	Database Management Systems	4	0	0	4			
CS 209L	Data Structures Lab	0	0	4	2			
MATH 409L	Numerical Analysis Lab	0	0	4	2			
CS 417L	Database Management Systems Lab	0	0	4	2			
	Total:	24	0	12	30			

Proposed						
Course Code	CourseName	L	Т	Р	C	
	Algebra-II	5	0	0	5	
	Analysis-II	5	0	0	5	
	Ordinary Differential Equations	4	0	0	4	
MATH 409	Numerical Analysis	4	0	0	4	
CS 417	Database Management Systems	4	0	0	4	
MATH 409L	Numerical Analysis Lab	0	0	4	2	
CS 417L	Database Management Systems Lab	0	0	4	2	
	Total:	22	0	8	26	

С

4

4

2

4

4

6

26

Semester III

	Existing					
Course Code	Course Name	L	Т	Р	С	
MATH 509	Fuzzy logic and Belief Theory	6	0	0	6	
MATH 522	Queuing Theory	6	0	0	6	
STAT 507	Design of Experiments and Linear Models	4	0	0	4	
MATH 515	Mathematical Programming	6	0	0	6	
STAT 507L	Design of Experiments andLinear Models Lab	0	0	4	2	
	Elective-I	4	0	0	4	
MATH 525S	Seminar	0	0	4	2	
	Total:	26	0	8	30	

	Proposed				
Course Code	Course	L	Т	Р	С
	Queuing Theory	4	0	0	4
CS 209	Data Structures	4	0	0	4
	Inventory Theory	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2
	DisciplineElective-I	4	0	0	4
	DisciplineElective-II	4	0	0	4
	Reading Elective-I	0	0	0	2
	Seminar	0	0	4	2
	Total:	20	0	8	26

Semester IV

	Existing]		Proposed			
Course Code	Course Name	L	Т	Р	С		Course Code	Course		Т	Р
STAT 516	Theory of Reliability	6	0	0	6			Reliability and Renewal Theory	4	0	0
MATH 512	Inventory Theory	6	0	0	6		MATH 516	Network Analysis & Goal Programming	4	0	0
MATH 516	Network Analysis& Goal Programming	4	0	0	4		MATH 516L	Network Analysis & Goal Programming Lab	0	0	4
MATH 516L	Network Analysis & Goal ProgrammingLab	0	0	4	2			DisciplineElective-III	4	0	0
	Elective-II	4	0	0	4			Open Elective	4	0	0
	Elective-III	4	0	0	4			Reading Elective-II	0	0	0
MATH 520P	Project	0	0	8	4			Project	0	0	12
		24	0	8	30				16	0	16

Student can opt a course as an open elective from any discipline with prior permission of respective heads and time table permitting.

Course Code	Course Name	L	Τ	Р	C
CS 523	Emerging Programming Paradigms	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4
MATH 507	Financial Mathematics	4	0	0	4
MATH 513	Marketing Management	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 505	Decision Theory	4	0	0	4
STAT 510	Econometric Models	4	0	0	4
STAT 517	Time Series and Stochastic Process	4	0	0	4
	Combinatorial Optimization	4	0	0	4
	Transportation System Analysis	4	0	0	4
	Stochastic Models	4	0	0	4
	Fuzzy logic and Belief Theory	4	0	0	4
	Partial Differential Equations	4	0	0	4

List of Electives

List of Reading Electives

CourseCode	Course Name	L	Τ	Р	С
	Selected Applications of Stochastic Models	0	0	0	2
	Operational Research Applications	0	0	0	2
	Step-Stress Modelling	0	0	0	2
	Categorical Data Analysis	0	0	0	2

Programme Scheme: (With specialization in theoretical computer science)

Semester I

Existing							
Course Code	Course Name	L	Т	Р	C		
MATH 401	Algebra-I	6	0	0	6		
MATH 403	Analysis-I	6	0	0	6		
MATH 405	Discrete Mathematics	6	0	0	6		
STAT 402	Probability and Statistics	4	0	0	4		
CS 415	Computer Programming	4	0	0	4		
STAT 402L	Probability and Statistics Lab	0	0	4	2		
CS 415L	Computer Programming Lab	0	0	4	2		
	Total:	26	0	8	30		

Proposed							
Course Code	Course	L	Т	Р	C		
	Algebra-I	5	0	0	5		
	Analysis-I	5	0	0	5		
	Discrete Mathematics	4	0	0	4		
STAT 402	Probability and Statistics	4	0	0	4		
CS 415	Computer Programming	4	0	0	4		
CS 415L	Computer Programming Lab	0	0	4	2		
	Computational Lab-I	0	0	4	2		
	Total:	22	0	8	26		

Semester II

Existing								
Course Code	Course Name	L	Т	Р	C			
MATH 402	Algebra-II	6	0	0	6			
MATH 404	Analysis-II	6	0	0	6			
CS 209	Data Structures	4	0	0	4			
MATH 409	Numerical Analysis		0	0	4			
CS 417	Database Management Systems	4	0	0	4			
CS 209L	Data Structures Lab	0	0	4	2			
MATH 409L	Numerical Analysis Lab	0	0	4	2			
CS 417L	Database Management Systems Lab	0	0	4	2			
	Total:	24	0	12	30			

	Proposed				
Course Code	Course	L	Т	Р	C
	Algebra-II	5	0	0	5
	Analysis-II	5	0	0	5
	Ordinary Differential Equations	4	0	0	4
MATH 409	Numerical Analysis	4	0	0	4
CS 417	Database Management Systems	4	0	0	4
MATH 409L	Numerical Analysis Lab	0	0	4	2
CS 417L	Database Management Systems Lab	0	0	4	2
	Total:	22	0	8	26

Semester III

Existing								
Course Code	Course Name	L	Т	Р	С			
MATH 515	Mathematical Programming	6	0	0	6			
CS 315	Theory of Computation	4	0	0	4			
CS 213	Design and Analysis of Algorithms	4	0	0	4			
CS 308	Operating Systems	4	0	0	4			
CS 213L	Design and Analysis of Algorithms Lab	0	0	4	2			
CS 308L	Operating Systems Lab	0	0	2	1			
	Elective-I	4	0	0	4			
MATH 526S	Seminar	0	0	4	2			
	Total:	22	0	10	27			

Proposed							
Course Code	Course	L	Т	Р	C		
CS 315	Theory of Computation	4	0	0	4		
CS 209	Data Structures	4	0	0	4		
CS 308	Operating Systems	4	0	0	4		
CS 528	Modeling and Simulation	4	0	0	4		
CS 209L	Data Structures Lab	0	0	4	2		
	DisciplineElective-I	4	0	0	4		
	Reading Elective-I	0	0	0	2		
MATH 526S	Seminar	0	0	4	2		
	Total:	20	0	8	26		

Semester IV

Existing						Proposed					
Course Code	Course Name	L	Т	Р	C	Course Code	Course	L	Т	Р	C
CS 313	Software Engineering	4	0	0	4	CS 315	Software Engineering	4	0	0	4
CS 528	Modeling and Simulation	4	0	0	4	CS 213	Design and Analysis of Algorithms	4	0	0	4
MATH 518	Operations Research	6	0	0	6	CS 213L	Design and Analysis of Algorithms Lab	0	0	4	2
	Elective-II	4	0	0	4		DisciplineElective-II	4	0	0	4
	Elective-III	4	0	0	4		Open Elective	4	0	0	4
MATH 521P	Project	0	0	8	4		Reading Elective-II	0	0	0	2
							Project	0	0	12	6
_		22	0	8	26			16	0	16	26

Student can opt a course as an open elective from any discipline with prior

permission of respective heads and time table permitting.

List of Electives

CourseCode Course Name L	Γ	Р	С

CS 419	Distributed Computing			0	4
CS 427	Parallel Computing		0	0	4
CS 431	Real Time Systems	4	0	0	4
CS 433	Soft Computing	4	0	0	4
CS 436	Web Development and .Net Framework	4	0	0	4
CS 436L	Web Development and .Net Framework Lab	4	0	0	4
CS 502	Advanced Communications and Networks	4	0	0	4
CS 502L	Advanced Communications and Networks Lab	0	0	4	2
CS 507	Artificial Intelligence	4	0	0	4
CS 510	Client-Server Computing and Applications	4	0	0	4
CS 517	Data Communication and Networking	4	0	0	4
CS 517L	Data Communication and Networking Lab	0	0	4	2
CS 527	Mobile Computing	4	0	0	4
ELE 304	Digital Signal Processing	4	0	0	4
MATH 529	Theory of Games	4	0	0	4
STAT 401	Measure Theory and Advanced Probability	4	0	0	4
STAT 517	Time series and Stochastic Process	4	0	0	4

List of Reading Electives

CourseCode	Course Name		Т	Р	C
	Operational Research Applications	0	0	0	2
	Categorical Data Analysis		0	0	2
	Network Biology	0	0	0	2
	Fractional Calculus		0	0	2
	Quantum Graphs	0	0	0	2

Name of Programme: M.Sc. (Mathematical Science)

Course Details:

Note: 1. Black Shaded part is shifted. 2. Strib

2. Strikeout is deleted.

3. Italic and Underline is rewritten.,

4.Grey shaded part is added.

First Semester

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (To be	Oncompletion of the course, students	Section A	Section A	Shaded
	generated)	will be able to	Groups: Dihedral groups, symmetric groups, matrix	Vector spaces, subspaces, linear span, bases, quotient	part in
	Algebra-I	Analyze finite and infinite	groups; subgroups generated by subsets of a group,	spaces, coordinate vectors, change of basis, linear	Black from
		dimensional vector spaces and	Homomorphism and Normal Subgroups,	transformations, isomorphism, range and kernel of a	section A
		subspaces over a field and their	Isomorphism theorems, group actions, stabilizers and	linear transformation, matrix of a linear transformation,	and B is
		properties, including the basis	kernals of group actions,cycle Decomposition,	algebra of L(U, V), invertible transformations and	shifted in
		structure of vector spaces.	Conjugates, Conjugacy in S_{n} , Class equation for a	matrices, Linear functionals and dual spaces.	Algebra II
		• Understand the properties of linear	Group, Sylow's theorem; Applications of Sylow's	Section B	and from
		transformations, matrices of linear	theorem, Simplicity of Alternating Group An for	Linear operator, annihilating polynomials, invariant	section C is
		transformations and change of	n>5. Commutator. Series of Subgroups. Jordan	subspaces of linear operator, direct sum decomposition,	shifted in
		basis, including kernel, range and	Holder Theorem. Solvable Groups.	cyclic operator, maximal vector, indecomposable linear	Fields and
		isomorphism.	Section B	operators, invariant factors, canonical forms, operators	Galois
		Compute inner products and	Rings homomorphism and quotient rings, Ideals:	on real and complex vector spaces.	Theory.
		determine orthogonality on vector	Prime and Maximal, rings of fractions, Divisibility,	Section C	
		spaces, including Gram-Schmidt	Euclidean and Principal Ideal Domains; Unique	Inner Product Spaces, Orthonormal Sets, Gram-Schmidt	Change in
		orthogonalization.	Factorization Domains; Polynomial Rings over	Process, Orthogonal Complements and Projections,	Credit
		• Identify operators in inner product	fields, irreducibility criteria, polynomial in several	Adjoints , self-adjoints and normal operators, unitary	
		spaces.	variables. Noetherian ring. Hilbert basis theorem.	and orthogonal operators, Forms on inner product	
		• Identify bilinear forms, canonical	Grobner basis, solving algebraic equation.	spaces, Bilinear forms, symmetric bilinear forms and	
		forms for symmetric and skew-	Section C	quadratic form.	
		symmetric forms.	Field Theory: characteristic of a field, prime subfield,	Suggested Books:	
			extension fields, Algebraic Extensions, Splitting	1. Hoffman, K., & Kunze, R. A. (2010). <i>Linear algebra</i> .	
			fields and algebraic closures, Normal and Separable	New Delhi: PHI Learning.	
			Extensions, Fundamental Theorem of Galois Theory.	2. Cooperstein, B. N. (2015). Advanced linear algebra.	
				(Advanced Linear Algebra, Second Edition.) Boca	

			Text Book:	Raton: CRC Press.	
			1. Dummit, D. S. and Foote, R. M.: Abstract	3. Lang, S. (2011). <i>Linear algebra</i> . (3 rd Ed.). New York:	
			Algebra, 3 rd Ed., Wiley, 2004.	Springer.	
			Reference Books:	4. Halmos, P. R. (2013). <i>Finite dimensional vector spaces</i> .	
			1. Herstein, I. N.: Topics in Algebra, 2 nd Ed., Wiley	(2 nd Ed.). S.1.: Literary Licensing, LLC.	
			Eastern, New Delhi, 1991.	5. Yang, Y. (2015) Advanced linear algebra. Cambridge :	
			2. Gallian, J. A.: Contemporary Abstract Algebra,	Cambridge University Press.	
			8 th Ed. Cengage Learning, 2006.	Suggested E-learning Material:	
			3. Jacobson, N.: Lectures in Abstract Algebra, D.	1. <u>Lecture Notes:</u>	
			Van Nostrand, New York, 1964.	https://nptel.ac.in/downloads/111102011/#	
			4. Jacobson, N.: Basic Algebra-I, Hindustan	2. Video Lectures & Notes:	
			Publishing, Delhi, 1984.	https://onlinecourses.nptel.ac.in/noc17_ma0	
			5. Bhattacharya; P. B. Jain S.K. and Nagpal S.R. :	4/preview	
			Basic Abstract Algebra. 2 nd Ed. Cambridge		
			University Prees, 1990		
2.	MATH (To be	On completion of the course, the	Section A	Section A	Change in
2.	MATH (To be generated)	On completion of the course, the student will be able to,	Section A Countable & Uncountable Sets, Statements of Axiom	Section A Countable & Uncountable sets, well ordering principle,	Change in Credit
2.	MATH (To be generated) Analysis-I	On completion of the course, the student will be able to, • understand modern theory of set	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric	Change in Credit
2.	MATH (To be generated) Analysis-I	On completion of the course, the student will be able to,understand modern theory of set and real numbers.	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem,	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem.	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions,	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated &	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma.	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma.	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. derive the Fourier series of 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma. Section C	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C Fourier series of integrable functions. Discussion of	Change in Credit
2.	MATH (To be generated) Analysis-I	 On completion of the course, the student will be able to, understand modern theory of set and real numbers. investigate different metric spaces and their properties. master the technique of calculating the Lebesgue integral and understand the applications measurable functions. explain construction and investigate properties of Lebesgue measure. derive the Fourier series of integrable functions. 	Section A Countable & Uncountable Sets, Statements of Axiom of Choice, Well Ordering Principle, Zorn's Lemma, Transfinite Induction. Field of Real Numbers as a Complete Ordered Field, Metric Space, Compact Set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Taylor's Theorem. Section B Construction & Properties of Lebesgue Measure, Borel Sets, Measurable Sets, Measurable Functions, Lebesgue Integration & its Properties, Dominated & Monotone Convergence Theorems, Fatou's Lemma. Section C Fourier Series of Integrable Functions. Discussion of	Section A Countable & Uncountable sets, well ordering principle, Field of real numbers as a complete ordered field, Metric space, Sequences in metric spaces, complete metric space, Compact set, Heine-Borel Theorem, Bolzano Weierstrass Theorem, Section B Construction & Properties of Lebesgue measure, Borel sets, Measurable sets, Measurable functions, Lebesgue integration & its properties, Dominated & Monotone convergence theorems, Fatou's Lemma. Section C Fourier series of integrable functions. Discussion of pointwise & uniform convergence of series, Fejer's	Change in Credit

	convergence of series.	Fejer'sTheorem for Continuous Periodic Functions,	Orthogonality, Parseval's Theorem. Riez Fischer
		Orthogonality, Parseval's Theorem. Riesz Fischer	theorem.
		theorem.	Suggested Text Books:
		Suggested Text Books:	1. Royden, H. L. (2011). Real analysis. (3rd Ed.). New
		1. H. L. Royden, Real Analysis, 3 rd Ed., Pearson	Delhi: Prentice hall of India.
		Education Pvt. Limited, Singapore, 2003. (for Sec.	2. Barra, G. D. (2008). <i>Measure theory and integration</i> .
		A &B)	New Delhi: New Age International.
		2. G. D. Barra, Measure Theory &Integration , 2 nd	3. Carslaw, H. S. (1959). Introduction to the theory of
		Ed. Wiley Eastern Limited, New Delhi, 1991. (for	Fourier's series and integrals. New York: Dover
		Sec. B)	Publications.
		3. H. S. Carslaw, An Introduction to the Theory of	Suggested Reference Books:
		Fourier Series and Integrals 3 rd Revised Edition	1. Rudin, W. (2017). <i>Principles of mathematical</i>
		Dover Pub New York 1950 (for Sec. C)	analysis. (3rd Ed.). Chennai: McGraw Education
		Suggested Reference Books:	(india) Private Limited.
		1. W. Rudin, Principles of Mathematical Analysis ,	2. Apostol, T. M. (1974) Mathematical analysis. (2 nd
		3rd Ed McGraw-Hill Auckland 1985	Ed.). New Delhi: Narosa Publishing House.
		2 TM Arestal Methematical Archaic 2nd Ed	3. Litchmarsh, E. C. (1968). The theory of functions.
		2. I.M. Apostol, Mathematical Analysis, 2 ^{rea} Ed,	London: Oxford Univ. Press.
		A E C Tichmarch Theory of Functions Outord	4. Hewitt, E., & Stromberg, K. R. (2009). <i>Real and</i>
		Juniversity Press, 1962	ubstruct unalysis: A modern treatment of the theory of
		4 E Howitt and K Stromborg Boal and Abstract	5 Coldborg P. P. (2010) Methods of real analysis
		4. E. Hewitt and K. Strömberg, Kear and Abstract	5. Goldberg, K. K. (2019). Wethous of real unalysis.
		functions of a real variable Narosa Publishing	New Denn. Diaisden 1 ub. Co., Oxford and Ibi I.
		House New Delhi 1978	Suggested E-learning material
		5 G Das and S Pattanaik Fundamentals of	1. A Basic Course in Real Analysis;
		Mathematical Analysis T M H New Delhi 1989	NPTL: <u>https://nptel.ac.in/courses/111105069/</u>
		6. Richard R. Goldberg, Methods of Real Analysis.	2. Fourier Series Part-1;NPTL:
		Oxford & IBH, New Delhi, 1970.	https://nptel.ac.in/courses/122107037/24
3.	MATH (To be After completing the course, students	Section A	Section A
	generated) will be able to	Sets and Multisets, Partial Order Relations, Chains	Logic, Propositional Equivalences, Predicates and

 Discrete Mathematics Understand logical arguments and logical constructs. Have a better understanding of sels, functions and relations. Apply logical reasoning to solt sels, functions and relations. Apply logical reasoning to solt self self self self self self self self				
Mathematics and logical constructs. Have a bit sets: Preem lob: Principle, Industor-Evaluation functions, and relations. Apply logical reasoning to solv a variety of mathematic problems. Understand and apply the function and apply the functions. The apply the functions and principle. Interview functions and constant Conditions. Subtrome Values and logical constructs. Prove and logical constant Conditions. Subtrome Values and logical constructs. The section B mathematical motions and able to develop mathematical motions. The opply apply functions. The metal concepts in graph theory-based tools in softwing practical problems. Multi-set, Relations and Combinations Complexity of Acquire ability to apply graph theory-based tools in softwing practical problems. Multi-set, Relations and Principles Multi-set, Relations and Principles Improve the proof writing skills and able to develop mathematical maturity. Motion of Multi-set, Relations Multi-set, Relations Multi-set, Relations Multi-set, Relations Improve the proof writing skills and able to develop mathematical maturity. Motion of Multi-set, Relations Multi-set, Relations <td< td=""><td>Discrete</td><td>• Understand logical arguments</td><td>and Antichains. Permutation and Combination of</td><td>Quantifiers, Nested Quantifiers, Methods of Proof,</td></td<>	Discrete	• Understand logical arguments	and Antichains. Permutation and Combination of	Quantifiers, Nested Quantifiers, Methods of Proof,
 better understanding of sets functions and relations. Apply logical reasoning to solve a variety of mathematical problems. Understand and apply the fundamental concepts in graph theory. Acquire ability to apply graph theory. Acquire ability to apply graph theory. Acquire ability to apply graph theory. Improve the proof writing shift and able to develop mathematical maturity. Types-of Enumeration with Polyn-'s Theorem. Network in-Graphs, Vertex of Conting, Labeled-Trees, Suggested Text/Reference Books: C. L. Liu, Hements of Discrete Bulken, C. L. Liu, Hements of Discrete Bulken, C. L. Liu, Hements of Discrete Books: C. L. Liu, Hements	Mathematics	and logical constructs. Have a	Multisets. Pigeon hole Principle, Inclusion-Exclusion	Multi-set, Relations and Functions, Introduction to
 functions and relations. Apply logical reasoning to solve a variety of mathematical problems. Understand and apply the fundamental concepts in graph theory. Acquire ability to apply graph theory based tools in solving practical problems. Improve the proof writing skills and able to drevelop mathematical maturity. Improve the proof writing skills and able to drevelop mathematical maturity. Static Company of Graphs, Vertices of Graphs, Statest Path Intervertion, Counting Theorem, Max-Flow-Min-Cut-Theorem, Section C Types-of-Enumeration, Counting Theorem, Max-Flow-Min-Cut-Theorem, Craph Intervention, Counting Theorem, Matching: in Bigaritic Craphs, Vertices of Graphs, Vertices of Graphs, Statest Path Intervention, Counting Theorem, Matching: in Bigaritic Craphs, Vertices of Graphs, Statest Path Intervention, Counting Theorem, Craph Intervention, Counting Theorem, Matching: in Bigaritic Craphs, Vertices of Graphs, State Path Intervention, Counting Vertices of Graphs, Kerters of Graphs, Kerters		better understanding of sets,	<u>Principle, Derangements.</u>	Algorithms, The growth of functions, Complexity of
 Apply logical reasoning to solve a variety of mathematical problems. Understand and apply the fundamental concepts in graph theory. Acquire ability to apply graph theory-based tools in solving practical problems. Improve the proof writing skills and able to develop mathematical maturity. Stortical Table of Graph. Hump. Directal Graph. Science Humps Complexibility of Graph. Lattices, Doolean Algebra, Lattices, Doolean Algebra, Uniqueness of Finite Boolean Algebra, Lattices, Doolean Boolean Expression. Propositional Calculus. Stortical Graph. Matrix Representations Graph. Coloring of Graphs, Vience Coloring of Graph. Stortest Path Incomestical Cappits, Vience Coloring of Graph. Coloring of Graphs, Vience Coloring of Graph. Stortest Path Incomestical Cappits, Vience Coloring of Graph. Stortest Path Incomestical Counting Cappits, Vience Coloring of Graph. Stortest Path Incomestical Cappits, Vience Coloring of Graph. Stortest Path Incomestical Cappits, Vience Science C Types of Enumeration Cappits, Flagrene Counting Theorem, Matching: In Bigert Cappits, Counting Theorem, Matching: In Bigert Cappits, Counting Theorem, Matching: In Bigert Cappits, Half's Matching Theorem, Min Max Theorem, Mathematics, Ko Graphs, Vertices of graphs, Stortest path Iroblem Graphs. Vertex coloring: Q. Coronatic numberi Chorination, Partex Path, Directed graphs, Matrix representations of graphs. Euler tous, Euler graphs Hamiltonian graphs. Euler somute, Counceted Graphs, Vertex coloring, Q. Choroatik numberi Connectivity, Councetivity, and line connectivity. 		functions and relations.	Discrete Numeric Functions, Generating Functions,	Algorithms. Partially ordered sets, Chains and Anti-
 a variety of mathematical problems. Understand and apply the fundamental concepts in graph theory. Acquire ability to apply graph theory-based tools in solving practical problems. Improve the proof writing skills and be to devolop mathematical maturity. Section B Bosic Concepts of Graph Theory Directed Graphs. Catter Graphs. Catter of Graphs Lattices, Boalcan Tables Constraints, Boaltand Schultz, Schultz Schultz, Schu		• Apply logical reasoning to solve	Recurrence Relations, linear Recurrence Relation with	chains, Lattices, Complete lattices, Distributive lattices,
 Boolean Algebras, Boolean Algebras,		a variety of mathematical	Constant Coefficients and their Solutions, Solution by the	Complements, Boolean Algebra, Uniqueness of Finite
 Understand and apply the fundamental concepts in graph theory. Acquire ability to apply graph theory-based tools in solving practical problems. Improve the proof writing skills and able to develop mathematical maturity. Section B Marcian and able to develop mathematical maturity. Section C Types of Enumeration with Polya's Theorem. Section C Types of Enumeration with Polya's Counting Tree and Cut Set Minimum Spanning Tree. South C Trees, Southing Tree and Cut Set Minimum Spanning Tree Jober Counting Theorem. Max Flow Min Cut Theorem. Matchings in Bipartic Graphs, Halfs, Graphs, Halfs, Graphs, Science C Types of Enumeration with Polya's Theorem. Matchings in Bipartic Graph, Halfs, Shortest path Priosiblem Graphs, Matrix representation Graphs, Matrix representation of graphs, Counting Tree and Cut Set Minimum Spanning Tree Joberd Trees, South Science C Types of Enumeration with Polya's Theorem. Matchings in Bipartic Graphs, Halfs, Matching Theorem, Min Max Theorex Min Max Theorem, Min Max Theorem, Min Max Theorex Min Max		problems.	method of Generating Functions.	Boolean Algebras, Boolean expressions and Boolean
fundamental concepts in graph theory. Sociean Lattices, Boolean Functions and Boolean Expression. Prepositional Calculus. Basic counting Principles, Permutations and Combinations, Permutations and Combinations, on multi-sets, Generation of permutations and Combinations, Pigcon-hole principle, Principle of inclusion and exclusion. Discrete numeric functions, Graphs. Shortest Path in a Wrighted Graphs, Viences, Clanni and able to develop mathematical maturity. Basic counting Principles, Permutations and Combinations, Pigcon-hole principle, Principle of inclusion and exclusion. Discrete numeric functions, Graphs. Shortest Path in a Wrighted Graphs, Viences, Clanni Graphs. Shortest Path, Viences, Spanning Tree and Cut Sat Minimum Spanning Tree and Cut Sat Max Flow Min Cut Theorem. Trees: Rooted Trees, Spanning Tree and Cut Sat Minimum Spanning Tree and Cut Sat Max Flow Min Cut Theorem. Trees: Rooted Trees, Summeration, with Polya's Counting Theorem, Graph Enumeration, with Polya's Counting Theorem, Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets, Factorization, 1 Factorization, 2 Factorization Arbericity. Socien C Graphs, Vertex colouring , Chromatic number, Graph. Isomorphism in graphs. Euler's Gromatic number, Graph. Isomorphism in graphs. Euler's Gromatic number, Graw Hill, International Edition, 1985.		• Understand and apply the	Boolean Algebra, Lattices, Uniqueness of Finite	functions, Normal forms.
 theory. Acquire ability to apply graph theory-based tools in solving practical problems. Improve the proof writing skills and able to develop mathematical maturity. Expression. Propositional Calculus. Improve the proof writing skills and able to develop mathematical maturity. Expression. Propositional Calculus. Improve the proof writing skills and able to develop mathematical maturity. Expression. Propositional Calculus. Shorts: Path in Mixing Corput. Matrix Representation of Graphs. Shorts: Path in Mixing Coloring of Graphs. Vising's Theorem. Trees: Rootal Trees, Spanning Tree and Cut Str Max Flow Min Cut Theorem. Section C Types of Fourmeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Matchings. in Bipartitic Graphs, Clouring Theorem. Matchings. In Bipartitic Graphs, Clouring Theorem. Matchings. In Bipartitic Graphs, Indersem. Section C Types of Fourmeration, Counting Tabeled Trees; Burnside's Lemma, Polya's Counting Theorem. Matchings. In Bipartitic Graphs, Labers Books: C.J. Liu, Jiu, Elements of Discrete Mathematics, Mc Graw Hill, International Edition, 1985. 		fundamental concepts in graph	Boolean Lattices, Boolean Functions and Boolean	Section B
 Acquire ability to apply graph theory-based tools in solving practical problems. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Stortest Path in a Weighted Graph. Vertex Coloring of Graphs. Vertex Coloring of Graphs. Vertex Coloring of Graphs. Vertex Coloring of Craphs. Vertex Coloring of Craphs. Vertex Coloring of Graphs. Vertex of graphs. Connectided graphs. Connectided graphs. Shortest path Problem Corpha haumeration. Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Matchings in Bipartite Graphs. Hall's Matching of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Cluster of a graphs. Cut-points, bridges Block graphs and Cut-point graphs. Cut-points, bridges Block graphs. Minitonian graphs. Cut-field graphs. Acyclic graphs. Theorem. Min Max Theorem. Independent Setting theorem. Min Max Theorem. Independent Setting and and their solutions, Prese and Cut-point graphs. Shortest path Problem Operations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-poi		theory.	Expression. Propositional Calculus.	Basic counting Principles, Permutations and
 theory-based tools in solving practical problems. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and the proof Graphs. Plating Tree and Cat Set Mathematical maturity. Improve the proof writing skills and to develop mathematical maturity. Improve the proof writing skills and the proof of Graphs. Plating Tree and Cat Set Mathematical maturity. Improve the proof writing skills and the proof of Graphs. Plating Tree and Cat Set Mathematical maturity. Improve the proof writing skills and the proof of Graphs. Plating Tree and Cat Set Mathematics and the proof of Graphs. Solution by the method of generating Functions. Improve the proof writing skills and the proof of Graphs. Plating Tree and Cat Set Mathematics and the proof of Graphs. Solution the proof of Graphs. Counting Theorem. Improve the proof Function and the proof Plating Tree and Cat Set Mathematics and the proof of Graphs.		• Acquire ability to apply graph	Section B	Combinations, Permutations and Combinations on
Graph. Hamiltonian Graph. Matrix Representation of Graphs. Shortest Path in a Weighted Graphs, Keonneeted and able to develop mathematical maturity.Combinations, Pigeon-hole principle, Principle of inclusion and exclusion. Discrete numeric functions, Generating Functions, Combinatorial problems. Recurrence relations, linear recurrence relations, by tenters coloring of Graphs, Vizing's Theorem. Trees: Rooted Trees, Spanning Tree and Cut Sett Minimum Spanning Tree, Rooted Trees, Spanning Tree and Cut Sett Minimum Spanning Tree, Rooted Trees, Spanning Tree and Cut Sett Minimum Spanning Tree, Rooted Trees, Spanning Tree and Cut Sett Minimum Spanning Tree and Cut Sett Mar Flow Mit Cut Theorem. Graphs Flow Network in a Graph, Vertices of graphs, Gonected graphs, Connected components, Weighted graphs, Directed graphs, Matrix representations of graphs. Blocks, Cut-points, bridges Block graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs, Trees, Elementary properties of three, Center, Chromatic polynomial, R - Critical graphs, Acyclic graphs Trees, Elementary properties of three, Center, Chromatic polynomial, R - Critical graphs, Acyclic		theory-based tools in solving	Basic Concepts of Graph Theory. Directed Graph. Euler	multi-sets, Generation of permutations and
 Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and able to develop mathematical maturity. Improve the proof writing skills and be to develop mathematical maturity. Improve the proof writing skills and be to develop mathematical maturity. Improve the proof writing skills and be to develop mathematical maturity. Improve the proof writing skills and be to develop mathematical maturity. Improve the proof writing skills and be to develop mathematical maturity. Improve the proof writing skills and kedge connected Graphs, Vertex Coloring of Graphs, Vizing's Theorem. Trees: Rooted Trees, Spanning Tree and Cut Set Minimum Spanning Tree. Burnside's Lemma, Polya's Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets; Factorization, 1 Factorization, 2 Factorization, Arborisity, Suggested Text/Reference Books: C.L. Liu, Elements of Discrete Mathematics, Mc Graw Hill, International Edition, 1985. 		practical problems.	Graph. Hamiltonian Graph. Matrix Representation of	Combinations, Pigeon-hole principle, Principle of
and able to develop mathematical maturity.		• Improve the proof writing skills	<u>Graphs. Shortest Path in a Weighted Graph.</u> K-connected	inclusion and exclusion. Discrete numeric functions,
mathematical maturity.Graphs-Coloring of Graphs, Vertex Coloring of Graphs, Vizing's Theorem. Trees. Fade Coloring of Graphs, Vizing's Theorem. Trees. Spanning Tree and Cut Set Minum Spanning Tree. How Network in a Graph Max Flow Min Cut Theorem.Recurrence relations, linear recurrence relation with constant coefficients and their solutions, Solution by the method of generating Functions. Section C Graphs, Vertices of graphs, degrees, Sub-graphs, Paths, Walks and cycles, Connected graphs, Connected graphs, Directed graphs, Directed graphs, Matrix representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Euler's formula, Planar graph. Suggested Text/Reference Books: 1. C.L. Liu, Elements of Discrete Mathematics, Mc Graw Hill, International Edition, 1985.Recurrence relations, linear recurrence relation with constant coefficients and their solutions, Solution by the method of generating Functions. Sugested Text/Reference Books:		and able to develop	and K-edge-connected Graphs. Planar	Generating Functions, Combinatorial problems.
Graphs, Edge Coloring of Graphs, Vizing's Theorem. Trees: Rooted Trees, Spanning Tree and Cut Set Minimum Spanning Tree Humman Spanning Tree Hax Flow Min Cut Theorem.constant coefficients and their solutions, Solution by the method of generating Functions.Minimum Spanning Tree Max Flow Min Cut Theorem. Section C Types of Enumeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets Factorization, 1 Factorization, 2 Factorization, Arboricity.Graphs, Vertices of graphs, Connected Graphs, Vertices of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic Opynomial, R - Critical graphs, Acyclic graphs. Trees, Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,		mathematical maturity.	Graphs.Coloring of Graphs, Vertex Coloring of	Recurrence relations, linear recurrence relation with
Trees: Rooted Trees, Spanning Tree, How Network in a Graphmethod of generating Functions.Minimum Spanning Tree, Flow Network in a GraphSection CMax Flow Min Cut Theorem.Section CTypes of Enumeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Setti Factorization, 1 Factorization, 2 Factorization Arboricity.Suggested Text/Reference Books: 1. C.L. Liu, Elements of Discrete Mathematics, Me Graw Hill, International Edition, 1985.method of generating Functions.Trees: Rooted Trees, Spanning Tree, Spanning Tree, Spanning Trees, Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Graphs <mark>, Edge Coloring of Graphs, Vizing's Theorem</mark> .	constant coefficients and their solutions, Solution by the
Minimum Spanning TreeHow Network in a Graph, Max Flow Min Cut Theorem.Section CGraphs, Vertices of graphs, degrees, Sub-graphs, Paths, Valks and cycles, Connected graphs, Connected graphs, Directed graphs, Directed graphs, Matrix representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graph. Isomorphism in graphs. Euler's formula, Planar graph. Vertex colouring , Chromatic number, Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees, Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			<u>Trees: Rooted Trees, Spanning Tree and Cut Set,</u>	method of generating Functions.
Max Flow Min Cut Theorem.Graphs, Vertices of graphs, degrees, Sub-graphs, Paths,Section CSection CTypes of Enumeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem, Graph Enumeration with Polya's Theorem.Walks and cycles, Connected graphs, Matrix representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphsTheorem, Min Max Theorem, Independent Sets Factorization, 1 Factorization, 2 Factorization, Arboricity.Patention and the paths, Hamiltonian graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			<u>Minimum Spanning Tree.</u> Flow Network in a Graph,	Section C
Section CWalks and cycles, Connected graphs, ConnectedTypes of Enumeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem. Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets Factorization, 1 Factorization, 2 Factorization, Arboricity.Walks and cycles, Connected graphs, Connected components, Weighted graphs, Directed graphs. Matrix representations of graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Euler sformula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Max-Flow-Min Cut Theorem.	Graphs, Vertices of graphs, degrees, Sub-graphs, Paths,
Types of Enumeration, Counting Labeled Trees, Burnside's Lemma, Polya's Counting Theorem, Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets, Factorization, 1 Factorization, 2 Factorization, Arboricity.components, Weighted graphs, Directed graphs. Matrix representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Section C	Walks and cycles, Connected graphs, Connected
Burnside's Lemma, Polya's Counting Theorem, Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets, Factorization, 1 Factorization, 2 Factorization, Arboricity.representations of graphs. Shortest path Problem Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Types of Enumeration, Counting Labeled Trees,	components, Weighted graphs, Directed graphs. Matrix
Graph Enumeration with Polya's Theorem. Matchings in Bipartite Graphs, Hall's Matching Theorem, Min Max Theorem, Independent Sets, Factorization, 1-Factorization, 2-Factorization, Arboricity.Operations on graphs. Blocks, Cut-points, bridges Block graphs and Cut-point graphs. Euler tours, Euler graphs Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Burnside's Lemma, Polya's Counting Theorem,	representations of graphs. Shortest path Problem
Matchings in Bipartite Graphs, Hall's Matchinggraphs and Cut-point graphs. Euler tours, Euler graphsTheorem, Min-Max Theorem, Independent Sets,Hamiltonian graphs. Closure of aFactorization, 1 Factorization, 2 Factorization,graph. Isomorphism in graphs. Euler's formula, PlanarArboricity.graphs, Vertex colouring , Chromatic number,Suggested Text/Reference Books:Chromatic polynomial, R - Critical graphs, Acyclic1. C.L. Liu, Elements of Discrete Mathematics,graphs- Trees , Elementary properties of trees, Center,Graw Hill, International Edition, 1985.Connectivity, Connectivity and line connectivity,			Graph Enumeration with Polya's Theorem.	Operations on graphs. Blocks, Cut-points, bridges Block
Theorem, Min-Max Theorem, Independent Sets, Factorization, 1-Factorization, 2-Factorization, Arboricity.Hamiltonian graphs. Closure of a graph. Isomorphism in graphs. Euler's formula, Planar graphs, Vertex colouring , Chromatic number, Chromatic polynomial, R - Critical graphs, Acyclic graphs- Trees , Elementary properties of trees, Center, Graw Hill, International Edition, 1985.			Matchings in Bipartite Graphs, Hall's Matching	graphs and Cut-point graphs. Euler tours, Euler graphs
Factorization,1-Factorization,2-Factorization,graph. Isomorphism in graphs. Euler's formula, PlanarArboricity.Graw Hill, International Edition, 1985.Graw Hill, International Edition, 1985. <td></td> <td></td> <td>Theorem, Min-Max Theorem, Independent Sets,</td> <td>Hamiltonian paths, Hamiltonian graphs. Closure of a</td>			Theorem, Min-Max Theorem, Independent Sets,	Hamiltonian paths, Hamiltonian graphs. Closure of a
Arboricity.graphs, Vertex colouring , Chromatic number,Suggested Text/Reference Books:Chromatic polynomial, R - Critical graphs, Acyclic1. C.L. Liu, Elements of Discrete Mathematics, Graw Hill, International Edition, 1985.graphs, Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Factorization, 1-Factorization, 2-Factorization,	graph. Isomorphism in graphs. Euler's formula, Planar
Suggested Text/Reference Books:Chromatic polynomial, R - Critical graphs, Acyclic1. C.L. Liu, Elements of Discrete Mathematics, Mc Graw Hill, International Edition, 1985.Chromatic polynomial, R - Critical graphs, AcyclicConnectivity, Connectivity and line connectivity,			Arboricity.	graphs, Vertex colouring , Chromatic number,
1. C.L. Liu, Elements of Discrete Mathematics, Mc- Graw Hill, International Edition, 1985.graphs- Trees , Elementary properties of trees, Center, Connectivity, Connectivity and line connectivity,			Suggested Text/Reference Books:	Chromatic polynomial, R - Critical graphs, Acyclic
Graw Hill, International Edition, 1985. Connectivity, Connectivity and line connectivity,			1. C.L. Liu, Elements of Discrete Mathematics, Mc-	graphs- Trees, Elementary properties of trees, Center,
			Graw Hill, International Edition, 1985.	Connectivity, Connectivity and line connectivity,

2. N. Deo, Graph Theory, Prentice Hall of India,	Partitions, Cut edges - Cut vertices, Spanning free and	
2002.	minimum Spanning tree.	
3. K.H. Rosen, Discrete Mathematics and it's	Suggested Books:	
Applications, 7 th Ed. Mc-Graw Hill, 2013.	1. Liu, C. L. (1985) <i>Elements of discrete mathematics</i> . Mc-	
4. K.D. Joshi, Foundation of Discrete Mathematics,	Graw Hill, International edition.	
Wiely Eastern Ltd., 1989.	2. Deo, N. (2012). <i>Graph theory: With applications to</i>	
5 DB West Introduction to Graph Theory 2nd	engineering and computer science. New Delhi: PHI	
Ed Protince Hall of India 2001	Learning Private Limited	
Ed. Fremice fran of mula, 2001.	3. Rosen, K. H. (2013). Discrete mathematics and its	
	applications: Seventh edition. New York: McGraw-	
	Hill.	
	4. Joshi, K. D. (1089) Foundation of discrete mathematics.	
	Wiely Eastern Ltd.	
	Suggested E-learning Material:	
	1. Lecture notes:	
	https://nptel.ac.in/downloads/111104026/	
	2. Lecture notes:	
	http://home.iitk.ac.in/~arlal/book/mth202.pdf	
	3. Lecture notes: <u>https://ocw.mit.edu/high-</u>	
	chool/mathematics/combinatorics-the-fine-art-of-	
	<u>counting/lecture-</u>	
	notes/MITHFH_lecturenotes_8.pdf	
	4. Lecture notes:	
	http://www.math.kit.edu/iag6/lehre/graphtheo20	
	15w/media/lecture_notes.pdf	
	5. Online Course:	
	https://swayam.gov.in/courses/4926-discrete-	
	mathematics	
	6. Online Course:	
	https://swayam.gov.in/course/3795-graph-theory	

4.	STAT 402	On completion of the course, the	- Suggested E-learning material:	No change
	Probability	student will be able to:	1. Probability and Statistics; Platform: NPTEL	in the
	and Statistics	Ñ Understand the meaning of	nptel.ac.in/courses/111105041/.	syllabus
		probability and probabilistic		
		experiment and all approaches to	2. Probability; Platform: <u>e-</u>	
		probability theory and particularly,	PGPathshalahttps://epgp.inflibnet.ac.in/ahl.ph	
		the axiomatic approach.	<u>p?csrno=34.</u>	
		Ñ Understanding the meaning of		
		conditional	3. Introduction to Probability-	
		probability,conditioning, and	https://ocw.mit.edu/resources/res-6-012-	
		reduced sample space.	introduction-to-probability-spring-2018/	
		\tilde{N} Understand the concepts of random		
		variables, sigma-fields generated by		
		random variables, probability		
		distributions and independence of		
		random variables related to		
		measurable functions.		
		Ñ Distinguish between independent		
		and uncorrelated random variables.		
		Ñ Distinguish between discrete,		
		continuous, and mixed random		
		variables and be able to represent		
		them using probability mass,		
		probability density, and cumulative		
		distribution function.		
		Ñ Understand the concepts of		
		sampling distributions and use of		
		sampling distribution in hypothesis		
		testing.		

5.	CS 415 Computer Programming	 On successful completion of the course students will be able to Understanding the concepts of computer basics and programming. Understanding of the organization and operations of a computer system. Understanding of Binary logic in design of electronic circuits. Students would have logical thinking for Analyzing problems, designing and implementing algorithmic solutions. Students would get the skills for the use of the C programming language to implement the real 	Su 1. 2. 3.	ggested E-learning material: Introduction to Programming in C https://nptel.ac.in/courses/106104128/ Introduction to Programming in C Specialization by Duke University https://www.coursera.org/specializations/c- programming Computer Fundamentals by P. K. Sinha https://www.edutechlearners.com/computer- fundamentals-p-k-sinha-free-pdf/	No change in the syllabus
6.	MATH (To be generated) Computatio- nal Lab-I	world applications. - On completion of the course, the student will be able to, - • Perform basic mathematical operations in MATLAB. - • Create vectors, arrays, matrices and perform fundamental matrix operations. - • Visualize basic mathematical functions. - • Solve linear equations and -	1. 2. 3. 4. 5. 6.	Introduction to MATLAB Defining Vectors, Array, Matrices and their mathematical operations Special variables and Numeric display formats Matrix Functions: Norm, rank, determinant, transpose, inverse, g-inverse, diagonal, trace, etc. Finding roots of a polynomial, characteristic equation, eigen values and eigen vectors Solving system of linear equations: Gauss elimination Method, Matrix Decomposition:	New Course

system of linear equations.	Cholesky, LU, and QR factorizations, diagonal
Import/export data, summarize	forms, singular value decomposition.
and visualize the data.	7. 2D plots for Cartesian, parametric and polar curves
Fit some standard distributions	8. Evaluating and plotting: Trigonometric functions,
and test hypothesis.	hyperbolic functions, complex functions, Logarithms,
	exponentials, etc.
	9. 3D plots: surfaces, contour plot, mesh
	10. Data import and export
	11. Building frequency tables: Univariate, Bivariate.
	12. Finding descriptive statistics: averages, dispersion,
	skewness, kurtosis.
	13. Data visualization: Dot plots, Histogram, Box plots,
	bar diagram, pie diagrams, etc.
	14. Fitting and visualization of Probability distributions:
	Binomial, Poisson and Normal.
	15. Empirical cumulative distribution function plot,
	Histogram based on empirical cumulative
	distribution function, Histogram with a distribution
	fit, Normal probability plot, Probability plots,
	Quantile-quantile plot.
	16. Hypothesis Tests: t-test, F-test, chi-square goodness-
	of-fit test
	17. Introduction to M-files and programming in
	MATLAB,
	Suggested Books:
	1. D. Duffy, Advanced Engineering mathematics with
	MATLAB, 3 rd Ed, Taylor & Francis, 2010
	2. A. Knight, Basics of Matlab and beyond, CRC Press,
	1999

Suggested E-learning material:	
1. PDF Documentation for MATLAB:	
https://in.mathworks.com/help/pdf_doc/matl	
<u>ab/index.html</u>	

SECOND SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be	After completing the course, students	SectionA	Section A	Shaded in
	generated)	will be able	Vector spaces, subspaces, quotient spaces, span and	Review of groups, direct product of groups, normal	Black from
	Algebra-II	• To demonstrate the	independence, bases (finite and infinite), coordinate	subgroups, quotient groups, isomorphism theorems,	section A,
		mathematical maturity of	vectors, linear transformations, projection map,	Conjugates, Conjugacy in S _n , Class equation for a Group,	B and C is
		understanding the proof.	range and kernel of a linear transformation,	Sylow's Theorems, Applications of Sylow's theorem,	shifted in
		• To understand the algebraic	isomorphism, <mark>correspondence theorem</mark> ,	Simplicity of Alternating Group A_n for $n>5$,	Algebra I.
		structures groups, rings,	<i>isomorphismtheorems,</i> matrix of a linear	Section B	
		modules.	transformation, algebra of L(U, V), singular and	Rings, Ring homomorphism and quotient rings, Ideals:	Shaded in
		• To grasp the significance of	nonsingular mappings, Linear functionals and dual	Prime and Maximal, fields of fractions, Divisibility,	Grey is
		the concepts of	spaces, <mark>Transpose of a linear mappings</mark> .	Euclidean and Principal Ideal Domains, Unique	added.
		homomorphism &	SectionB	Factorization Domains, Polynomial Rings over fields,	
		isomorphism and be able to	Determinant function, Properties of determinant,	irreducibility criteria.	Change in
		check a given function is one	modules, multilinear functions, characteristic values,	Section C	Credit
		of these.	annihilating polynomials, invariant subspaces, direct	Modules, Quotient modules, module homomorphisms,	
		• To understand the class	sum, invariant direct sum, primary decomposition	generation of modules, direct sums, free modules,	
		equation for a finite group	theorem, cyclic operator, Cyclic Decomposition	modules over PID's, Chain conditions, Artinian	
		and its applications in Sylows	Theorem, Generalized Cayley Hamilton theorem,	modules, Northerian modules, Composition series,	
		theorems.	indecomposable linear operator, invariant	Modules of finite length, Jordan Holder Theorem,	
		• To classify groups up to	factors, <u>Jordan form, Normal form</u> .	Artinian rings, Northerian rings, Hilbert Basis Theorem,	
		isomorphism.	SectionC	I.S.Cohen's Theorem, Introduction of Nil radical and	
		• To really understand the	Inner product, orthogonal sets, orthogonal	Jacobson radical.	
		special types of rings and be	complement and projections, adjoints, self adjoints,	Suggested Books:	

 able to construct new examples from the old ones. To check a subset of a ring is an ideal or not and be able to identify proper and maximal ideal. To understand the concept of unique factorization domain and able to write a polynomial as the product of irreducible factors To describe as a generalization of vector space and able to understand types of modules. To grasp the concept of Artinian modules, Northerian modules, Northerian modules, Northerian modules, Artinian rings and Northerian rings. 	 spectral theorems, normal operators, unitary and orthogonal operators, polar and singular values decomposition, Bilinear maps, symmetric bilinear maps and quadratic form. Text Books: Hoffman and Kunze: Linear Algebra, 2nd Ed. Pearson, 1998. Bruce N. Cooperstein: Advanced Linear Algebra, 2nd Ed., CRC Press,2015 Reference Books: S. Lang: Linear Algebra, 3rd Ed., Springer Verlag, New York, 1987. P.R. Halmos: Finite Dimensional Vector Spaces, 2nd Ed., Van Nostrand, New York, 1965. Yisong Yang: Advanced linear algebra, Cambridge University Press, 2015 	 Gallian, J. A. (2013). Contemporary abstract algebra. (8th Ed.). Boston, MA: Brooks/Cole Cengage Learning. Dummit, D. S. & Foote, R. M. (2004) Abstract algebra (3rd Ed.). New Jersey: Wiley. Musili, C. (1994) Introduction to Rings and Modules (2rdEd.). New Delhi:.Narosa Publishing House. Hungerford, T. W. (2014) Abstract algebra: An introduction (3rd Ed.). Australia: Brooks/Cole Cengage Learning. Hillman A. P. &Alexandersor, G. L. (2015) Abstract algebra: A first undergraduate course (5th Ed.). CBS Publishers & Distributors Pvt. Ltd. Fraleigh, J. B. (2003) A first course in abstract algebra (7th Ed.). Harlow: Pearson. Sen, M. K., Ghosh, S., Mukhopadhyay, P. &Maity, S. K. (2019) Topics in abstract algebra (3rd Ed.). University Press. Herstein, I. N. (1991) Topics in algebra (2rd Ed.). New Delhi: Wiley Eastern.
		1 Lecture Notes on Groups and Rings
		 https://ocw.mit.edu/courses/mathematics/18- 703-modern-algebra-spring-2013/related- resources/ Video Lectures on Algebra:
		https://www.extension.harvard.edu/open-

				learning-initiative/abstract-algebra	
				Open Source Book Abstract algebra: Theory and	
				applications by Thomas W. Judson	
				http://abstract.ups.edu/download/aata-20110810.pdf	
2.	MATH (To be	On completion of the course, the student	-	Suggested E-learning material	No change
	generated)	will be able to,		1. Complex Analysis; NPTL:	in syllabus.
	Analysis-II	• demonstrate understanding of the		https://nptel.ac.in/courses/111103070/	
		basic and advanced concepts			Change in
		underlying complex analysis.			Credit.
		• demonstrate familiarity with a			
		range of examples of these			
		concepts.			
		• prove advanced results/theorems			
		in complex analysis.			
		• apply the methods of complex			
		function theory to evaluate			
		integrals and infinite series of			
		complex functions.			
		• demonstrate understanding and			
		appreciation of a deeper aspects			
		of complex function theory.			
		• demonstrate skills in			
		communicating mathematics			
		orally and in writing.			
3.	MATH (To be	On completion of the course, students	Section A	Sections A	
	generated)	will be able to	First order differential equations: Method of successive	Existence and Uniqueness of solutions: Introduction,	
	Ordinary	• Understand the existence and	approximation, Lipschitz condition, convergence of	Picard's Successive Approximations, Picard's theorem,	
	Differential	uniqueness of IVPs and their	successive approximation, non-local existence of	Continuation and dependence of initial conditions,	
	Equations	solution	solutions.	Existence of solutions in the large, Existence and	

Understand method of successive	System of differential equations: solution by general	Uniqueness for systems, fixed point technique for
approximations, variation of	method and matrix exponentials, Two Dimensional	nonlinear differential equations.
constants, annihilator method,	Autonomous Systems and Phase Space Analysis: critical	Section B
and reduction of order of a	points, proper and improper nodes, spiral points and	Linear Differential equations of higher order with
homogeneous equation.	saddle points.	variable coefficients: Introduction, Existence and
Solve linear differential equations	Section B	Uniqueness theorem, linear dependence and Wronskian.
of higher order with variable	Linear Differential Equations: Existence and	Solution; Method of variation of parameters, Method of
coefficients.	uniqueness theorems constantand variable	undetermined coefficients, Reduction of order.
• Solve boundary value problems	coefficients (2nd order and nth order), Linear	Boundary Value Problems for second order equations:
for second order equations.	dependence and independence of solutions,	Introduction, Green's function, Sturm Liouville problem.
Solve Boundary Value problems	Wronskian, variation of constants, annihilator	Applications of BVPs.
for second order equations by	method, reduction of the order of a homogeneous	Section C
Green's function, Strum-Liouville	equation.	System of linear differential equations: Introduction,
Boundary Value problem.	Section C	Existence and Uniqueness theorem, Solution of the
• Grasp the concept of the stability	Homogeneous equation with analytic coefficients,	system; Eigenvalue-Eigenvector Method and
of system of differential equations	Legendre equation, Euler equation, method of	Fundamental Matrix Method. Matrix Exponential
Solve system of linear differential	Frobenius, Bessel's equation, Boundary Value	Function, Non-homogeneous linear systems. Phase
equations and study the	Problems for Second Order Equations: Green's	Portrait in R ² . Plane Autonomous Systems: critical points
qualitative behavior of these	function, Sturm-Liouville boundary value problem,	and types of critical points and stability.
systems.	eigenvalue Problem.	Text Books:
	Text Books:	1. Deo, S. G., Raghavendra, V., Kar, R.
	1. E. A. Coddington: An Introduction to Ordinary	&Lakshmikantham, V. (2015) Textbook of ordinary
	Differential Equations, Dover Publication Inc.,	differential equations (3rd Ed.). New Delhi: Mc Graw
	1961.	Hill Education.
	2. S. Ahmad and A. Ambrosetti: A text book on	2. Ahmad, S. &Ambrosetti, A. (2015). A Textbook on
	Ordinary Differential Equations, 2 nd Ed.	Ordinary Differential Equations (2nd Ed.).
	Springer 2015.	Switzerland: Springer.
	Reference Books:	Reference Books
	1. S. A. Wirkus and R. J. Swift: Ordinary	1 Wirkus SA & Swift RI (2015) Ordinary
	Differential Equation 2nd Ed CRC Press 2015	Differential Equations (2nd Ed.) USA: CRC

				 S. Ross, S. L. (1984). Differential Equations (3rd ed.). India: Wiley Publication. William E. B., & Richard C. D. (2012). Elementary Differential Equations and Boundary Value (10th ed.). New York: Wiley Publication. Coddington, E. A. (1961). An Introduction to Ordinary differential equations. New Jersey, USA: Dover Publication Inc. Hartman, P. (1964). Ordinary Differential Equations. New York; John Wiley and sons. Suggested E-learning material Lecture notes: http://www.math.ust.hk/~machas/differential- equations.pdf NAPTEL: https://nptel.ac.in/courses/111106100/ Lecture Notes: http://home.iitk.ac.in/~sghorai/TEACHING/ MTH203/ode.html
4. MA	AIH (to be	Upon successful completion of this	Section A Infinite sets and axiom of choice, well ordered sets	Section A Infinite sets and axiom of choice Well-ordered sets. The
4. MA	AIH (to be	Upon successful completion of this	Section A	Section A

Topology	٠	Define and illustrate the concept of	the maximum principle, Topological spaces, Bases	maximum principle, Topological spaces, Bases for a
		topological spaces and continuous	for a Topology, The order Topology, The Product	topology, The order topology, The product topology,
		functions.	Topology, The Subspace Topology, Closed sets and	The subspace topology, Closed sets and limit points,
	•	Define and illustrate the concept of	Limit points, Continuous function. Continuity of a	Continuity of a function, Homeomorphism,
		product topology and quotient	function, Homeomorphism, Construction of	Construction of continuous functions.
		topology.	continuous functions, Metric Topology, The quotient	Section B
	•	Calculate simple topological	Topology (Introduction only).	Metric topology, The quotient topology (Introduction
		invariants, such as the number of	Section B	only), Connected spaces, Path connected spaces,
		path components.	Connectedness and Compactness: Connected Spaces,	Connected sets in the real line, Components, Path
	•	Define and illustrate the concepts	Connected sets in the Real line, Components and path	components, Local connectedness, Local path
		separation axioms.	components, Local Connectedness, Compact spaces,	connectedness, Compact spaces.
	•	Use continuous functions and	Compact sets in the Real line, limit point	Section C
		homeomorphisms to understand	compactness.	First countability axiom, Second countability axiom,
		structure of topological spaces.	Section C	Lindelof space, Regular space, Normal spaces, The
		1 0 1	The Tietze extension Theorem, The	Urysohn Lemma, Completely regular space. The Tietze
			UrysohnMetrization Theorem. The Tychnoff	extension theorem.
			Theorem, The completely regular spaces, The Stone-	Suggested Books:
			Cech compactification (Statement only),Complete	1. Munkres, J. R. (1975) Topology: A first course. New
			Metric Spaces and Function spaces: Complete Metric	Delhi: Prentice Hall of India.
			Spaces, Compactness in Metric spaces, Pointwise	2. Singh, T. B. (2013) Elements of topology. CRC
			convergence, The Compact Open Topology, Baire	Press.
			Spaces.	3. Joshi, K. D. (1986) Introduction to general topology.
			Suggested Text/Reference Books:	New Delhi: Wiley Eastern.
			1. J.R. Munkres, Topology- A First Course , Prentice	4. Murdeshwar, M. G. (1983) General topology.New
			Hall of India, New Delhi, 1975. (The scope is	Delhi: Wiley Eastern.
			indicated by the chapters 1, 2, 3, 4, 5, 6 & 7).	5. Simmons, G. F. (1963) Introduction to topology &
			2. K.D. Joshi, Introduction to General Topology,	modern analysis. Auckland: McGraw Hill.
			Wiley Eastern, Delhi, 1986.	6. Dugundji, J. (1990) <i>Topology,</i> New Delhi:
			3. Mangesh G. Murdeshwar, General Topology,	Universal Book Stall.
			Wiley Eastern, New Delhi, 1983.	Suggested E-learning Resources:
			4. George F. Simmons, Introduction to Topology	1. Video Lectures:

			 &Modern Analysis, McGraw Hill, Auckland, 1963. 5. James Dugundji, Topology, Universal Book Stall, New Delhi,1990. 	https://nptel.ac.in/courses/111106054/	
5.		On completion of the course, the student	Section A	Section A	1. Shufflin
	MATH 409	will be able to,	Accuracy and approximate calculations: Different	Accuracy and approximate calculations: Different types	g of the
	Numerical	• Demonstrate numerical methods to	types of errors and their computations; Finite	of errors and their computations.	topics
	Analysis	obtain approximate solutions to	differences: forward, backward and divide	Numerical solution of system of linear equations:	has been
		mathematical problems.	difference tables, propagation of error in difference	Direct methods: Gauss elimination method and Crout's	done to
		• Derive numerical methods for various	table, missing data calculation, errors in polynomial	(factorization) methods, Iterative methods: Jacobi	maintain
		mathematical operations and tasks,	interpolation, Newton-Gregory forward and	method, Gauss-Seidel method, Vector and matrix norm,	the flow
		such as interpolation, differentiation,	backward interpolation, central differences: central	Condition number and ill-conditioning, condition of	of
		integration, the solution of linear and	difference table, Gauss formula, Stirling's formula,	convergence in iterative methods. Eigen values and	syllabus.
		nonlinear equations, and the solution	Bessel's formula. Interpolation with unequal	Eigen vectors: Singular value decomposition, Power	2. Some
		of ordinary differential equations.	intervals;Lagrange's formula,divided differences and	method, Aitken's acceleration, Inverse Power method.	advance
		• Analyze the appropriate numerical	their properties, Newton's general Interpolation	Section B	d topics
		method to find the Eigen values and	formula, inverse interpolation, computation errors in	Numerical solutions of algebraic and transcendental	and
		corresponding eigenvectors of a	these formulae and analysis of errors.	equations: Polynomial and transcendental equations,	numeric
		system.	Section B	intermediate value theorem, Bisection method, Iterative	al
		• Use rational approximation of a	Numerical solutions of algebraic and transcendental	method, Newton-Raphson method, Convergence	methods
		function like Padé approximant for	equations: polynomial, transcendental equations,	analysis of these methods.	have
		power series.	intermediate value theorem, Bisection method,	Interpolation: Newton-Gregory forward and backward	been
		• Solve the boundary value problems	Iterative method, method of false-position, secant	interpolation, Lagrange's formula, inverse interpolation,	added to
		using shooting method and finite	method, Newton-Raphson method, Stability and	computation errors in these formulae and analysis of	benefit
		difference method.	Convergence analysis of these methods, Curve	errors, Approximation of function: Padé	the
		• Define and use the concepts accuracy,	titting (method of least squares, cubic splines	approximation.	students
		consistence, stability and convergence.	interpolation), approximation of functions:	Numerical Differentiation: Maximum and minimum	•
			Chebyschev'spolynomials.Taylor's series	value of a tabulated function, Solution of difference	

approximation, Solution of linear systems of	equations, Numerical Integration: Newton-cotes'
equations: Direct method, matrix inversion, Gauss	integration formula, Trapezoidal, Simpson's 1/3 and
elimination, Gauss-Jordan and Crout's(factorization)	Simpson's 3/8 and Weddle's rules, Gaussian quadrature
methods, iterative method, Jacobi and Gauss-Seidel	formula.
methods, condition of convergence in iterative	Section C
methods.	Numerical solution of ordinary differential equations:
Section C	Initial value problems: Lipschittz condition for initial
Numerical Differentiation: Maximum and minimum	value problems, solution by Taylor's series method,
value of a tabulated function, Solution of difference	Euler's method, Picard's method, Runge-Kutta methods,
equations, Numerical integration: Trapezoidal,	Runge-Kutta-Fehlberg method, Predictor corrector
Simpson's 1/3 and Simpson's 3/8 and Weddle's	methods: Milne's method, estimation of errors,
rules, Newton-cotes' integration formula, Gaussian	Boundary value problems: Shooting Method, Finite
quadrature formula. Numerical solution of ordinary	difference method, Rayleigh-Ritz method. Stability
differential equations: solution by Taylor's series	analysis of these numerical methods.
method, Euler's method & modified Euler's method,	
Picard's method, Runge Kuttamethod(forth order),	Suggested Text Books:
Predictor Corrector Method: Miline's method,	1. Cheney, E. W., & Kincaid, D. (2008). Numerical
estimation of errors. Introduction to simultaneous	mathematics and computing (5 th ed.). Thomson
and higher order equations. Solution of PDE (using	Brooks/Cole.
finite difference approximation to derivatives).	2. Jain, M. K., Ivengar, S. R. K., & Jain, R. K.
Text Books:	(2007). Numerical methods for scientific and engineering
1. S.S. Sastry, Introductory Methods of Numerical	<i>computation</i> (5 th ed.). New Delhi: New Age
Analysis, 4 th ed. PHI Learning Private Limited.	International.
New Delhi 2005	3. Sastry, S. S. (2012). Introductory methods of numerical
1000 Denny 2000.	analysis (5 th ed.). New Delhi: Prentice-Hall of India.
Reference Books:	
1. V. Rajaraman, Computer Oriented Numerical	Suggested Reference Books:
Mothoda 2nd ad Drankias Hall of Ladia Narra	1. Burden, R. L., &Faires, J. D. (2005). <i>Numerical analysis</i>
Delle: 1084	(7 th ed.). Thomson Brooks/Cole.
Deimi, 1984.	2. Chauhan, D. S., Vvas, P., &Soni, V. (2014). Studies in
2. S.D. Conte and C.D. Boor, Elementary	numerical analysis (Reprint ed.), Jaipur Publishing
Numerical Analysis: An Algorithmic Approach,	minerion minigere (reprint ea.), juipur radioming

		3rd ed McGraw Hill Auckland 1981	House	
		3 M K Jain S R K Jyengar and R K Jain	3 Rao K S (2005) Numerical methods for scientists and	
		Numerical Methods for Scientific and	engineers (2 nd ed.) New Delhi: Prentice-Hall of India	
		Fngineering Computations 4th ed New Age	4 Phillips C. M & Taylor P. I. (1996) Theory and	
		International New Delhi 2003	amlications of numerical analysis (2nd ed.) Elsevier	
		A Kendall E Atkinson An Introduction to	upplications of numerical analysis (2 ° cd.). Lisevier.	
		Numerical Analysis John Wilow Now York 2nd		
		ed., 2001.	Suggested E-learning material:	
		5. G.M. Phillips and Peter J. Taylor, Theory and	1 Introduction to Numerical Analysis for	
		Applications of Numerical Analysis,	Engineering Platform: MIT open courseware	
		2nded Elsevier 1996	https://ocw.mit.edu/courses/mechanical-	
		6 John R Rice Numerical Methods Software and	engineering/2-993i-introduction-to-numerical-	
		Analysis, MGH, Auckland, 1983	analysis-for-engineering-13-002i-spring-	
		7. P.K. De, Computer Based Numerical Methods	2005/index htm	
		and Statistical Techniques, CBS Publication.		
		New Delhi, 1 st ed. 2006	2. Numerical Analysis, Platform:	
			nptel <u>https://nptel.ac.in/courses/111107062/</u>	
			3. Elementary Numerical Analysis, Platform: nptel	
			<u>https://npter.ac.in/courses/111101003/</u>	
6 MATH 409L	On completion of the course, the student	Using MATLAB: Command window computations.	1 A review of basic MATLAB functions on	List of
	will be able to.	M-files, Programming in MATLAB, Basic	command window.	Practicals
Numerical	 Implement numerical methods in 	Mathematical Operations in MATLAB: Scalar	2. Writing Scripts and functions in MATLAB (m-	is revised
Analysis Lab	MATLAB to solve systems of linear	addition and multiplication, Matrix addition and	files).	according
	equations, compute quadrature, solve	multiplication etc.	3. Flow control commands (If-else, for, while,	to the
	ordinary differential equations and	1. An M-file to implement the bisection method	switch).	syllabus of
	various computational problems.	2. MATLAB M-file to implement Newton-Raphson	4. An M-file to implement Gauss elimination	Computati
	• Write efficient, well-documented	method for nonlinear systems of equations	method with partial pivoting for solving system	onal lab-1
	MATLAB code and present numerical	3. Using MATLAB to Manipulate Polynomials and	of linear equations.	(New
	results in an informative way.	Determine Their Roots	5. An M-file to implement Gauss-Seidel method.	Course)

• Show logical thinking in coding a	4. MATLAB Matrix Manipulations	6. An M-file to implement the bisection method.	and
mathematical problem in algorithmic	5. Solving Linear Algebraic Equations Using	7. An M-file to implement Newton-Raphson	revised
form.	MATLAB	method for nonlinear equations.	syllabus of
• Use their knowledge of a	6. An M-file to implement Gauss elimination	8. An M-file to implement Newton's interpolation.	Numerical
programming in MATLAB to learn	7. Solving linear systems with Gauss elimination	9. An M-file to implement Lagrange's interpolation.	Analysis
more easily any other programming	with partial pivoting	10. Curve fitting: least-squares n th order polynomial	(MATH
language like Mathematica, Python	8. LU Factorization with MATLAB	to data (liner and Quadratic).	409).
etc.	9. MATLAB M-file to implement Gauss-Seidel.	11. An M-file to implement the trapezoidal and	
	10. Eigenvalues and Eigenvectors with MATLAB	Simpson's rules.	
	11. MATLAB Implementation for fitting a least-	12. An M-file to implement Euler's method for	
	squares nth-order polynomial to data	solving ordinary differential equations with a	
	12. Fitting a straight line with linear regression	plot of exact and numerical solutions.	
	13. Polynomial Regression with MATLAB	13. An M-file to implement Runge-Kutta methods	
	14. Nonlinear Regression with MATLAB	(ode23 and ode45) for solving ordinary	
	15. An M-file to implement Newton interpolation	differential equations with a plot of exact and	
	16. An M-file to implement Lagrange interpolation.	numerical solutions.	
	17. M-file to implement the composite trapezoidal	14. An M-file to implement finite difference method	
	rule	for solving ordinary differential equations with a	
	18. M-file to implement the trapezoidal rule for unequally spaced data	plot of exact and numerical solutions.	
	19. Calculating Differentiation using MATLAB		
	20. An M-file to implement Euler's method for	Text Books/ Reference Books:	
	ordinary differential equations	1. Fausett, L. V. (2008). Applied numerical analysis	
		using MATLAB (2 nd ed.). Pearson Education.	
		2. Chapra,S. (2006). Applied numerical methods with	
		MATLAB for engineers and scientists, McGraw-Hill	
		Higher Education.	
		Suggested E-learning material:	
		1. Introduction to Numerical Methods and	

		 MATLAB Programming for Engineers, Platform: Ohio University; <u>http://www.ohiouniversityfaculty.com/youngt</u>/<u>/IntNumMeth/</u> Using numeric approximations to solve continuous problems, Platform: MathWorks; <u>https://in.mathworks.com/discovery/numerica</u> <u>l-analysis.html</u> 	
7. MATH (code to be generated) Computation al Lab-II	 On successful completion of the course, the students will be able to, Understand the fundaments of procedural and functional programming with Mathematica software; Efficiently use these technical computing systems in one's studies and research. Set up simple engineering problems such that they can be solved and visualized using basic codes. 	 Introduction to Wolfram Mathematica: Entering input, variables, assignment, execution, and evaluation of mathematical functions, rules and replacement, Notebooks in Mathematica. Basic commands of Mathematica, Trigonometry. Calculus: Roots of polynomials, partial fractions, differentiation, limits and expansions, integration, Optimization. Lists and Matrices: Matrix Operations, transpose, determinant, inverse of a matrix, Index Notation. Linear Algebra: Characteristic equation, Eigen values and Eigenvectors, Row reduced echelon form and normal form, Vector Spaces, Linear Transformations, Solutions to system of linear equations. Graphics: Plotting of simple functions, Two- and Three-dimensional Plotting (Cartesian, parametric and polar equations, Vector plots), Graphics Primitives, and Formatting. Differential equations: analytic and numerical 	New Course

			solution family of differential equation, System of	
			ODEs (critical points, phase portrait diagrams and	
			time series plots).	
			8. Plotting of recursive sequences.	
			9. Study the convergence of sequences through	
			plotting.	
			10. Verify Bolzano-Weierstrass theorem through	
			plotting of sequences and hence identify	
			convergent subsequences from the plot.	
			11. Study the convergence/divergence of infinite	
			series by plotting their sequences of partial sum.	
			Cauchy's root test by plotting nth roots.	
			12. Ratio test by plotting the ratio of n^{th} and $(n+1)^{\text{th}}$	
			term.	
			Suggested Readings:	
			1. The Mathematica Book, Fifth Edition by Stephen	
			Wolfram;	
			https://www.wolfram.com/language/elementary	
			-introduction/2nd-ed/	
			2. Lecture Notes on Mathematics for Materials	
			Scientists and Engineers;	
			https://ocw.mit.edu/courses/materials-science-and-	
			engineering/3-016-mathematics-for-materials-	
			scientists-and-engineers-fall-2005/lecture-notes/	
8.	STAT (To be	After successful completion of this	- Suggested E-Learning Material:	No change
	generated)	course, student will be able to:	1. Statistical Inference; Platform:	in syllabus.
	Statistical	Apply various parametric, non-	MITOPENCOURSEWARE	
	Inference	parametric and sequential	https://ocw.mit.edu/index.htm	Change in
		estimation techniques and testing	2. Statistical Inference; Platform: Coursera	credit.
		procedures to deal with real life	https://www.coursera.org	

0	STAT /To bo	 problems. Understand confidence interval, Neyman-Pearson fundamental lemma, UMP test, Interval estimation. Understand SPRT, OC and ASN function. Understand non-parametric methods, U-statistic. 	Section A	3. Statistical Inference: Platform: e-PG Pathshala <u>https://epgp.inflibnet.ac.in</u>	Change in
9.	generated) st Measure Theory & Advanced Probability	 Successful completion of this unit, udents will be able to: Understand the basic concepts of measure and integration theory. Understand of the theory on the basis of examples of application. Use abstract methods to solve problems and to use a wide range of references and critical thinking. Use weak and strong law of large numbers in statistical theory. 	Measure Theory - Fields, Sigma Fields, Monotone Classes, Set Functions, Measure, Outer Measure, Carotheodory's Extension Theorem. Probability Measure, Lebesgue Measure, Lebesgue Stieljes Measure. Measurable Functions, Monotone and Dominated Convergence Theorem. Product Spaces, Fubini's Theorem (without proof), Signed Measure, Radon Nikodym Theorem (without proof). Section B Inequalities-Cauchy-Schwartz Inequalities, Holder Inequalities, Minkowski Inequality, Jensen Inequality, Hajek Renyi Inequality. Sequences of Distribution Function, Helly Bray Theorem. Almost sure Convergence, Convergence in Probability, Convergence in Mean Square. Borel-Cantelli Lemma and Zero One Law. Characteristics Function. Inversion and Continuity Theorem. Section C Weak and Strong Law of Large Numbers- Khintchine, Kolmogorov Theorem. One Dimensional	Measure Theory-Fields, Sigma Fields, Monotone Classes, Set Functions, Measure, Outer Measure, Carotheodory's Extension Theorem. Probability Measure, Lebesgue Stieljes Measure. Measurable Functions, Monotone and Dominated Convergence Theorem. Product Spaces, Fubini's Theorem (without proof). Section B Sequences of Distribution Function, convergence: convergence in distribution, convergence in probability, almost sure convergence, convergence in Mean Square. Helly Bray theorem, Borel-Cantelli lemma and zero one law. Characteristics function, inversion and continuity theorem. Section C Inequalities: Cauchy-Schwartz inequality, Chebychev's inequality, Holder Inequality, Minkowski Inequality, Jensen Inequality. Weak and strong Law of Large Numbers-Khintchine, Kolmogorov theorem. One Dimensional Central Limit theorem- Lindeberg Levy, Lyapunov, Lindeberg Feller theorem.	credit.

			 Central Limit Theorem- Lindeberg Levy, Lyapunov, Lindeberg Feller Theorem. Representation of Distribution Function as a mixture of Discrete and Continous Distribution Function, Convolutions, Marginal and Conditional Distributions of Bivariate Distributions. Suggested Text/ Reference Books: 1. W. Feller, An introduction to Probability Theory and Applications, Vol I & Vol II, John Wiley & Sons. 2. K.L. Chung, A Course in Probability Theory, Academic Press. 3. B.R. Bhatt, Modern Probability Theory. 4. V.K. Rohtagi, An Introduction to Probability Theory and its Applications, John Wiley & Sons. 5. P.R. Halmos, Measure Theory, Springer-Verlag. 6. H. Bauer, Probability Theory and Elements of Measure Theory, Academic press. 	 Suggested Text/ Reference Books: 1. Feller, W. (2008). An Introduction to probability theory a applications (Vol. I & Vol. I). John Wiley & Sons. 2. Chung, K. L. (2011). A Course in Probability Theory (2 ed.). San Diego, Academic Press. 3. Bhatt, B. R. (2019). Modern Probability Theory (4th eq London, UK : New Academic Science. 4. Rohatgi, V. K. (2000). An Introduction to probability theory and mathematical statistics (2nd ed.). Wiley series probability and statistics. 5. Halmos, P. R. (2013). Measure Theory (Vol. 18). Ne York: Springer. 6. Bauer, H. (1981). Probability theory and element of measure theory (2nd ed.).London: Academic Press. Suggested E-Learnings Material: Measure Theory and probability: https://www.math.tifr.res.in/~publ/ln/tifr12.pdf 2. Measure Theory and probability: https://www.math.tifr.res.science.psu.edu/stat4_14/node/133/ 	
10.	CS 417 Database Management Systems	 On successful completion of the course students will be able to Describe data models and schemas in DBMS Understand the features of database management system and Relational databases. 		Suggested E-Learnings Material: Image: Suggested E-Learnings Material: 1. Data Base Management System Image: Material: https://nptel.ac.in/courses/106105175/ Image: Management Essentials by University of Colorado Colorado Image: Management Material: https://www.coursera.org/learn/database- Image: Management Material:	

Use SQL -the standard language	3. Database System Concepts by Abraham Silberschatz,
of relational databases.	Henry F. Korth and S. Sudarshan
Understand the functional	https://kakeboksen.td.org.uit.no/Database%20Syste
dependencies and design of the	m%20Concepts%206th%20edition.pdf
database.	
• Understand the concept of	
Transaction and Query	
processing.	

THIRD SEMESTER

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to,	Euclidean Space R ⁿ , Basic Topology on R ⁿ ,	Euclidean Space \mathbb{R}^n , Basic Topology on \mathbb{R}^n , Functions on	credit.
	Advanced	• Analyze vector functions to find	Functions on Euclidean spaces, continuity Uniform	Euclidean spaces, continuity, Uniform Continuity,	
	Calculus	derivatives, tangent lines,	Continuity, Differentiability; Partial and directional	differentiability; partial and directional derivatives.	
		integrals, and arc length.	derivatives.	Affine functions, First order approximation of Real	
		• Evaluate integrals of functions or	Affine functions, First order approximation of Real	valued functions, quadratic functions, Hessian Matrices,	
		vector-related quantities over	Valued functions, quadratic Functions Hessian	second order approximation and second derivative test.	
		curves, surfaces, and domains in	Matrices, second order approximation and second	Section B	
		two- and three-dimensional space.	derivative test.	Linear mappings and Matrices, The derivative matrix,	
		• Use the Lagrange multiplier	Section B	First order approximation Theorem for mappings, Chain	
		method to find extrema of	Linear mappings and Matrices, The Derivative	Rule, Inverse Function Theorem, Implicit Function	
		functions with constraints.	matrix, First order approximation Theorem for	Theorem, Lagrange Multipliers.	
		• Solve problems involving tangent	mappings, Chain Rule, Inverse Function Theorem,	Section C	
		planes and normal lines.	Implicit Function Theorem, Lagrange Multipliers.	Riemann Integral of real-valued functions on	
			Section C	Generalized rectangles, Continuity and integrability,	
			Riemann Integral of real-valued functions on	Integration of functions on Jordan Domains, Fubini's	
			Euclidean spaces, Integration of functions on Jordan	Theorem, Change of Variables.	
			Domains, Fubini's Theorem, Change of Variables,	Suggested Text Book:	

		Line and Surface Integrals, Green and Stokes	1. Fitzpatrick, P. (2009). Advanced calculus.	
		Theorem.	Providence, R.I: American Mathematical Society.	
		 Text Book : 1. Patrick M. Fitzpatrick, Advanced Calculus, Second edition, AMS. Suggested Text/Reference Books: 1. J.R. Munkres, Analysis on Manifolds, Addison-Wesley, 1991. 2. GB Folland, Advanced Calculus, Pearson. 3. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall Inc., Englewood Cliffe, New Jersery, 1974. 4. W. Fleming, Funcetions of Several variables, 2nd Edition, Springer-Verlag, 1977. 5. W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, 1984. 6. M. Spivak, Calculus on Manifolds, A Modern Approach to Classsical Theorems of Advanced Calculus, W.A. Benjamin, Inc., 1965. 	 Suggested Reference Books: Munkres, J. R. (2018). Analysis on manifolds. Boca Raton, FL: CRC Press/Taylor & Francis Group/Advanced Book Program. Folland, G. B. (2009). A guide to advanced real analysis. Washington, D.C.: Mathematical Association of America. Rudin, W. (2017). Principles of mathematical analysis. Chennai: McGraw Education (India) Private Limited. Suggested E-learning material Lecture Notes on Multivariable Calculus; Platform: NPTEL https://nptel.ac.in/courses/111107108/ 	
2.	MATH (to be generated)On completion of the course, the student will be able to,Functional• explain the basic concepts of Functional Analysis, including the study of operator theory and the study of topological function spaces.• describe how to illustrate the abstract notions in functional analysis via examples.		 Suggested E-learning material Introduction to Functional Analysis; Platform: MITOPENCOURSEWARE <u>https://ocw.mit.edu/courses/mathematics/18-102-introduction-to-functional-analysis-spring-2009/</u> Functional Analysis; Platform; NPTEL<u>https://nptel.ac.in/courses/111105037/</u> Functional Analysis; Platform: Free video lectures<u>https://freevideolectures.com/course/3</u> 	No change in Syllabus. Change in credit.

	 apply Hilbert space-theory, including Riesz' representation theorem and weak convergence, and methods in problem solving. solve the problems appear in PDEs via the powerful tools from functional analysis, study in a range of other fields, e.g. Quantum Theory, Stochastic calculus and Harmonic analysis. 		<u>145/functional-analysis</u>	
3.	MATH (to be On completion of the course, the student generated) will be able to	Section A Network Analysis Introduction of Network	Section A Linear Programming: Simplex method, Theory of	Change in Credit.
	 Operations Research Build a mathematical programming model of a real-life situation Write a report that describes the formulation of a linear and 	analysis, shortest path problem PERT & CPM Updating of PERT charts, project planning and scheduling with CPM & PERT. Section B Queuing Theory, Probability description of arrivals	simplex method, Duality in linear programming. Dual simplex method. Assignment and Transportation Problem. Section B Dynamic Programming: Introduction, characteristics of dynamic programming, dynamic programming	
	 Nonlinear programming problem, and presents and interprets the solutions. Understand the basic theory in linear and nonlinear programming Apply a suitable method in research to develop the theories which will be applicable in the 	characteristics of a queuing system, deterministic queuing system, steady-state behaviour of Markovian and Earlangian Models (M/M/1, M/M/C, M/Ek/1).Introduction to discrete time queuing system. Section C Inventory Theory, Deterministic economic lot size models and their extensions, models with lost sales	algorithm, solution of discrete dynamic programing problem. Sequencing Problem: Introduction, processing n jobs through two machines, processing n jobs through k machines, processing two jobs through k machines. Network Analysis, Introduction of Network analysis, shortest path problem PERT & CPM. Updating of PERT charts.	
	real-life problems. • Understand the concepts of	and partially backlogged, continuous production with varying demand rates. Probabilistic model time	Section C Queuing Theory, Probability description of arrivals and	

dynamic programming, job sequencing, network analysis.Understand the basic concepts and need of inventory theory and	independent and time dependent with and withoutlead time.Suggested Text/ Reference Books:1. J.C. Pant, Introduction to Optimization:	service times, objectives and different characteristics of a queuing system, deterministic queuing system, steady- state behaviour of Markovian and Earlangian Models (M/M/1, M/M/C, M/Ek/l).
queuing theory.	 Operations Research, 2nd ed., Jain brothers, New Delhi, 1988. Hamdy A. Taha, Operations Research, Machmillan& Co, 9th ed., New York, 2010. Eradorick S. Hillor & Corold L. Lichterson 	Inventory Theory, Deterministic economic lot size models and their extensions, models with lost sales and partially backlogged, continuous production with varying demand rates.
	 Frederick S. Hiller & Gerald J. Lieberman, Operations Research, 2nd ed., Holden-San Francisco, 1974. Kanti Swaroop, Operations Research, S.Chand, New Delhi, 1977. S.D. Sharma, Operations Research, Kedarnath Ramnath, Meerut, 1994. Nirmal Singh Kambo, Mathematical Programming Techniques, Affiliated East-West, New Delhi, 1991. 	 Swarup, K., Gupta, P. K., & Mohan, M. (1977). Operations Research (Answers to problems). New Delhi: Sultan Chand & Sons. Pant, J. C. (2004). Introduction to optimization: Operations Research. New Delhi: Jain Brothers. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow [i 21 pozostałych: Pearson. Hillier, F. S., & Lieberman, G. J. (1972). Introduction to operation research. San Francisco: Holden-Day. Sinha, S. M. (2006). Mathematical programming: Theory and methods. New Delhi: Elsevier.
		Suggested E-learning material:
		 Tutorial: <u>https://ibmdecisionoptimization.github.io/tutor</u> <u>ials/html/Linear_Programming.html</u> Tutorial: Sophia Learning: <u>https://www.sophia.org/tutorials/linear-</u>
		programming5
		3. Lectures – NPTEL:

		https://nptel.ac.in/courses/111102012/ 4. Nonlinear Programming – MIT http://web.mit.edu/6.252/www/. 5. Nonlinear Programming: https://ocw.mit.edu/courses/sloan-school-of- management/15-084j-nonlinear-programming- spring-2004/lecture-notes/	
4.	STAT (to be On completion of the course, the student -	Section A	New
	generated) will be able to,	Review of Simple random Sampling, Stratified	Course
	Survey • Understand the distinctive	Sampling, Cluster sampling with equal/unequal sample	
	Sampling features of sampling schemes and	sizes, double sampling, Post and deep stratification,	
	its related estimation problems.	Sampling with varying probability of selection with	
	 Learn about various approaches 	replacement and without replacement, Midzuno Sen	
	(design based and model-based)	and Narain methods of sampling.	
	to estimate admissible parameters;	Section B	
	with and without replacement	Horwitz-Thompson estimates, Desraj ordered estimator,	
	sampling scheme, sampling with	Lahiri's method and cumulative total, Yates and Grandy	
	varying probability of selection.	estimate of variance its non-negativity.	
	 Learn about the methods of post- 	Auxiliary variable: Ratio, product and regression	
	stratification (stratified sampling)	method of estimation, Quenouille's techniques of bias	
	and controlled sampling and also	reduction,Hortley and Ross unbiased ratio type	
	double sampling procedure with	estimator. Ratio and Regression estimators with	
	unequal probability of selection.	combined and separate type estimates, two phase	
	Learn about the applications of	sampling (double sampling) in Ratio and Regression	
	sampling methods; systematic,	estimation.	
	stratified and cluster sampling.	Section C	
	• Understand the cluster and two	Non-sampling errors: Incomplete samples effect of non	
	stages sampling with varying	response, Hensen and Hurvitz technique, Politz -	
	sizes of clusters/first stage units.	Simmon's "not at home" method, Interpenetrating	
	Understand the super population	samples. Randomized response techniques – both qualitative and quantitative.	

approach to estimation.	Suggested Readings	
Understand non sampling error	1. Cochran, W. G. (2007). Sampling techniques(3rd.	
and estimation techniques in	ed.). John Wiley & Sons.	
presence of non response.	2. Raj, D., & Chandhok, P. (1998). Sample survey	
	theory. Narosa.	
	3. Chaudhuri, A. (2014). Modern survey sampling.	
	CRC Press.	
	4. Chaudhuri, A. (2016). Randomized response and	
	indirect questioning techniques in surveys.	
	Chapman and Hall/CRC.	
	5. Sukhatme, P. V. (1963). Sampling theory of surveys	
	with applications. The Indian Society Of	
	Agricultural Statistics; New Delhi.	
	6. Murthy, M.N. (1967). Sampling Theory and	
	Methods. (2nd ed.). Statistical Publishing Society,	
	Calcutta.	
	7. Singh, D. & Chaudhary, F.S. (2018). Theory and	
	Analysis of Sample Survey Design. New Age	
	International (P) Ltd.	
	8. Goon, A. M., Gupta, M. K., & Dasgupta, B.	
	(2016). Fundamental of Statistics Vol. II. World	
	Press.	
	9. Chaudhuri, A. (2016). Randomized response and	
	indirect questioning techniques in surveys.	
	Chapman and Hall/CRC.	
	10. Chaudhuri, A. (2013): Essentials of Survey	
	Sampling, PHI Learning Pvt. Ltd, Delhi.	
	Suggested E-learning Resources	
	4. Design of experiment and sample surveys;	
	Platform: e-PG Pathshala	
	https://epgp.inflibnet.ac.in	

				5. Survey Sampling; Platform: University Library -	
				The University of Adelaide	
				https://www.adelaide.edu.au/library/	
				6. Survey Sampling; Platform:	
				MIT OPENCOURSEWARE	
				https://ocw.mit.edu/index.htm	
5.	STAT (to be	On the successful completion of the	Section A	Section A	Change in
	generated)	course the students should be able to	Time series as a stationary or non stationary	Time series as a stationary or non stationary stochastic	Credit.
	Time Series	• Plot a time series and interpret the	stochastic process, Time domain analysis based on	process, Time domain analysis based on correlogram,	
	and	components.	correlogram, Sample autocovariance function and	Sample autocovariance function and autocorrelation	
	Stochastic	Identify and estimate cyclical	autocorrelation function at lag K, Lag correlation.	function at lag K, Lag correlation. Measurement of cyclic	
	Process	fluctuations in the time series.	Measurement of cyclic fluctuations: Periodogram	fluctuations: Periodogram and its relation with acvf,	
		• Examine the relationship between	and its relation with acvf, Harmonic analysis.	Harmonic analysis. Measurement of irregular	
		the lagged values of the series.	Measurement of irregular component: Variate	component: Variate difference method.	
		• Test for the stationarity of the	difference method.	AR(p) process, MA(q) process, mixed ARMA(p , q)	
		series.	AR(p) process, MA(q) process, mixed ARMA(p, q)	process, Stationarity and inevitability conditions,	
		• Estimate ARIMA(p,d,q) model for	process, Stationarity and inevitability conditions,	ARIMA (p, d, q) model, Estimation of parameters, Tests	
		the series.	ARIMA (p, d, q) model, Estimation of parameters,	for stationarity Stochastic – Process.	
		 Define stochastic process and 	Tests for stationarity Stochastic – Process.	Section B	
		identify its type .	Section B	Markers Chain having two states a star transition	
		Understand the concept of	Markov Chain having two states, n-step transition	Markov Chain having two states, h-step transition	
		Markov chain and its basic	probabilities, Classification of states, Recurrent and	probabilities, Classification of states, Recurrent and	
		properties using some theorems.	transient states, Chapman-Kolmogorov equations,	Stationary probability theorems and limit theorem for	
		• Define and understand the	Stationary probability theorems and limit theorem	stationary probability theorems and minit theorem for	
		concept and application	for ergodic chains, Martingales.	ergodic citalits, Martingales.	
		martingale.	Section C	Section C	
		Define Poisson process and	Poisson process, birth and death process, Random	Poisson process, birth and death process, Random walk	
		understand its properties with	walk and Gambler's Ruin problem, Wiener process,	and Gambler's Ruin problem, Wiener process, Renewal	
		some applications.	Renewal theory and its application, Branching	theory and its application, Branching chains: Discrete	
		• Apply gamblers ruin problem for	chains: Discrete Process (Galton-Watson),		
some problems.	Continuous process (Markov Branching).	Process (Galton-Watson).			
----------------------------------	--	--			
Understand the basic concept and	Fundamental theorem of Extinction				
applications of Weiner process	Suggested Text/Reference Books	Suggested Text/Reference Books			
Renewal theory and branching	1 PCHoel SC Port CI Stope Introduction to	1. Hoel, P. G., Port, S. C., & Stone, C. J.			
process	Stochastic Processes Universal Book Store New	(1971). Introduction to probability theory, Universal			
process.	Dolhi	Book Store, New Delhi.			
	2 CK Crinivasan KM Mahata Stachastic	2. Srinivasan, S. K., & Mehata, K. M. (1988). Stochastic			
	2. S.K. Shinivasan, N.M. Menata, Stochastic Processes Tata McCraw Hill Publishing	Processes. New Delhi: Tata McGraw Hill.			
	Company limited New Delhi 1088	3. J. Medhi, J. (1994). Stochastic processes. New Age			
	Company initied, New Denii, 1988.	International Publications.			
	3. J. Medni, Stochastic Processes.New Age	4. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C.			
		(2008). Time series analysis: Forecasting and control.			
	4. G.E.P. Box, G.M. Jenkins, and Gregory C. Keinset	Hoboken: Wiley.			
	Line Series Analysis: Forecasting and Control,	5. Chatfield, C. (1975). The Analysis of Time Series: Theory			
	John Wiley 4th ean 2008.	and Practice. Boston, MA: Springer US.			
	5. C. Chatfield, The Analysis of Time Series:				
		Suggested F-learning material:			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material:			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Use deals as ""			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": http://doi.org/105100070/			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": <u>https://nptel.ac.in/courses/105108079/</u>			
	Theory and Practice , Chapman and Hall in 1975.	 Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": <u>https://nptel.ac.in/courses/105108079/</u> 2. Course material on "Time Series Analysis": https://hdl.hep.dle.net/1721.1 (4/242) 			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ 2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343			
	Theory and Practice , Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ 2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343 3. Lecture Notes on "Introduction to Stochastic Dragonor"			
	Theory and Practice , Chapman and Hall in 1975.	 Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": <u>https://nptel.ac.in/courses/105108079/</u> 2. Course material on "Time Series Analysis": <u>http://hdl.handle.net/1721.1/46343</u> 3. Lecture Notes on "Introduction to Stochastic Processes": <u>https://accursit.edu/accurses/mathematics/18</u> 			
	Theory and Practice , Chapman and Hall in 1975.	 Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": <u>https://nptel.ac.in/courses/105108079/</u> 2. Course material on "Time Series Analysis": <u>http://hdl.handle.net/1721.1/46343</u> 3. Lecture Notes on "Introduction to Stochastic Processes": <u>https://ocw.mit.edu/courses/mathematics/18-</u> 			
	Theory and Practice , Chapman and Hall in 1975.	 Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ 2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343 3. Lecture Notes on "Introduction to Stochastic Processes": https://ocw.mit.edu/courses/mathematics/18- 445-introduction-to-stochastic-processes-spring- 2015 (leature materia) 			
	Theory and Practice, Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ 2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343 3. Lecture Notes on "Introduction to Stochastic Processes": https://ocw.mit.edu/courses/mathematics/18- 445-introduction-to-stochastic-processes-spring- 2015/lecture-notes/ 4. Lecture Notes on "Diagrate Stachastic			
	Theory and Practice, Chapman and Hall in 1975.	Suggested E-learning material: 1. Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ 2. Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343 3. Lecture Notes on "Introduction to Stochastic Processes": https://ocw.mit.edu/courses/mathematics/18- 445-introduction-to-stochastic-processes-spring- 2015/lecture-notes/ 4. Lecture Notes on "Discrete Stochastic Processes":			
	Theory and Practice, Chapman and Hall in 1975.	 Suggested E-learning material: Lecture Notes and Videos on "Stochastic Hydrology": <u>https://nptel.ac.in/courses/105108079/</u> Course material on "Time Series Analysis": <u>http://hdl.handle.net/1721.1/46343</u> Lecture Notes on "Introduction to Stochastic Processes": <u>https://ocw.mit.edu/courses/mathematics/18-445-introduction-to-stochastic-processes-spring-2015/lecture-notes/</u> Lecture Notes on "Discrete Stochastic Processes": 			
	Theory and Practice, Chapman and Hall in 1975.	 Suggested E-learning material: Lecture Notes and Videos on "Stochastic Hydrology": https://nptel.ac.in/courses/105108079/ Course material on "Time Series Analysis": http://hdl.handle.net/1721.1/46343 Lecture Notes on "Introduction to Stochastic Processes": https://ocw.mit.edu/courses/mathematics/18- 445-introduction-to-stochastic-processes-spring- 2015/lecture-notes/ Lecture Notes on "Discrete Stochastic Processes": https://ocw.mit.edu/courses/electrical- materia. 			

			discrete-stochastic-processes-spring-	
			2011/course-notes/	
6.	STAT 507	After successful completion of this	- Suggested E-learning Resources	No change
	Design of	course, student will be able to:	1. Lecture notes on Design of Experiments	in Syllabus.
	Experiments	• Identify what design was	http://www.iasri.res.in/ebook/EB_SMAR/e-	
	and Linear	followed and its features, describe	book_pdf%20files/Manual%20III/2-	
	Models	what assumptions are appropriate	Basic%20Experiments.pdf	
		in modelling the data.		
		• Analyse the results of a designed		
		experiment in order to conduct		
		the appropriate statistical analysis		
		of the data.		
		• Interpret statistical results from an		
		experiment and report them in		
		non-technical language.		
		• Compare efficiency of the		
		experimental designs.		
7.	STAT (to be	On completion of the course, the student	- Design of Experiment and Linear Models.	New
	generated)	will be able to,	1. Analysis of Completely randomized design	Course
	Computation	• Analyze 2 ⁿ - factorial experiments.	(CRD) and Randomised block design (RBD).	
	al Lab-III	• Apply ANCOVA with one and two	2. 2-square factorial experiment.	
		concomitant variable	3. 2- cube factorial experiment without	
		• Execute analysis and understanding	confounding.	
		of Split-plot designs and strip-plot	4. 2- cube factorial experiment with partial	
		design	confounding.	
		• Appraise Narain, Horwitz-Thompson	5. 2- cube factorial experiment with complete	
		estimator, Des Raj's ordered	confounding.	
		estimator.	6. Split-plot designs	
		• Employ AR (p) process,MA (q)	7. Strip plot designs.	
			8. ANCOVA with one concomitant variable.	

process, Mixed ARMA (p, q) process.	9. ANCOVA with two concomitant variable.
	10. BIBD
	Survey sampling:
	1. Estimation of mean and variance of sampling
	mean in cluster sampling.
	2. Estimation of mean and variance using combined
	and separate ratio type estimators.
	3. Estimation of population mean and total by
	ration and regression method of estimation.
	4. Double sampling for ratio and regression
	methods of estimation.
	5. Narain, Horwitz-Thompson estimator and its
	variance.
	6. Des Raj's ordered estimator and the estimate of
	their variances.
	Time Series and Stochastic Process:
	1. Decomposition of time series.
	2. Correlogram analysis.
	3. Testing for stationarity.
	4. Estimation of ARMA (p, q) process.
	5. Estimation of ARIMA (p, d, q) model.
	Suggested E-learning Material:
	1. Lawson, J. (2014). Design and Analysis of
	Experiments with R. Chapman and Hall/CRC.
	2. Book on Design of Experiment with R
	https://cran.r-
	project.org/doc/contrib/Vikneswaran-
	ED_companion.pdf
	3. Statistics: An introduction using

				R:https://bit.ly/30deSj5	
8.	MATH (To	On completion of the course, the student	Section A	Section A	Change in
	be	will be able to	Concept of stochastic processes. Markov Chains discrete	Introduction of stochastic processes, Markov process,	Credit.
	generated)	• Understand the principles and	and continuous time parameter. Objectives and	Markov Chain, Poisson process with its properties and	
	Queuing	objectives of model building based	different characteristics of a Queueing system.	related distributions (without proof) and birth-death	
	Theory	on Markov chains.	Performance measures. Steady state solution of	process. Objectives and different characteristics of a	
		• Analyze the queueing situations.	Markovian Models (M/M/1, M/M/c, M/Ek/1,	Queueing system. Performance measures. Steady state	
		• Understand the mathematical	Ek/M/1).	solution of Markovian queueing models: M/M/1 and	
		tools that are needed to solve	Section B	M/M/c. and their performance measures.	
		queueing problems.	Analytical method and use of randomization technique to	Section B	
		Identify and develop queueing	find the transient solution of M/M/1, M/M/c and	Steady State solution of $M/E_k/1$ and $E_k/M/1$ queueing	
		models from the verbal	$M/M/\mu$ queuing models including busy period	models with their performance of measures. The	
		description of the real system.	distribution.	transient solution of M/M/1 and M/M/ ∞ Queueing	
			Section C	models including busy period distribution.	
			Imbedded markov chain technique and its use to the	Section C	
			queueing models: M/G/1, GI/M/1 and M/D/c,	Imbedded Markov chain technique and its use to solve	
			Bulk queuing models. Different design and control	the Queueing models: M/G/1 and GI/M/1. Bulk	
			policies ((O, N) and vacation policies) for Markovian	queuing models: $M^{[\Lambda]}/M/1$ and $M/M^{[1]}/1$. Different	
			Queuing models. Introduction to discrete time	design and control policies for Markovian Queueing	
			queuing system.	models. Simulation procedures: Data generation and	
			Simulation procedures: Data generation and Book-	BOOK- Keeping aspects.	
			keeping aspects.	Suggested Text Books:	
			Suggested Text Books:	1. Gross, D., & Harris, C. M. (1985). Fundamental	
			1. D. Gross and C.M. Harris, Fundamentals of	of Queueing Theory. (2 nd ed.). John Wiley.	
			Queueing Theory, 2 nd Ed., John Wiley, 1985.	2. Michel, E. W. (1994). <i>Communication and</i>	
			2. Michel E. Woodward, Communication and	Computer Networks Modeling with discrete Time	
			Computer Networks Modeling with Discrete	<i>queues</i> . IEEE Computer Society Press. (Chapter 4)	
			Time Queues, IEEE Computer Society Press,	Suggested Reference Books:	
			1994. (Chapter 4)	1. Cooper, R. B. (1981). Introduction to Queuing	

			Suggested Reference Books:	<i>Theory</i> . (2 nd ed.). North Holland, Elsevier.
			1. R.B. Cooper, Introduction to Queuing Theory,	2. Cox, D. R. & Smith, W. l. (1961). Queues.
			2 nd Ed., North Holland, 1981	Mathuen& Co. Ltd.
			2. D.R. Cox and W.L. Smith, Oueues , Mathuen,	3. Kleinrock, L. (1975). Queuing System. (Vol. 1).
			1961.	John Wiley.
			3 I. Kleinrock Quening Systems Vol I John	4. Medhi, J. (1991). Stochastic Models in queuing
			Wiley, 1975.	Theory. Academic Press.
			4 I Medhi, Stochastic Model in Queuing theory.	5. Satty, T. L. (1961). Elements of Queuing Theory with
			Academic Press, 1991.	Applications. Tata McGraw Hill.
			5. T.L. Satty, Elements of Queuing Theory with	Suggested E-learning Material:
			Applications, Mc-Graw Hill, 1961.	1. Queuing Systems, NPTEL
				https://nptel.ac.in/courses/117103017/1
				2. <u>Introduction</u> to stochastic process and
				applications, NPTEL
				https://nptel.ac.in/courses/110104024/1
				3. Stochastic Process and Time series,
				ePATHSHALA <u>https://epgp.inflibnet.ac.in/ahl.p</u>
				hp?csrno=34
9.	CS 209 Data	On successful completion of the course	-	Suggested E-learning material:
	Structures	students will be able to		1. Programming and Data Structures
		• Develop knowledge of basic data		https://swayam.gov.in/course/1407-programming-
		structures for storage and retrieval		and-data-structures
		of ordered or unordered data.		2. Data Structures and Program Methodology
		Data structures include: arrays,		https://nptel.ac.in/courses/106103069/
		linked lists, stacks, queues, binary		
		trees, heaps.		
		Develop knowledge of		
		applications of data structures		
		including the ability to implement		
		algorithms for the creation,		

		 insertion, deletion, searching, and sorting of each data structure. Learn to analyze and compare algorithms for efficiency using Big-O notation. Understand the concept of Dynamic memory management, data types, algorithms, Big O notation. Apply Algorithm for solving problems like sorting, searching, insertion and deletion of data 			
10.	MATH (to be generated) Inventory Theory	 On completion of this course, students will be able to: Comprehend the dynamics of inventory management's principles, concepts, and techniques as they relate to the entire supply chain (customer demand, distribution, and product transformation processes), Understand the methods used by organizations to obtain the right quantities of stock or inventory, Familiarize themselves with inventory management practices. Optimize different case studies requires efficient methods and practices to address inventory management problems. 	Section AAnalytical structure of production and Inventory problems, Inventory related costs, properties of inventory systems, Factors influencing inventories.Deterministic inventory models and extensions without and with lead time, Inventory models with partial backlogging and sales, Models with continuous production and non-constant demand with known production capacity, Inventory models with constraints,Quantity discounts; All units and incremental, Sensitivity of the lot size system,N- products and M-Machines model.Stochastic Inventory Models and Extensions without 	Section A Concepts of Inventory, Classification of inventory models, EOQ model, EPQ model, EOQ model with shortages, EPQ model with shortages, EOQ model with constraints: Quantity discounts, Floor Constraints, Investment Constraint. Sensitivity analysis in inventory models. Section B Stochastic Inventory Models and Extensions without and with lead time. Power demand pattern inventory model, Introduction to Just In Time (JIT) and Vendor Managed Inventory (VMI). Section C Simulation in Inventory system, Classification of items viz: ABC, VED, FNSD, HML, SDE, XYZ,Case studies in inventory control. Suggested Books: 1. Hadley, G., Whitin, T. M (1963). <i>Analysis of inventory</i> systems. Englewood Cliffs, N.J.: Prentice-Hall.	Change in Credits

		• Understand the behavior of the	Section C	R.E. Krieger.	
		inventory parameters after some	Simulation in Inventory system, Production	3. Waters, D. (2008). Inventory Control And Management,	
		time using simulation techniques.	scheduling, Classification of items viz: ABC, VED,	2Nd Ed. Wiley India Pvt. Limited.	
			(FNSD, HML, SDE, XYZ), Case studies.	Suggested E-learning material:	
			Books Recommended:	1 Inventory Models costs EQQ model/Lecture	
			Text Books:	PDE) https://pptol.ac.in/courses/110106045/9	
			1. Kanti Swarup, Operation Research , Sultan	2 Inventory management(PDF)	
			Chand & Sons, 2010.	https://ocw.mit.edu/courses/engineering-	
			2. Sharma S.D., Operations Research, Kedarnath	systems-division/esd-260i-logistics-systems-fall-	
			Ramnath, Meerut, 1972.	2006/lecture-notes/	
			Reference Books:		
			1. G. Hadley, T. Whitin, Analysis of Inventory		
			Systems, Prentice Hall, 1963.		
			2. E.Naddor, Inventory System, John Wiley, New		
			York, 1966.		
11.	CS 315	On successful completion of the course	-	Suggested E-learning material:	No Change
	Theory of	students will be able to		1. Theory of Computation	
	Computation	• Explain basic concepts in formal		https://nptel.ac.in/courses/106104028/	
		language theory, grammars,		2. An Introduction to Formal Languages and	
		automata theory, computability		Automataby Peter Linz	
		theory, and complexity theory.		http://almuhammadi.com/sultan/books/Linz.5ed.	
		• Understand abstract models of		<u>pdf</u>	
		computing, including			
		deterministic (DFA), non-			
		deterministic (NFA), Push Down			
		Automata(PDA) andTuring (TM)			
		machine models and their power			
		to recognize the languages.			
		Understand the application of			

		 machine models and descriptors to compiler theory and parsing. Relate practical problems to languages, automata, computability, and complexity. Apply mathematical and formal techniques for solving problems in computer science. Understand the relationship among language classes and grammars with the help of Chomsky Hierarchy. 		
12.	CS 308 Operating Systems	 On successful completion of the course students will be able to Learn the fundamentals of Operating Systems. Learn the mechanisms of OS to handle processes and threads and their communication Learn the mechanisms involved in memory management in contemporary OS Gain knowledge on Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols Know the components and management aspects of concurrency management Learn Case study of Unix OS. 	 Suggested E-learning material: 1. Operating Systems https://nptel.ac.in/courses/106108101/ 2. Linux for Developers by The Linux Foundation https://www.coursera.org/learn/linux-for- developers 	No Change

13.	CS 528	On successful completion of the course	- Suggested E-learning material:	No Change
	Modeling	students will be able to	1. Modelling and Simulation of Descrete Event System	
	and	Define basic concepts in modeling	https://nptel.ac.in/courses/112107220/	
	Simulation	and simulation (M&S).	2. Simulation and modeling of natural processes by	
		Classify various simulation	University of Geneva	
		models and give practical	https://www.coursera.org/lecture/modeling-	
		examples for each category.	simulation-natural-processes/modeling-and-	
		• Construct a model for a given set	simulation-F7vas	
		of data and perform its validity.		
		• Generate and test random number		
		and apply them to develop		
		simulation models.		
		• Analyze output data produced by		
		a model and test validity of the		
		model.		
		• Explain parallel and distributed		
		simulation methods.		
		• Know how to simulate any		
		discrete system using queuing		
		systems.		
14.	MATH (to be	On completion of this course, students	- Section A	New
	generated)	will be able to	Fields, prime subfields, Extension fields, algebraic	Course
	Fields and	• Understand the concepts of field	extensions, simple extensions, transcendental extension,	
	Galois	extension and appreciate its	minimal polynomial, Kronecker's Theorem, splitting	
	Theory	importance.	fields, uniqueness of splitting fields and algebraic	
		• Understand different types of	closures.	
		extensions.	Section B	
		• Find the Galois group for some	Normal and concrete and uniqueness of finite fields,	
		extension fields.	Automorphisms of field, fixed fields,	
		• Know the link between field theory	Automorphisms of neid, fixed fields, Galois group, F-	

and group theory.	conjugate, Frobenius map, character, linear
• Demonstrate the solvability of	independence of characters.
quadratic, cubic and quartic equations	Section C
by radicals.	Fundamental theorem of Galois theory, cyclotomic
	extensions and abelian extensions, cyclotomic
	polynomials, cyclic extension, radical extension, solution
	of quadratic, cubic and quartic equations by radicals.
	Suggested Books:
	1. Howie, J. M. (2006). Fields and Galois theory.
	London: Springer.
	2. Escofier, JP. (2001). Galois theory. New York:
	Springer.
	3. Gallian, J. A. (2013). Contemporary abstract algebra.
	(8th Ed.). Boston, MA: Brooks/Cole Cengage
	Learning.
	4. Dummit, D. S. & Foote, R. M. (2004) Abstract
	algebra (3 rd Ed.). New Jersey: Wiley.
	5. Sen, M. K., Ghosh, S., Mukhopadhyay, P.
	&Maity, S. K. (2019) Topics in abstract algebra (3rd
	Ed.). University Press.
	6. Morandi, P. J. (2003). Field and Galois theory.
	Beijing: Beijing World Pub.
	Suggested E-learning Material:
	1. Notes on Galois Theory:
	www.math.iitb.ac.in/~srg/Lecnotes/galois.pdf
	2. Lecture Notes:
	https://nptel.ac.in/courses/111101001/

Course List Learning Outcomes **Existing Syllabus Suggested Syllabus** Remark S.N. On completion of the course, the student MATH (to be Change in 1. Section A Section A Credit. generated) will be able to Curves in Plane and Space : Parameterized curves, Curves in Plane and Space: Parameterized curves, Differential Tangent vector, Arc length, Reparametrization, Reparameterization, • Compute Tangent vector, Arc length, Reparametrization, Regular Geometry Regular curves, Curvature and Torsion of smooth Curvature and Torsion of smooth curves, Curvature and Torsion of smooth curves, Frenetcurves, Frenet-Serret formulae, arbitrary speed curves of curves. Serret formulae, Osculating circle, Osculating sphere, curves, Frenet approximation of a space curve. Involutes and Evolutes, Bertrand curves, Spherical Discuss about Osculating circle, • Osculating circle, Osculating sphere, Involutes and Osculating sphere, Involutes and indicatrices, Helices. Evolutes, Bertrand curves, Spherical indicatrices, Evaluates, Bertrand curves, and Section B Helices, Intrinsic equations of space curves, Helices. Surfaces in R³: Smooth surfaces, Tangent, Normal and Fundamental theorem of space curves, Isomeries of Compute quantities of geometric Orientability. Examples of surfaces: Generalized R³, Global Properties of Curves. interest such as curvature, as well cylinder and cone, ruled surfaces, Surface of revolution, as develop a facility to compute in Section B First fundamental form, Isometries of surfaces, various specialized systems, such Surfaces in R³: Smooth surfaces, Tangents, Normals Conformal mapping of surfaces, Surface Area, Equiareal as semi geodesic coordinates or and Orientability. Examples of surfaces: Generalized maps and Theorem of Archemedes, Second fundamental ones representing asymptotic lines cylinder and cone, Ruled surfaces and Surface of form, Curvature of curves on a surface, Normal and or principal curvatures. revolution.Inverse function theorem and its Principal curvatures, Meusnier's theorem, Euler's Develop arguments in the applications, First fundamental form, Isometry of theorem, Classification of point on surface, Geometric geometric description of curves surfaces, Conformal mapping of surfaces, Surface interpretation of principal curvatures, Umbilical points. and surfaces in order to establish Area, Equiareal maps and a Theorem of Section C basic properties of geodesics. Archemedes, Second fundamental form, Curvature Gaussian and Mean curvature, Pseudo sphere, Flat of curves on a surface, Normal and Principal surfaces, Surfaces of constant mean curvature, Gaussian curvatures, Meusnier's theorem, Euler's theorem, curvature of compact surfaces, Gauss map. Geodesics: Classification of points on a surface, Geometric Definition and basic properties, Geodesic equations, interpretation of principal curvatures, Umbilical Geodesics on a surface of revolution, Clairaut's theorem, points. Geodesics as shortest paths, Geodesic coordinates, Section C

FOURTH SEMESTER

Gaussian and Mean curvature, The Pseudosphere, Geodesic curvature of a curve.
Flat surfaces, Surfaces of constant mean curvature, Suggested Text Book
Gaussian curvature of compact surfaces, Gauss map. 1. Pressley, A. (2012). <i>Elementary differential</i>
Geodesics: Definition and basic properties, Geodesic geometry. London: Springer.
equations, Geodesics on a surfaces of revolution, Suggested Reference Books:
Clairaut's theorem, Geodesics as shortest paths, 1. Carmo, M. P. (1980). Differential geometry of curves
Geodesic coordinates, Geodesic curvature of a curve, <i>and surfaces</i> . Englewood Cliffs, N.J: Prentice-Hall.
Gauss TheoremaEgregium (Statement only), Gauss 2. O'Neill, B. (2006). Elementary differential geometry.
equations, Codazzi-Mainardi equations, Gauss- London: Elsevier/Academic Press.
Bonnet Theorem (Statement only).3. Gray, A. (2000). Modern differential geometry of
Text book:curves and surfaces. FL: CRC Press.
Pressley, Elementary Differential Geometry, 4. Somasundaram, D. (2010). Differential geometry: A
Springer (Undergraduate Mathematics Series), <i>first course</i> . Harrow: Alpha Science International.
2001. Suggested E-learning material:
Reference books:
1. M. P. Do Carmo, Differential Geometry of https://pptel.ac.in/courses/111104092/
Curves and Surfaces, Prentice-Hall, Inc., 2 NOC: Curves and Surfaces
Englewood Cliffs, New Jersey, 1976.
2. A. Gray, Differential Geometry of Curves and
Surfaces, CRC Press, 1998.
3. B. O' Neill, Elementary Differential Geometry,
Academic Press, 1997.
4. C. Bär, Elementary Differential Geometry,
Cambridge University Press, 2001.
5. J. A. Thorpe, Elementary Topics in Differential
Geometry, Springer (Undergraduate Texts in
Mathematics), 1979.
6. D. Somasundaram, Differential Geometry, A
First Course, Narosa Publishing House, New
Delhi, 2005.

2.	MATH (to be	On completion of the course, the student	Section A	Section A	Change in
	generated)	will be able to	Mathematical classification of Partial Differential	Mathematical classification and Formulation of partial	Credit.
	Partial	• apply the techniques for solving	Equation, Illustrative examples of elliptic, parabolic and	differential equations, Partial Differential equation of the	
	differential	partial differential equations.	<u>hyperbolic equations. Physical examples of elliptic,</u>	first order, Lagrange's linear equation, different forms of	
	Equations	• describe the most common partial	parabolic and hyperbolic partial differential equations,	non-linear partial differential equations, Charpit's	
	Equations	differential equations that appear	Formulation of partial differential equations. Partial	method. Linear partial differential equations with	
		in problems concerning e.g. heat	Differential equation of the first order, Lagrange's	constant coefficients. Homogeneous equations, Non-	
		conduction, flow, elasticity and	linear equation, different forms of non-linear partial	homogeneous equation.	
		wave propagation	differential equations, Charpit's method. Linear	Section B	
		• solve simple first order equations	partial differential equations with constant	Partial Differential equations of second order with	
		using the method of	coefficients. Homogeneous equations, Non-	variable coefficients Monge's Methods Separation of	
		characteristics and classify second	homogeneous equation.	variables. The Wave equation (one and two	
		order equations.	Section B	dimensional) Fourier series solutions of the Wave	
		• describe, compute and analyse	Partial Differential equations of second order with	equations (homogeneous and non-homogeneous)	
		wave propagation and heat	variable coefficients, Monge's Methods, Separation	Numerical solution of the wave equation	
		conduction in mathematical terms	of variables, canonical forms, Cauchy's problem. The	Section C	
		• formulate maximum principles for	Wave equation (one and two dimensional) Fourier	Section C	
		various equations and derive	series solutions of the Wave equations	Heat equations (homogeneous and non-homogeneous),	
		consequences.	(homogeneous and non-homogeneous), Numerical	Numerical approximation of solution of standard heat	
		• evaluate and assess the results of	solution of the wave equation. Wave motion along	condition problem, Harmonic Functions and Dirichlet	
		various problems in other subjects	infinite and semi-infinite strings. Characteristics and	Problem, Green's Functions and Properties. Existence	
		based on these concepts.	d' Alembert's solution. Normal modes of Vibration	theorem by Perron's Method.	
			of a circular elastic membrane and rectangular	Suggested Text Books:	
			membrane.	1. John, F. (1991). Partial differential equations. New	
			Section C	York: Springer.	
			Heat equations (homogeneous and non-	2. Bansal, J. L., &Dhami, H. S. (2004). Differential	
			homogeneous). Numerical approximation of	equations Vol II. Jaipur: JPH.	
			solution ofstandard heat condition problem.	3. O'Neil, P. V. (2012). Advanced engineering	

Harmonic Functions and Dirichlet F Functions and Properties. Existen Perron's Method. Heat Equation Principle. Uniqueness of Solution Method. Uniqueness of Solutions of Conduction Equation.	Problem, Green's mathematics. India: Cengage Learning. ace theorem by 4. Sneddon, I. N. (1981). Elements of partial differential equations. New York MacGraw-Hill. son, Maximum Maximum ns via Energy Suggested References Books: of IVPs for Heat 1. Weinberger, H. F. (1995). A first course in partial differential equations with complex variables and
Iext BOOKS:- 1. JohnF. Partial Differential Equations, New York, 1991. 2. J. L. Bansal and H. S. Dhate Equations Vol.11, 2004, JPH, Inc. 3. P. V. 0' Neil: Advance Mathematics, Cengage Learnin 4. I. N. Sneddon: Elements of Pate Equations, Mc-Graw Hill New	 transfrom methods. New York: Dover Publications. Williams, W. E. (1980). Partial differential equations. Oxford [Eng.] : New York : Clarendon Press ; Oxford University Press Folland, G. B. (2003). Introduction to partial differential equations. New Delhi: Prentice Hall of India. Rao, K. S. (2010). Introduction to Partial differential equations. New Delhi Prestice Hall of India.
References Books:- 1. H.F. Weinberger: A First Conditional Equations, John York,1965. 2. W.E. William: Partial Difference Clarendan .Press, Oxford	DefinitionTerritice Tranformitida.5. Amaranath, T. (2009). An elementary course in partial differential equations. Sudbury, Mass: Jones and Bartlett Publishers.6. Sharma, J. N., & Singh, K. (2009). Partial differential equations for engineers and scientists., 1980.Oxford: Alpha Science International Ltd.
 3. Folland G. B. Introduction to particulations, Princeton University 4. K.SankaraRaoIntroduction Differential Equations, PHI legation 2010. 	artial differential Suggested E-learning material: v Press1996 1. Partial Differential Equation; Platform: to Partial earning Pvt Ltd 02-multivariable-calculus-fall-2007/video- lectures/lecture-15-partial-differential-
5. P Prasad and R Ravindran: Partial Differential 6. T. Amaranath : An Element Partial Differential Equation	artial Differentialequations/nal, 2011.2.Lary Course inPlatform: NPTELons, Jones & https://nptel.ac.in/courses/111103021/

			Bartlett Learning, 2009	3. Video Lectures for Partial Differential	
			7. J N Sharma and K Singh: Partial Differential	Equations; Platform: LAMAR	
			Equations for engineers and scientists.Narosa	http://www.math.lamar.edu/faculty/maesumi	
			New-Delhi, India.2014.	/PDE1.html#pdeRESOURCES	
3.	STAT (to be	After successful completion of this	Section A	Section A	Change in
	generated)	course, student will be able to	Consistency and asymptotic relative efficiency of	Consistency and asymptotic relative efficiency of	Credit.
	Inference	Apply various estimation and testing procedures to deal with real life problems	estimator, Method of MLE and its large sample	estimator, Best asymptotic normal (BAN) for one parameter Method of MLE and its large sample	
		 Understand Fisher Information, 	parameter, MLE in Pitman family and exponential of	properties.	
		Lower bounds to variance of	distribution.	Section B	
		estimators, MVUE.	Section B	Generalized Neyman- Pearson lemma, UMP tests for	
		• Understand consistency, CAN	Best critical region (BCR), Generalized Peyman	distribution with monotone likelihood ratio (MLR),	
		estimator, MLE.	Pearson lemma, UMP tests for distribution with	Unbiased tests, Similar regions and test of Neyman	
		• Understand Neyman-Pearson	monotone likelihood ratio (MLR), Unbiased tests,	structure.	
		fundamental lemma, UMP test.	Locally most powerful test, Similar regions and test of	Section C	
		• Apply Likelihood Ratio test in real	Neymann structure.	Invariance tests and UMP invariant tests, Likelihood	
		life testing problems.	Section C	ratio test. Consistency of Likelihood ratio test.	
		• Understand invariant and similar	Invariance tests and UMP invariant tests, <u>Asymptotic</u>	Asymptotic properties of likelihood ratio test.	
		test.	distribution of Likelihood ratio test (LRT) statistics,	<u>Text Books</u>	
			<u>Asymptotic distribution of log likelihood</u>	1. Ferguson, T. S. (1996). <i>A course in Large sample Theory</i> . London, Chapman and Hill.	
			<i>ratio</i> , Consistency of large sample test, Asymptotic power of large sample test. Text Book: 1. Ferguson, T.S. (1996) : A Course in Large Sample	 Goon, A. M., Gupta, M. K. & Gupta, B. D. (1973). <i>Fundamental of Statistics</i> (Vol. II), The world Press Pvt. ltd. 	
			 Theory, Chapman & Hall, London. Goon, A.M. Gupta, M.K. Dasgupta, B. (1973). An Outline of Statistical Theory, vol. 2, World Press. Reference Books: Gupta, A.D. (2008), Asymptotic Theory of 	 <u>Reference Books:</u> Gupta, A. D. (2008). Asymptotic Theory of Statistics and Probability. New York, Springer. Kale, B. K. (1999). A first course on parametric inference. Narosa Publication. 	

			 Statistics and Probability, Springer, NewYork. Kale, B.K. (1999), A First Course in Parametric Inference, Narosa, Publication. Lehmann, E.L. and Casella, G. (1998), Theory of Point Estimation, Springer, New York. Rao, C.R. (1995), Linear Statistical Inference and its Applications, Wiley, New York. Lehman, E. (1986), Theory of Point Estimation, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Lehman, E. (1986), Testing Statistical Hypotheses, John Wiley & Sons. Statistical Inference, ePATHSHALA<u>https://epgp.inflibnet.ac.in/ahl.p hp?csrno=34</u> 	
4.	STAT 502 Bayesian and Multivariate Analysis	 On the successful completion of the course, student will be able to, Find posterior distribution of a parameter. Identify the nature of the prior. Understand various types of loss functions and their nature. Use Bayesian theory to draw inferences in simple problems. Define multivariate normal distribution and understand its properties. Estimate the mean vector and covariance matrix of the multivariate normal population. 	- Suggested E-learning material: 1. Video lecture on 'Bayesian statistics without tears' https://podcasts.ox.ac.uk/bayesian- statistics-without-tears	No Change in Syllabus.

		• Test the significance of single			
		mean vector and difference in the			
		two mean vectors.			
		Perform PCA and factor analysis			
		on real data set.			
		Classify and discriminate the			
		observations in two populations.			
		Perform correlation analysis			
		between two multivariate			
		populations.			
5.	STAT 502L	On completion of this course, the student	-	Suggested E-learning Material	No Change
	Bayesian &	will be able to		1. Using R for Multivariate Analysis <u>https://little-</u>	in Syllabus
	Multivariate	• Differentiate between the nature		book-of-r-for-multivariate-	
	Analysis Lab	of prior and posterior densities by		<u>analysis.readthedocs.io/en/latest/src/multivari</u>	
		means of their plots		<u>ateanalysis.html</u>	
		• Find Bayes estimator, Bayes Risk			
		and perform Bayes testing			
		• Estimate mean vector and			
		covariance matrix of given data			
		set			
		• Perform testing of significance of			
		single mean vector and difference			
		of two mean vectors			
		• Reduce dimension of the data			
		using principal component			
		analysis and factor analysis			
		Classify and discriminate			
		observations in two or more			
		populations			
		Observe correlation between two			
	1	l	J		l.

		sets of multivariate data sets.		
6.	STAT (to be generated) Reliability and Renewal Theory	 sets of multivariate data sets. On successful completion of the course, the students will be able to: Understand the importance of validity and reliability assessment and the link between the two. Estimate the reliability function and mean time to failure for different types of systems Analyze statistical experiments leading to reliability modeling. Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. 	- Section A Concept of Reliability. Classes of Life time distributions. Evaluation of Reliability function, Shape of Reliability function. System, Reliability Evaluation : Series & Parallel system, partially redundant system, standby system with perfect switching/imperfect switching, (k,n) system, Bridge Structure. Availability theory and its molding for various configurations. Introduction to Software Reliability. Section B Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies : Age, Block, Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging. Section C Renewal Theory, Distribution of number of renewals & moments, Recurrence time & its limiting distribution. Application of Renewal Theory, Solutions of Renewal turne outping Onterinition archiber with respect to	New Course
		 Apply reliability theory to assessment of reliability in engineering design. Analyze non-repairable systems of independent components, with and without redundancy First look at what a random process is and then explain what renewal processes are. Describe, derive, and prove important theorems and formulas for renewal theory Use renewal theory to solve problems where Poisson is not a 	Section C Renewal Theory, Distribution of number of renewals & moments, Recurrence time & its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability. Text Books 1. Sinha, S. K. (1986). Reliability and life testing. New York: Wiley. 2. Gert s bakh, I. B. (2009). Reliability theory: With applications to preventive maintenance. New Delhi: Springer.	

		realistic process	3. Cox, D. R. (1982). <i>Renewal theory</i> . London: Chapman and Hall.	
			4. Lewis, E. E. (1996). <i>Introduction to reliability engineering</i> . New York, NY: Wiley.	
			Reference Books	
			1. Barlow, R. E., & Proschan, F. (1975). <i>Statistical theory of reliability and life testing</i> . New York: Holt, Rinehart and Winston.	
			2. Jardine, A.K.S. (1973). <i>Maintenance, Replacement and Reliability</i> . UK: Pitman Publication.	
			3. Medhi, J. (2009). <i>Stochastic Process</i> (3rd Ed.). New Age International, 2009.	
			Suggested E-learning material:	
			1. 2011 Lecture 17: Modules, Systems, and Reliability:	
			https://ocw.mit.edu/courses/mechanical-	
			photovoltaics-fall-2013/lecture-videos-	
			slides/2011-lecture-17-modules-systems-and-	
			reliability/	
			2. <u>Probability Theory and Applications: Lecture 40-</u>	
			Reliability of Systems:	
			https://nptel.ac.in/courses/111104079/40	
7.	MATH 516	On completion of this course, students -	Suggested E-learning material:	No Change
	Network	will be able to:	1. Critical path method (PDF)	in Syllabus.
	Analysis &	Plan and structure a project.	http://textofvideo.nptel.ac.in/112106131/lec34.	
	Goal	 Understand basic techniques for 	pdf	
	Programmin	quality improvement,	2. Project Management(Video Lecture)	
	g	 Apply the PERT & CPM techniques 	https://nptel.ac.in/courses/110104073/21	

to optimize the • Solve network shortest path, m tree, and problems. • Understand how solve problem Programming	project goals. models like the ninimum spanning maximum flow v to model and ns using Goal	
 MATH 516L Network Analysis & Implement optimiz software to solv programmin g Lab The science lea laboratory exper enhancing mastery matter, develo reasoning abili understanding of t ambiguity of developing practica understanding of science, cultivating and science learning Write efficient, well and present nume informative way. 	ourse, the student - zation methods in - ze shortest path - g tree problem, - lems etc. - urning goals of - priences include - of science subject - ping scientific - ties, increasing - he complexity and - empirical work, - al skills, increasing - the nature of - interest in science - g. - I-documented code - rical results in an -	Practical/Lab to be performed on a computer using OR (TORA, LINGO, MATLAB etc.)/Statistical packages.List of Practical is added.1. Determines the Flow of commodity in a network2. Solution of Shortest path problem as a LPP3. Shortest Path Problem using Dijkstra's algorithm4. Problem based on Minimal Spanning Tree5. Project planning (Deterministic case-CPM)6. Project planning (Probabilistic case-PERT)7. Problem based on Project management with Crashing8. Solution of Flow Shop Problem9. Solution of Job Shop Problem10. To solve Goal Programming Problem using Graphical Method11. Graphical solution of pre-emptive Goal programming13. Solution of Goal Programming Problem with simplex method

			 Text Books/ Reference Books: 1. Winston, W. L. (2009). Operations research: Applications and algorithms. Belmont, Calif: Brooks/Cole, Cengage Learning. 2. Hillier, F. S., & Lieberman, G. J. (2016). Introduction to Operations Research. Boston: McGraw-Hill. Suggested E-learning material: Optimization Toolbox https://in.mathworks.com/help/optim/index.h tml LINGO http://swmath.org/software/4942 	
9.	CS 313	On successful completion of the course -	Suggested E-learning material:	No Change
	Software	students will be able to	1. Software Engineering	
	Engineering	• Understand the system	https://nptel.ac.in/courses/106101061/	
		development lifecycle.	2. Software Engineering by Roger S. Pressman	
		• Understand the software-	http://qiau.ac.ir/teacher/files/911610/13-11-1387-	
		development process, including	<u>17-31-03.pdf</u>	
		requirements analysis, design,		
		programming, testing and		
		maintenance.		
		Model object-oriented software		
		systems.		
		• Investigate and improve the		
		specification of a software system.		
		• Specify, design and construct		
		case tools and application		
		 Dovelop and apply testing 		
		• Develop and appry testing		

		 strategies for software applications. Identify some of the main risks of software development and use. 			
		• Effectively participate in team- based activities.			
10.	CS 213	On successful completion of the course	-	Suggested E-learning material:	No Change
	Analysis of Algorithms	 Analyze the performance of various algorithms in terms of time and space. Solve recurrence relation using various methods. Compute complexity of various iterative and recursive algorithm. Understand the concept and 		 Design and Analysis of Algorithms <u>https://nptel.ac.in/courses/106101060/</u> Algorithms Specialization by Stanford University <u>https://www.coursera.org/specializations/algorith</u> <u>ms</u> Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein <u>https://mcdtu.files.wordpress.com/2017/03/introd</u> 	
		 design algorithm using data structures including threaded binary tree, B-Tree and hashing techniques. Understand numerous algorithm design techniques including divide& conquer, greedy, dynamic programming, backtracking and branch& bound. Choose appropriate algorithm design techniques for solving real world problems. Understand how the choice of the algorithm design methods impact 		<u>uction-to-algorithms-3rd-edition-sep-2010.pdf</u>	

	the performance of programs		

THIRD/FOURTH SEMESTER (Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 501	On completion of the course, students	-	Suggested E-learning material	No change
	Advanced	will be able to,		1. Normed space, Banach space and Hilbert spaces	in the
	Analysis	• Explain when Normed space become		and its properties;	syllabus
	(Analysis on	Banach space.		Platform: <u>https://nptel.ac.in/courses/111105037/</u>	
	Abstract	• Define the Hilbert spaces.			
	Spaces)	• Define multi linear mappings.			
		• Check whether the function is			
		bounded or not?			
		• What is directional derivative?			
		• Explain the difference between			
		partial derivative and directional			
		derivative.			
		• Tell about the Lipschitz's constant			
		and conditions			
		• Related the analysis and differential			
		equation			
2.	MATH 503	On completion of the course, students	-	Suggested E-learning material	No change
	Advanced	will be able to,		1. Normed space, Banach space and Hilbert spaces	in the
	Functional	• Check whether a sequence of		and its properties;	syllabus
	Analysis	operators convergence or		Platform: <u>https://nptel.ac.in/courses/111105037/</u>	
		divergences?			
		• Explain how continuous function on			
		a closed and bounded interval can be			

3.	MATH 504 Analytic and Algebraic Number Theory	uniformly approximated on that interval by polynomials to any degree of accuracy.Explain how you will apply the Banach fixed point theorem.Relate the fixed point with solution of differential and Integral equation.Check the spectral properties of bounded linear operatorsCheck whether the operator is compact or not?Explain and use of the properties of compact linear operators.On completion of the course, students will be able to,Demonstrate the knowledge of arithmetic functions and their property.Know the prime number theorem and its analytic proof.UnderstandUnderstandbasic conceptsConceptsOn completion of basic 		No change in the syllabus
4	MATHEIO	 property. Know the prime number theorem and its analytic proof. Understand basic concepts of algebraic number theory such as conjugates, discriminants, algebraic integers, integral basis, norms and traces. Understand prime factorization of ideal and unique factorization. Know some important theorem in algebraic number theory. 		Nasharas
4.	MATH 510	On completion of the course, students -	Suggested E-learning material	No change

Integ	gral	will be able to,	1. Open course in Integral equations, calculus of	in the
Equa	tions	• Acquire ability to recognize	variation and its applications (all Topics)	syllabus
and C	Calculus	difference between Volterra and	https://nptel.ac.in/courses/111107103/	
of Va	ariations	Fredholm Integral Equations, First	2. Volterra and Fredholm Integral Equations	
		kind and Second kind, homogeneous	http://staff.ul.ie/mitchells/Final_notes.pdf	
		and inhomogeneous.	3. Green's Functions	
		• Be thorough with different types of	http://www.maths.manchester.ac.uk/~wparnell/	
		integral equations and apply these	<u>MT34032/34032_IntEquns.pdf</u>	
		methods to solve Integral Equations.	4. Neumann series, resolvent kernels and variational	
		• Students will have much better and	problem	
		deeper understanding of the	https://swayam.gov.in/courses/4824-july-2018-	
		fundamental concepts of the space of	integral-equations-calculus-of-variations-and-its-	
		admissible variations and concepts of	<u>applicati</u>	
		a weak and a strong relative	5. Open course in integral equations:	
		minimum of an integral.	https://ocw.mit.edu/courses/mathematics/18-	
		• Solve isoperimetric problems of	<u>307-integral-equations-spring-2006/</u>	
		standard type.		
		• Solve simple initial and boundary		
		value problems by using several		
		variable calculus.		
5. MAT	H 517	On completion of the course, students	- Suggested E-learning material:	No change
Num	lber	will be able to,	1. Lecture Notes on Number Theory:	in the
Theo	ory and	• Understand the basic concepts of	https://nptel.ac.in/courses/111103020/	syllabus
Cryp	tograph	number theorem and their	2. Video Lecture on Number Theory:	
У		applications in cryptography.	https://bit.ly/2ToTdjZ	
		• Know the need of security of digital	3. Video Lecture on Cryptography:	
		data.	https://nptel.ac.in/courses/106105031/	
		• Demonstrate the application of		
		mathematics in computer science.		
		• Appreciate the historical		

	cryptosystems and the development			
	of modern cryptography.			
	• Demonstrate the knowledge of			
	mathematics behind RSA			
	cryptosystem, ElGamal			
	Cryptosystem and secrete sharing			
	schemes.			
6. MATH	527 On completion of the course, students	-	Suggested E-learning material:	No change
Tensor	will be able to,		1. NOC: Differential Calculus in Several Variables:	in the
Analys	is and • Discuss different kinds of surfaces,		https://nptel.ac.in/courses/111104092/	syllabus
Geome	etry of connection and covariant derivatives.		2. NOC: Multivariable Calculus:	
Manife	• Understand the concepts of manifold		https://nptel.ac.in/courses/111107108/	
	and illustrate some examples of		3. NOC: Calculus of One Real Variable:	
	manifolds.		https://nptel.ac.in/courses/109104124/	
	• Understand the Ricci identity and			
	enable to use it in proving different			
	theorems.			
	• Define and illustrate some examples			
	of Lie group.			
7. MATH	529 On completion of the course, students	-	Suggested E-learning material:	No change
Theory	v of will be able to,		1. Game Theory: Lecture	in the
Games	Understand all the basic concepts		notes(PDF) <u>https://ocw.mit.edu/courses/econo</u>	syllabus
	and results of game theory.		mics/14-126-game-theory-spring-2016/	
	Understand terms like Nash		2. Game Theory and Economics: Lecture	
	equilibrium, the extensive form		notes(PDF) <u>https://nptel.ac.in/courses/1091030</u>	
	(which computer scientists call game		<u>21/</u>	
	trees), Bayesian games (modelling			
	things like auctions), repeated and			
	dynamic games.			
	Recognize and model strategic			

	 situations, to predict when and how your actions will influence the decisions of others and to exploit strategic situations for your own benefit. Understand the game theoretic tools for modelling and solving problems in operations management. 		
8. MATH 530 Viscous Fluid Dynamics	On completion of the course, students - will be able to, - • Understand the fundamental concepts of fluid dynamics. - • Derive the fundamental equations governing the flow of a viscous fluid. - • Demonstrate the analytical solutions of Navier-Stokes equations by making certain assumptions for certain geometries. - • Identify, formulate and solve engineering problems. -	Suggested E-learning material 1. Viscous Fluid Flow, Platform: The University of Manchester; http://www.maths.man.ac.uk/~mheil/Lectures/ Fluids/index.html 2. Fluid Mechanics, Platform: nptel; https://nptel.ac.in/courses/112105171/ 3. Introduction to Fluid Mechanics and Fluid Engineering, Platform: FreeVideoLectures; https://freevideolectures.com/course/3513/intro duction-to-fluid-mechanics-and-fluid- engineering/28	No change in the syllabus
9. MATH 507 Financial Mathematics	 On completion of the course, students will be able to, Understand financial analysis and planning. Know the cost of capital, capital structure and dividend policies. Apply technique of Goal Programming to profit planning and 		No change in the syllabus

		 financial budgeting. Make financing decision onproblem of determining optimal capital structure Understand the concept of leasing, debt management, analysis of commitment of funds and risk of cash insolvency. 			
10.	MATH 513	On completion of the course, students	-	-	No change
	Marketing	will be able to,			in the
	Managemen	• Understand the concept of marketing			syllabus
	t	and its role in business and public			
		organization.			
		Understand the need for scientific			
		marketing analysis.			
		• To uses Mathematical models in			
		Marketing and understand their			
		limitations.			
		Understand the concept of			
		promotional decisions in the			
		presence of competition.			
		• Use game theory models for			
		promotional effort.			
		Make channels of distribution and			
		transportation decision.			

generated) will be able to, Basic concept of Fuzzy Logic. Introduction to fuzzy set, elective Fuzzy Decide the difference between crips set and fuzzy set theory. Decide the difference between crips set and fuzzy set theory. Elective functions, type of fuzzy sets, Erx presentations of fuzzy sets, Erx presentations of fuzzy sets. Union. Intersection, complement, combinations of operations, fuzzy fuzzy cartesian product and composition. They press fuzzy cartesian product and composition. Claps versus fuzzy relations, fuzzy fuzzy inference systems. Euzy fuzzy inference systems. Euzy inference systems. Eutities fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Eutities fuzzy inference infigure fuzzy inference infigure systems. Eutities fuzzy inference systems. Eutities fuzzy inference infigure fuzzy inference infigure set to a system in the field of Operations Research. Computer Science and Engineering. Euzy inference systems. Euzy inference infigure infig	11. MATH (to be	On completion of the course, students	-	Section A	New
Fuzzy Logic and Belief - Learn crips and fuzzy set theory. membership function, Various forms of membership function, type of fuzzy sets, LR. representations of fuzzy sets, UR. representations of fuzzy relations, fuzzy competins, fuzzy relation, fuzzy catesian product and composition, Crips versus fuzzy relations, fuzzy relation, fuzzy numbers, fuzzy function, fuzzy	generated)	will be able to,		Basic concept of Fuzzy Logic: Introduction to fuzzy set,	elective
Logic and Belief Decide the difference between crips set and fuzzy set theory. Make calculation on fuzy set theory. Make calculation on fuzy set theory. Recognize fuzzy logic mombership function. Recognize fuzzy logic fuzzy logic mombership function. Recognize fuzzy logic fuzzy logic mombership function. Recognize fuzzy logic approach to problems arising in the field of Operations. Fuzzy logic approach to problems arising in the field of Operations Research. Computer Science and Engineering. Formulate logical expressions, fuzzy inference relation of trazy function. The science systems. Ottize fuzzy logic approach to problems arising in the field of Operations Research. Computer Science and Engineering. Formulate logical expressions, fuzzy interval analysis in arithmetic operations on fuzzy function. Introduction to fuzzy set set travel and integration of fuzzy set set avariety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, fuzzy runt qualifier, fuzzy runt mut tables, a fuzzy set set avariety of fuzzy set availes logic, logic variable, logic function, fuzzy runt qualifier, fuzzy runt qualifier,	Fuzzy	• Learn crips and fuzzy set theory.		membership function, Various forms of membership	
Belief and fuzzy set theory. fuzzy sets, properties of fuzzy sets (support, cardinality, alpha-cut set, convexity).Operations on Fuzzy logic membership function. Recognize fuzzy logic fuzzy logic fuzzy logic membership function. Fuzzy sets. Union, Intersection, complement, combinations of operations. Fuzzy cartesian product and composition, Crisp versus fuzzy relations, fuzzy membership function and fuzzy inference systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Fuzzy Relations. fuzzy equivalence relations, fuzzy corresian product and composition, Crisp versus fuzzy rolations, fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios fuzzy function, type of fuzzy function, fuzzy curema of function, differentiation and integration of fuzzy function, fuzzy function to fuzzy function, differentiation and integration of fuzzy sepression, fuzzy function, differentiation and integration of fuzzy function, upper difference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy expression, fuzzy function rules. Fuzzy function rules. Fuzzy function fuzzy function rules. Fuzzy function fuzzy function rules. Fuzzy fuzzy fuzzy fuzzy function rules. Fuzzy fuzzy fuzzy fuzzy fuzzy fuzzy fuzzy fuzz	Logic and	• Decide the difference between crips set		functions, type of fuzzy sets, LR- representations of	
Theory • Make calculation on fuzy set theory. • Recognize fuzzy logic membership function. • Recognize fuzzy logic fuzzy logic membership function. • Recognize fuzzy logic fuzzy logic membership function. • Recognize fuzzy logic fuzzy logic membership function. • Make applications on Fuzzy logic membership function and fuzzy inference systems. • Make applications on Fuzzy logic membership function and fuzzy inference systems. • Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Fngineering. • Formulate logical expressions, fuzzy indication through the field of Operations Research, Computer Science and Fngineering. • Formulate logical expressions, fuzzy indication to fuzzy function, fuzzy extrema of function, differentiation and integration of fuzzy function in fuzzy extrema of function, trut bables, future dualtifier, fuzzy function in fuzzy expression, fuzzy indication future dualtifier, fuzzy function, fuzzy expression, fuzzy income the dualting of fuzzy function, fuzzy extrema of function, trut bables, future dualtifier, fuzzy function in fuzzy expression, fuzzy income the dualting of fuzzy function, fuzzy expression, fuzzy income the dualtifier, fuzzy function, fuzzy expression, fuzzy income fuzzy function, fuzzy expression, fuzzy income fuzzy income the dualtifier, fuzzy function in fuzzy income fuzzy i	Belief	and fuzzy set theory.		fuzzy sets, properties of fuzzy sets (support,	
 Recognize fuzzy logic membership function. Recognize fuzzy logic muzzy inference systems Make applications on Fuzzy logic many fuzzy inference systems. Make applications on Fuzzy logic approach to problems arising in the field of Operations. Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic approach to problems related to real scenarios Apply defuzzification methods. Fuzzy Numbers: Fuzzy Function: Introduction to fuzzy function, type of fuzzy function, fuzzy extension of fuzzy provided to problems arising in the field of the systems on fuzzy problems arising in the field of problems related to real scenarios Apply defuzzification methods. 	Theory	• Make calculation on fuzy set theory.		cardinality, alpha-cut set, convexity).Operations on	
 function. Recognize fuzzy logic fuzzy inference systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. 		• Recognize fuzzy logic membership		Fuzzy sets: Union, Intersection, complement,	
 Recognize fuzzy logic fuzzy inference systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic by a variety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic Classical logic, logic variable, logic fuzzy inference rule, Linguistic variables. Prezzy truth qualifier-fuzzy inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy rule, fuzzy rule, fuzzy inplication rules. Fuzzy Expression, fuzzy rule, fuzzy		function.		combinations of operations. Fuzzy extension principle,	
 systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables, Predicate logic, Quantifier, fuzzy predicate, fuzzy modifier, fuzzy runt tables, fuzzy function, truth tables, tautology and inference rule, Linguistic variables, fuzzy mapping rules, fuzzy modifier, fuzzy runt qualifier. Fuzzy Spectrul to rules. Fuzzy Functifier, fuzzy function, truth tables, tautology and inference rule, Linguistic variables, fuzzy runt qualifier. Fuzzy function, ruth tables, tautology and inference rule, Linguistic variables, fuzzy mapping rules, fuzzy modifier, fuzzy mapping rules, fuzzy modifier, fuzzy mapping rules, fuzzy modifier, fuzzy mapping rules, fuzzy modifier, fuzzy mapping rules, fuzzy mapping rules, fuzzy modifier, fuzzy linear programming, fuzzy ranking method, fuzzy linear programming, fuzzy 		• Recognize fuzzy logic fuzzy inference		Fuzzy Relations: fuzzy cartesian product and	
 Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy ruth qualifier.Fuzzy if-then rules: Basics of fuzzy ruth qualifier.Fuzzy introduction making, fuzzy introduction, making method, fuzzy inear programming, fuzzy in the rules. 		systems		composition, Crisp versus fuzzy relations, binary fuzzy	
 membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy function, fuzzy function, fuzzy function, fuzzy strema of function, differentiation and integration of fuzzy runtion, fuzzy strema of function, differentiation and integration of fuzzy logic rules, fuzzy logic approach for the strength of the streng		• Make applications on Fuzzy logic		relation, fuzzy equivalence relations, fuzzy	
 inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. 		membership function and fuzzy		compatibility relations, fuzzy ordering relations. Fuzzy	
 Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy predicate, fuzzy modifier, fuzzy rund tauges, fuzzy rund tauges, fuzzy rund fuzzy rund tauges, fuz		inference systems.		graphs, Fuzzy morphism (homomorphism), Fuzzy	
 problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy predicate, fuzzy ruth qualifier.Fuzzy if-then rules: Basics of fuzzy ruth qualifier.Fuzzy if-then rules: Basics of fuzzy ruth qualifier.Fuzzy introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy 		• Utilize fuzzy logic approach to		relation equations.Fuzzy Numbers: Definitions and	
OperationsResearch, Computer Science and Engineering.triangular and trapezoidal types, Arithmetic operations on fuzzy numbers. Fuzzy Function: Introduction to fuzzy function, type of fuzzy function, fuzzy extrema of function, differentiation and integration of fuzzy function.• Apply defuzzification methods.Section B• Apply defuzzification methods.Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy expression, fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy		problems arising in the field of		types of fuzzy numbers, interval analysis in arithmetic,	
Science and Engineering. on fuzzy numbers. Fuzzy Function: Introduction to Formulate logical expressions, fuzzy fuzzy function, type of fuzzy function, fuzzy extrema of logic to solve a variety of problems function, differentiation and integration of fuzzy related to real scenarios function, differentiation and integration of fuzzy • Apply defuzzification methods. Section B Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy rules, fuzzy linear programming, fuzzy rulezy		Operations Research, Computer		triangular and trapezoidal types, Arithmetic operations	
 Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. The problems of the problems related to real scenarios Apply defuzzification methods. The problems related to real scenarios Apply defuzzification methods. The problems related to real scenarios Apply defuzzification methods. The problems related to real scenarios Apply defuzzification methods. The problems related to real scenarios The problems related to real scenarios Apply defuzzification methods. The problems related to real scenarios The problems related to real		Science and Engineering.		on fuzzy numbers. Fuzzy Function: Introduction to	
logic to solve a variety of problems related to real scenarios function, differentiation and integration of fuzzy function. • Apply defuzzification methods. Section B • Linguistic variables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy		• Formulate logical expressions, fuzzy		fuzzy function, type of fuzzy function, fuzzy extrema of	
related to real scenarios function. • Apply defuzzification methods. Section B • Linguistic Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy		logic to solve a variety of problems		function, differentiation and integration of fuzzy	
 Apply defuzzification methods. Apply defuzzification methods. Fuzzy Logic: Classical logic, logic variable, logic function, truth tables, tautology and inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy inference rule, Linguistic variables. Predicate logic, Quantifier, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy 		related to real scenarios		function.	
Fuzzy Logic: Classical logic, logic variable, logicfunction, truth tables, tautology and inference rule,Linguistic variables. Predicate logic, Quantifier, fuzzyexpression, operators in fuzzy expression, fuzzypredicate, fuzzy modifier, fuzzy truth qualifier.Fuzzyif-then rules: Basics of fuzzy rules, fuzzy mappingrules, fuzzy implication rules.Fuzzy Decision Making:Introduction, multistage decision making, fuzzyranking method, fuzzy linear programming, fuzzy		• Apply defuzzification methods.		Section B	
Image: state in the state in				Fuzzy Logic: Classical logic, logic variable, logic	
Linguistic variables. Predicate logic, Quantifier, fuzzy expression, operators in fuzzy expression, fuzzy predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy				function, truth tables, tautology and inference rule,	
expression, operators in fuzzy expression, fuzzypredicate, fuzzy modifier, fuzzy truth qualifier.Fuzzyif-then rules: Basics of fuzzy rules, fuzzy mappingrules, fuzzy implication rules.Fuzzy Decision Making:Introduction, multistage decision making, fuzzyranking method, fuzzy linear programming, fuzzy				Linguistic variables. Predicate logic, Quantifier, fuzzy	
Image: state of the state of				expression, operators in fuzzy expression, fuzzy	
if-then rules: Basics of fuzzy rules, fuzzy mapping rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy				predicate, fuzzy modifier, fuzzy truth qualifier.Fuzzy	
rules, fuzzy implication rules.Fuzzy Decision Making: Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy				if-then rules: Basics of fuzzy rules, fuzzy mapping	
Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy				rules, fuzzy implication rules.Fuzzy Decision Making:	
ranking method, fuzzy linear programming, fuzzy				Introduction, multistage decision making, fuzzy	
				ranking method, fuzzy linear programming, fuzzy	

transportation problemsFuzzy System: Introduction to fuzzy system.Defuzzification methods: centre of area (or centre of gravity or centroid), centre of maxima, mean of maxima.Fuzzy controllers: an overview of fuzzy controller.Fuzzy Systems and Neural Network: Introduction to neural network, fuzzy neural networks.

Section C

Probability, Uncertainty and Fuzzy Measures: Probability verses Possibility, Fuzzy event, Crisp probability of fuzzy event and fuzzy probability of fuzzy event, Level of uncertainty, Measure of fuzziness: (i) using Shannon's entropy formula and (ii) using metric distance.

Belief Theory: Evidence Theory- Mathematical Theory of evidence, Introduction to Shafer's Belief Theory, Belief representation: mass of belief, belief measure, plausibility measure, properties of belief functionrelation between belief and plausibility measure, Dempster's Rule of Combination, Applications of Fuzzy logic and fuzzy set theory in Operations Research, Computer Science and Engineering fields.

Suggested Text Books:

- 1. Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag
- 2. Klir, G. J., & Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India.

Suggested Reference Books:

1. Klir, G. J., & Folger, T. A. (2010). Fuzzy sets,

		 uncertainity and information. New Delhi: PHI Learning Private Ltd. Yen, J., &Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. Nguyen, H. T., & Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman & Hall/CRC. Suggested E-learning material: Introduction to Fuzzy Logic(Videos) https://nptel.ac.in/courses/106105173/2 	
		rces/slides/FL-01%20Introduction.pdf	
12. MATH (to be	On successful completion of this course	Section A N	New
generated)	students will be able to,	Communication channels, maximum likelihood e	elective
Coaing	Understand the need of coding theory	decoding, Hamming distance, minimum distance decoding distance of a code finite fields structure of	
incory	 Appreciate the applications of 	finite fields, minimal polynomial, linear codes.	
	abstract and linear algebra in	Hamming weight, bases of linear codes, generator	
	coding theory.	matrix and parity check matrix, encoding and decoding	
	• Find the generator and parity	of linear codes, syndrome decoding.	
	check matrix of linear codes.	Section B	
	• Understand the main coding	The coding theory problem, lower bounds, Hamming	

theory problem	bounds and perfect codes, singleton bound and MDS
 Derive classical bounds of codes 	codes, nonlinear codes, Reed-Muller codes, subfields
and the distance of the code	codes
 Understand cyclic codes and their 	Section C
decoding	Cyclic codes: definitions generator polynomials
uccountg.	generator and parity check matrices decoding of cyclic
	codes Burst-error-correcting codes BCH codes:
	definitions, parameters of BCH codes, Decoding of
	BCH codes Reed-Solomon codes, generalized Reed-
	Solomon codes. Goppa codes
	Suggested Text Book:
	1. Ling, S., & Xing, C. (2004). Coding Theory: A first
	<i>Course.</i> Cambridge: Cambridge University
	Press.
	Suggested Reference Books:
	1. MacWilliams, F. J., & Sloane, N. J. A. (2007). <i>The</i>
	theory of error-correcting codes. Amsterdam:
	North-Holland.
	2. Peterson, W. W., & Weldon, E. J. (2008). Error-
	correcting codes. (2 nd Ed.). Cambridge, Mass: MIT
	Press.
	3. Berlekamp, E. R. (2015). Algebraic coding theory.
	(Algebraic Coding Theory.) Singapore: World
	Scientific.
	4. Huffman, W. C., &Pless, V. (2010). Fundamentals
	of error-correcting codes. Cambridge: Cambridge
	Univ. Press.
	5. Hill, R. (2001). A first course in coding theory.
	Oxford: Clarendon Press.
	6. Rhee, M. Y. (1989). <i>Error-correcting coding theory</i> .

	Singapore: McGraw-Hill.	
	Suggested E-learning Material:	
	1. Online Course on Coding	
	Theory:https://onlinecourses.nptel.ac.in/noc17	
	_ee07	
	2. Lecture Notes:	
	https://ocw.mit.edu/courses/electrical-	
	engineering-and-computer-science/6-895-	
	essential-coding-theory-fall-2004/	
13. MATH (to be On successful completion of this course	Section A	New
generated) students will be able to:	Metrics space, Complete metric space, Convergence,	elective
Fixed Point • Understand various concepts in	Cauchy sequence and Completeness, Various concept	
Theory metric spaces such as	in metric space, Normed linear space, Banach space,	
completeness.	normed space and Hilbert space, open mapping	
Demonstrate standard examples	theorem and Closed graph theorem, linear operator.	
of metric spaces and prove simple	Section B	
results related to them.	Lipschitz mapings, expansive and Nonexpansive	
Understand the proof of open	Mappings, contractive and contraction mappings,	
mapping theorem and Closed	Upper and lower semi continuity of maps, contractive	
graph theorem.	and nonexpansive multivalued maps, Banach's	
Check the conditions for	contraction principle, Fixed point theorem of	
expansive and Nonexpansive	Schauder's and Kirk, Tarsiki's Fixed point theorem.	
Mappings, contractive and	Section C	
contraction mappings.	Banach Fixed point theorem for multivalued maps,	
Understand standard fixed-point	Generalized Schauder Fixed point theorem. Existence of	
theorems.	solutions of ordinary equations and systems of linear	
• To present the basic ideas of the	equations in several unknowns, applications in the	
theory, and illustrate them with a	theory of differential and integral equations.	
wealth of examples and	Suggested Books:	
	1. Zeidler, E. (2000). Nonlinear functional analysis	

	applications in differential and	and its applications: Vol 1. New York: Springer.	
	integral equations.	2. Khamsi, M. A., & Kirk, W. A. (2001). An	
		introduction to metric spaces and fixed point theory.	
		New York: John Wiley & Sons.	
		3. Smart, D. R. (1980). Fixed point theorems.	
		Cambridge: Cambridge University Press.	
		4. Istra tescu, V. I. (1981). Fixed point theory: An	
		introduction. Dordrecht, Holland: D. Reidel Pub.	
		5. Agarwal, R. P., Meehan, M., &O'Regan, D.	
		(2009). Fixed point theory and applications.	
		Cambridge, UK: Cambridge University Press.	
		F-Resources	
		1 National Programme for Technology Enhanced	
		Learning (NPTEL)	
		https://nptel.ac.in/courses/111105037/	
14	. MATH (to be On successful completion of this course -	Section A	New
14	. MATH (to be On successful completion of this course - generated) students will be able to,	Section A Introduction to Dynamical Systems: Background and	New Elective
14	 MATH (to be On successful completion of this course - students will be able to, An • Describe the main features of 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant	New Elective
14	 MATH (to be On successful completion of this course generated) An • Describe the main features of dynamical systems and their 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets.	New Elective
14	MATH (to be generated)On successful completion of this course students will be able to,An• Describe the main features of dynamical systems and their realisation as systems of ordinary	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental	New Elective
14	 MATH (to be generated) An • Describe the main features of dynamical systems and their to Dynamical realisation as systems of ordinary Systems differential equations. 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a	New Elective
14	 MATH (to be generated) An • Describe the main features of dynamical systems and their to Dynamical realisation as systems of ordinary Systems Identify fixed points of simple 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold	New Elective
14	 MATH (to be generated) An • Describe the main features of dynamical systems and their to Dynamical realisation as systems of ordinary differential equations. Identify fixed points of simple dynamical systems, and study the 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and	New Elective
14	 MATH (to be generated) An Describe the main features of dynamical systems and their realisation as systems of ordinary differential equations. Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers.	New Elective
14	 MATH (to be generated) An Describe the main features of dynamical systems and their realisation as systems of ordinary differential equations. Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss 	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B	New Elective
14	MATH (to be generated)On successful completion of this course students will be able to,-An• Describe the main features of dynamical systems and their realisation as systems of ordinary Systems-Systemsdifferential equations• Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems	New Elective
14	MATH (to be generated)On successful completion of this course students will be able to,-An• Describe the main features of dynamical systems and their realisation as systems of ordinary differential equationsSystems• Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability• Use a range of specialised• Use a range of specialised-	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems and global existence theorem, Limit sets and Attractors,	New Elective
14	MATH (to be generated)On successful completion of this course students will be able to,An• Describe the main features of dynamical systems and their realisation as systems of ordinary SystemsSystems• Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability.• Use a range of specialised analytical techniques which are	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems and global existence theorem, Limit sets and Attractors, Periodic orbits, Limit Cycles, and Seperatrix cycles, the	New Elective
14	MATH (to be generated) On successful completion of this course students will be able to, - An • Describe the main features of dynamical systems and their realisation as systems of ordinary differential equations. - Systems • Identify fixed points of simple dynamical systems, and study the local dynamics around these fixed points, in particular to discuss their stability. • Use a range of specialised analytical techniques which are required in the study of dynamical	Section A Introduction to Dynamical Systems: Background and examples, dynamical systems, attractors and invariant sets. Non-linear Systems-local analysis: the fundamental existence-uniqueness theorem, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem, Stability and Liapunov functions, Saddles, Nodes, Foci, and Centers. Section B Non-linear Systems-global analysis: Dynamical systems and global existence theorem, Limit sets and Attractors, Periodic orbits, Limit Cycles, and Seperatrix cycles, the Poincare map, the stable manifold theorem for periodic	New Elective

		Describe dynamical systems	LineardSystems, Bendixon's Criteria.	
		geometrically and represent them	Section C	
		graphically via phase plane	Discrete dynamical systems: finite dimensional maps,	
		analysis.	limit sets, Stability, Invariant manifolds, Runge-Kutta	
		Find fixed points and period	methods: the framework, linear decay, Lipschitz	
		orbits of discrete dynamical	conditions, Dissipative systems, Generalized	
		systems, and find their stability.	dissipative systems, Gradient system.	
		• Do graphical analysis of 1D	Suggested Books:	
		discrete dynamical systems.	1. Perko, L. (2009). Differential equations and	
		Understand the basic properties of	<i>dynamical systems</i> . (3 rd Ed.). New York, NY:	
		a chaotic dynamical system.	Springer.	
			2. Stuart, A. M., & Humphries, A. R. (1998).	
			Dynamical systems and numerical analysis.	
			Cambridge: Cambridge University Press.	
			3. Lynch, S. (2014). <i>Dynamical systems with</i>	
			applications using MATLAB. (2 nd Ed.). Cham:	
			Birkhäuser.	
15	MATH (to bo	On completion of the course, the student	Soction A	Now
10.	(to be	will be able to	Continuous population Models for single species: Basic	oloctivo
	Bio	 model the single species and two 	concents Exponential growth model formulation	elective
	Mathematics	species systems	solution interpretation and limitations Compensation	
	iviatile inatics	• study the stability of these systems	and depensation Logistic growth model Continuous	
		 Apply harvesting of the species 	Growth Models Insect out break Model: Spruce	
		 to model epidemics and analyse the 	Budworm, Delay models, Linear Analysis of Delay	
		dynamics	Population Models: Periodic solutions. Harvesting a	
		a y hannes	single Natural Population.	
			Section B	
			Continuous Models for interacting	
			Population:Interaction between species: two species	
			models, definition of stability, community matrix	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	

	approach, Qualitative behavior of the community			
	matrix, Competition: Lotka-Volterra models, Extension			
	to Lotka-Volterra models, Competition in field			
	experiments, Competition for space, Models for			
	Mutualism. Predator-Prey interaction: Lotka-Volterra			
	Models, dynamic of the simple Lotka-Volterra models,			
	Role of density dependent in the Prey, Classic			
	laboratory experiment on predator, predation in natural			
	system. Some predator-prey models.			
	Section C			
	Mathematical modeling of epidemics: Basic concepts.			
	Simple epidemic model, formulation, solution,			
	interpretation, and limitations. General epidemic			
	model, formulation, solution, interpretation, and			
	limitations			
	Suggested Text Books:			
	1. Murray, J. D. (2013). <i>Mathematical Biology</i> . Berlin:			
	Springer Berlin.			
	2. Freedman, H. I. (1987). Deterministic			
	mathematical models in population ecology. (2^{nd})			
	Ed.). Edmonton, Alta., Canada: HIFR			
	Consulting.			
	Suggested Reference Books:			
	1. Hastings, A. (2010). Population biology. New			
	York: Springer.			
	2. Meerschaert, M. M. (2013). Mathematical			
	<i>modeling.</i> (4 th Ed.). Amsterdam: Elsevier			
	Academic Press.			
	3. Meyer, W. J. (1984). Concepts of mathematical			
	modeling. New York, N.Y.			
	O / /			
			 May, R. (1976). Theoretical ecology. Principles and applications. United States. Bailey, N. T. J., & Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. 	
-----	-------------	--	--	----------
			1 NDTEL	
			https://pptel.ac.in/courses/102101003/ and	
			https://nptel.ac.in/courses/102101003/#	
			2. Biomathematics Lectures - UBC Zoology:	
			www.zoology.ubc.ca/~bio301/Bio301/Lectures	
			.html	
16	MATH (to be	On completion of the course, the student	Section A	New
10.	generated)	will be able to,	Homotopy, Straight line homotopy, Null homotopy.	elective
	Algebraic	Generate original solutions to a	Contractible spaces and Homotopy type. Retract,	
	Topology	variety of mathematical problems	Deformation Retract and Strong Deformation Retract.	
	1 00	related to the fundamental group	No-Retraction theorem. Fundamental Group and its	
		and covering spaces.	properties. The Degree map, path homotopy, homotopy	
		Recall all definitions and theorems	class. Simply connected spaces.	
		in this course and use them to		
		construct original proofs and/or	Section B	
		counterexamples, even on	Calculation of Fundamental Groups of Circle, The	
		demand (e.g. in exams or	Cylinder, The Torus, the Punctured Plane And the n-	
		discussions).	sphere S ⁿ . Brouwer's Fixed-Point Theorem for the	
		Use algebraic invariants of	Discs, The Fundamental Theorem of Algebra. Covering	
		topological spaces to distinguish	projections, Properties of covering projection.	
		spaces which otherwise seem		
		similar.	Section C	
		Apply computational algorithms	The Path Lifting Property, Homotopy Lifting Property,	
			Applications of Homotopy Lifting Theorem, The	

to compute algebraic invaria simple topological spaces.	nts of Monodromy Theorem. The Right Action of the fundamental group. Lifting of an arbitrary map. Lifting theorem. Covering homomorphism. Group of Deck transformation. Universal covering space, The Covering theorem. Borsuk-Ulam theorem.	
	 Suggested Text books: 1. Deo, Satya. 2003. Algebraic topology: a primer. New Delhi: Hindustan Book Agency. 2. Munkres, J. R. (1978). Topology, a first course. New Delhi: Prentice-Hall of India. Suggested Reference books: 1. Singh, T. B. (2013). Elements of topology. CRC Press. 2. Hatcher, Allen. 2002. Algebraic topology. New York: Cambridge University Press. 3. Bredon, Glen E. 2006. Topology and geometry. New York: Springer. Suggested E-learning material 1. Algebraic Topology; Platform: NPTEL https://nptel.ac.in/courses/111101002/ 	
 17. MATH (to be generated) Combinatori al Optimization Image: A state of the course, the second sec	udent-Section Aof norCombinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory - Matchings and alternating paths-Tutte-Berge formula- Maximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity.	New elective

programs, and identify when a problem can be viewed in terms of various "standard" combinatorial optimization problems; understand the mathematical concepts underlying these problems and their solutions;

- solve combinatorial optimization problems using suitable algorithms
- analyze the performance of simple algorithms, understand and interpret computational complexity, and reduce one problem to another.

Single Source Shortest path algorithms–Bellman Ford algorithm, all pair shortest path algorithms – Floyd Warshall algorithm.

Section B

Algorithmic Perspective to Simplex Method: Introduction to Linear Optimization, Equivalence of optimization and separation, LP Formulation, Geometry of Linear Programs, Theory of Simplex Algorithm, Geometric interpretation of Degeneracy, Avoiding cycles, Methods for obtaining initial Basic Feasible Solutions, Linear Programming formulations of shortest path problem.

Section C

Integer Programing: Integrality gap, Branch and Bound algorithm, Cutting-plane algorithm, Applications of these algorithms on Travelling Salesman Problem Primal-Dual Algorithms: Interpretation of Dual, Optimality conditions for primal and dual, primal-dual algorithms based on complementary slackness, Primaldual algorithms for shortest path problem, vertex cover and set cover.

Suggested Text Books:

- Papadimitriou, C. H., &Steiglitz, K. (2006). *Combinatorial optimization: Algorithms and complexity*. New Delhi: Prentice-Hall of India.
 Hillier, F. S., & Lieberman, G. J. (1995). *Introduction to mathematical programming; 2nd ed*. New York: McGraw-Hill.
 Cook W. L. (2011). *Combinatorial optimization*
 - 3. Cook, W. J. (2011). *Combinatorial optimization*. New York: Wiley.

Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 Image: Suggested E-learning material Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF) Image: Suggested E-learning material Image: Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PD			 Suggested References Books: 1. Lange, K. (2004). Optimization. New York: Springer. 2. Bazaraa, M. S., Jarvis, J. J., &Sherali, H. D. (2013). Linear Programming and Network Flows. Hoboken: Wiley. 3. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow: Pearson. 4. Korte, B., &Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg. 5. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, N.J: Prentice-Hall. 	
• Use optimal transportation on System Analysis • Use optimal transportation decision-making schemes based on transportation data analysis by	18. MATH (to be generated) Transportati on System Analysis	 On completion of the course, the student will be able to, Use optimal transportation decision-making schemes based on transportation data analysis by 	Suggested E-learning material 1. Topics in Combinatorial Optimization: Lecture Notes(PDF): https://bit.ly/2MY9MB3 2. Optimization - Introduction(Video Lecture) https://nptel.ac.in/courses/111105039/ Section A Introduction of transportation system analysis; characteristics, goal and role of transportation system analysis; applications and methodologies of transportation system analysis; Scope of transportation	New elective

Random variables, applications of probability distributions in transportation system analysis, sample distributions and means in transportation system analysis, Central Limit Theorem, Bayesian Theorem, significance and hypothesis testing in transportation systems. Use of transportation field data and data gathering techniques, sources of errors, considerations of transportation system sample size; experiment design for transportation system demand forecasting and transportation operations analysis.

Section C

Intelligent Transportation System (ITS), components of ITS; Causal Loop Diagramming (CLD) system dynamics approach, conceptualization and development in transportation system policy and scenario analysis; Transportation system scenario generation models and techniques: Delphi technique; Seth Harva model; Multi criteria decision making model.

Suggested Books:

1.	Papacostas, C.S. (1987) Fundamentals of
	transportation system analysis, PHI.
2.	Cascetta, Ennio. (2012). Transportation Systems
	Analysis: Models and Applications. Springer
	Verlag.
3.	Edwards, J. D., & Institute of Transportation
	Engineers. (1999). Transportation planning
	handbook. (2nd Ed.). Washington: Institute of

- Perform simple statistical analysis on transportation field data, sample estimation and hypothesis testing in transportation system.
- Design suitable sampling and experimental methods for transportation system analysis and realize error sources.

		Transportation Engineers.	
		4. Levin, R. I., & Rubin, D. S. (2008). Statistics for	
		management. New Delhi: Prentice Hall of India.	
		5. Walpole, R. E. (2014). Essentials of probability	
		and statistics for engineers and scientists. Pearson.	
		6. Mohapatra, P. K. J., Mandal, P., & Bora, M. C.	
		(1994). Introduction to system dynamics modelling.	
		London: Sangam.	
		7. Roberts, N. (1998). Introduction to computer	
		simulation: A system dynamics modeling approach.	
		Portland, Or: Productivity Press.	
19. MATH (to be	On completion of the course, the student	- Section A	New
generated)	will be able to,	Laplace Transform: Definition, Transform of some	elective
Integral		elementary functions, rules of manipulation of Laplace	
Transform	• understand transformations, and	Transform, Transform of Derivatives, relation	
and Special	their conditions of existence.	involving Integrals, the error function, Transform of	
Functions	• carry out integral transformations	Bessel functions, Periodic functions, convolution of	
	and inverse transformation of	two functions, Inverse Laplace Transform of simple	
	different special functions,	function, Tauberian Theorems. Applications of	
	including some most useful	Laplace Transform to solve ordinary differential	
	special functions.	equations with constant and variable coefficients,	
	• demonstrate understanding of the	initial and boundary value problems.	
	concepts of recurrence relations,		
	generating functions, series	Section B	
	representations pertaining to		
	different special functions and	Fourier series, Fourier integral Theorem, Fourier	
	polynomials.	Transform, Fourier Cosine Transform, Fourier Sine	
	determine some significant	Transform, Transforms of Derivatives, Fourier	
	properties of special functions and	transforms of simple Functions, Fourier transforms of	
	integral transformations.	Rational Functions, Convolution Integral, Parseval's	
	• discuss the nature of special	Theorem for Cosine and Sine Transforms, Inversion	

functions in different domains.	Theorem, Solution of Partial Differential Equations by means of Fourier Transforms. Mellin transform, Properties, Mellin transform of derivatives and
	integrals, Mellin inversion theorem, Convolution
	theorem.
	Section C
	The Hypergeometric function: An integral
	representation, differential equation and solutions. $\Gamma(x \mid x \mid x)$ as a function of the momentum realization
	F(a,b,c,1) as a function of the parameters, evaluation
	Hypergeometric differential equations
	Legendre polynomials: Solution of Legendre's
	Equation Generating function Rodrigue's formula
	Orthogonal properties Integrals involving Legnedre
	polynomials, Recurrence relations, Legendre's
	function of second kind $Q_n(x)$. Bessel functions,
	solutions of Bessel's equation, Generating function,
	Integral expressions. Recurrence relations, orthogonal
	properties.
	Suggested Text Books:
	1. Sneddon, I.N. (1974) The use of integral transforms,
	New Delhi: Tata McGraw Hill.
	2. Rainville, E. D. (1960)Special functions, New
	York:Chelsea Publishing Company.
	Suggested References:
	1. Davies, B. (1978) <i>Integral transforms and their applications</i> , New York:Springer.
	2. Slater, L. J. (2008). Generalized hypergeometric

			<i>functions</i> . Cambridge: Cambridge University Press. 3. Mathai, A. M., &Haubold, H. J. (2011). <i>Special</i> <i>functions for applied scientists</i> . New York: Springer. Suggested E-learning material 1. Advanced Engineering Mathematics; NPTL: <u>https://nptel.ac.in/courses/111105035/22</u>	
20.	STAT 505 Decision	On completion of the course, students will be able to,	- Suggested E-learning Resources 1. Decision Theory; platform:	No change in syllabus.
	Theory	 Understand a decision theoretic approach to the problem, evaluate a utility function, propose a conjugate family of prior distributions, evaluate Bayes and posterior risks and find the optimal solution. Solve Multilevel Decision Problems, Decision Process with sampling information Understand Basic Concept of the sampling time Markov decision process, telecommunication and queuing theory. 	http://www.utdallas.edu/~mbaron/7330/	
21.	STAT 508	On completion of the course, students	- Suggested E-learning Resources	No change
	Distribution	will be able to,	1. Probability Distribution-	in syllabus.
	Theory	• Formulate the statistical models	nptel.ac.in/courses/111105041/	
		tor real data sets arising in various	2. Distribution Functions-	
		fields in order to analyze in	<u>nttps://epgp.minonet.ac.m/ani.pnp?csmo=</u> 34	
		respect of various useful	<u>04</u>	

		 characteristics of the populations Develop problem-solving techniques needed to accurately calculate probabilities. Identify the distribution of random variable under various 		3. Introduction to Probability- <u>https://ocw.mit.edu/resources/res-6-012-</u> <u>introduction-to-probability-spring-2018</u>	
		 discrete and continuous distributions. Calculate probabilities, moments and other related quantities based on given distributions. Determine the probability distribution after transformation. Understand how to use non-central distributions in real life problems. 			
22.	STAT 510	On completion of this course, students	Section A	Section A	The
	Econometric	will be able to,	Review of multiple linear regression models,	Nature of Econometrics, Review of linear regression	existing
	Models	Construct econometric models	Polynomial Regression, Stepwise Regression, Lasso	models, polynomial regression model. Stepwise	syllabus is
		from economic models.	Regression, Model Selection Methods: AIC, BIC,	Regression, Lasso Regression, Model Selection	a bit short,
		• Detect influential observations	Mallow's Cp, Cross-validation, Regression	Methods: AIC, BIC, Mallow's Cp, Cross-validation,	so some
		and perform robust regression.	regularization methods.	Influential observations: Standardized and studentized	are added
		• Estimate regression models when the dependent variable is nominal.	Section B	residuals, Cook's distance, DFFITS, DFBETAS,	which have
		ordinal or a quantile.	Distributed lag models: Finite polynomial lags,	COVRATIO. Robust regression techniques: LAD and	good
		• Fit distributed lag model when the	determination of the degree of polynomial.	LMS regression.	application
		data is time series.	Infinite distributed lags adaptive expectations and	Section B	in
		• Diagnose the identifiability of a simultaneous equation model.	partial adjustment models, determination of lag	Logit and Probit models: binary response model, multinomial choice models: ordered and unordered	analyzing an

regression.	ntroduction to Generalized linear model.	
Section C Interpretendent of the section of the se	 ntroduction to quantile regression and non-parametric egression. General non-linear regression: Assumptions, Least squares estimation, Testing. Section C Distributed lag models: Finite polynomial lags, letermination of the degree of polynomial. Infinite listributed lags, adaptive expectations and partial djustment models, determination of lag length. <i>Aethods of estimation.</i> Bimultaneous equation models: concept of structural nd reduced forms, problem of identification, rank and order conditions of identifiability. Limited information nd full information estimation methods. Baltagi, B. H. (2007). <i>Econometrics.</i> Springer Science & Business Media. Gujarati, D. N. (2003). <i>Basic econometrics.</i> McGraw Hill. Johnston, J., & DiNardo, J. E. (2007). <i>Econometric Methods.</i> McGraw-Hill. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). <i>Introduction To Linear Regression Analysis, 3rd Ed.</i> Wiley India Pvt. Limited. Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). <i>Applied Regression Analysis: A Research Tool (2nd Ed.)</i> New York: Springer Vorlag. 	

		 Wooldridge, J. M. (2008). Introductory Econometrics: A Modern Approach. Cengage Learning. William H. Greene (2012). Econometric Analysis (7th Ed.). Pearson Education limited. 	
		 Suggested E-learning material: 1. Lecture Notes on Regression Analysis by Shalabh, IITK: <u>http://home.iitk.ac.in/~shalab/course5.htm</u> 2. An article on "Understanding logistic regression analysis" by Sandro Sperandei :https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/ 3. Lecture Notes on "Econometrics": https://ocw.mit.edu/courses/economics/14-382- econometrics-spring-2017/lecture-notes/ 	
23. STAT 504 Clinical Trials	 On completion of this course, students will be able to, Identify and classify different types of trial designs when reading a trial report. Understand the essential design issues of randomized clinical trials. Appreciate three possible sources of errors that could lead to erroneous trial results. Understand the basic statistical principles, concepts, and methods for clinical data analysis and reporting: and 	- Suggested E-learning Resources N 1. Clinical Trials http://www.esourceresearch.org/eSourceBook/Cli nicalTrials/1LearningObjectives/tabid/192/Defaul t.aspx 2. Clinical Trials as Research https://newonlinecourses.science.psu.edu/stat509 /node/6/	No change in the syllabus.

	 Understand some frequently used terms in clinical trials. Understand the relative contributions of clinical judgment and clinical trials in evaluating new medical therapies. 		
24.	STAT 511On completion of this course, student will be able to,ParametricIn ference and• Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled.Analysis• Build non-parametric density estimates.• The application of sequential statistical techniques.• Critically examining sequential procedures for appropriate statistical analyses.	 Suggested E-learning Resources Statistical Methods for Scientists and Engineers-Non Parametric Methods: https://nptel.ac.in/courses/111105077/29. Statistics for Applications: https://ocw.mit.edu/courses/mathematics/18-650-statistics-for-applications-fall-2016/ 	No change in the syllabus.
25.	 STAT 508 Distribution Theory On successful completion of the course, the students will be able to: Formulate the statistical models for real data sets arising in various fields in order to analyze in respect of various useful characteristics of the populations Develop problem-solving techniques needed to accurately calculate probabilities. 	Suggested E-learning Resources 1. Probability Distribution- nptel.ac.in/courses/111105041/ 2. Distribution Functions- https://epgp.inflibnet.ac.in/ahl.php?csr no=34 3. Introduction to Probability- https://ocw.mit.edu/resources/res-6- 012-introduction-to-probability-spring- 2018	No change in the syllabus.

		 Identify the distribution of random variable under various discrete and continuous distributions. Calculate probabilities, moments and other related quantities based on given distributions. Determine the probability distribution after transformation. Understand how to use non-central distributions in real life problems. 		
26.	. STAT 513	On completion of the course, the students	Suggested E-learning Resources	No change
	Regression	should be ableto,	1. The resources site for the book 'Introductory	in the
	Analysis	Understand the concept of	Econometrics for Finance, 3rd edition' by Chris	syllabus.
		regression and the underlying	Brooks	
		assumptions.	https://www.cambridge.org/us/academic/tex	
		Estimate least squares estimate of	tbooks/introductory-econometrics	
		regression coefficients.	2. Lecture Notes on "Econometric Theory":	
		Perform testing of complete	<u>nttps://nptei.ac.in/courses/1111040/2/</u>	
		regression model and subset of	5. Course material on Econometrics :	
		regression model.	32-econometrice-spring 2007	
		• Measure the goodness of the	<u>52-ccononicures-spring-2007</u>	
		Inouer.		
		Check the valuety of the assumptions for a real data		
		 Find a suitable remedy to reduce 		
		the effect of violation of any		
		assumption		
		 Include a qualitative variable as 		
		regressors in a regression model		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

	 using dummy variables. Check the model for specification errors and its testing. Understand the concept of outlier, leverages and influential observations. Understand the concept of a simple logistic regression and make interpretations. 		
27. STAT 515	On successful completion of this course,	- Suggested E-learning Resources	No change
Statistical	student will be able to:	1. Statistical computing Platform:	in the
Computing	Generate random numbers from a	MITOPENCOURSEWARE	syllabus.
	given distribution.	https://ocw.mit.edu/index.htm	
	Perform MCMC simulation.	2. Statistics: Platform: e-PG	
	Understand the basic concepts of	Pathshalanttps://epgp.infilbhet.ac.in	
	statistical theories in depth.	5. Exploratory Data analysis; Flatform: Coursera	
	Handle real world problems with	4 https://ocw.mit.edu/index.htm	
	large scale data.	4. https://ocw.httledu/httex.htm	
28. STAT (to be	On completion of this course, the	- Section A	New
generated)	students will be able to:	Review of Stochastic processes, Markov process,	elective
Stochastic	Acquire skills in handling situations	Markov chain, Poisson Process. Birth and Death	introduced
Models	involving more than one random	process. Expression for mean and variance of a birth	•
	variables.	and death process. Introduction of queues, Queueing	
	Understand to analyze the	system. Components of a queueing system, Measures of	
	performance of reliability models.	effectiveness and Notations. Steady state solution of	
	• Learn how to analyze a network of	M/M/1 and $M/M/1/N$ Queueing Models and their	
	queues with Poisson arrivals and	measures of effectiveness.	
	exponential service requirements.	Section B Stordy state solution of $M/M/C$ Observing Models and	
	• Learn how to analyze a network of	Steady state solution of Wi/ Wi/ C Queueing Models and	

queues with Poisson arrivals and	their measures of effectiveness. The transient solution
general service requirements.	of M/M/1 and M/M/ ∞ Queueing models including
Understand the concept of switching	busy period distribution. Imbedded Markov chain
in reliability modeling.	technique and its use to solve the $M/G/1$ queueing
	models. Measures of Effectiveness of M/G/1 queueing
	model.
	Section C
	Reliability Models: Concept of reliability, early age
	failures, wearout failures and chance failures.
	Derivation of general reliability function failure rate,
	failure density functions and mean time between
	failures (MTBF). System reliability evaluation: series
	system, parallel system, partially redundant system,
	standby system with perfect switching / imperfect
	switching. Effect of spare components (identical / non-
	identical) on the system reliability.
	Text/References books:
	1. Cox, D. R., & Miller, H. D. (1972). The theory of
	stochastic processes. London: Chapman and Hall.
	2. Billinton, R., & Allan, R. N. (2013). <i>Reliability</i>
	evaluation of engineering systems: Concepts and
	techniques. New Delhi: Springer (India).
	3. J. Medhi, J. (1994). Stochastic processes. New Age
	International Publications.
	4. Bazovsky, I. (2013). Reliability Theory and Practice.
	Dover Publications.
	5. Gross, D., &Harris C.M (2002). Fundamentals of
	Queueing Theory. John Wiley & Sons.
	6. Allen, A. O. (2014). Probability, Statistics, and
	Queueing Theory with Computer Science Applications.

		Academic Press.	
		Academic Press. Suggested E-learning Resources 1. Introduction to Stochastic Processes and its Applications <u>https://nptel.ac.in/courses/110104024/</u> 2. Statistics e-PG-pathshala: <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u> 3. Reliability Engineering, NPTEL:	
29. STAT (to generate Demogra	 o be On completion of the course, students will be able to, aphy Identify principle sources of demographic data and assess their strengths and weaknesses. Discuss the demographic significance of age and sex structures and the implications of variations in age & sex structure. Construct and interpret life tables. Calculation and interpret life tables. Calculation and interpret sources, and standardize these measures for comparison. Understand the components of 	https://nptel.ac.in/courses/105108128/ Section A Meaning and scope of demography; Sources of demographic data; Census; Population composition and its basic demographic measures: Ratios, Proportions and Percentages; Population pyramids; Quality of demographic data: Population growth rate; Rates of natural increase; Doubling time; Stochastic models for population growth; Intrinsic growth rate models for population growth and their fitting to population data; Coverage and content errors in demographic data; Balancing equations;Chandrasekharan - Deming formula to check completenessof registration data; Adjustment of age data- use of Whipple, Myer and UN indices; Population	New elective introduced
	 population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Understand the concept of 	Section B Mortality: Rates and Ratios; Crude and age-specific death rates;Infant mortality rate (IMR); Child death rate (CDR); Under five, neo-natal and post neo-natal	

urbanization on the economic growth of the contrary.

- Estimate and project the population by different methods.
- Understand the concept of stable and stationary population.

mortality rate; Maternal mortality rate and Maternal mortality ratio (MMR); Direct and Indirect Standardization; Factors for decline in mortality in recent past; Life tables and their applications; Increment-decrement life tables; Construction of complete and abridged life tables; Model life table.

Natality:Fecundity and fertility; Measure of fertility: Cohort fertility; Children ever born (CEB); Current family size (CFS); Age specific martial fertility rate;Birth order and parity; Parity progression ratio; Length of generation, Measures of reproduction: Total fertility rate; Gross reproduction rate; Net reproduction rate; Replacement index; General fertility models; Fertility schedules; Differential fertility; Levels and trends of fertility.

Section C

Migration - Concepts and types; Its effect on population growth and pattern; Differentials of migration; Measures of migration: Migration rates; Volume of migration and its estimation; Migration component; Migration streams; Hamilton's rate; Migration models; Concept of international migration; Concept of morbidity and its measures.

Urbanization - Growth and distribution of rural - urban population in developed and developing countries. Nuptiality - Concept and analysis of marital status; Singulate mean age at marriage.

Stationary and Stable population theory; Uses of Lotka's stable population theory in estimation of

demographic parameters; Population estimates;	
Population projections and forecasting; Methods of	
Inter-censal and Post-censal estimation; Methods of	
population projection.	
Suggested Text Books:	
1. Ramkumar, R.(2006). <i>Technical Demography</i> . New Age International.	
2. Pathak, K.B.& Ram, F. (2019). Techniques of	
Publishing House.	
3. Srinivasan, K., Saxena, P. C., &Kanitkar, T.	
(1979). Demographic and Socio-economic Aspects of the Child in India, Himalaya Publishing House	
Suggested Reference Books:	
Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR	
Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press.	
 Suggested Reference Books: 1. Cox, P. R. (2009). <i>Demography</i> (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). <i>Elements of</i> <i>demography</i>. Allied Publishers. 	
 Suggested Reference Books: 1. Cox, P. R. (2009). <i>Demography</i> (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). <i>Elements of</i> <i>demography</i>. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). <i>Principles of</i> 	
 Suggested Reference Books: 1. Cox, P. R. (2009). <i>Demography</i> (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). <i>Elements of</i> <i>demography</i>. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). <i>Principles of</i> <i>Population Studies</i> (19th. ed.). Himalaya 	
 Suggested Reference Books: 1. Cox, P. R. (2009). <i>Demography</i> (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). <i>Elements of</i> <i>demography</i>. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). <i>Principles of</i> <i>Population Studies</i> (19th. ed.). Himalaya Publishing House. 	
 Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources 	
 Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources Demographic data; Platform: National Family 	
 Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 	
 Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 2. Population Studies; Platform; e-PG 	
 Suggested Reference Books: Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. Bhinde, A. A. & Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata.</u> 	
 Suggested Reference Books: 1. Cox, P. R. (2009). Demography (6th. ed.). GBR Cambridge University Press. 2. Sinha, V. C., & Zacharia, E. (1984). Elements of demography. Allied Publishers. 3. Bhinde, A. A. &Kanitker, T. (2018). Principles of Population Studies (19th. ed.). Himalaya Publishing House. Suggested E-learning Resources 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 2. Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata.php?action=loadpaperlist1&maincat=453</u> 	

			The University of Adelaide	
			https://www.adelaide.edu.au/library/	
			4. Demography; Platform:	
			MITOPENCOURSEWARE	
			https://ocw.mit.edu/index.htm	
30.	STAT (to be	On completion of this course, the	Section A	New
	generated)	students will be able to:	Actuarial science: an overview, Introductory Statistics	elective
	Actuarial	 Understand the applications of 	and Insurance Applications: Discrete, continuous and	introduced
	Statistics	Actuarial Statistics in insurance	mixed probability distributions, risk and insurance,	
		sector.	insurance products, reinsurance and its different types.	
		 Understand the concept of utility 	Utility theory: Utility functions, expected value	
		theory and premium principles.	principle, expected utility criterion, types of utility	
		Construct life tables with various	function, insurance and utility theory. Principles of	
		factors.	Premium Calculation: Properties of premium	
		Understand the concept of compound	principles.	
		interest.	Section B	
		• Apply various life Insurance models	Survival Distribution and Life Tables: Age at death	
		in real life situations.	random variable, survival function, time until-death for	
			a person, curate future lifetime, force of mortality, life	
			tables, relation of life table functions to the survival	
			function, deterministic and random survivorship	
			group, life table characteristics, recursion formulas,	
			assumptions for fractional age, analytical laws of	
			mortality, select and ultimate tables.	
			Section C	
			Principles of compound interest: Nominal and effective	
			rates of interest and discount, force of interest and	
			discount, compound interest, accumulation factor,	
			continuous compounding, present value of a future	
			payment. Life Insurance models: Models for insurance	

		payable at the moment of death and at the end of the vear of death - level benefit insurance, endowment	
		insurance, deferred insurance and varying benefit	
		insurance.	
		Text/Reference Books:	
		1. Dickson, C. M. D. (2005). Insurance Risk and Ruin	
		(International Series no. 1 Actuarial Science),	
		Cambridge University Press.	
		2. Bowers, N.L., Gerber, H.U., Hickman, J.C.,	
		Jones, D.A. and Nesbitt, C.J. (1997). Actuarial	
		Mathematics. Society of Actuaries, Itasca, Illinois,	
		U.S.A.	
		3. Rotar, V.I. (2015). Actuarial Models: The	
		Mathematics of Insurance, 2nd ed., CRC Press,	
		New York.	
		4. Deshmukh, S.R. (2009). Actuarial Statistics: An	
		Introduction Using R, University Press, India.	
		Suggested E-learning Resources	
		1. Winkel, M. (2003). Actuarial Science	
		http://www.stats.ox.ac.uk/~winkel/o13.pdf	
31. STAT (to be	On completion of the course, the student	Section A	New
generated)	will be able to,	Characteristics of survival data and problems,	elective
Survival	Identify characteristics of survival	censoring and its types, likelihood and inference of life	introduced
Analysis	data and problems in their correct	distributions, relationship between the survival	
	analysis	function, distribution function, hazard function, relative	
	• Define and understand the	hazard, and cumulative hazard, univariate analyses of	
	relationship between the survival	survival data using the Kaplan-Meier estimator and	
	function, distribution function, hazard	actuarial estimator, estimation under the assumption	
	function, relative hazard, and	of IFR/DFR, tests of exponentiality against non-	

cumulative hazard

- Perform and interpret one-sample and two-sample analyses of survival data using common statistical procedures such as the log rank test and Kaplan-Meier estimator
- Formulate research questions involving survival data as regression problems
- Fit the proportional hazards regression and parametric regression models to survival data and assess the scientific significance, precision, and interpretation of regression coefficients
- Use graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated
- Use time-dependent covariates in the proportional hazards model and interpret the coefficients
- Understand and use methods for analyzing correlated survival data
- Interpret and critically evaluate survival analyses in biomedical or epidemiologic manuscripts

parametric classes, total time on test.

Section B

Two-sample analyses of survival data using common statistical procedures such as the log rank test and Gehan test, Parametric and semi-parametric regression model to survival data and assess the estimation, scientific significance, precision, and interpretation of regression coefficients, graphical and other methods to assess the adequacy of fitted models and propose alternate solutions when common assumptions are violated,

Section C

Time-dependent covariates in the proportional hazards model and estimate and interpret the coefficients, methods for analyzing correlated survival data, Competing risk model: parametric and non-parametric inference for this model.

Text Books

- 1. Collet, D. (2003). *Modeling Survival Data in Medical Research*. London: Chapman and Hall.
- 2. Hosmer, D. and Lemeshow S. (1999). *Applied Survival Analysis: Regression Modeling of Time to Event Data*. New York: Wiley.

Reference Books

- 1. Breslow, N. and Day, N. (1987). *Statistical Methods in Cancer Research, v. 2: The Design and Analysis of Cohort Studies.* Lyon: IARC.
- 2. Therneau T, and Grambsch, P. (2000). *Modeling Survival Data: Extending the Cox Model*. New

York: Springer 3. Kalbfleish, JD. and Prentice, RL. (2002). <i>The</i> <i>Statistical Analysis of Failure Time Data</i> . New York: Wiley.
Suggested E-learning Resources 1. Lecture Notes on Introduction to Survival Analysis: http://www.stat.columbia.edu/~madigan/W 2025/notes/survival.pdf

THIRD/FOURTH SEMESTER

(Reading Electives)

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1	MATH (to be	On completion of the course, the student	-	Networks in Biology, Graph Theory, Global Network	New
	generated)	will be able to,		Properties, Network Centralities, Network of Clustering,	course
	Network	• Understand the use of graph		Network Motifs, Petri Nets, Signal Transduction and	proposed.
	Biology	theory in biology		Gene Regulation Networks, Protein Interaction	
		• Build and analyse network of		Networks, Metabolic Networks, Phylogenetic Networks,	
		biological systems.		Ecological networks, Correlation Network, Network	
				Construction.	
				Suggested Readings:	
				1. Junker, B. H., & Schreiber F. (2008). Analysis of	
				Biological Networks, John Wiley & Sons, Inc.	
				2. Zhang, W. (2013). Network Biology Theories,	
				Methods and Applications, Nova Science	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
				Publishers, Inc.	
2	MATH (to be generated) Fractional Calculus	 On completion of the course, the student will be able to, Understand fractional integrals of some important functions Understand the concepts of Fractional Derivatives Carry out research on the topic related to fractional calculus 		Origin, Significant contributions, development in different timelines, different aspects, contributors in the field, The Riemann Liouville Fractional Calculus: Fractional Integrals of some functions namely binomial function, exponential, the hyperbolic and trigonometric functions, Bessel's functions, Hyper-geometric function. Dirichlet's Formula, Derivatives of the Fractional Integral and the Fractional Integral of Derivatives. Laplace Transform of the Fractional integral, Leibniz's Formula for Fractional Integrals. Derivatives, Leibniz's Formula of Fractional Derivatives.	New course proposed.
				 Suggested Readings: Oldham, K.B. &Spanier, J. (2006). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications Inc. Machado, J.T.A., Virginia, K., &Mainardi, F. (2011). Recent History of Fractional Calculus. Communications in Nonlinear Science and Numerical Simulation. Machado, J. A. T., Kiryakova , V. &Mainardi, F. (2010). A poster about the recent history of fractional calculus. J. Fractional Calculus and Applied Analysis. 	
3	MATH (to be	On completion of the course, the student		Introduction, Operators on graphs, Quantum Graphs,	New
	generated)	will be able to,		Quantum Graphs: Some Special topics, Spectra of	course
	Quantum	• Describe some basic tools in the		quantum graphs, Spectra of periodic graphs, Spectra of	proposed.
	Graphs	spectral theory of Schrödinger		quantum graphs, Quantum Chaos on graphs, Some	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		operator on metric graphs		Applications and generalizations. The Spectral Form	
		• Demonstrate results on the count of		Factor for Quantum Graphs with Spin-Orbit Coupling,	
		zeros of the eigen functions of		Approximation of Permutation-Symmetric Vertex	
		quantum graphs.		Couplings in Quantum Graphs, Determinant of the	
		Demonstrate key concepts of		Schrodinger Operator on a Metric Graphs, Laplacian or	
		general spectral theory.		Metric Graphs; eigenvalues, resolvents and Semigroups.	
				Suggested Readings:	
				1. Berkolaiko G. and Kuchment Peter (2016),	
				Introduction to Quantum Graphs, Indian Edition.	
				2. Berkolaiko G., Carlson R., Fulling S. A. and	
				Kuchment Peter (2006), Quantum Graphs and	
				Their Applications, American Mathematical	
				Society.	
4	MATH (to be	Course Outcomes: On completion of the		Sets, Functions, The Real Numbers, Zorn's Lemma,	New
	generated)	course, the student will be able to,		Countable Sets, Metric Spaces, Sequences and	course
	Point Set	• Express the notion of metric space,		completeness, Continuity, Compactness, Connectedness,	proposed.
	Topology	construct the topology by using		The BaireCategory Theorem, Topological Spaces, Base	
		the metric and using this topology		and Subbase for a Topology, Continuous Functions,	
		identify the continuity of the		Compactness and Connectedness,	
		functions which are defined		Pathwiseconnectedness, Infinite Products, Nets ,	
		between metric spaces.		Quotient Topology.	
		• Define the notion of topology;		Suggested Readings:	
		construct various topologies on a		1. Conway, J. B. (2014). A course in point set topology.	
		general set which is not empty by		Springer.	
		using different kinds of		2. Körner, T. (2010). Metric and topological spaces.	
		techniques.		3. Munkres, J. R. (1978). <i>Topology, a first course</i> . New	
		• Define the subspace topology,		Delhi: Prentice-Hall of India.	
		Construct the product topology on			
		product spaces, and Construct the			

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		quotient topology.			
5	MATH (to be generated) Operational Research Applications	 quotient topology. On completion of the course, the student will be able to, To have the knowledge of role of O.R. in solving industrial problems. To introduce the important ideas in operations research which are both fundamental and long lasting. To prepare and motivate future specialists to continue in their study by having an insightful overview of operations research. To demonstrate the cohesiveness of operations research methodology. To identify the resources required for a project and generate a plan 		 Media allocation problem, Cargo Loading Problem, Production Scheduling Problem, Wood cutting problem, School bus routing problem using spanning tree, Simulation, Knapsack problem, Set Covering Problem, Fixed Charge Transportation Problem, Project Selection Problem. Suggested Readings: Taha, H. A. (2010). Operations Research-An Introduction (9th Ed.), Prentice Hall. Winston, W. L., &Venkataramanan, M. (2002). Introduction to Mathematical Programming: Applications and Algorithms (4th ed.). Duxbury Press. Ravindran, A., Phillips, D. T. & Solberg, J. J. (2005). Operations Research. Principles and Practice, John Wiley & Sons. Hadley, G. (1964). Nonlinear and Dynamic Programming, Addison-Wesley. 	New course proposed.
6	STAT (to be generated) Selected Applications of Stochastic Models	 On completion of the course, the student will be able to, Elucidate the power of stochastic processes and their range of applications. Demonstrate essential stochastic modelling tools including Markov chains and queuing theory. Use probabilistic arguments 		Markov decision processes: finite and infinite horizon models. Optimality of Markov policies. Computational aspects. Examples from inventory systems, resource allocation, etc. Learning algorithms: Temporal difference methods. Methods based on approximation functions; TD(lambda); Q-learning. Stability of queuing models. Little's law and its extensions. Advanced queuing models in discrete and continuous time.	New course proposed.

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		including conditional		Some classes of stochastic scheduling rules; minimizing	
		distributions and expectations.		mean sum of completion times on a single machine with	
		Carry out basic modelling using		and without pre-emptions and index policies. Makespan	
		Markov chains in discrete and		with and without pre-emptions on parallel machines;	
		continuous time.		due date related objectives.	
		• Review and apply Markov chains		Suggested Readings:	
		methods based on stationary and		1. Bertsekas, D. P. (1995). Dynamic programming and	
		asymptotic distributions.		optimal control (Vol. 1 & 2). Belmont: Athena	
				publications.	
				2. Wolff, R.W. (1989). Stochastic modeling and theory of	
				queues. Englewood Cliffs: Prentice-Hall Inc.	
				3. Pinedo, M. (1995). Scheduling: Theory, algorithms and	
				systems. Englewood Cliffs: Prentice-Hall Inc.	
7		On a second the second the student		Defensel, Assests of ALT Medule, Asselsed at the Test	NI
1	SIAI (to be	On completion of the course, the student		Deferent Aspects of ALI Models, Accelerated Life Test,	INEW
	generated)			Step Stress Test, Acceleration Model, Cumulative	course
	Step-Stress	• Understand statistical models and		Exposure Model, Optimum Step-Stress Accelerated Life	proposed.
	Modelling	methods for analyzing accelerated		Life Test Plane with Terre Lond Terre II Concerning	
		life-test data from step-stress tests.		Life Test Plans with Type-I and Type-II Censoring.	
		• Understand how to use ALI		1 Kundu D and Conguly A (2017) Analysis of Stan	
		methods in real life problems.		1. Kultuu, D. altu Galiguiy, A. (2017). Anuiysis of Step-	
				2 Tang I C (2018) Multiple stone Stone stress Accelerated	
				Life Test Springer	
				3 Accelerated Life Test: Platform:	
				5. Accelerated Elle Test, Hattorin.	
				4 Different aspects of ATT models: Platform:	
				+. Enterent aspects of ALT models, Flatforn.	
				97808131/1261 fmatter	
				<u>2702010141201_IIIlatter</u>	

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
8	STAT (to be	On completing the course, the student		Categorical Response Data: Nominal/Ordinal scale,	New
	generated)	will be able to:		statistical inference for a proportion and discrete data.	course
	Categorical	• Identify and understand the		Probability Structures for Contingency Tables.	proposed.
	Data	structure of categorical data and		Comparing Proportions in Two-by-Two Tables, Odds	
	Analysis	be able to phrase the appropriate		Ratio: their properties and relation with relative risk.	
		scientific questions in terms of		Tests of Independence of two attributes. Testing	
		parameters of interest.		Independence for Ordinal Data: Choice of Scores, Trend	
		• Understand the various		Tests for $I \times 2$ and $2 \times J$ Tables, Nominal–Ordinal Tables,	
		assumptions needed for the		Exact Inference for Small Samples. Association in Three-	
		various methodologies		Way Tables.	
		• Test for independence, and		Logistic regression model: Interpretations, inferences,	
		equality of proportions		model selection, model checking. Logit Models for	
		• Fit logistic models for binary data		Nominal Responses, Cumulative Logit Models for	
		Check model assumptions and		Ordinal Responses, Paired-Category Ordinal Logits.	
		analyze residuals and goodness-		Loglinear Models for Two-Way and Three-Way Tables	
		of-fit		Suggested Readings	
		Conduct inference for model		1. Alan Agresti, An Introduction to Categorical	
		parameters and interpret the		Data Analysis, Second Edition, Wiley	
		output of the models		Interscience, 2007.	
				2. Categorical Data Analysis:	
				http://web.pdx.edu/~newsomj/cdaclass/	
9	STAT (to be	On completion of this course, student will		Non Linear Models: Introduction to non Linear models,	New
	generated)	be able to		non-linear least squares estimators, outliers, robustness	course
	Robust	• Understand the basics of fitting		of models against outliers, robust M-estimation	proposed.
	estimation in	and inference for nonlinear		approach, asymptotic properties of robust M-estimators,	
	Non Linear	regression methods when the		the asymptotic theoretical properties of M-estimators	
	Models	regression function acting on the		under different possibilities of the M-estimation function	
		predictors is not linear in the		and noise distribution assumptions.	
		parameters.		It is an important and challenging problem to design	

S.N.	Course List	Learning Outcomes	Existing SyllabusSuggested Syllabus	Remark
		Check the robustness of the fitted	robust order estimation techniques for nonlinear	nested
		model.	models and establish their asymptotic optim	mality
		• Carry out research in the area of	properties	
		robust estimation.		
			Suggested readings:	
			1. Cizek, P. (2001).Kobust Estimation in Nonlinea	r
			Regression Models.	
			<u>https://www.researcngate.net/publication/2d</u>	<u>573796</u>
			<u>U_Kobust_Estimation_in_Nonlinear_Kegression</u>	<u>n_Wo</u>
			2. $Zhu, L., Ll, K., \& Cul, H. (2013).$ Kobust estimat	100
			for partially linear models with large-dimensio	nai
			Covariates. Science China. Mathematics, 56(10), 20	509-
			2008. <u>https://d0i.0fg/10.100//s11425-015-46/3</u>	<u>5-0</u>
			5. Neugebauer, 5.r. (1990). Robust Analysis of M-	-
			estimators of Nonlinear Models.	11 25
			Citeseerx.isi.psu.euu/viewuoc/uowniouu:uoi=10.1.1	.11.20
			250 rep=rep1puj	
10	STAT (to be	On completion of the course, the students	Official statistics provide a picture of a count	try or
	generated)	will be able to:	different phenomena through data, and images su	uch as
	Official	Know the key aspects of Official	graph and maps. Statistical System in India: Centr	al and
	Statistics	Statistics, as distinct from other	State Government Organizations, Functions of C	Central
		branches of statistics.	Statistical Organization (CSO), National Sample S	Survey
		• Know the legal and ethical constraints	Organization (NSSO). System of Collection	n of
		on organizations producing Official	Agricultural Statistics - Crop forecasting and estin	nation
		Statistics.	Productivity, fragmentation of holdings - Support	prices
		• Know the principal methods for data	- Buffer stocks - Impact of irrigation projects. Sta	atistics
		collection, analysis and interpretation	related to industries, foreign trade - Balance of page	yment
		of health, social and economic.	- Inflation - Social statistics. National Income - Me	asures

S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
		Know the methods for presenting and		of national income - Income, expenditure and	
		preparing commentaries on Official		production approaches - Applications in various sectors	
		Statistics.		in India. Measurement of income inequality: Gini's	
				coefficient, Lorenz curves, Application of Pareto and	
				Lognormal as income distribution.	
				Suggested readings:	
				1. Bhaduri, A. (1990). Macroeconomics: The	
				Dynamics of Commodity Production, Macmillan	
				India Limited, New Delhi.	
				2. Branson, W. H. (1992). Macroeconomic Theory	
				and Policy.(3rd ed.). Harper Collins Publishers	
				India (P) Ltd., New Delhi.	
				3. C. S. O. (1990). Basic Statistics Relating to the Indian	
				Economy.	
				4. C.S.O. (1995). Statistical System in India.	
				5. C. S. O. (1999). <i>Guide to Official Statistics</i> .	
				6. Panse, V. G. (1964). Estimation of Crop Yields	
		Verified		(FAO). Food and Agriculture Organization of	
		\bigcirc		the United Nations.	
		Setier.		7. Central Statistical Organization:	
		- and		http://www.mospi.gov.in/central-statistics-	
		Offg. Secretary		office-cso-0	
		Banasthali Vidyapith		8. National Sample Survey Office (NSSO)	
		P.O. Banasthali Vidyapith		http://www.mospi.gov.in/national-sample-	
		Diace. Torik (Haj.)-304022		survey-office-nsso	
				9. Agriculture Survey Reports:	
				https://eands.dacnet.nic.in/	

Name of Programme: M.Phil (Mathematical Science)

Course Details: (To be provided in the below mentioned table)

Note: 1. Black Shaded part is shifted. 2. Strikeout is deleted.

3. Italic and Underline is rewritten.,

4.Grey shaded part is added.

First Semester

S.N.	Course List	Learning Outcomes	Existing Syllabus Suggested Syllabus	Remark
1.	MATH (to be generated)			New
	Research Methodology			Course
2.	MATH 602 Advanced Analysis	 On completion of the course, students will be able to, Tell what is Normed spaces Explain when Normed space become Banach space Define the Hilbert spaces Define multi linear mappings Check whether the function is bounded or not? What is directional derivative? Explain the difference between partial derivative and directional derivative Tell about the fixed point Tell about the Lipschitz's constant and conditions 	Suggested E-learning material: 1. Normed space Banach space and Hilbert spaces and its properties; Platform: <u>https://nptel.ac.in/courses/11110503/</u>	No change in the syllabus
		 Related the analysis and differential equation Explain the fixed point using graph theory 		
3.	MATH 504 Analytic and	On completion of the course, students will be able to,		No change in the

Algebraic	Demonstrate the knowledge of		syllabus
Number Theory	arithmetic functions and their		
	property.		
	• Know the prime number theorem		
	and its analytic proof.		
	• Understand basic concepts of		
	algebraic number theory such as		
	conjugates, discriminants, algebraic		
	integers, integral basis, norms and		
	traces.		
	• Understand prime factorization of		
	ideal and unique factorization.		
	• Know some important theorem in		
	algebraic number theory.		

Electives					
S.N.	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark
1.	MATH 507 Financial Mathematics	 On completion of the course, students will be able to, Understand financial analysis and planning. Know the cost of capital, capital structure and dividend policies. Apply technique of Goal Programming to profit planning and financial budgeting. Make financing decision onproblem of determining optimal capital structure Understand the concept of leasing, helicies 			No change in the syllabus

		commitment of funds and risk of		
		cash insolvency.		
2.	MATH 527 Tensor Analysis and Geometry of Manifolds	 On completion of the course, students will be able to, Discuss different kinds of surfaces, connection and covariant derivatives. Understand the concepts of manifold and illustrate some examples of manifolds. Understand the Ricci identity and enable to use it in proving different theorems. Define and illustrate some examples of Lie group. 	Suggested E-learning material: 1. NOC: Differential Calculus in Several Variables: <u>https://nptel.ac.in/courses/111104092/</u> 2. NOC: Multivariable Calculus: <u>https://nptel.ac.in/courses/111107108/</u> 3. NOC: Calculus of One Real Variable: <u>https://nptel.ac.in/courses/109104124/</u>	No change in the syllabus
3.	MATH 601 Advanced Graph Theory	 On completion of the course, the student will be able to, To understand and apply the fundamental concepts in graph theory. To recognize and express the mathematical ideas graphically. Acquire ability to apply graph theory based tools in solving practical problems. To improve the proof writing skills. To develop mathematical maturity. Understand some applications of graph theory to practical problems and other areas. 	Suggested E-learning material 1. Basic concepts in graph theoryhttps://nptel.ac.in/downloads/111104026/ 2. Basic concepts in graph theory http://home.iitk.ac.in/~arlal/book/mth202.pdf 3. Euler graph, Hamiltonian graph, connectivity and coloring http://www.math.kit.edu/iag6/lehre/graphtheo2015w/ media/lecture_notes.pdf 4. Ramsey theoryhttp://math.mit.edu/~fox/MAT307- lecture05.pdf 5. Matchinghttp://www- math.mit.edu/~djk/18.310/Lecture- Notes/MatchingProblem.pdf 6. Open course in graph theory (All topics) a. https://swayam.gov.in/course/3795-graph- theory b. https://swayam.gov.in/course/4403-advanced- graph-theory	No change in the syllabus

4.	MATH 614	On completion of the course, the student	Suggested E-learning material	No change
	Finsler	will be able to	1 Lectures on Differential Geometry.	in the
	Geometry	• Make use of nurely metric	https://www.math.iupui.edu/~zshen/Research/pap	syllabus
		methods in the investigation of	ers/lecture.pdf	
		various Finsler metrics that	2. Lectures on Differential Geometry:	
		appear naturally in geometry.	https://www.worldscientific.com/worldscibooks/1	
		topology and convexity theory.	<u>0.1142/4619#t=toc</u>	
5.	MATH 619	On completion of the course, students	Suggested E-learning material:	No change
	Mathematical	will be able to,	1. Lecture Notes on Number Theory:	in the
	Cryptography	Understand the necessary	https://nptel.ac.in/courses/111103020/	syllabus
		concepts of number theory and	2. Video Lecture on Number Theory:	
		complexity theory.	https://bit.ly/2ToTdjZ	
			3. Video Lecture on Cryptography:	
		• Understand the need of	https://hpter.ac.in/courses/106105051/	
		the accient		
		the society.		
		Demonstrate the knowledge of		
		one way functions and its		
		concrete examples such as		
		integer factorization and		
		discrete logarithm.		
		• Understand the public key		
		cryptosystems such as RSA and		
		ElGamal.		
		Know the concept of digital		
		signature.		
6.	STAT 504	On completion of this course, students	Suggested E-learning Resources	No change
	Clinical Trials	will be able to,	1 Clinical Trials	in the
			1. Chinical Iffais	syllabus.
		• Identity and classify different	nitp://www.esourceresearch.org/eSourceBook/Cli	
		types of trial designs when	mcallrials/ iLearningObjectives/ tabid/ 192/ Default.	
		reading a trial report.	<u>aspx</u>	

	 Understand the essissues of random trials. Appreciate three sources of errors th to erroneous trial ree Understand the ba principles, concomethods for clanalysis and reporti Understand some used terms in clinication. Understand the end of the contributions of judgment and cline evaluating new 	ential design ized clinical e possible at could lead sults. sic statistical epts, and inical data ing; and e frequently al trials. e relative of clinical ical trials in medical	2. Clinical Trials as Res https://newonlineco node/6/	earch ourses.science.psu.edu/stat509/
7.	STAT 505On completion of the course will be able to,Decision Theory• Understand a decisi approach to the pro evaluate a utility fu propose a conjugat prior distributions, Bayes and posterior find the optimal sol • Solve Multilevel De Problems, Decision sampling information • Understand Basic Co sampling time Mark process, telecommute	e, students - ion theoretic blem, unction, te family of evaluate or risks and lution. cision Process with on Concept of the kov decision nication and	Suggested E-learning R 1. Decision Theory; http://www.utd	esources platform: allas.edu/~mbaron/7330/

		queuing theory.			
8.	STAT 508	On successful completion of the course,		Suggested E-learning Resources	No change
	Distribution	the students will be able to:		1 Probability Distribution-	in syllabus.
	Theory	• Formulate the statistical models for		nptel.ac.in/courses/111105041/	
	-	real data sets arising in various		2. Distribution Functions-	
		fields in order to analyze in respect		https://epgp.inflibnet.ac.in/ahl.php?csrno=34	
		of various useful characteristics of		3. Introduction to Probability-	
		the populations		https://ocw.mit.edu/resources/res-6-012-	
		Develop problem-solving		introduction-to-probability-spring-2018	
		techniques needed to accurately			
		calculate probabilities.			
		• Identify the distribution of random			
		variable under various discrete and			
		continuous distributions.			
		Calculate probabilities, moments			
		and other related quantities based			
		on given distributions.			
		Determine the probability			
		distribution after transformation.			
		• Understand how to use non-central			
		distributions in real life problems.			
9.	STAT 510	On completion of this course, students	Section A	Section A	The
	Econometric	will be able to,	Review of multiple linear regression models	Nature of Econometrics Review of linear regression	existing
	Models	Construct econometric models	Polynomial Regression. Stepwise Regression, Lasso	models, polynomial regression model. Stepwise	syllabus is
		from economic models.	Regression, Model Selection Methods: AIC, BIC,	Regression, Lasso Regression, Model Selection Methods:	a bit short,
		Detect influential observations	Mallow's Cp, Cross-validation, Regression	AIC, BIC, Mallow's Cp, Cross-validation, Regression	so some
		and perform robust regression.	regularization methods.	regularization methods.	new topics
		• Estimate regression models			are added
		when the dependent variable is		Influential observations: Standardized and studentized	which have
		nominal, ordinal or a quantile.	Section B	residuals, Cook's distance, DFFI15, DFBETAS,	good
		• Fit distributed lag model when		LMS regression	application
		the data is time series.		Livio regression.	111

Diagnose the identifiability of simultaneous equation model.	a A A A A A A A A A A A A A A A A A A A	Section B Logit and Probit models: binary response model,	analyzing an
Estimate a simultaneo equation system.	Is [Introduction to logistic regression and] Poisson regression. Section C Simultaneous equation model: concept of structural and reduced forms, problem of identification, rank and order conditions of identifiability, [indirect least squares; two stage least squares,Maximum likelike and the start of the start	 multinomial choice models: ordered and unordered response models. Censored regression, truncated regression models. Poisson regression: estimation and prediction. Introduction to Generalized linear model. Introduction to quantile regression and non-parametric regression. General non-linear regression: Assumptions, Least squares estimation, Testing. Section C 	empirical data.
	 Text/References Books: 1. Johnston, J. (1984). Econometric Methods, McGraw Hill Kogakusha Ltd. 2. Judge, G.C., Hill, R,C. Griffiths, W.E., Lutkepohl, H. and Lee, T-C. (1988). Introduction to the Theory and Practice of Econometrics, Second Edition, John Wiley & Sons. 3. Kendall, M.G. and Stuart, A. (1968). The Advanced Theory of Statistics (Vol. III), Second Edition, Charles Griffin. 	 Simultaneous equation models: concept of structural and reduced forms, problem of identification, rank and order conditions of identifiability. Limited information and full information estimation methods. Suggested Text/References Books: Baltagi, B. H. (2007). <i>Econometrics</i>. Springer Science & Business Media. Gujarati, D. N. (2003). <i>Basic econometrics</i>. McGraw Hill. Johnston, J., & DiNardo, J. E. (2007). <i>Econometric</i> 	
		 Montgomery, D. C., Peck, E. A., & Vining, G. G. (2006). <i>Introduction To Linear Regression Analysis, 3rd</i> <i>Ed.</i> Wiley India Pvt. Limited. 	
		 Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). <i>Applied Regression Analysis: A Research Tool</i> (2nd Ed.). New York: Springer-Verlag. Wooldridge, J. M. (2008). <i>Introductory Econometrics: A</i> <i>Modern Approach</i>. Cengage Learning. William H. Greene (2012). <i>Econometric Analysis</i> (7th Ed.). Pearson Education limited. 	
-----	---	--	
		 Suggested E-learning material: Lecture Notes on Regression Analysis by Shalabh, IITK: <u>http://home.iitk.ac.in/~shalab/course5.htm</u> An article on "Understanding logistic regression analysis" by Sandro Sperandei :<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PM C3936971/</u> Lecture Notes on "Econometrics": <u>https://ocw.mit.edu/courses/economics/14-382- econometrics-spring-2017/lecture-notes/</u> 	
10.	STAT 511On completion of this course, student will be able to,Non-ParametricInference and Sequential Analysis• Solve hypothesis testing problems where the conditions for the traditional parametric inferential tools to be applied are not fulfilled.• Build non-parametric density estimates.• The application of sequential statistical techniques.• Critically examining sequential procedures for appropriate statistical analyses.	Suggested E-learning Resources No change 1. Statistical Methods for Scientists and Engineers- Non Parametric Methods: https://nptel.ac.in/courses/111105077/29. 2. Statistics for Applications: https://ocw.mit.edu/courses/mathematics/18- 650-statistics-for-applications-fall-2016/	

Regression Analysis students should be able to, 1. The resources site for the book 'Introductory Econometrics for Finance, 3rd edition' by Chris Brooks in the syllabus. • Understand the concept of regression and the underlying assumptions. 1. The resources site for the book 'Introductory Econometrics for Finance, 3rd edition' by Chris Brooks in the syllabus. • Estimate least squares estimate of regression coefficients. • Estimate least squares estimate of regression model and subset of regression model and subset of regression model. 2. Lecture Notes on "Econometric Theory": https://ocw.mit.edu/courses/conomics/14-32- econometrics-spring-2007 • Measure the goodness of the model. • Measure the goodness of the assumptions for a real data. • Find a suitable remedy to reduce the effect of violation of any assumption. • Include a qualitative variable as regressors in a regression model • Include a qualitative variable as regressors in a regression model	11.	STAT 513	On completion of the course, the	Suggested E-learning Resources	No change
 Check the model for specification errors and its testing. Understand the concept of outlier, leverages and influential observations. Understand the concept of a simple logistic regression and make interpretations. 		Regression Analysis	 On completion of the course, the students should be able to, Understand the concept of regression and the underlying assumptions. Estimate least squares estimate of regression coefficients. Perform testing of complete regression model and subset of regression model. Measure the goodness of the model. Check the validity of the assumptions for a real data. Find a suitable remedy to reduce the effect of violation of any assumption. Include a qualitative variable as regressors in a regression model using dummy variables. Check the model for specification errors and its testing. Understand the concept of outlier, leverages and influential observations. Understand the concept of a simple logistic regression and make interpretations. 	Suggested L-learning Resources 1. The resources site for the book 'Introductory Econometrics for Finance, 3rd edition' by Chris Brooks https://www.cambridge.org/us/academic/text books/introductory-econometrics 2. Lecture Notes on "Econometric Theory": https://nptel.ac.in/courses/111104072/ 3. Course material on "Econometrics": https://ocw.mit.edu/courses/ceconomics/14-32- econometrics-spring-2007	No change in the syllabus.
12.STAT 603On completion of the course, studentsSuggested E-learning materialNo change	12.	STAT 603	On completion of the course, students	Suggested E-learning material	No change
Bayesian will be able to: in the		Bayasian	will be able to:	1 Bayasian Statistics: From Concent to data analysis	in the
Inference Calculate simple likelihood syllabus.		Inference	• Colgulate simple likelihood	1. Bayesian Stausucs: From Concept to data analysis https://www.coursera.org/learn/bayesian_statistics	syllabus.
Calculate simple likelihood Calculate simple likeliho		micience	Calculate simple likelihood	2. Introduction to Bayesian Statistics	

function and use relative frequencies to estimate probabilities and conditional probabilities.	https://www.statistics.com/bayesian-statistics/
Calculate posterior probabilities using Bayes' theorem	
• Describe the role of the posterior distribution, the likelihood function and the posterior distribution in Bayesian inference about a parameter.	
• Explain in detail the Bayesian framework for data analysis and its flexibility and be able to demonstrate when the Bayesian approach can be beneficial.	
• Develop, analytically describe, and implement both single and multi parameter probability models in the Bayesian framework.	
• Demonstrate the role of the prior distribution in Bayesian inference and be able to articulate the usage of non-informative priors and conjugate priors.	
 Show high level Interpretation of Bayesian Analysis Results and be able to readily perform Bayesian model 	

		 evaluation and assessment. Demonstrate the necessary skills to: fit hierarchical models, provide thorough technical specifications for these models. Demonstrate how Bayesian Methods can be used to solve real world problems. Communicate complex statistical ideas to a diverse audience. 		
13.	STAT 609 Population Sciences	 On completion of the course, students will be able to: Identify principle sources of population data and assess their strengths and weaknesses. Able to evaluate of human development index. Construct and interpret life tables. Aware various population policies and programs. Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. Understand the significance of age- sex structures and their implications on population 	 Suggested E-learning material 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 2. Population Studies; Platform; e-PG Pathshala <u>https://epgp.inflibnet.ac.in/loaddata.php?action=1</u> <u>oadpaperlist1&maincat=453</u> 3. Demography; Platform: University Library - The University of Adelaide <u>https://www.adelaide.edu.au/library/</u> 4. Demography; Platform: <u>MIT</u> OPENCOURSEWARE <u>https://ocw.mit.edu/index.htm</u> 	No change in the syllabus.

		 change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Understand the concept of urbanization on the economic growth of the contrary. Estimate and project the population by different methods. 		
14.	STAT 613 Time Series Modeling	On completion of this course, the students will be able to, • • Estimate and eliminate trend and seasonality in a time series • Fit stationary and non-stationary time series model to a series • Understand the concept of testing for parameter stability of a time series model • Demonstrate fitting of multivariate ARMA model to series • Understand the concept of cointegration analysis and procedure for two variable models. • Understand the concept of yector autoregression and	 Suggested E-learning material 1. Econometric Modeling. Platform: <u>https://nptel.ac.in/courses/110105053/29</u> 2. Video lectures on Econometric Modeling: <u>https://nptel.ac.in/courses/110105030/37</u> 3. Video lectures on e-PG- Pathshala, Subject: Statistics, Paper Name: P-14. Econometrics and Financial Time Series <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u> 	No change in the syllabus.

	 causality. Understand the concept of volatility in a series and related models. 		
15. MATH (to be generated) Fuzzy Logic and Belief Theory	 On completion of the course, students will be able to, Learn crips and fuzzy set theory. Decide the difference between crips set and fuzzy set theory. Make calculation on fuzy set theory. Recognize fuzzy logic membership function. Recognize fuzzy logic fuzzy inference systems Make applications on Fuzzy logic membership function and fuzzy inference systems. Utilize fuzzy logic approach to problems arising in the field of Operations Research, Computer Science and Engineering. Formulate logical expressions, fuzzy logic to solve a variety of problems related to real scenarios Apply defuzzification methods. 	Section ABasic concept of Fuzzy Logic: Introduction to fuzzy set, membership function, Various forms of membership functions, type of fuzzy sets, LR- representations of fuzzy sets, properties of fuzzy sets, (support, cardinality, alpha-cut set, convexity).Operations on Fuzzy sets: Union, Intersection, complement, combinations of operations. Fuzzy extension principle, Fuzzy Relations: 	New elective

Introduction, multistage decision making, fuzzy ranking method, fuzzy linear programming, fuzzy transportation problemsFuzzy System: Introduction to fuzzy system.Defuzzification methods: centre of area (or centre of gravity or centroid), centre of maxima, mean of maxima.Fuzzy controllers: an overview of fuzzy controller.Fuzzy Systems and Neural Network: Introduction to neural network, fuzzy neural networks.

Section C

Probability, Uncertainty and Fuzzy Measures: Probability verses Possibility, Fuzzy event, Crisp probability of fuzzy event and fuzzy probability of fuzzy event, Level of uncertainty, Measure of fuzziness: (i) using Shannon's entropy formula and (ii) using metric distance.

Belief Theory: Evidence Theory- Mathematical Theory of evidence, Introduction to Shafer's Belief Theory, Belief representation: mass of belief, belief measure, plausibility measure, properties of belief functionrelation between belief and plausibility measure, Dempster's Rule of Combination, Applications of Fuzzy logic and fuzzy set theory in Operations Research, Computer Science and Engineering fields.

Suggested Text Books:

- 1. Lee, K. H. (2005). First course on fuzzy theory and applications. Berlin: Springer-Verlag
- 2. Klir, G. J., & Yuan, B. (2003). Fuzzy sets and fuzzy logic: Theory and applications. New Delhi: Prentice Hall of India.

Suggested Reference Books:

1. Klir, G. J., & Folger, T. A. (2010). Fuzzy sets,

				 uncertainity and information. New Delhi: PHI Learning Private Ltd. 2. Yen, J., &Langari, R. (2005). Fuzzy logic: Intelligence, control and information. Pearson Education. 3. Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press. 4. Mukaidono, M. (2010). Fuzzy logic for beginners. Singapore: World Scientific. 5. Nguyen, H. T., & Walker, E. A. (2006). A first course in fuzzy logic. Boca Raton, Fla: Chapman & Hall/CRC. Suggested E-learning material: Introduction to Fuzzy Logic(Videos) <u>https://nptel.ac.in/courses/106105173/2/</u> Fuzzy Logic: Introduction (PDF) <u>http://cse.iitkgp.ac.in/~dsamanta/courses/sca/resour ces/slides/FL-01%20Introduction.pdf</u>
1(MATH (to be	On completion of this course students	Castion A	Section A
16.	generated)	Will be able to:	Section A Analytical structure of production and Inventory	Section A Concepts of Inventory, Classification of inventory models.
	Inventory	• Comprehend the dynamics of	problems, Inventory related costs, properties of inventory systems Factors influencing inventories	EOQ model, EPQ model, EOQ model with shortages, EPQ
	Theory	inventory management's	Deterministic inventory models and extensions without	discounts, Floor Constraints, Investment Constraint.
		techniques as they relate to the	and with lead time, Inventory models with partial	Sensitivity analysis in inventory models.
		entire supply chain (customer	production and non-constant demand with known	
		demand, distribution, and	production capacity, Inventory models with constraints,	Section B
		product transformation	Quantity discounts; All units and incremental,	Stochastic Inventory Models and Extensions without and with
		Understand the methods used	<u>Sensitivity of the lot size system</u> , N-products and M- Machines model	lead time. Power demand pattern inventory model,
		by organizations to obtain the	Section B	Introduction to Just In Time (JIT) and Vendor Managed

right quantities of stock or inventory, Familiarize themselves with inventory management practices. Optimize different case studies requires efficient methods and practices to address inventory management problems. Understand the behavior of the inventory parameters after some time using simulation techniques.	 Stochastic Inventory Models and Extensions without and with lead time, Use of transformation from time- dependent for continuous and discrete demand, Power demand pattern Inventory Model, Safety stock and Buffer stock. Section C Simulation in Inventory system, Production scheduling, Classification of items viz: ABC, VED, (FNSD, HML, SDE, XYZ), Case studies. Books Recommended: Text Books: 1. Kanti Swarup, Operation Research, Sultan Chand & Sons, 2010. 2. Sharma S.D., Operations Research, Kedarnath Ramnath, Meerut, 1972. Reference Books: 1. G. Hadley, T. Whitin, Analysis of Inventory Systems, Prentice Hall, 1963. 2. E.Naddor, Inventory System, John Wiley, New York, 1966. 	 Inventory (VMI). Section C Simulation in Inventory system, Classification of items viz: ABC, VED, FNSD, HML, SDE, XYZ, Case studies in inventory control. Suggested Books: Hadley, G., Whitin, T. M (1963). Analysis of inventory systems. Englewood Cliffs, N.J.: Prentice-Hall. Naddor, E. (1984). Inventory systems. Malabar, Fla: R.E. Krieger. Waters, D. (2008). Inventory Control And Management, 2Nd Ed. Wiley India Pvt. Limited. Suggested E-learning material: Inventory Models costs, EOQ model(Lecture PDF) <u>https://nptel.ac.in/courses/110106045/9</u> Inventory management(PDF) <u>https://ocw.mit.edu/courses/engineering- systems-division/esd-260j-logistics-systems-fall- 2006/lecture-notes/</u> 	
 17. MATH (to be generated) Queuing Theory On completion of the course, the student will be able to Understand the principles and objectives of model building based on Markov chains. Analyze the queueing situations. Understand the mathematical tools that are needed to solve queueing problems. 	Section A Concept of stochastic processes. Markov Chains discrete and continuous time parameter. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian Models (M/M/1, M/M/c,	Section A Introduction of stochastic processes, Markov process, Markov Chain, Poisson process with its properties and related distributions (without proof) and birth-death process. Objectives and different characteristics of a Queueing system. Performance measures. Steady state solution of Markovian queueing models: M/M/1 and M/M/c. and their performance measures. Section B	Change in Credit.

Identify and develop queueing	$M/M/\mu$ queuing models including busy period	Steady State solution of $M/E_k/1$ and $E_k/M/1$ queueing
models from the verbal	distribution.	models with their performance of measures. The
description of the real system.	Section C	transient solution of $M/M/1$ and $M/M/\infty$ Queueing
	Imbedded markov chain technique and its use to the	models including busy period distribution.
	queueing models: M/G/1, GI/M/1 and M/D/c,	Section C
	<u>Buik queuing models</u> . Different design and control	Imbedded Markov chain technique and its use to solve
	Qualing models. Introduction to discrete time	the Queueing models: M/G/1 and GI/M/1 Bulk
	quoting models. Introduction to discrete time	$\alpha_{\text{Leving models: M[X]/M/1}}$ and $M/M[Y]/1$ Different
	Ginulation procedures: Data generation and Book	design and control policies for Markovian Queueing
	keeping acports	models. Simulation procedures: Data generation and
	Reeping aspects.	Book- keeping aspects.
	1 D Cross and CM Harris Fundamentals of	
	1. D. Gloss and C.M. Hanns, Fundamentals of	Suggested Text Books:
	 2. Michel E. Woodward, Communication and Computer Networks Modeling with Discrete Time Queues, IEEE Computer Society Press, 1994. (Chapter 4) Suggested Reference Books: 1. B.B. Genere Introduction to Operation Theorem 	 Gross, D., & Harris, C. M. (1985). Fundamental of Queueing Theory. (2nd ed.). John Wiley. Michel, E. W. (1994). Communication and Computer Networks Modeling with discrete Time queues. IEEE Computer Society Press. (Chapter 4) Suggested Reference Books:
	1. K.B. Cooper, introduction to Queuing Theory,	1 Cooper P. B. (1981) Introduction to Outwing
	 2^{IIII} Ed., North Holland, 1981 D.R. Cox and W.L. Smith, Queues, Mathuen, 1961. 	 Cooper, R. B. (1981). Introduction to Queuing Theory. (2nd ed.). North Holland, Elsevier. Cox, D. R. & Smith, W. l. (1961). Queues.
	3. L. Kleinrock, Queuing Systems , Vol. I, John Wiley, 1975.	Mathuen& Co. Ltd. 3. Kleinrock, L. (1975). <i>Queuing System</i> . (Vol. 1). John Wiley
	4. J. Medhi, Stochastic Model in Queuing theory, Academic Press, 1991.	 Medhi, J. (1991). <i>Stochastic Models in queuing</i> <i>Theory</i>. Academic Press.
	5. T.L. Satty, Elements of Queuing Theory with Applications, Mc-Graw Hill, 1961.	5. Satty, T. L. (1961). Elements of Queuing Theory with Applications. Tata McGraw Hill.
		Suggested E-learning Material:
		1. Queuing Systems, NPTEL

		https://nptel.ac.in/courses/117103017/1 2. Introduction to stochastic process and applications, NPTEL https://nptel.ac.in/courses/110104024/1 3. Stochastic Process and Time series, ePATHSHALA https://epgp.inflibnet.ac.in/ahl. php?csrno=34	
18. STAT (to b	be On successful completion of the course,	- Section A	New
generated)	the students will be able to:	Concept of Reliability. Classes of Life time distributions.	Course
Reliability Renewal Theory	 and Understand the importance of validity and reliability assessment and the link between the two. Estimate the reliability function and mean time to failure for different types of systems Analyze statistical experiments leading to reliability modeling. Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. Analyze non-repairable systems of independent components, with and without redundancy First look at what a random process is and then explain what renewal processes are 	Evaluation of Reliability function, Shape of Reliability function. System, Reliability Evaluation : Series & Parallel system, partially redundant system, standby system with perfect switching/ imperfect switching, (k,n) system, Bridge Structure. Availability theory and its molding for various configurations. Introduction to Software Reliability. Section B Reliability models of maintained systems. Reliability Allocation Problems, Discrete Replacement Policies : Age, Block, Policies, Preventive Maintenance Policies, Corrective Maintenance Policies, Concept of minimal repair, Notions of aging. Section C Renewal Theory, Distribution of number of renewals & moments, Recurrence time & its limiting distribution. Application of Renewal Theory, Solutions of Renewal type equations, Optimization problem with respect to system reliability. Text Books 1. Sinha, S. K. (1986). Reliability and life testing. New York: Wiley.	

		 Describe, derive, and prove important theorems and formulas for renewal theory Use renewal theory to solve problems where Poisson is not a realistic process 	 Gert s bakh, I. B. (2009). <i>Reliability theory: With applications to preventive maintenance</i>. New Delhi: Springer. Cox, D. R. (1982). <i>Renewal theory</i>. London: Chapman and Hall.
			4. Lewis, E. E. (1996). Introduction to reliability engineering. New York, NY: Wiley.
			Reference Books
			 Barlow, R. E., & Proschan, F. (1975). <i>Statistical theory</i> of reliability and life testing. New York: Holt, Rinehart and Winston.
			2. Jardine, A.K.S. (1973). <i>Maintenance, Replacement and Reliability</i> . UK: Pitman Publication.
			3. Medhi, J. (2009). <i>Stochastic Process</i> (3rd Ed.). New Age International, 2009.
			Suggested E-learning material:
			1. 2011 Lecture 17: Modules, Systems, and Reliability:
			https://ocw.mit.edu/courses/mechanical-
			engineering/2-627-tundamentals-of-
			slides/2011-lecture-17-modules-systems-and- reliability/
			2. <u>Probability Theory and Applications: Lecture 40-</u>
			Reliability of Systems:
			https://nptel.ac.in/courses/111104079/40
19.	MATH (to be	On completion of this course, students -	Section A New
	generated)	will be able to	Fields, prime subfields, Extension fields, algebraic Course
	Fields and	• Understand the concepts of field	extensions, simple extensions, transcendental extension,
	Galois Theory	extension and appreciate its	minimal polynomial, Kronecker's Theorem, splitting
		importance.	fields, uniqueness of splitting fields and algebraic

Understand different types of	closures.
 Condensitiate different types of extensions. Find the Galois group for some extension fields. Know the link between field theory and group theory. Demonstrate the solvability of quadratic, cubic and quartic equations by radicals. 	Section BFinite fields, existence and uniqueness of finite fields, Normal and separable extensions, perfect fields, Automorphisms of field, fixed fields, Galois group, F- conjugate, Frobenius map, character, linear independence of characters.Section CFundamental theorem of Galois theory, cyclotomic
	extensions and abelian extensions, cyclotomic polynomials, cyclic extension, radical extension, solution of quadratic, cubic and quartic equations by radicals. Suggested Books:
	 Howie, J. M. (2006). Fields and Galois theory. London: Springer. Escofier, JP. (2001). Galois theory. New York: Springer. Gallian, J. A. (2013). Contemporary abstract algebra. (8th Ed.). Boston, MA: Brooks/Cole Cengage Learning. Dummit, D. S. & Foote, R. M. (2004) Abstract algebra (3rd Ed.). New Jersey: Wiley. Sen, M. K., Ghosh, S., Mukhopadhyay, P. &Maity, S. K. (2019) Topics in abstract algebra (3rd Ed.). University Press. Morandi, P. J. (2003). Field and Galois theory. Beijing: Beijing World Pub.
	Suggested E-learning Material: 1. Notes on Galois Theory:
	www.math.iitb.ac.in/~srg/Lecnotes/galois.pdf

		2. Lecture Notes:	
		https://nptel.ac.in/courses/111101001/	
20. MATH generat Coding	 (to be ed) On successful completion of this course students will be able to, Theory Understand the need of coding theory. Appreciate the applications of abstract and linear algebra in coding theory. Find the generator and parity check matrix of linear codes. Understand the main coding theory problem. Derive classical bounds of codes and the distance of the code. Understand cyclic codes and their decoding. 	Section A Communication channels, maximum likelihood decoding, Hamming distance, minimum distance decoding, distance of a code, finite fields, structure of finite fields, minimal polynomial, linear codes, Hamming weight, bases of linear codes, generator matrix and parity check matrix, encoding and decoding of linear codes, syndrome decoding. Section B The coding theory problem, lower bounds, Hamming bounds and perfect codes, singleton bound and MDS codes, nonlinear codes, Reed-Muller codes, subfields codes. Section C Cyclic codes: definitions, generator polynomials, generator and parity check matrices, decoding of SCH codes. definitions, parameters of BCH codes, BCH codes. definitions, parameters of BCH codes, Decoding of BCH codes. Suggested Text Book: 1. Ling, S., & Xing, C. (2004). Coding Theory: A first Course. Cambridge: Cambridge University Press. Suggested Reference Books: 1. MacWilliams, F. J., & Sloane, N. J. A. (2007). The theory of error-correcting codes. Amsterdam: North-Holland.	New elective

	4			
			 Peterson, W. W., & Weldon, E. J. (2008). Error- correcting codes. (2nd Ed.). Cambridge, Mass: MIT Press. Berlekamp, E. R. (2015). Algebraic coding theory. (Algebraic Coding Theory.) Singapore: World Scientific. Huffman, W. C., &Pless, V. (2010). Fundamentals of error-correcting codes. Cambridge: Cambridge Univ. Press. Hill, R. (2001). A first course in coding theory. Oxford: Clarendon Press. Rhee, M. Y. (1989). Error-correcting coding theory. Singapore: McGraw-Hill. Suggested E-learning Material: Online Course on Coding Theory:https://onlinecourses.nptel.ac.in/noc17_ ee07 Lecture Notes: https://ocw.mit.edu/courses/electrical- engineering-and-computer-science/6-895- essential-coding-theory-fall-2004/ 	
21.	MATH (to be generated)	On successful completion of this course students will be able to:	Section A Metrics space, Complete metric space, Convergence,	New elective
	Fixed Point	• Understand various concepts in	Cauchy sequence and Completeness, Various concept in	
	Theory	metric spaces such as	metric space, Normed linear space, Banach space,	
		completeness.	normed space and Hilbert space, open mapping theorem	
		Demonstrate standard examples	and Closed graph theorem, linear operator.	
		of metric spaces and prove	Section B	
		simple results related to them.	Lipschitz manings expansive and Nonexpansive	
		• Onderstand the proof of open mapping theorem and Closed	Mappings, contractive and contraction mappings. Upper	
		graph theorem.	and lower semi continuity of maps, contractive and	
L				1

		Check the conditions for	nonexpansive multivalued maps. Banach's contraction	
		expansive and Nonexpansive	principle. Fixed point theorem of Schauder's and Kirk	
		Mappings contractive and	Tarsiki's Fixed point theorem	
		contraction mappings		
		 Understand standard fixed- 	Section C	
		point theorems	Banach Fixed point theorem for multivalued maps.	
		• To present the basic ideas of the	Generalized Schauder Fixed point theorem. Existence of	
		theory and illustrate them with	solutions of ordinary equations and systems of linear	
		a wealth of examples and	equations in several unknowns, applications in the	
		a weath of examples and	theory of differential and integral equations	
		integral equations	theory of unferential and integral equations.	
			Suggested Books:	
			 Zeidler, E. (2000). Nonlinear functional analysis and its applications: Vol 1. New York: Springer. Khamsi, M. A., & Kirk, W. A. (2001). An introduction to metric spaces and fixed point theory. New York: John Wiley & Sons. Smart, D. R. (1980). Fixed point theorems. Cambridge: Cambridge University Press. Istra tescu, V. I. (1981). Fixed point theory: An introduction. Dordrecht, Holland: D. Reidel Pub. Agarwal, R. P., Meehan, M., &O'Regan, D. (2009). Fixed point theory and applications. Cambridge, UK: Combridge University Press. 	
			E-Resources	
			1. National Programme for Technology Enhanced	
			https://patal.ac.in/courses/111105027/	
22	MATH (to bo	On successful completion of this course	Section A	Nour
۲۲.	generated)	students will be able to	Section A	Floctive
	Bonoratoa)		Introduction to Dynamical Systems: Background and	Lieuve
	Introduction to	Describe the main features of	examples, dynamical systems, attractors and invariant	
	Dynamical	dynamical systems and their	sets.	

	System	realisation as systems of	Non-linear Systems-local analysis: the fundamental	
		ordinary differential equations.	existence-uniqueness theorem, The flow defined by a	
		Identify fixed points of simple	differential equation, Linearization, The stable manifold	
		dynamical systems, and study	theorem, The Hartman-Grobman theorem, Stability and	
		the local dynamics around these	Liapunov functions, Saddles, Nodes, Foci, and Centers.	
		fixed points, in particular to		
		discuss their stability.	Section B	
		• Use a range of specialised	Non-linear Systems-global analysis: Dynamical systems	
		analytical techniques which are	and global existence theorem, Limit sets and Attractors,	
		required in the study of	Periodic orbits, Limit Cycles, and Seperatrix cycles, the	
		dynamical systems.	Poincare map, the stable manifold theorem for periodic	
		Describe dynamical systems	orbits, the Poincare-Bendixon theory in R2, Lineard	
		geometrically and represent	Systems, Bendixon's Criteria.	
		them graphically via phase	Section C	
		plane analysis.	Section	
		Find fixed points and period	Discrete dynamical systems: finite dimensional maps,	
		orbits of discrete dynamical	limit sets, Stability, Invariant manifolds, Runge-Kutta	
		systems, and find their stability.	methods: the framework, linear decay, Lipschitz	
		• Do graphical analysis of 1D	conditions, Dissipative systems, Generalized dissipative	
		discrete dynamical systems.	systems, Gradient system.	
		Understand the basic properties	Suggested Books	
		of a chaotic dynamical system.	Suggested books.	
			1. Perko, L. (2009). Differential equations and	
			dynamical systems. (3rd Ed.). New York, NY:	
			Springer.	
			2. Stuart, A. M., & Humphries, A. R. (1998).	
			Dynamical systems and numerical analysis.	
			Cambridge: Cambridge University Press.	
			3. Lynch, S. (2014). Dynamical systems with	
			applications using MATLAB. (2 nd Ed.). Cham:	
			Birkhäuser.	
23.	MATH (to be	On completion of the course, the	Section A	New
	generated)	student will be able to,	Continuous population Models for single species: Basic	elective

Bio	model the single species and two	concepts. Exponential growth model, formulation,
Mathematics	species systems.	solution, interpretation, and limitations. Compensation
	• study the stability of these	and depensation. Logistic growth model, Continuous
	systems.	Growth Models, Insect out break Model: Spruce
	• Apply harvesting of the species.	Budworm, Delay models, Linear Analysis of Delay
	• to model epidemics and analyse	Population Models: Periodic solutions. Harvesting a
	the dynamics	single Natural Population.
		Section B
		Continuous Models for interacting
		Population: Interaction between species: two species
		models, definition of stability, community matrix
		approach, Qualitative behavior of the community
		matrix, Competition: Lotka-Volterra models, Extension
		to Lotka-Volterra models, Competition in field
		experiments, Competition for space, Models for
		Mutualism. Predator-Prey interaction: Lotka-Volterra
		Models, dynamic of the simple Lotka-Volterra models,
		Role of density dependent in the Prey, Classic laboratory
		experiment on predator, predation in natural system.
		Some predator-prey models.
		Section C
		Mathematical modeling of epidemics: Basic concepts.
		Simple epidemic model, formulation, solution,
		interpretation, and limitations. General epidemic model,
		formulation, solution, interpretation, and limitations
		Suggested Text Books:
		1. Murray, J. D. (2013). Mathematical Biology. Berlin:
		Springer Berlin.
		2. Freedman, H. I. (1987). Deterministic mathematical
		models in population ecology. (2 nd Ed.). Edmonton,

	Alta., Canada: HIFR Consulting.
	Suggested Reference Books:
	 Hastings, A. (2010). Population biology. New York: Springer. Meerschaert, M. M. (2013). Mathematical modeling. (4th Ed.). Amsterdam: Elsevier Academic Press. Meyer, W. J. (1984). Concepts of mathematical modeling. New York, N.Y. May, R. (1976). Theoretical ecology. Principles and applications. United States. Bailey, N. T. J., & Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. New York: Oxford University Press. Suggested E-learning material NPTEL: <u>https://nptel.ac.in/courses/102101003/</u> and <u>https://nptel.ac.in/courses/102101003/#</u> Biomathematics Lectures - UBC Zoology: <u>www.zoology.ubc.ca/~bio301/Bio301/Lectures.</u> html
24.MATH (to be generated)On completion of the course, the student will be able to,Combinatorial OptimizationOn completion of the course, the student will be able to,•define the combinatorial (optimisation or satisfaction) problem•recognize many types•recognize many problems;•formulate programs, and identify when a problem can be viewed in terms of various	Section ANewCombinatorial algorithms for classic discrete optimization problems: Quick Overview of flow problems- Maximum flow, Minimum Cut, Minimum cost flow, Multi-commodity flow, Matching theory - Matchings and alternating paths-Tutte-Berge formula- Maximum cardinality matchings: Bipartite matching via flow, Edmond's blossom algorithm. Introduction to computational complexity.New electiveSingle Source Shortest path algorithms-Bellman Ford algorithm, all pair shortest path algorithms - FloydNew elective

combinatorial optimization	Warshall algorithm.
problems; understand the mathematical concepts	Section B
underlying these problems and	Algorithmic Perspective to Simplex Method:
their solutions;	Introduction to Linear Optimization, Equivalence of
solve combinatorial	optimization and separation, LP Formulation, Geometry
optimization problems using	of Linear Programs, Theory of Simplex Algorithm,
suitable algorithms	Geometric interpretation of Degeneracy, Avoiding
analyze the performance of	cycles, Methods for obtaining initial Basic Feasible
simple algorithms, understand	Solutions, Linear Programming formulations of shortest
and interpret computational	path problem.
complexity, and reduce one problem to another.	Section C
	Integer Programing: Integrality gap, Branch and Bound algorithm, Cutting-plane algorithm, Applications of these algorithms on Travelling Salesman Problem
	Primal-Dual Algorithms: Interpretation of Dual, Optimality conditions for primal and dual, primal-dual algorithms based on complementary slackness, Primal- dual algorithms for shortest path problem, vertex cover and set cover.
	Suggested Text Books:
	 Papadimitriou, C. H., &Steiglitz, K. (2006). Combinatorial optimization: Algorithms and complexity. New Delhi: Prentice-Hall of India. Hillier, F. S., & Lieberman, G. J. (1995). Introduction to mathematical programming; 2nd ed. New York: McGraw-Hill.

3. Cook, W. J. (2011). *Combinatorial optimization*. New York: Wiley.

			Suggested References Books:	
			 Lange, K. (2004). Optimization. New York: Springer. Bazaraa, M. S., Jarvis, J. J., &Sherali, H. D. (2013). Linear Programming and Network Flows. Hoboken: Wiley. Taha, H. A., & Pearson Education. (2017). Operations research: An introduction. Harlow: Pearson. Korte, B., &Vygen, J. (2012). Combinatorial Optimization: Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: Theory, algorithms, and applications. Upper Saddle River, N.J: Prentice- U. II 	
			Suggested E-learning material	
			 Topics in Combinatorial Optimization: Lecture Notes(PDF): <u>https://bit.ly/2MY9MB3</u> Optimization –Introduction(Video Lecture) <u>https://nptel.ac.in/courses/111105039/</u> 	
25.	MATH (to be	On completion of the course, the	Section A I	New
	generated) Transportation System Analysis	 student will be able to, Use optimal transportation decision-making schemes based on transportation data analysis by establishing, testing and solving transportation models. Perform simple statistical analysis on transportation field 	Introduction of transportation system analysis; characteristics, goal and role of transportation system analysis; applications and methodologies of transportation system analysis; Scope of transportation system analysis; TAF system; Impact of TAF system Section B	elective
		data, sample estimation and hypothesis testing in	Random variables, applications of probability	

distributions in transportation system analysis, sample
distributions and means in transportation system
analysis, Central Limit Theorem, Bayesian Theorem,
significance and hypothesis testing in transportation
systems. Use of transportation field data and data
gathering techniques, sources of errors, considerations
of transportation system sample size; experiment design
for transportation system demand forecasting and
transportation operations analysis.

Section C

Intelligent Transportation System (ITS), components of ITS; Causal Loop Diagramming (CLD) system dynamics approach, conceptualization and development in transportation system policy and scenario analysis; Transportation system scenario generation models and techniques: Delphi technique; Seth Harva model; Multi criteria decision making model.

Suggested Books:

1.	Papacostas, C.S. (1987) Fundamentals of
	transportation system analysis, PHI.
2.	Cascetta, Ennio. (2012). Transportation Systems
	Analysis: Models and Applications. Springer
	Verlag.
3.	Edwards, J. D., & Institute of Transportation

- Edwards, J. D., & Institute of Transportation Engineers. (1999). *Transportation planning handbook*. (2nd Ed.). Washington: Institute of Transportation Engineers.
- 4. Levin, R. I., & Rubin, D. S. (2008). *Statistics for management*. New Delhi: Prentice Hall of India.
- 5. Walpole, R. E. (2014). Essentials of probability and

transportation system.

• Design suitable sampling and experimental methods for transportation system analysis and realize error sources.

			statistics for engineers and scientists. Pearson.	
			6. Mohapatra, P. K. J., Mandal, P., & Bora, M. C.	
			(1994). Introduction to system dynamics modelling.	
			London: Sangam.	
			7. Roberts, N. (1998). Introduction to computer	
			simulation: A system dynamics modeling approach.	
			Portland, Or: Productivity Press.	
26.	STAT (to be	On completion of this course, the	- Section A	New
	generated)	students will be able to:	Roview of Stochastic processes Markov process Markov	elective
	Stochastic	• Acquire skills in handling situations	chain Poisson Process Birth and Death process	introduced
	Models	Acquire skins in handling situations	Expression for mean and variance of a birth and death	•
		unvolving more man one random	process Introduction of quotion Quotion system	
		Variables.	Components of a queueing system.	
		• Understand to analyze the	offectiveness and Netations. Steady state solution of	
		performance of reliability models.	effectiveness and Notations. Steady state solution of $M/M/1$ and $M/M/1$ (N Queueing Models and their	
		• Learn how to analyze a network of	management of offectiveness	
		queues with Poisson arrivals and	measures of effectiveness.	
		exponential service requirements.	Section B	
		• Learn how to analyze a network of	Stoody state solution of $M/M/C$ Quoyoing Models and	
		queues with Poisson arrivals and	their measures of effectiveness. The transient solution of	
		general service requirements.	$M/M/1$ and $M/M/\infty$ Output in a module including busy	
		Understand the concept of	noried distribution. Imbedded Markov shain technique	
		switching in reliability modeling.	period distribution. Indedded warkov chain technique and its use to solve the $M/C/1$ queueing models	
			and its use to solve the W/G/1 queueing models.	
			Measures of Effectiveness of M/G/1 queueing model.	
			Section C	
			Reliability Models: Concept of reliability, early age	
			failures, wearout failures and chance failures. Derivation	
			of general reliability function failure rate, failure density	
			functions and mean time between failures (MTBF).	
			System reliability evaluation: series system, parallel	
			system, partially redundant system, standby system	
L				L

			with perfect switching / imperfect switching. Effect of spare components (identical / non- identical) on the system reliability. Text/References books:	
			 Cox, D. R., & Miller, H. D. (1972). The theory of stochastic processes. London: Chapman and Hall. Billinton, R., & Allan, R. N. (2013). Reliability evaluation of engineering systems: Concepts and techniques. New Delhi: Springer (India). J. Medhi, J. (1994). Stochastic processes. New Age International Publications. Bazovsky, I. (2013). Reliability Theory and Practice. Dover Publications. Gross, D., &Harris C.M (2002). Fundamentals of Queueing Theory. John Wiley & Sons. Allen, A. O. (2014). Probability, Statistics, and Queueing Theory with Computer Science Applications. Academic Press. 	
			Suggested E-learning Resources	
			 Introduction to Stochastic Processes and its Applications <u>https://nptel.ac.in/courses/110104024/</u> Statistics e-PG-pathshala: <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=34</u> Reliability Engineering, NPTEL: <u>https://nptel.ac.in/courses/105108128/</u> 	
27.	STAT (to be	On completion of the course, students	Section A	New
	generated) Demography	 will be able to, Identify principle sources of demographic data and assess their strengths and weaknesses. 	Meaning and scope of demography; Sources of demographic data; Census; Population composition and its basic demographic measures: Ratios, Proportions and Percentages; Population pyramids; Quality of	elective introduced

 Discuss the demographic significance of age and sex structures and the implications of variations in age & sex structure. Construct and interpret life tables. Calculation and interpretation of the principal demographic measures, and standardize these measures for comparison. 	demographic data: Population growth rate; Rates of natural increase; Doubling time; Stochastic models for population growth; Intrinsic growth rate models for population growth and their fitting to population data; Coverage and content errors in demographic data; Balancing equations;Chandrasekharan - Deming formula to check completenessof registration data; Adjustment of age data- use of Whipple, Myer and UN indices; Population transitiontheory.
 Understand the components of population change, including the effects of changing birth, death and migration rates, and demonstrate their influences on age structure. Understand the concept of urbanization on the economic growth of the contrary. Estimate and project the population by different methods. 	Section B Mortality: Rates and Ratios; Crude and age-specific death rates;Infant mortality rate (IMR); Child death rate (CDR); Under five, neo-natal and post neo-natal mortality rate; Maternal mortality rate and Maternal mortality ratio (MMR); Direct and Indirect Standardization; Factors for decline in mortality in recent past; Life tables and their applications; Increment- decrement life tables; Construction of complete and abridged life tables; Model life table.
Understand the concept of stable and stationary population.	Natality:Fecundity and fertility; Measure of fertility: Cohort fertility; Children ever born (CEB); Current family size (CFS); Age specific martial fertility rate;Birth order and parity; Parity progression ratio; Length of generation, Measures of reproduction: Total fertility rate; Gross reproduction rate; Net reproduction rate; Replacement index; General fertility models; Fertility schedules; Differential fertility; Levels and trends of fertility.
	Section C
	Migration - Concepts and types; Its effect on population growth and pattern; Differentials of migration; Measures of migration: Migration rates; Volume of migration and

its estimation; Migration component; Migration streams; Hamilton's rate; Migration models; Concept of international migration; Concept of morbidity and its measures.
Urbanization - Growth and distribution of rural - urban population in developed and developing countries. Nuptiality - Concept and analysis of marital status; Singulate mean age at marriage.
Stationary and Stable population theory; Uses of Lotka's stable population theory in estimation of demographic parameters; Population estimates; Population projections and forecasting; Methods of Inter-censal and Post-censal estimation; Methods of population projection.
Suggested Text Books:
1. Ramkumar, R.(2006). <i>Technical Demography</i> . New Age International.
 Pathak, K.B.& Ram, F. (2019). Techniques of Demographic Analysis (2nd. ed.). Himalaya Publishing House.
3. Srinivasan, K., Saxena, P. C., &Kanitkar, T. (1979). <i>Demographic and Socio-economic Aspects of</i> <i>the Child in India</i> . Himalaya Publishing House.
Suggested Reference Books:
 Cox, P. R. (2009). <i>Demography</i> (6th. ed.). GBR Cambridge University Press. Sinha, V. C., & Zacharia, E. (1984). <i>Elements of</i> <i>demography</i>. Allied Publishers. Bhinde, A. A. &Kanitker, T. (2018). <i>Principles of</i> <i>Population Studies</i> (19th ed.) Himalaya

Image: Suggested E-learning Resources Image: Suggested E-learning Resources <td< th=""><th>Publishing House.</th></td<>	Publishing House.
 1. Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> 2. Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata.</u> <u>php?action=loadpaperlist1&maincat=453</u> 3. Demography; Platform: University Library - The University of Adelaide <u>https://www.adelaide.edu.au/library/</u> 4. Demography; Platform: <u>MITOPENCOURSEWARE</u> 	Suggested E-learning Resources
https://ocw.mit.edu/index.htm	 Demographic data; Platform: National Family Health Survey, India <u>http://rchiips.org</u> Population Studies; Platform; e-PG Pathshala<u>https://epgp.inflibnet.ac.in/loaddata.</u> php?action=loadpaperlist1&maincat=453 Demography ; Platform: University Library - The University of Adelaide <u>https://www.adelaide.edu.au/library/</u> Demography; Platform: <u>MITOPENCOURSEWARE</u> https://ocw mit.edu/index htm

	Reading Electives				
SN	Course List	Learning Outcomes	Existing Syllabus	Suggested Syllabus	Remark

1.	MATH 603R Advanced Cryptography	 On completion of this course, students should be able to, Understand digital signatures in detail. Understand the concept of signcryption and its security requirements. Understand the identity based cryptography. 		No change in syllabus.
2.	MATH 604R Advanced Queueing Models	 On completion of this course, students should be able to, Understand the principles and objectives of model building based on Markov chains. Analyze the queueing situations. Understand the mathematical tools that are needed to solve queueing problems. Identify and develop queueing models from the verbal description of the real system. Understand the various Non-Markovian queueing models. 	 Suggested E-learning Resources 1. Queuing Systems, NPTEL <u>https://nptel.ac.in/courses/117103017/1</u> 2. Transient solution of an M/M/1 queue with catastrophes. <u>https://core.ac.uk/download/pdf/81115439.pdf</u> 3. On the M/M/1 queue with catastrophes and its continuous approximation. Source: Queueing Systems journal. <u>https://link.springer.com/article/10.1023/A:10232618 30362</u> 4. Some new results for the M/M/1 queue, Source: Management Science journal. <u>https://pubsonline.informs.org/doi/10.1287/mnsc.28.7 .821</u> 	
3.	MATH 605R Algebraic Aspects of Cryptography	 On completion of this course, students should be able to, Understand the finite field arithmetic and what are the efficient algorithms for theme ? Know the group law of elliptic curves and able to perform computation on the elliptic 		

		 curves. Grasp the concepts of lattices and their applications in cryptography. 	
4.	MATH 606R Algebraic Geometry	 On completion of this course, students should be able to, N have knowledge of the basic affine and projective geometries. N Be familiar with explicit examples including plane curves, quadrics, cubic surfaces, Segre and Veronese embedding. N increased their knowledge of finitely generated commutative rings and their fields of fractions. N learn how to formulate and prove basic statements about algebraic varieties. precise abstract algebraic language. 	Suggested E-learning Resources 1. Basic Algebraic Geometry : Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity, NPTEL course: <u>https://nptel.ac.in/downloads/111106097</u> .
5.	MATH 607R Decision and Game Theory	 On completion of this course, students should be able to, Understand and explain the framework of Decision Theory, its intrinsic limitations and broad goals, and how it leads to Game Theory. Demonstrate an understanding of games in pure and mixed 	Suggested E-learning Resources 1. Economic Applications of Game Theory (Lecture notes PDF): <u>https://ocw.mit.edu/courses/economics/14-12- economic-applications-of-game-theory-fall- 2012/index.htm</u>

		strategies.		
		• Explain the game theoretic concepts of uncertainty, information and strategic moves.		
		• Explain the characteristics and application of repeated games and associated trigger strategies.		
		• Apply decision making models in interaction situations.		
		 Gain a proper understanding of game theoretic concepts and modeling: covering equilibrium in static and dynamic games, with varying information structures. 		
6.	MATH 612R	On completion of the course, the	Suggested E-learning Resources	
	Finite Element Methods	student will be able to,	1. PDF of Lectures on Finite Element Method by C.	
	1.10thous	Understand global, local, and patural appreciates	Mercier;	
		• Understand the significance of	Platform: The Tata Institute of Fundamental	
		shape functions (linear, quadratic,	http://www.math.tifr.res.in/~publ/ln/tifr49.pdf	
		cubic) in finite element	<u>mp://www.mam.m.ics.m/~publ/m/m+7.pub</u>	
		formulations and can formulate one		
		and two-dimensional elements like		
		triangular and rectangular		
		elements.		
		Understand the concepts behind		
		variational methods and weighted		
		residual methods in FEM and		
		• implement the Galerkin residual		

7.	MATH 613R Finite Field Theory	weak formulation into the Finite Element Method for the solution of Ordinary and Partial Differential Equations. On completion of this course, students should be able to • Understand finite fields and		
		 their extension in detail. Find primitive polynomial, factorization of polynomials. Understand Gauss, Jacobi, and Kloosterman sums, character sums and their applications. 		
8.	MATH 616R Intelligent Transport System	On completion of this course, students should be able to• understand the sensor and communication technologies.• differentiate different ITS user services• define the significance of ITS under Indian conditions• select appropriate ITS technology depending upon site specific conditions.• design and implement ITS components	 Suggested E-learning Resources Benefits of Intelligent Transportation System; Platform: <u>https://www.its.dot.gov/factsheets/benefits_factsheet</u> <u>.htm</u> Intelligent Transportation System; Platform NPTEL: <u>https://nptel.ac.in/courses/105101008/48</u> Intelligent Transportation System; <u>https://www.wsp.com/en-US/services/intelligent-transportation-systems-its</u> 	
9.	MATH 617R	On completion of this course, the	Suggested E-learning Resources	

	Inventory and Production Management	 students will be able to, Demonstrate what inventory is and where we find it within the supply chain. Demonstrate the types of demand patterns common in real inventory problems. Prepare appropriate inventory planning models for differing demand patterns. Recognize the importance of inventory management. Understand Production management basics and its history. Formulation of aggregate planning problems; their objectives, constraints and applicable solution techniques. Understand the terms Trade credit, Inflation, VMI etc. and learn how to use these policies in inventory modeling. 	1. 2.	Basic Inventory Principles (PDF): https://nptel.ac.in/courses/112102106/38 Supply Chain Management & Vendor-managed Inventory (PDF): https://ocw.mit.edu/courses/sloan-school-of- management/15-760a-operations management- spring-2002/lecture-notes/
10.	MATH 618R			
	Marketing Management			
11.	MATH 621R Numerical Solutions of Partial Differential	 On completion of the course, students will be able to, Solve mathematical models represented by initial or boundary value problems 	Sug 1.	gested E-learning ResourcesLecture notes on Numerical Methods for PartialDifferential Equations;Platform: MIT open course ware;https://ocw.mit.edu/courses/aeronautics-and-

	Equations	 involving partial differential equations that cannot be solved directly using standard mathematical techniques but are amenable to a computational approach. Select appropriate numerical methods based on the characteristics of a PDE problem. Introduce the discretization methodologies, with particular emphasis on the finite difference method that allows the construction of accurate and stable numerical schemes. Discuss about the stability and convergence of the numerical 	astronautics/16-920j-numerical-methods-for-partial- differential-equations-sma-5212-spring- 2003/lecture-notes/ 2. Lecture notes on Numerical Solution of Partial Differential Equations; Platform: nptel; https://nptel.ac.in/courses/111107063/2 1	
		methods.		
12.	MATH 622R Operator Theory	 On completion of this course, the students will be able to, Tell what is operators Define several standard examples of linear operators, self-adjoint operators and prove simple results related to them. Spectral representation of compact self-adjoint operators in Hilbert spaces. Applications of spectral Theorem for compact operators. Some recent results and open problems in operator theory 		

13.	MATH 624R	On completion of the course, the student will be able to	Suggested E-learning Resources
	Special Functions	• understand various types of special	Symmetries: <u>www.maths.leeds.ac.uk/~kisilv/courses/</u>
		functions, and their conditions of	<u>special.html</u>
		existence.	
		• carry out relations between	
		including some of the most useful	
		special functions.	
		• demonstrate understanding of the	
		concepts of recurrence relations,	
		representations pertaining to	
		different special functions and	
		determine some significant properties of special functions and	
		their integral forms.	
		• discuss the nature of various	
		special functions in different	
14	STAT 602P	On completing the course, the student	Suggested F-learning Resources
11.	Advanced	will be able to,	1. Reliability Theory, Platform: NPTEL
	Reliability	Estimate the reliability function	https://nptel.ac.in/courses/114106041/15
	Theory	and mean time to failure for	2. MLE and Bayesian Estimation-1, Platform:
		different types of systems.	NPTEL
		Understand major concepts of	https://nptel.ac.in/courses/pdf_link/103106123/le c109.pdf
		reliability prediction.	3. Module, Sysytems and Reliability; Platform:
		Analyze statistical experiments loading to roliability modeling	MIT Open Course ware
		leading to reliability modeling.	<u>https://ocw.mit.edu/courses/mechanical-</u> engineering/2-627-fundamentals-of-
L			

		 Estimate life length distributions, using complete or censored data. Identify reliability testing components. Apply reliability theory to assessment of reliability in engineering design. Know Bayesian reliability concept. Determine Life table and Kaplan-Meier approach. Understand MCMC technique for simulation. 	photovoltaics-fall-2013/lecture-videos- slides/2011-lecture-17-modules-systems-and- reliability/	
15.	STAT 604R			
	Bio-statistics			
16.	STAT 608R Generalized Linear Models	 On completion of the course, the student will be able to, Understand the concept of logistic regression, its estimation and testing. Understand the procedure to regression analysis for dependent count variable using Poisson regression. Broaden their understanding of regression model to generalized linear models and their application. 		
17.	STAT 610R	After successful completion of this	Suggested E-learning Resources	

	Statistical Computing	 course, student will be able to: Simulate and generate statistical data by different techniques. Estimate the unknown parameter of population via different methods. Understand the basic concepts of statistical theories besides developing their ability to handle real world problems with large scale data. 	 Statistical computing Platform: <u>MITOPENCOURSEWARE</u> <u>https://ocw.mit.edu/index.htm</u> Statistics: Platform: e-PG Pathshala <u>https://epgp.inflibnet.ac.in</u>
18.	STAT 611R Supply Chain Management	On completion of the course, the student will be able to: • Understand the structure of supply chains and the different ways through which supply chains can become competitive in the realistic problems. • Understand fundamental supply chain management concepts. • Apply knowledge to evaluate and manage an effective supply chain. • How to align the management of a supply chain with corporate goals and strategies.	Suggested E-learning Resources 1. Introduction to Supply chain management (PDF): https://nptel.ac.in/courses/110106045/35
		 Analyze and improve supply chain processes. Identify the principles of 	
