Department of Physics Banasthali Vidyapith, Banasthali

<u>Minutes of the meeting of the Board of Studies in Physics held on 24th April 2016 at 01:00</u> <u>PM in the Conference Room-I, Department of Physics, Banasthali Vidyapith</u>

PRESENT

1.	Prof. N. K. Jaiman	: External Member
2.	Dr. Ajay Singh Verma	: Internal Member
3.	Dr. Devendra Pratap Singh	: Internal Member
4.	Dr. Jhuma Gope	: Internal Member
5.	Dr. Parvez Ahmad Alvi	: Internal Member
6.	Dr. Saral Kumar Gupta	: Internal Member
7.	Dr. Vineet Tiwari	: Internal Member
8.	Dr. Vishant Gahlaut	: Internal Member

Prof. V. K. Sharma, Department of Physics, University of Rajasthan, Jaipur (External Member),Dr. Dr. Pooja Bhambhani (Internal Member), Dr. Shweta Parashar (Internal Member) and Prof.D. R. Phalaswal (Convener) could not attend the meeting.

- 1. The board confirmed the minutes of its last meeting of the Board of Studies held on 12th March 2012.
- 2. The board has revised the syllabus of M. Tech. Nanotechnology course. The revised syllabus is enclosed as **Annexure–I.**
- 3. The board has recommended the course structure and the syllabi of new course: M. Tech. (Renewable Energy) programme and is enclosed as **Annexure–II.**
- 4. The format of handout was checked by the board and the board has given no new suggestion on format of the handout.
- 5. The board has checked the text books as well as reference books mentioned in the syllabi of UG and PG courses and found that all the books are relevant, and recommended no new books.
- 6. The board has discussed about continuous assessment policy and found that current policy is satisfied.
- 7. The board has recommended some new examiners for theory and practical examinations to be added in already existing panels.
- 8. The board has recommended and verified the course of study, curricula and schemes of UG and PG examinations. The board has suggested few modifications in B.Sc. and M.Sc. course as follows:

- I. The board has recommended to change the title of B.Sc. V semester course: from Quantum, Atomic and Molecular Physics (old title) to Quantum mechanics and Spectroscopy (new title). Some other modifications have also been suggested by the board, and are enclosed as **annexure-III**.
- II. The Board has suggested some modifications in M.Sc. III semester courses: Solid State Physics and Condensed matter Physics-I. The revised syllabi are enclosed as Annexure –IV.
- III. The Board has suggested some modifications in M.Sc. IV semester courses: Solid State Electronic Devices, Microwave electronics and Condensed matter Physics-II. The revised syllabi are enclosed as Annexure –V.

Note : All above changes will be applicable from the session – 2016-17.

- 9. The board has reviewed the reports received from the examiners of different examinations and found that reports were satisfactory and the performance of the students in most of the papers is upto the mark.
- 10. The board has evaluated the question papers of the periodical and semester examinations and found that the quality of the question papers is maintained at UG and PG level.
- 11. The list of experiments of UG and PG course was examined by the board. The board has modified the experiments according to the theory course and also added some new experiments.

The meeting ended with a vote of thanks to the chair.

MN1.3 Surfaces and Interfaces and thin films

M. Tech. (Nanotechnology)

Existing	Modified	Justification
SECTION A: Vacuum techniques: Introduction, Important areas of application basic definations of vacuum technology, vacuum pumps: rotary Vane pumps, sorption pumps, Diffusion pumps, Turbo molecular pumps, Ion Pumps, cryogenic pumps, Vacuum gauges: McLeod gauge, Diaphragm gauge, Pirani guage.	SECTION A: Vacuum technologies: Introduction, Important areas of application basic definitions of vacuum technology, vacuum pumps: rotary Vane pumps, sorption pumps, Diffusion pumps, Turbo molecular pumps, Ion Pumps, cryogenic pumps, Vacuum gauges: Thermocouple gauge, McLeod gauge, Diaphragm gauge, Pirani guage, <u>Pennying gauge</u>	Knowledge of these gauges is very much needed as these gauges are generally used in vacuum systems used in research laboratories.
SECTION B: Growth and Analysis: Stanski-Krastnow growth method, Analysis of surfaces: structure analysis using AFM, STM, LEED, chemical analysis using XPS, AES Introduction to crystal lattice: Relaxation and reconstruction at surfaces, adsorption, physisorption and chemisorption, stepped and kinked surfaces.	SECTION B: Growth and Analysis: Thin Film Deposition Mechanism: Homogeneous (Step propagation, Island growth) and heterogeneous (Frank-Vander Merwe Model, Volmer-Weber Model, Stanski- Krastanov model) film growth, Analysis of surfaces: structure analysis using AFM (Principle, working and operational modes), STM: (Principle, working and operation modes), LEED, chemical analysis using XPS, AES, Capacitance-Voltage (C-V) measurement technique for the determination of interface quality. Introduction to crystal lattice: Surface Energy, Wulff Construction and equilibrium shape for nanoparticles, Relaxation and reconstruction at surfaces, advantion of at surfaces,	Knowledge of homogeneous and other heterogeneous film growth method beside Stanski-Krastanov model is necessary for understanding of different growth mechanisms. At least one technique for interfacial property should be taught. Important for the understanding of the role of surface energy.

	chemisorption, stepped and kinked surfaces.	
SECTION C:	SECTION C:	Not necessary at this
Liquid surfaces and	Liquid surfaces and morphology:	point
morphology : Roughness and its statistical description, height probability distribution, Gaussian probability distribution, correlation functions, transformation to reciprocal surface, Fractals, fractal dimension, self- similarity, self-affinity, self- affine surfaces, Capillary waves on liquid surfaces. Principles of characterization techniques: Grazing incidence x-ray scattering techniques and surface sensitivity, x-ray and neutron reflectivity.	Roughness and its statistical description, height probability distribution, Gaussian probability distribution, correlation functions, transformation to reciprocal surface, Fractals, fractal dimension, self- similarity, self-affinity, self-affine surfaces, Principles of characterization techniques: Grazing incidence x-ray scattering techniques and surface sensitivity, x-ray and neutron reflectivity.	F

Books:

- 1. Introduction to surface science, by M. Prutton, Cambridge University Press
- 2. X-ray and neutron reflectivity, Principles and applications: Jean Daillant and Alan Gibaud, springer track
- 3. Vacuum Physics and Techniques by T.A. Delcher, Chapman & Hall.

MN 1.5 Nano-photonics and Optoelectronics

M. Tech. Nanotechnology I Sem.

Existing	Modified	Justification
Section A:	Section A:	
		For the systematic
III-V semiconductor Quantum	III-V semiconductor Quantum	study of the subject,
Wells and Quantum Dots,	Wells and Quantum Dots,	highlighted topics
Spectroscopic studies of QD	Nonlinear Optical Properties,	should be modified.
ensembles: photoluminescence,	Quantum Confined Stark effect,	
measurements in Magnetic field,	Dielectric Confinement Effect,	
absorption measurements, ultra-	Superlattices, Core-shell Quantum	
fast spectroscopy. Single QD	dots and quantum dot-quantum	
studies through micro-PL: Spin	wells, Quantum confined	
states. Manipulation of nuclear	structures as lasing media,	Not necessary at this
spin states. Optical cavites,	Photonic cruystals. 1D, 2D/3D	point, as these topics
Photonic gap materials. 1D	photonic structures. Features of	are related to Quantum
microcavities, 2D/3D photonic	Photonic crystals, Microcavity	Computation and
structures. Optical manipulation	effect, Methods of Fabrication	Information
of qubits. Quantum cryptography	(Self Assembly, Two Photon	Processing and thus
and optical approaches to	Lithography, E-beam Lithography,	will study in M.Tech
quantum information processing.	Holographic methods). Photonic	II semester syllabus of
	crystal optical circuitry, Nonlinear	"Quantum
	Photonic Crystals, Photonic	Computation and
	Crystal Fiber, Photonic Crystal	Information
	Sensors.	Processing".
Section B:	Section B:	
Two level system, rate equations,	Introduction to Lasers, Guided	For the systematic
Population inversion, Lasers.	waves, Gain in two level lasing	study of the subject,
LED's. Heterojunction lasers,	medium, Lasing condition and	these mentioned topics
Guided Wave Optics, basic	gain in semiconductor, Selective	should be modified.
geometry, operating	amplification and coherence,	
characteristics, losses, gain, gain	Threshold condition for lasing,	
band, modification of	Lineshape function and line-	
characteristic by lowered	broadening mechanisms, Lasing	These topics are not
dimensionality, QW and QD	threshold condition in two level	specifically mentioned
Laser performance. Surface	system, LED's: Choice of	
emitters, Microcavity lasers,	materials, Light output from LED,	
Materials issues. Alternative	Semiconductor lasers: Basic	
cavity designs; micro-disk lasers,	principles, Heterojunction lasers:	Not a concern of the
photonic band gap cavities.	Energy band diagram and power	not necessary at this
Unipolar devices: QCL devices	output,	point.
tor mid/near intrared. Principles	Quantum Well and Quantum Dot	

	-	
of operation, Basic operating characteristics. Use of photonic structures to lower losses. Single Photon sources. Attenuated LED's, Single dot devices, true single photon sources, I and II order correlation functions, Hanbury Brown- Twiss experiment.	Lasers, Surface emitting lasers, Unipolar devices: Quantum Cascade Lasers: Structures and Principles of operation, Microcavity and Photonic Crystal lasers,	
Section C:	Section C:	
Photodiodes , Avalanche Photo Diodes (APD), photon counting, materials requirements for APD's, limitations, after pulsing, quantum efficiency . Quantum dots as absorbers, standard current generation. QWIPs Quantum well infrared photodetectors (QWIPs). Operation principles, design and materials choices. Fabrication of planar arrays, spectral response, two colour detection. Quantum dot infrared photodetectors (QDIPs). Extending QWIPs into shorter and longer wavelengths.	Photodiodes, Avalanche Photo Diodes (APD), structure, materials, characteristics and device performance. Infrared quantum detectors, QWIPs Quantum well infrared photodetectors (QWIPs). Operation principles, design and materials choices. Quantum dot infrared photodetectors (QDIPs). Extending QWIPs into shorter and longer wavelengths.	For the systematic study of the subject, these mentioned topics should be modified Not necessary at this point.

Books:

- Progress in Nano-Electro-Optics III Industrial Applications and Dynamics of the Nano-Optical System : Motoichi Ohtsu (Ed.) ISBN 3-540-21050-4 Springer Berlin Heidelberg New York 2005
- 2. Surface Plasmon Nanophotonics Mark L. Brongersma Pieter G. Kik (Ed) ISBN: 978-1-4020-4349-9 (HB) Springer 2007
- 3. Nanophotonic Materials Photonic Crystals, Plasmonics, and Metamaterials Edited by
- 4. R. B. Wehrspohn, H.-S. Kitzerow, and K. Busch Wiley VCH Verlag GmbH & Co KGaA 2008
- 5. PLASMONICS: FUNDAMENTALS AND APPLICATIONS by STEFAN A. MAIER ISBN 978-0387-33150-8 Springer 2007
- **6.** Optical Metamaterials Fundamentals and Applications by Wenshan Cai and Vladimir Shalaev ISBN: 978-1-4419-1150-6 Springer
- 7. Semiconductor Optoelectronic devices by Pallab Bhattacharya, published by Pearson Education ISBN-978-81-203-2047-5
- 8. Physics of Photonic Devices by Shun Lien Chuang, John Wiley & Sons

MN 2.1 Nano-electronics

M. Tech. (Nanotechnology) II sem.

Existing	Modification	Justification	
Section A	Section A	B section is shifted to	
Quantum tunneling, ballistic electron transport, 1D transport and Büttiker- Landauer formula, quantum point contact/quantized conductance, electron collimation effect, solid-state electron optics negative bend resistance and anomalous Hall effect, breakdown of Ohm's law, quantum Hall effect and 1D edge states, quantum interference and Aharanov– Bohm effect, effect of high surface/bulk-ratio on thermal dynamics, noise in	MOS structure, subthreshold characteristics, Short channel effects, punch through, velocity saturation, hot electron effects, CMOS scaling, device variability, interconnects; Bulk CMOS improvements: strained Si, high-K dielectrics metal gates, SOI MOSFETs, Double gate MOSFETs, FinFET, Memory devices: Phase change RAM, ferroelectric RAM, magnetic RAM.	Section A, because Microelectronics devices part should come prior to the Nanoelectronics devices. And some part deleted like Principles of VLSI chip design, digital logic and memory devices. Because these topics Students have already studied in undergraduate course. And some topics	
nanostructures.		added.	
Section B Principles of VLSI chip design, digital logic and memory devices. CMOS scaling, challenges and limits: short channel effects static	Section B Important quantities in mesoscopic transport, ballistic electron transport, Magneto-transport properties of quantum films: Landau quantization, two-dimensional electron gases in	Added deleted and sequence changed	
power, device variability, interconnect; ITRS; Bulk CMOS improvements: strained Si, high-K dielectrics,	perpendicular magnetic fields, The quantum Hall effect, conductance quantization in quantum pint contacts, the Landauer–Büttiker formalism,		
metal gates, SOI; Novel device architectures: fully depleted ultra-thin body SOI, multiple -gate devices: planar	Edge states and channels, Quantum point contact circuits, Electronic Phase Coherence: quantum interference and Aharanov–Bohm		
double-gate, FinFET, tri-gate FET, Memory devices. Phase change RAM, ferroelectric RAM, magnetic RAM, molecular memory.	effect, weak localization, noise in nanostructures.		
Section C	Section C	Added deleted and	
Limits of conventional microelectronics, Resonant tunneling devices, hot-electron	Limits of conventional microelectronics, Quantum tunneling, Resonant tunneling devices, hot-	sequence changed.	

transistors, Coulomb -	electron transistors, Coulomb-	
blockade effect and single-	blockade effect and single-electron	
electron transistor/memory,	transistor, quantized conductance in	
quantized electron current	CNTs, nanotubes, ballistic rectifiers, ,	
carried by surface acoustic	planar nano diode and nano MOSFET,	
wave, quantized conductance	Y-switches, molecular electronics:	
in multi-wall nanotubes,	Introduction, Electrodes and Contacts,	
branched electron flow paths	Functions and Devices-First Test	
and quantum switch, different	Systems), carbon nanotube transistors,	
types of ballistic rectifiers,	Organic Semiconductors devices:	
nonlinear electronic nano-	Organic Light Emitting Diodes and	
material, planar nano-diode	Organic Displays.	
and transistor, Y-switches,		
molecular electronics and		
nanotube transistors, organic		
semiconductor devices.		

TEXT BOOKS:

1. Chenming Calvin Hu, "Modern Semiconductor Devices for Integrated Circuits", First edition, Pearson Education, Inc., 2010.

2. Yuan Taur, Tak H. Ning, "Fundamentals of Modern VLSI Devices", second edition, Cambridge university press, 2013.

3. Thomas Heinzel, "Mesoscopic Electronics in Solid State Nanostructures", second edition, WILEY-VCH, 2007.

4. Rainer Waser (Ed.), "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices", second edition, WILEY-VCH, 2003.

5. Ballistic Transistors M. Lundstrom and J. Guo, "Nanoscale Transistors: Physics, Modeling, and Simulation", Springer 2006.

6. George W. Hanson, "Fundamental of Nanoelectronics", First edition, Pearson Education, 2009.

REFERENCE BOOKS:

1. Tero T. Heikkilä, "The Physics of Nanoelectronics", OXFORD university press, first edition, 2013.

2. Byung-Gook Park, Sung Woo Hwang, Young June Park, "Nanoelectronic Devices", Pan Stanford publishing, Pte. Ltd. 2012.

3. Vladimir V. Mitin, Viatcheslav A. Kochelap Michael A. Stroscio, "Introduction to Nanoelectronics", Cambridge university press, 2012.

4. C. Y. Chang (Editor), Simon M. Sze (Editor), "ULSI Devices", JOHN WILEY & SONS, INC, 2000.

5. S. Datta, "Electronic Transport in Mesocopic Systems. Cambridge University Press, 1995.

MN 2.2 Mathematical modeling and simulation

M. Tech . II sem. (Nanotechnology)

Existing	Modification	Justification
Section A	Section A	A good syllabus should consist of
Fundamental principles of	Modeling: Scientific	channelized flow from one topic to
numerical methods:	Modeling, Mathematical	another. This attribute was
Scientific Modeling,	modeling, Numerical	missing in section A; so imbibe in
Numerical Algorithms,	Algorithms, Fundamental	modified section A.
Programs and Software,	principles of numerical	
Approximations in	methods (Programs and	
Mathematical model building,	Software, Approximations	
Numerical integration,	in Mathematical model	
Differentiation, Variation	building, Numerical	
finite element methods,	integration, Numerical	
Raleigh's method, Ritz	differentiation, Finite	
method.	element method and	
	Finite difference method,	
Mathematical modeling:	Raleigh's method, Ritz	
physical simulation, process	method), physical	
control, transport phenomena,	simulation, process	
concept of physical domain	control, transport	
and computational domain,	phenomena, concept of	
Finite element method and	physical domain and	
Finite difference method.	computational domain,	
Section B		
Ab-Initio methods: Linear		
Combination of atomic orbtals	NO change	
method, Density function		
theory, Hartree and Hartree		
Fock methods, mean field		
approximation, statistical		
methods for many body		
system, spin-polarized		
relativistic Korringa-Kohn-		
Rostoker Green's function,		
Augmented Plane Wave, Full		
Potential-APW, Projector		
Augmented Plane wave, linear		
muffin tin orbitals and k.p		
methods.		

Section C	Section C	In the given time frame, it's not
Simulation: Basic concepts of	Simulation: Basic	possible to discuss the variants of
simulation, data manipulation,	concepts of simulation,	Monte Carlo method; hence
data exchange of the structure,	data manipulation, data	deducted from section C.
properties and processing of	exchange of the structure,	
materials, Three dimensional	properties and processing	
model for capillary	of materials, Three	
nanobridges, Molecular	dimensional model for	
dynamics simulation.	capillary nanobridges,	
Monte Carlo methods:	Molecular dynamics	
Basics of the Monte Carlo	simulation.	
method, Algorithms for Monte		
Carlo simulation, Applications	Monte Carlo methods:	
to systems of classical	Basics of the Monte Carlo	
particles, variation Monte	method, Algorithms for	
Carlo method, diffusion	Monte Carlo simulation,	
Monte Carlo method,	Applications to systems	
Quantum Monte Carlo	of classical particles.	
method.		

Text/Reference books:

- 1. Chapra. S.C.and Canale R.P., Numerical methods for Engineers, Tata McGraw Hill, New Delhi, 2002.
- 2. Frenkel D. and Smith, B., Understanding molecular simulation from algorithm to applications, Kluwar Academic Press, 1999.
- 3. Ohno, K, Esfarjani. K. and Y. Kawazoe, Introduction to Computational Materials Science from ab-initio to Monte Carlo Methods, Springer-Verlag, 1999.

MN 2.3 Quantum Computation and Information Processing

M.Tech (Nanotechnology) II Sem.

Existing	Modified	Justification
Section A:	Section A:	
Basics of Nanocomputing: Elements of Boolean Algebra and Binary System, Classical Logic Gates and Logic gate symbols (AND gate, OR gate, NOT gate, NAND gate, NOR gate, EXOR gate, EXNOR gate), Circuit Models. Linear Algebra and Dirac Notation : Hilbert Space, Operators, The Spectral theorem, Functions of Operators, Tensor Products, The Schmidt Decomposition Theorem.	Basics of Nanocomputing: Elements of Boolean Algebra and Binary System, Classical Logic Gates and Logic gate symbols (AND gate, OR gate, NOT gate, NAND gate, NOR gate, EXOR gate, EXNOR gate), Circuit Models. Linear Algebra and Dirac Notation : Hilbert Space, Operators, The Spectral theorem, Functions of Operators, Tensor Products, The Schmidt Decomposition Theorem	No modifications required
Section B:	Section B:	
Qubits and hypothesis of Quantum mechanics: The state of a quantum system, Time evolution postulate, Superposition and composite System, Measurement postulate, Mixed states and general quantum operationQuantum modelof computation: Quantum gates (one and two qubits gate), Universal set of quantum gates, Measurements with quantum circuits. Superdense coding, Quantum Teleportation and it application, Quantum Entanglement.	QubitsandhypothesisofQuantummechanics:The stateofaquantumsystem,Timeevolutionpostulate,SuperpositionandcompositeSystem,Measurementpostulate,MixedstatesandgeneralquantumoperationQuantum model of computation:Quantumgates(onequbitQuantumgates(onequbitQuantumgates(onequbitQuantumsetofquantumcircuits.Superdensecoding,QuantumTeleportationanditapplication,QuantumEntanglement.	For the systematic study of the subject, mentioned topic should be modified.

Section C:	Section C:	
	Introduction to Quantum	
Introduction to Quantum	algorithms: The Deutsch	Not necessary at this
algorithms: Phase kick-back, The	Algorithm, The Deutsch-Jozsa	point.
Deutsch Algorithm, The Deutsch-	Algorithm, Quantum phase	
Jozsa Algorithm, Quantum phase	estimation and quantum Fourier	
estimation and quantum Fourier	Transformation, Eigenvalue	
Iransformation, Eigenvalue	Estimation and finding orders,	
Estimation and finding orders,	Shor's algorithm, Grover's	
Shor's algorithm, Algorithms	quantum Search algorithm,	
based on amplitude amplification.	Quantum Cryptography Quantum	
Grover's quantum Search	Error Correction Single-Oubit	
algorithm, Search without	Measurement Adiabatic Quantum	
whowing the success probability.	Computation.	
Single Oubit Measurement	,	
Statistical Quantum computation	Physical realizations of logic	
Adiabatic Quantum Computation	quantum gates in Quantum	
Physical realizations of logic	System: Guiding Principles,	
quantum gates in Quantum	Conditions for quantum	
System: Jon Tran Quantum	computation, Harmonic oscillator	For the systematic
Computer Solid State Spin	quantum computer, Ion Trap	study of the subject,
Quantum Computer	Quantum Computer.	should be modified
Superconductor Quantum		Should be mounted.
Computer. Topological Quantum		
Computer, Liquid State Ouantum		
Computer.		
r		

Text/Reference books:

- 1. An introduction to Quantum Computing by Phillip Kaye, Raymond Laflamme and Michele Mosca Oxford University Press.
- 2. Introduction to Quantum Computers by Gennady Berman, Gary Doolen, Ronnie Mainieri and Vladimir Tsifrinovich, Word Scientific.
- 3. Quantum computation and quantum information, by Michael A. Nielsen, Isaac L. Chuang

MN 2.4 Advanced characterization techniques

M. Tech. (Nanotechnology) II sem.

Existing	Modified	Justification
SECTION A: Diffraction techniques: Introduction to x-ray sources: sealed tube x-ray source, rotating anode x-ray source, synchrotron source, single crystal diffraction, powder diffraction, Low Energy electron diffraction (LEED), neutron diffraction: interaction of neutron with matter, scattering cross section, scattering length density, light scattering by colloidal dispersion, dynamic light scattering (DLS), static light scattering, hydrodynamic radius, zeta potential.	No Change	
SECTION B: Microscopes: Optical microscopy, fluorescence and confocal microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Photolithography, other optical lithography (EUV, x ray, LIL), p-beam lithography, e beam lithography, soft lithography, nano imprint lithography, DTA, TGA, DSC techniques.	Microscopes: Optical microscopy, fluorescence and confocal microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM). Lithography: Laser Interference Lithography (LIL), p-beam lithography. Thermal Analysis: DTA, TGA, DSC techniques.	Already covered in Semester I
SECTION C: Spectroscopy Techniques: Ultraviolet (UV) and x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), Rutherford back scattering, FTIR, UV-VIS, cathode luminescence and photo luminescence.	No Change	

Books:

- 1. Nanocomposite science and technology P.M. Ajayan, L.S. Schadler, P.V. Braun, Wiley, New York.
- 2. Active Metals: Preparation, characterization, applications A. Furstner, Ed., VCH, New York 1996.
- 3. Characterization of nanophase materials Z.L Wang (ed), Wiley-VCH, New York 2000.
- 4. Nanoparticles: From theory to applications G. Schmidt, Wiley Weinheim 2004.
- 5. Nanostructured Silicon based powders and composites Andre P Legrand, Christiane Senemaud, Taylor and Francis, London New York 2003.
- 6. Polymer clay Nanocomposite T.J. Pinnayain, G.W. Beall, Wiley, New York 2001.
- 7. Block Co-polymers in Nanoscience Massimo Lazzari, Guojun Liu, Sebastien Lecommandoux, Wiley, New York 2007
- 8. Chemistry of nanomaterials : Synthesis, properties and applications by CNR Rao et.al.
- 9. Processing & properties of structural naonmaterials Leon L. Shaw (editor)
- 10. Elements of X-ray Diffraction by Cullity, B. D., 4th Edition, Addison Wiley, 1978.
- 11. The Structure and Properties of Materials by Rose, R.M., Shepard L.A., and. Wulff, J., Wiley Eastern Ltd.
- 12. Electron Beam Analysis of Materials by Loretto, M. H., Chapman and Hall, 1984.

MN 1.1 Introduction to material science

M. Tech. (Nanotechnology)

Existing	Modification	Justification
Section A	Section A	Part of C section is shifted in
Section A Need of material science and Engineering: Atomic bonding in solids, unit cells, primitive cell, crystal systems, Miller indices, crystallographic directions & planes, packing fraction, linear density, planer and theoretical densities of crystal structure, close-packed crystal structure, close-packed crystal structures, single crystal, polycrystals, amorphous structure, Introduction to XRD for the determination of crystal structure; Crystal imperfections: point defects, linear defects, surface defects, bulk and volume defects; Polymers: Introduction, classification, polymer structure, copolymers, tacticity, geometric isomerism, molecular weight, molecular weight distribution, molecular weight distribution, molecular weight distribution to ceramic structure and applications of ceramics.	Section A Need of material science and Engineering: Atomic bonding in solids, unit cells, primitive cell, crystal systems, Miller indices, crystallographic directions & planes, packing fraction, linear density, planer and theoretical densities of crystal structure, close- packed crystal structures, single crystal, polycrystals, amorphous structure, Introduction to XRD for the determination of crystal structure; Crystal imperfections: point defects, linear defects, surface defects; Plastic deformation, plastic deformation by slip, shear strength, motion of dislocation: effect of stress, temperature, grain size, solute atoms, precipitate particles, multiplication of dislocations, basic concepts of creep and fracture.	Part of C section is shifted in Section A, as per continuation of defects and dislocation with deformations. And polymer is shifted in section C.
Section B Introduction to Phase diagrams: Phase rule, Unary phase diagram, binary phase diagram (Al2O3, PbSn, Ag- Pt), Hume-Routhery rules for solid solutions, the lever rule. The tie line rule, Diffusion: Diffusion mechanism, Fick's law of diffusion, steady state and non-steady state	Section B Introduction to Phase diagrams: Phase rule, Unary phase diagram, binary phase diagram (Al2O3, PbSn, Ag- Pt), Hume-Routhery rules for solid solutions, the lever rule. The tie line rule, the iron–carbon system Development of Microstructure in	introduction of Iron carbon system to understand phase diagram and different phase reactions.

applications based on Fick's second law, kirendall effect; Phase Transformations: Nucleation, homogeneous, heterogeneous growth, Transformation kinetics, Time-temperature- transformation (TTT) curves, applications of nucleations & growth, glass transition.	Iron–Carbon Alloys. Diffusion: Diffusion mechanism, Fick's law of diffusion, steady state and non-steady state, applications based on Fick's second law, kirendall effect; Phase Transformations: Nucleation, homogeneous, heterogeneous growth, Transformation kinetics, Time-temperature- transformation (TTT) curves, applications of nucleations & growth, glass transition.	
Section C Mechanical behavior: Elastic, anelastic, viscoelastic behavior of materials, modulus as a parameter in design. Plastic deformation, plastic deformation by slip, shear strength, motion of dislocation: effect of stress, temperature, grain size, solute atoms, precipitate particles, multiplication of dislocations, basic concepts of creep and fracture. Biomaterials: Protein Enzymes DNA, RNA. Liquid Crystals and Quasi Crystals. Disposal of waste materials.	Section CMechanicalbehavior:Elastic,anelastic,viscoelasticbehaviorofmaterials,Polymers:Introduction,classification,polymerstructure,copolymers,tacticity,geometricisomerism,molecularweight,molecularweight averages,polydispersityindex;Ceramics:Introduction toceramicstructureapplications of ceramics.LiquidCrystalsComposites:particle-reinforcedcomposites,structural composites	Introduction of Polymer is introduced with mechanical behavior of materials. Also composites are very important in material science.

Books:

1 Callister W. Jr. "material science and Engineering : An Introduction." John Willey and sons, 2007.

2. M. F. Ashby and D.R. H. Jones, "Engineering materials1 and 2", BH publication, 2002.

MN1.2 Fundamental of Nano-science and Nano-technology

M. Tech. (Nanotechnology) I sem

Existing	Modified	Justification
SECTION A: Nanostructures: Definition of nanoscience and nanotechnology, classification of the nano materials, zero dimensional nanostructures, one dimensional nanostructures-nanowires, nanorods and nanotubes, two dimensional nanostructures- graphene, Thinfilms, three dimensional nanostructures. Quantum Confinement: Quantum Confinement: Quantum confinement of electrons in semiconductor nanostructures, Quantum dots(QDs), Quantum wires (QWRs), Quantum wells (QWs). Density of states in QDs, QWRs, QWs.	Nanostructures: Definition of nanoscience and nanotechnology, classification of the nano materials, zero dimensional nanostructures, one dimensional nanostructures- nanowires, nanorods and nanotubes, two dimensional nanostructures-graphene, Thinfilms, Quantum Confinement, Quantum dots(QDs), Quantum wires (QWRs), Quantum wells (QWs). Density of states in QDs, QWRs, QWs.	Three dimension nanostructure is not needed at this point. Quantum confinement is self explanatory.
SECTION B: Synthesis of Nanomaterials: Synthesis of nano-structured materials, sol-gel processing, microwave synthesis, self- assembly, Langmuir-Blodgett (LB) method, electrochemical deposition, chemical vapor deposition, Sputter deposition, pulsed laser deposition, magnetron sputtering, molecular beam epitaxy, lithography. Properties of Nanomaterials. Shape and size dependant properties electrical, linear and nonlinear optical properties, magnetic, thermal and mechanical properties of	Synthesis of Nanomaterials: Synthesis of nano-structured materials, sol-gel processing, microwave synthesis, self- assembly, Langmuir-Blodgett (LB) method, electrochemical deposition, chemical vapor deposition, Sputter deposition, pulsed laser deposition, magnetron sputtering, molecular beam epitaxy, lithography.	Rearrange the section B and C as syllabus is extremely vast, it should be well arranged.

nanomaterials, melting point and lattice constants, surface plasma resonance.		
SECTION C:		Rearrange section B and
Applications: Nano-	Properties of Nanomaterials.	C as syllabus is
Heterostructures and quantum	Shape and size dependant	extremely vast, it should
lasers).	nonlinear optical properties,	be well allanged.
Nanotechnology in health and	magnetic, thermal and mechanical	
life sciences, nanomaterials in	properties of nanomaterials,	
tissue engineering, protein	melting point and lattice constants,	
detection, nanostructured	surface plasma resonance.	
materials in biomedical	Applications: Nano-	
implants, nanoporous	Heterostructures and quantum dot	
membranes, biomedical	(Photodetectors and lasers).	
applications of nanoparticles.		

Text/Reference books:

- 1. S.K.Kulkarni, Nano technology; principle and practices by, (Capital Publishing Company), 2007.
- 2. Guozhong Cao, Nanostructures and Nanomaterials–Synthesis, Properties and Applications, Imperial College Press, London, 2004.
- 3. Michael Kohler and Wolfgang Fritzsche, Nanotechnology-an introduction to Nanostructuring techniques, Wiley-VCH, 2004.
- 4. Emil Rodune, Nanoscopic materials size dependant phenomena, Royal society of Chemistry publishing, 2006.

MN 1.4 Advanced synthesis processes and devices

M. Tech. (Nanotechnology) Ist Sem.

Existing	Modification	Justification
Section A	Section A	- Prerequiste classifications
Crystal Synthesis: Epitaxy and	Approaches for	should be discussed in prior
Epitaxial growth techniques.	nanomaterial fabrication:	than precise techniques
Thin film growth in Ultra	Top Down and Bottom	Such as
High Vacuum environments,	up, Physical vapour	Approaches for nanomaterial
Molecular Beam Epitaxy;	deposition (PVD): Plasma	fabrication: Top Down and Bottom
basic physical processes.	Arc Discharge and	up,
Variants: Gas source MBE,	Sputtering (DC, RF and	Physical vapour deposition (PVD)
Phase locked Epitaxy, Atomic	RF Magnetron	Chemical vapour deposition
Layer Epitaxy. Lattice	sputtering), Chemical	(CVD)
mismatched heteroepitaxy:	vapour deposition (CVD):	Epitaxy and Epitaxial Growth
Sputtering, Chemical Vapour	LPCVD, PECVD and	techniques
Deposition (CVD): MOCVD,	MOCVD, Crystal	Conventional and unconventional
LPCVD, PECVD.	Synthesis: Epitaxy and	lithography
	Epitaxial Growth	
	techniques	- In order to avoid the
	(Homoepitaxial and	confusion regarding the
	Heteroepitaxial growth	extent of elaboration of a
	mechanism), Molecular	particular topic a heading
	Beam Epitaxy (MBE),	should be mentioned with
	Variants: Gas source	their sub-headings.
	MBE, Phase locked	Such as
	Epitaxy, Atomic Layer	Sputtering (DC, RF and RF
	Epitaxy. Lattice	Magnetron sputtering).
	mismatched heteroepitaxy	Epitaxial Growth techniques
Section B	Section B	(Homoepitaxial and
E-beam lithography: basic	Photolithography, E-beam	Heteroepitaxial growth
principles, e-beam resists;	lithography, X-ray and	mechanism)
exposure considerations,	Ion-beam lithography:	Photolithography, E-beam
multilevel techniques. X-ray	Resists and masks,	lithography, X-ray and Ion-beam
and ion-beam lithography:	process, types, problem,	lithography: Resists and masks,
basic principles. Imprint	limitations and way out.	process, types, problem,
lithography: Soft - elastomeric	Conventional and	limitations and way out.
materials ; techniques - near-	unconventional	Imprint or soft lithography:
field phase shift lithography,	lithography,	Printing/decal transfer,
replica moulding,	Imprint or soft	Molding/embossing, Phase-Shift
micromoulding in capillaries,	lithography:	Edge lithography and Nanoskiving
microtransfer moulding,	Printing/decal transfer,	(mechanical sectioning)
solvent-assisted microcontact	Molding/embossing,	Scanning probe lithography:
moulding, microcontact	Phase-Shift Edge	Energy transfer: STM and AFM
printing; Rigid -nanocontact	lithography and	assisted lithography, local
moulding; nanoimprint	Nanoskiving (mechanical	oxidation lithography

lithography; UV-assisted -	sectioning), Scanning	- There are several
step-and-flash imprint	probe lithography: Energy	techniques belongs to a
lithography; soft UV	transfer: STM and AFM	particular class; all weren't
nanoimprint lithography;	assisted lithography, local	discussed in a given frame
templates, masters and	oxidation lithography,	of time; but those were
moulds. Scanning probe	Replacement	need to be discussed which
lithography: scanning probe	lithography	are of remarkable
tools ; techniques - local	(Nanoshaving,	significance.
oxidation nanolithography,	Nanografting and	Such as
local chemical	Nanopen reader and	Physical vapour deposition
nanolithography, dip-pen	writer (NPRW)), and	(PVD): Plasma Arc Discharge and
nanolithography,	Passive technique: Dip-	Sputtering
hemomechanical patterning	pen nanolithography,	Replacement lithography
and replacement lithography	Nanolithography and	(Nanoshaving, Nanografting and
(nanoploughing, nanoshaving	nanomanipulation.	Nanopen reader and writer
and nanografting).		(NPRW)
Section C	Section C	- In order to observe the
High Speed Electronic devices	Metal-semiconductor	harmonic conductance of a
(FET, HEMT, pHEMT) and	junctions,	course mutual coherence
novel concepts. Transferred	Heterojunctions, High	among the different
electronic devices: Gunn	Speed electronic devices:	sections is desired.
devices. Advanced concepts in	FET, MESFET, HEMT,	Such as device section is used to
HBTs. The SiGe and GaN	pHEMT and HBT,	appreciate and understand that
systems: basic band structure	MESFET, HEMT and	"The materials developed from
and salient features. Circuits:	HBT equivalent circuits,	advanced synthesis processes
pHEMT and HBT equivalent	Heterojunction Barrier	facilitates the development of
circuits, frequency dispersion,	varactor (HBV),	devices with properties; which
short channel effects. GaAs	Transferred electronic	otherwise not possible to exist
and InP Integrated Circuits.	devices: Gunn diode, The	without these techniques".
Monolithic Microwave	SiGe and GaN systems:	So, the portion of section C which
Integrated circuits (MMIC).	basic band structure and	being on not the above proposed
High speed Analogue design.	salient features.	ground hence need not to be
Differential Amplifiers,		addressed in section C; is removed.
cascade techniques, direct		
coupled amplifiers. High		
speed Operational Amplifiers		
and Analogue to Digital		
converters (ADC). Low noise		
amplifiers. Electronic systems:		
electronic sources. Frequency		
multipliers. Heterojunction		
Barrier varactor (HBV).		

Books:

1. Introduction to Nanoscience by Gabor L. Hornyak, Joydeep Dutta, H.F. Tibbals, Anil Rao (CRC Press)

- 2. Molecular Beam Epitaxy by M Henini (Elsevier Store)
- 3. Microfabrication and Nanomanufacturing By Mark James Jackson.
- 4. Semiconductor Physics And Devices by Neamen Donald (McGrawHill Education).
- 5. Introduction to Nanomaterials and Devices by Omar Manasreh (Wiley)

MNEL 2.5 a: MEMS and NEMS Technology

M. Tech. Nanotechnology II Sem.

Existing	Modified	Justification
Section A Introduction to MEMS and NEMS, MEMS Design, Scaling of Micromechanical Devices, Mechanical Properties of MEMS materials, Materials for MEMS, Micromachining Technologies: Bulk, Surface, LIGA, Microfabrication Techniques: Wafer level processes, Pattern Transfer, Process Integration: Developing a process, Basic principles of process design. Transduction Mechanism, Energy conserving transducers: Parallel plate capacitors, two port capacitors, Electrostatic and Magnetic actuators.	Section A Introduction to MEMS and NEMS, MEMS Design, Scaling of Micromechanical Devices, Mechanical Properties of MEMS materials, Materials for MEMS, Micromachining Technologies: Bulk, Surface, LIGA, Microfabrication Techniques: Wafer level processes, Pattern Transfer, Process Integration: Developing a process, Transduction Mechanism, Energy conserving transducers: Parallel plate capacitors, two port capacitors, Electrostatic and Magnetic actuators.	-The topic is removed due to repetition.
Section B	Section B	-
No change	No change	
Section C	Section C	
No change	No change	

Books:

Text Book/Reference Books:

- 1. Microsystems Design, S. D. Senturia, Kluwer Academic Publishers
- **2.** MEMS Pressure Sensors: Fabrication and Process Optimization, Parvej Ahmad Alvi, (ISBN: 978-84-616-2207-8) Year 2013; IFSA Publication (Barcelona, Spain).
- 3. The MEMS Handbook, Mohmad Gad-el-Hak, CRC Press
- 4. Semiconductor Devices: Physics and Technology, S. M. Sze, (Second Ed.) Willey

Annexure-III

B.Sc. V Semester : Physics

Quantum Mechanics and Spectroscopy

Existing Syllabus	Modified Syllabus	Comment
Unit 1 Failures of the classical	Unit 1 Body radiation, Planck's	
mechanics, black body	quantum theory, photo electric	
radiation, Planck's quantum	effect, Einstein's explanation,	
theory, photo electric effect,	Compton effect, Ritz	
Einstein's explanation,	combination principle in	
Compton effect, Ritz	spectra, Bohr's quantizaion of	
combination principle in	angular momentum and	
spectra, Bohr's quantizaion of	application to Hydrogen atom,	
angular momentum and	limitations of Bohr theory,	
application to Hydrogen atom,	Wave - particle duality, de	
limitations of Bohr theory,	Broglie waves, Electron	
Wave - particle duality, de	diffraction experiment, group	
Broglie waves, Electron	and phase velocities,	
diffraction experiment, group	uncertainty principle,	
and phase velocities,	formulation and its	
uncertainty principle,	applications, finite size of	
formulation and its	atom, non existence of	
applications, finite size of	electrons in nucleus, Gaussian	
atom, non existence of	wave packet, Bohr's principle	
electrons in nucleus, Gaussian	of complementarity,	
wave packet, Bohr's principle	schrodinger's equation: its	
of complementarity,	need and justification, time	
schrodinger's equation: its	dependent and time	
need and justification, time	independent forms, physical	
dependent and time	significance of wave function	
independent forms, physical	(Schrodinger's and Born's	
significance of wave function	interpretation), boundary and	
(Schrodinger's and Born's	continuity conditions of wave	
interpretation), boundary and	function, probability current	
continuity conditions of wave	density.	
function, probability current	5	
density.		
Unit 2 No Change	No Change	
Unit 3 Application of series	Unit 3 Application of series	
solution method to Legendre's	solution method to Legendre's	
Bessel's, Hermite's and	and Hermite's and differential	
Laguerre's differential	equations, basic properties like	
equations, basic properties like	– orthogonality, recurrence	

– orthogonality, recurrence	relations, graphical
relations, graphical	representations, generating
representations, generating	functions etc. of Legendre's
functions etc. of Legendre's,	and Hermite's Polynomials.
Bessel's, Hermite's and	Bound state problems: Particle
Laguerre's Associate	in a one-dimensional box -
Legendre's polynomials.	(finite square potential well),
Bound state problems: Particle	Energy eigen values and eigen
in a one-dimensional box -	functions, simple harmonic
(finite square potential well),	oscillator (One dimensional
Energy eigen values and eigen	case), Zero point energy.
functions, simple harmonic	Quantum Mechanical States:
oscillator (One dimensional	Ket Bra notation.
case), Zero point energy.	
Unit 4 No Change	No Change
Unit 5No Change	No Change

Verified Delight

Offg. Secretary Banasthali Vidyapith P.O. Banasthali Vidyapith Distt. Tonk (Raj.)-304022

Department of Physical Sciences Banasthali Vidyapith, Banasthali

Minutes of the meeting of Board of Studies held on 26thDecember, 2018 at 11:00 a.m. in Conference Room, Urja Mandir, Banasthali Vidyapith.

Present

1.	Mr. Aavishkar Katti	:	Member
2.	Dr. Ajay Singh Verma	:	Member
3.	Dr. Banwarilal Chaudhari	:	Member
4.	Dr. C.M.S. Negi	:	Member
5.	Dr. Devendra Pratap Singh	:	Member
6.	Dr. G. Savitha	:	Member
7.	Mr. Hemant Kumar	:	Member
8.	Mr. Kamal Kumar Jain	:	Member
9.	Ms. Lajwanti Singh	:	Member
10	Dr. Madhumita Halder	:	Member
11.	Dr. Manish Kumar Srivastava	:	Member
12	Mr. Nishant Singh	:	Member
13	Mr. Pardeep Lamba	:	Member
14	Dr. Parvez Ahmad Alvi	:	Member
15	Ms. Pooja Srivastava	:	Member
16	Ms. Priyanka Saxena	:	Member
17	Mr. Rajnish Kumar	:	Member
18	Dr. Ram Lal Awasthi	:	Member
19	Prof. Ritu Vijay	:	Convener
20.	Dr. Sadhu Veera Bhadraiah	:	Member
21	Dr. Saral Kumar Gupta	:	Member
22.	Prof. Seema Verma	:	Member
23.	Ms. Shalini Jharia	:	Member
24.	Mr. Shekhar Yadav	:	Member
25.	Ms. Shivani Saxena	:	Member
26	Ms. Sraja	:	Member
27.	Dr. Supratim Mitra	:	Member
28.	Dr. Sweta Parashar	:	Member

29. Dr. Vartika Kulshreshtha	:	Member
30. Dr. Vishant Gahlaut	:	Member
31. Prof. Rajeev Gupta	:	External Member
32. Prof. Ameer Azam	:	External Member
33. Prof. Sudhish Kumar	:	External Member
34. Prof. Deepak Bhatnagar	:	External Member

Note: Prof. S.C. Bose (External), Dr. Parvendra Tyagi (Internal) could not attend the meeting.

Before proceeding to discuss the agenda of the meeting, convener accorded a cordial welcome to all members who were present in the meeting.

- 1. BOS took up the confirmation of its last meeting held on 10th March, 2012 and 24th April, 2016 and no comments were received from the members, the Board resolved that the minutes of its last meeting be confirmed.
- 2. BOS reviewed and updated the existing panel of examiners in each panel of undergraduate and postgraduate examination of Electronics in accordance to the Byelaws 15:03:2002 of the Vidyapith. The list of examiners has been sent to the secrecy.
- 3. The board reviewed the Study/Curriculum, scheme of examination and proposed revisions in various courses of study as follows:

i.	First Semester Examination, December, 2019	No Change
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	Minor Change ^a
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^a
v.	Fifth Semester Examination, December, 2021	Change ^{a, b}
vi.	Sixth Semester Examination, April/May, 2022	Change ^{a, b}

I. B.Sc. (Mathematics) Examination

The Board reviewed the objectives, learning outcomes and existing courses of Electronics running in B.Sc. (Mathematics) programme and no modification in the syllabus was suggested in I year and II year. However board recommended the up gradation in text books and reference books. The list of upgraded text books, reference books and e-resources of the

Electronics courses running in B.Sc. (Mathematics) programme have been enclosed as **annexure I** (Page No 7 -21).

- (a) The board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V & VI with prior permission of respective heads, time table permitting.
- (b) In III year board proposed to introduce electives in place of discipline courses. Microprocessors, Communication systems, Introduction to photonics and Antenna Theory and Wave Propagation have been proposed to include in the discipline electives.

i.	First Semester Examination, December, 2019	Minor Change ^a
ii.	Second Semester Examination, April/May, 2020	Minor Change ^a
iii.	Third Semester Examination, December, 2020	Minor Change ^{a, b}
iv.	Fourth Semester Examination, April/May, 2021	Minor Change ^{a, b}
v.	Fifth Semester Examination, December, 2021	Revised ^{a, c}
vi.	Sixth Semester Examination, April/May, 2022	Revised ^{a, c}
vii.	Seventh Semester Examination, December, 2022	Revised ^{d, e, f}
viii.	Eighth Semester Examination, April/May, 2023	Revised ^{g, h, i, j}

II. B. Tech. (ECE) Examination

Restructuring of the B.Tech. (ECE) scheme has been started from session 2017-18. Scheme and syllabus of I year, II year III year and IV year were presented in front of the board which are enclosed as annexure II (Page No. 22-73).

The following modifications have been recommended for approval:

- (a) The board proposed to introduce language courses in I year and incorporate more foundation and vocational courses I year, II year, III year.
- (b) The board advised to change the credit from 3 to 4 in *Complex Variables course*.
- (c) Upgradation in the syllabus of Analog Communication, Analog Electronics, Microwave Engineering, Digital Communication, Control systems for the session 2021- 2022 in the curriculum. Microwave Electronics and Analog integrated circuits have been renamed as Microwave Engineering and Analog Electronics, respectively.
- (d) Inclusion of *Antenna Analysis* instead of Antenna and Radar course from the session 2022-2023.
- (e) The UIL Project is shifted from 7th semester to 8th semester. The change will be applicable from session 2019-20.

- (f) Inclusion of *Mechatronics* and *Robotics and Automation* course as discipline electives from the session 2022-2023 in the curriculum keeping in view of interdisciplinary approach of curriculum structure.
- (g) Board proposed some new reading electives from the session 2022- 2023 in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
- (h) Board proposed inclusion of few online courses as reading elective from the session 2022- 2023 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility.
- (i) 3rd year and 4th year of Session 2019 -20 and 2020-21 will be same as session 2021-22 and session 2022-23.
- (j) The board advised to introduce open elective in the VII semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V, VI, and VII with prior permission of respective heads, time table permitting.

III. M.Sc. (Electronics) Examination

i.	First Semester Examination, December, 2019	Revised ^{a,}
ii.	Second Semester Examination, April/May, 2020	Revised ^{a, b, c}
iii.	Third Semester Examination, December, 2020	Revised ^{b,c}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^{d,e}

The Board reviewed the existing course of M.Sc. (Electronics) examination and recommended change in the scheme and syllabus. The board also suggested that whenever there is a change or modification in the B.Tech. (ECE) courses, which are common with the M.Sc.(Electronics) Programme, will be affected in the M.Sc. (Electronics) Programme simultaneously. The changed scheme and syllabus are enclosed as annexure III (Page No. 74-132).

The following modifications have been recommended for approval:

(a) Inclusion of *Signals, Systems and Networks, Semiconductor Devices and Circuits* courses in the curriculum.

- (b) Addition of elective course in II semester. Inclusion of Electives in the curriculum as follows:
 - Basics of Nanoelectronics
 - Mechatronics
 - Audio and Video Systems
 - Geoinformatics
 - Robotics and Automation
 - Biomedical Instrumentation
 - Fiber Optics and Communication
 - Analytical Instrumentation

- Digital Signal Processing
- Communication Networks
- Optical Network
- Satellite Communication
- Mobile Communication
- Radar Navigation
- Power Electronics
- Antenna Analysis
- (c) Addition of open elective course in III semester. In addition, board proposed to chose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, and III with prior permission of respective heads, time table permitting.
 - (d) Addition of new reading electives in the curriculum as follows:
 - Telecommunication Switching Systems and Networks
 - Multimedia Compression and Communication
 - Electronic Packaging
 - Professional Ethics.
 - (e) Board proposed inclusion of few online courses as reading elective for the session 2020- 2021 in the curriculum as follows:
 - Electric Vehicles
 - IoT Sensors and Devices
 - Electromagnetic Compatibility

IV. M.Tech. (VLSI Design)

i.	First Semester Examination, December, 2019	Revised ^a
ii.	Second Semester Examination, April/May, 2020	Revised ^a
iii.	Third Semester Examination, December, 2020	Revised ^{b, c}
iv.	Fourth Semester Examination, April/May, 2021	Revised ^{b, c}

The Board reviewed the existing course of M.Tech. (VLSI Design) and recommended few changes in the list of electives and reading electives. The Board also reviewed the text books and reference books of existing courses of M.Tech. (VLSI Design) and recommended upgradation in text books and reference books. E-resources also have been included for referencing. The board also suggested some of the online courses as reading elective for the programme. The updated syllabus, list of electives and reading electives are enclosed as **annexure IV** (Page No. 133-169).

The following modifications have been recommended for approval:

- (a) The board advised to incorporate open elective course in the II semester and include of *Photonics Integrated Circuits* in the list of discipline electives. In addition, board proposed to choose at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, and II with prior permission of respective heads, time table permitting. The board also suggested to amend the list of discipline electives.
- (**b**) Addition of *Advanced Electronic Packaging and Compound Semiconductor Technology* in the list of reading electives.
- (c) Inclusion of online courses namely *Digital Image Processing and Organic Electronic Devices* as reading electives in the curriculum.

V. B.Sc. (Mathematics)/ B.Sc. (Geology)/B.Sc-B.Ed. Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a)
ii.	Second Semester Examination, April/May, 2020	No Change
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	Revised ^(b,c)
v.	Fifth Semester Examination, December, 2021	Change ^(d,e,f)
vi.	Sixth Semester Examination, April/May, 2022	Change ^(f)

The Board reviewed the objectives, syllabi, learning outcomes of the B.Sc. (Mathematics) / B.Sc. (Geology)/B.Sc-B.Ed. programmes.

- (a) The board has reframed the experiment list of **Electronics Lab** (**PHY 104L**) and suggested to add some more experiments relevant to existing syllabus of Physics in first semester.
- (b) The board has suggested the name of the course (course code: PHY 203) as "Thermodynamics, Statistical and Mathematical Physics" instead of "Statistical and Mathematical Physics".
- (c) The board has reviewed the experiment list of physics lab (course code: PHY 202L). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (d) The board has reviewed the experiment list of physics lab (course code: 5.2). The board found that some of the experiments are not being matched with the theory taught in the relevant semester and therefore, some modifications have been made in the experiment list.
- (e) The board has suggested the name of the course (course code: PHY 203) as "Quantum Mechanics and Spectroscopy" in place of "Quantum, Atomic and

Molecular Physics" and the name of "Atomic Physics Lab" changed to "Quantum Mechanics and Spectroscopy Lab".

(f) The board has suggested to keep discipline electives and related labs in V and VI semester of the program.

The revised syllabus, course learning outcomes, list of suggested books and e-resources of the B.Sc. (Mathematics) programme is attached and marked as **Annexure-V** (Page No. 170-190).

*The corrected name of the courses as well as name of Labs and the contents changed in the revised syllabi should be implemented for the session 2019-20.

VI. B.Sc. (Aviation Science) Examinations:

The course learning outcomes of the course: Basic Physics-I (course code: PHY 102), list of suggested books and e- resources of the B.Sc. (Aviation Science) programme is attached and marked as **Annexure-VI** (Page No. 191).

VII. M.Sc. (Physics) Examinations:

The Board discussed the recent trends in physical sciences at postgraduate level and found that the knowledge of computational software is the necessity of today's research environment. In addition to this, board suggested to give more weight-age to self-learning and independent research activities.

ſ	i.	First Semester Examination, December, 2019	Revised ^(a)
	ii.	Second Semester Examination, April/May, 2020	Revised ^(b)
	iii.	Third Semester Examination, December, 2020	Revised ^(c,*)
	iv.	Fourth Semester Examination, April/May, 2021	Revised ^(d,*)

- (a) Board reviewed the syllabi of M.Sc. Physics I Semester and found that the courses *Classical Mechanics* (Course Code: PHY 403) and *Mathematical Physics* (Course Code: PHY 404) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the syllabi.
- (b) Board reviewed the syllabi of M.Sc. Physics II Semester and found that the courses *Classical Electrodynamics – I* (Course Code: PHY 402) and *Quantum Mechanics* (Course Code: PHY 407) must be revised. The board has suggested minor changes in the course *Classical Electrodynamics – I* (Course Code: PHY 402); while in the *Quantum Mechanics* (Course Code: PHY 407) some mathematical and conceptual details and revision of perturbation theory is required to explain the need of approximation methods.

- (c) Board reviewed the syllabi of M.Sc. Physics III Semester and found that the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520), *Condensed Matter Physics-I* (Course Code: PHY 505), *Condensed Matter Physics-II* (Course Code: PHY 506) and *Physics Lab II* (Course Code: PHY 518L) must be revised. It was found that the content of the course mentioned was not systematic and therefore the board has suggested restructuring the courses *Physics of Lasers and Lasers Applications* (Course Code: PHY 520); while the list of the experiments has been divided into two parts: part A and part B instead of three parts. In addition to these changes, the board has also proposed to include **Reading Elective** in the third semester.
- (d) Board reviewed the syllabi of M.Sc. Physics IV Semester and no changes were suggested except laboratory practices of physics lab-III (Course code- PHY 519L). The board has suggested that the list of the experiments should be divided into two parts: part A and part B instead of three parts.
- (*) Board has proposed new electives in the curricula i.e. **Bio Physics-I** and **Bio Physics-II** in M.Sc. III^{rd} and IV^{th} semester respectively.

The specific programme outcome, revised syllabus, course learning outcomes, list of suggested books and e- resources of the M.Sc. (Physics) programme is attached and marked as **Annexure-VII** (Page No. 192-230). The detailed proposed scheme of M.Sc. (Physics) programme is attached as **Annexure VII A** (Page No. 231-236).

*The content changed in the revised syllabi should be implemented for the session 2019-20.

VIII. M.Tech. (Nanotechnology) Examinations:

i.	First Semester Examination, December, 2019	Revised ^(a,*)
ii.	Second Semester Examination, April/May, 2020	Revised ^(*)
iii.	Third Semester Examination, December, 2020	No Change
iv.	Fourth Semester Examination, April/May, 2021	No Change

(a) The board has revised the whole syllabus of M.Tech (Nanotechnology) and found that the syllabus of **Nano-photonics and Optoelectronics** course (code: ELE506) should be revised.

(*) Apart from the theory course, the board has also reframed the simulation lab-I and –II (code: NANO 502L & NANO 503L). The revised syllabus is enclosed as **Annexure–VIII** (Page No. 242-256). The detailed proposed scheme of M.Tech. (Nanotechnology) programme is attached as **Annexure VIII A** (Page No. 237-241).

4. The Board reviewed the curriculum for the courses running in the other programmes of the Vidyapith. The recommendations as follows-

Bachelor of Technology (BT/CE/EC/EE/EI/CS/IT/MCTR)			
ENGG 202	Basic Electronics	No Change	
Bachelor of Te	echnology (EI)	_	
VLSI 401	VLSI Design	No Change	
ELE 201	Digital Electronics	No Change	
ECE 302	Communication Engineering	No Change	
Bachelor of Te	echnology (EE/EI/MCTR)		
ELE 201	Digital Electronics	No Change	
Master of Science (Physics)			
ELE 406	Principles of Digital Electronics	No Change	
Bachelor of Science (Aviation Science)			
PHY 102	Basic Physics-I	No Change	
Bachelor of Technology (All Branches)			
PHY 101	Applied Optics	No Change	
PHY 105	Engineering Mechanics	No Change	
PHY 106	Modern Physics	No Change	

5. The board considered the report of examiners of different examinations. Most of the examiners found that the content of the answers were satisfactory or good. The reports are attached as **annexure IX** (Page No. 257).

The board has reviewed the reports received from the examiners of different examinations and their observations are as follows:

- reports were satisfactory
- Performance of the students in most of the papers is up to the mark.
- The numerical solving ability of the students was found less.

After observing the reports received from the examiners of different examinations the following suggestions were given:

- The numerical solving ability of the students is a major concern and therefore, it should be addressed through proper tutorial classes.
- To give equal weightage for each section (three sections course paper), the number of questions to be attempted compulsorily should be **six** instead of **five**.
- 6. BOS has thoroughly analysed the quality of the session 2017-2018 question papers keeping the following points in mind
 - Percentage of analytical based question
 - Percentage of descriptive questions
 - Percentage of numerical based questions

In most of the paper, it has been found that there has been a judicious balance of all these components in the papers.

The board has evaluated the question papers of the periodical and semester examinations and found that the quality of the question papers is maintained at UG and PG level. To improve the standard of the question paper, the board has given following suggestions :

- Include more numerical/logical problems.
- Instead of direct questions and derivations, some small conceptual questions must be put in the question paper to check the analytical ability of the student.

7. To review the degree title for the Ph.D. Scholars

Currently Ph.D. degree is awarded in various disciplines namely Electronics, Electronics Engineering, Digital Communication Engineering and many more. To remove the ambiguity it is proposed that the degree title in sciences should be Electronics or Physics and for engineering background, it should be awarded in Electronics Engineering.

The meeting ended with vote of thanks.

Annexure I

Name of Programme: B.Sc. (Mathematics)

Disciplinary Course-Electronics

Programme Educational Objectives:

- > To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- > Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- > Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- ➢ Function with multidisciplinary teams.
Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019)

Disciplinary Course-Electronics

	Existing Scheme							Proposed Scheme						
Course	e Code	Course Name	L	Т	Р	C	Cours	e Code	Course Name	L	Т	Р	С	
ELE	102	Circuits and Signals	6	0	0	6	ELE	102	Circuits and Signals	6	0	0	6	
ELE	102L	Circuits and Signals Lab	0	0	4	2	ELE	102L	Circuits and Signals Lab	0	0	4	2	
		Total	6	0	4	8			Total	6	0	4	8	

B.Sc. (Mathematics) Semester - II (April/May, 2020)

Disciplinary Course-Electronics

		Existing Scheme		Proposed Scheme									
Course	Code	Course Name	L	Т	Р	C	Course	e Code	Course Name	L	Т	Р	C
ELE	103	Principles of Electronics	6	0	0	6	ELE	103	Principles of Electronics	6	0	0	6
ELE	103L	Principles of Electronics Lab	0	0	4	2	ELE	103L	Principles of Electronics Lab	0	0	4	2
	Total				4	8			Total	6	0	4	8

B.Sc. (Mathematics) Semester - III (December, 2020)

Disciplinary Course-Electronics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	C	Course Code	Course Name	L	Т	Р	С
ELE 204	Fundamentals of Digital Electronics	6	0	0	6	ELE 204	Fundamentals of Digital Electronics	6	0	0	6
ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2	ELE 204L	Fundamentals of Digital Electronics Lab	0	0	4	2
	6	0	4	8		Total	6	0	4	8	

B.Sc. (Mathematics) Semester - IV (April/May, 2021)

Disciplinary Course-Electronics

	Existing Scheme		Proposed Scheme								
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	C
ELE 203	Electronic Instrumentation and Measurements	6	0	0	6	ELE 203	Electronic Instrumentation and Measurements	6	0	0	6
ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2	ELE 203L	Electronic Instrumentation and Measurements Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - V (December, 2021)

Disciplinary Course-Electronics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	C	Course Code	Course Name	L	Т	Р	С
ELE 305	Microprocessors	6	0	0	6		Discipline Elective -I	6	0	0	6
ELE 305L	Microprocessors Lab	0	0	4	2		Discipline Elective Lab-I	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022)

Disciplinary Course-Electronics

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	C	Course Code	Course Name	L	Т	Р	C
ELE 302	Communication Systems	6	0	0	6		Discipline Elective -II	6	0	0	6
ELE 303L	Communication Systems Lab and Project	0	0	4	2		Discipline Elective Lab-II	0	0	4	2
Total			0	4	8		Total	6	0	4	8

* L - Lecture hrs/week; T - Tutorial hrs/week;

P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

	Discipline Elective										
Course Code	Name of Course	L	Т	Р	С						
ELE 305	Microprocessors	6	0	0	6						
ELE 305L	Microprocessors Lab	0	0	4	2						
	Introduction to Photonics	6	0	0	6						
	Introduction to Photonics Lab	0	0	4	2						
ELE 302	Communication Systems	6	0	0	6						
ELE 302L	Communication Systems Lab	0	0	4	2						
	Antenna Theory and Wave Propagation	6	0	0	6						
	Antenna Theory and Wave Propagation Lab	0	0	4	2						

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 102, Circuits and Signals	 After completion of this course, students will be able to: Predict the behaviour of any electrical and magnetic circuits. Formulate and solve complex AC, DC circuits. Explain response of RL, RC and RLC networks. Realize the requirement of transformers in transmission and distribution of electric power and other applications. 	Text Book: 1. B.L.Thareja, "A Text Book of Electrical Technology", Vol. I and II, 1994, ISBN-81-219-0515-X	 Recommended Books: 1. Thareja,B.L.(2005). A Text Book of Electrical Technology. New Delhi: S Chand Publication. 2. Chakrabarti, A. (2018).Circuit Theory Analysis and Synthesis. New Delhi: Dhanpat Rai & Co. 3. Mehta, V.K. (2005) .Principles of 	No Change in course contents. Added

Annexure- I B.Sc.(Mathematics) Disciplinary Course-Electronics

				 Electrical Engineering. New Delhi: S Chand Publication. Suggested e-resources: Basic Electrical Circuits by Dr Nagendra Krishnapura, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106108/ Basic Electrical Technology by Prof. T. K. Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105053/ Fundamentals of Electrical Engineering by Prof.Debapriya Das, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105112/ 1 	
2.	ELE 102L, Circuits and Signals Lab	 After completion of this laboratory course, students will be able to: Test Various Active and Passive components using Multimeter and CRO. Understand frequency response of Resonance. Verify different Network Theorems. 			Learning Outcomes added. No Change in Experiment List.
3.	ELE 103, Principles of Electronics	 After completion of this course, students will be able to: Design various diodes circuits for various applications. Differentiate various biasing 	_		No Change in course contents.

		 methods used in BJTs and FET's Analysed different kinds of oscillators and feedback circuits. 	 Text books: 1. Millman, Halkias, "Integrated Electronics," TMH Publications 2. Robert Baylsted, "Electronics Devices," PHI Publications Reference books: 1. Malvino Leach, "Principle of Electronics," Tata Mg Hills 	 Recommended Books: 1. Parikh, Millman & Halkias. (2017). Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 2. Boylestad, Robert L., & Nashelsky Louis. (2015). Electronic Devices& Circuit Theory. New Delhi: Pearson Publication. 3. Malvino, Albert., & Bates, David J. (2017) Electronic Principles. New Delhi: McGraw Hill Education. Suggested E-resources: 1. Basic Electronics by Dr. Pramod Agarwal, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/ 	
4.	ELE 103L, Principles of Electronics Lab	 After completion of this laboratory course, students will be able to: Identify and Test various electronics components. Understand I-V characteristics of various Electronic devices. Draw frequency response of amplifiers. 			Learning Outcomes added. No Change in Experiment List.
5.	ELE 204, Fundamentals of Digital Electronics	 After completion of this course, students will be able to: Develop a skill to build digital logic circuits, troubleshoot them and apply it to solve real life problems. Analyze, design and implementation 			No Change in course contents.
		 of various combinational and sequential circuits. Differentiate various logic families. Understand the operation and application of multi-vibrators. 	 Text Books: 1.MANO M.M. "DIGITAL DESIGN", PHI, 2ND EDI. 2. SinghalRajul, "Pulse & Linear Integrated Circuits", Standard Publisher distributor, 1st Edition, 2002. 3. Bartee T.C., "Digital Computer 	 Recommended Books: Morris Mano, M., & Ciletti, Michael D. (2018).Digital Design. New Delhi: Pearson Publication. Singhal, Rajul. (2003). Pulse & Linear Integrated Circuits. New Delhi:Standard Publisher distributor. Floyd, Thomas L. (2014). Digital Fundamentals. New Delhi: Pearson 	

			 Fundamental ", PHI, 3rd Edition Reference Books : Floyd Thomas L., "Digital Fundamental", Pearson Education, 3rd Edition, 2002. 2. SchilingTaub, "Integrated eircuits", TMH, 2nd Edition. 	 Publication. Suggested E-resources: 1. Digital Circuits and Systems by Prof. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras. https://nptel.ac.in/courses/117106086 / 2. Digital System Design by Prof. D. Roy Choudhury Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080 /3. 	
6.	ELE 204L, Fundamentals of Digital Electronics Lab	 After completion of this laboratory course, students will be able to: Understand the functioning of bread board. Implement and verify logic gates and theorems. Design combinational and sequential circuits. 			Learning Outcomes added. No Change in Experiment List.
7.	ELE 203, Electronic Instrumentation and Measurements	 After completion of this course, students will be able to: Understand and estimate various types of errors in measurements. Explain the operating principle of various measuring instruments used to detect physical quantities. Design op-amp circuits and understand SCR operation. 	Text Books : 1. Ramamoorthy M., "An Introduction to Thyristors& their Applications", 2nd Edition, ISBN-81-85336-67-9 2. SawhenyA.K., "A Course of Electrical & Electronic Instrumentation and Measurement Techniques", 11th Edition, 1995, Pub. Dhanpat Rai, New Delhi	 Recommended Books: 1. Ramamoorthy, M. (1991). An Introduction to Thyristors& their Applications. New Delhi: Affiliated East-West Press (Pvt.) Ltd. 2. Sawheny, A.K.(2015). A Course in Electrical & Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co 3. Helfrick Albert D. & Cooper W.D. (2016). Modern Electronic 	No Change in course contents.

		R	References Book:	Instrumentation and Measurement	
			1. Cooper W.D., "Modern	<i>Techniques (1/e).</i> New Delhi:	
			Electronic Instrumentation	Pearson Publication.	
			and Measurement	Suggested E-resources:	
			Techniques", 3rd Indian	1. Industrial Instrumentation by Prof.	
			Reprint, Prentice Hall of India	AlokBarua, Department of Electrical	
			Private Limited, 1995	Engineering Indian Institute of	
				https://mtol.og.in/oouroog/108105064/	
				7	
				2. Analog Circuits by Prof. Pramod	
				Agarwal, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Roorkee.	
				https://nptel.ac.in/courses/117107094/	
				1 2 Pagia Electropics by Prof. T.S.	
				S. Dasic Electronics by Floi. 1.5.	
				Indian Institute of Technology	
				Madras.	
				https://nptel.ac.in/courses/122106025/	
				39	
				4. Electrical and Electronic	
				Measurements by Prof. V. Jagdeesh	
				Kumar, Department of Electrical	
				Engineering Indian Institute of	
				Technology, Madras.	
				//////////////////////////////////////	
8.	ELE 203L,	After completion of this laboratory			
	Electronic	course, students will be able to:			Learning Outcomes
	Instrumentation	• Understand principle of different			added.
	and	transducers.			
	Measurements	• Design various circuits Using Op-			No Change in
	Lab	Amp IC.			Experiment List.
		• Understand and draw V-I			
		characteristics of SCR, DIAC and			
		I KIAU.			

9.	ELE 305, Microprocessors	After completion of this course, students will be able to:Describe the general architecture of			No Change in course contents.
		 architecture & organization of 8085 & 8086 Microprocessor and understand the difference between 8085 and advanced microprocessor. Distinguish the use of different instructions and apply them in assembly language programming. Explain and realize the interfacing of memory & various I/O devices with 8085 microprocessor. 	 Text Books GaonkerR.S., "Microprocessor Architecture, Programming & Applications with the 8085/8080", 2nd Edition, New Age International Publishers Limited, ISBN-81-224-0710-2. Douglas V. Hall, "Microprocessor and Interfacing", Mc-Graw Hill Book Company, 1987, ISBN-0- 07-100462-9 Reference Books Short K.L., "Microprocessor and Programmed Logic", 2nd Edition, Prentice Hall of India Pvt. Ltd. 1988, ISBN-0-87692-515-8. Ram B., "Fundamentals of Microprocessors and Microcomputer", 5th rev ed., 2001, Dhanpat Rai, New Delhi. Verma Seema, "8085 Microprocessor: Programming, Interfacing and Applications", Aashirvad Publication. Jaipur, 2006 	 Recommended Books: 1. Gaonker, R.S. (2013) Microprocessor Architecture, Programming & Applications with the 8085. Mumbai, Maharashtra: Penram International Publishing (India) Pvt. Ltd. 2. Douglas V. Hal., SSSP, Rao.(2012) Microprocessor and Interfacing. New Delhi: Mc-Graw Hill Publication 3. Ram B. (2018). Fundamentals of Microprocessors and Microcomputers. New Delhi: Dhanpat Rai & Co Suggested E-resources: 1. Microprocessor by Dr. Pramod Agarwal, Department of Electrical Engineering, IITRoorkee https://nptel.ac.in/courses/108107029/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/ 	Deleted
10.	ELE 305L, Microprocessors	After completion of this laboratory course, students will be able to:			
	Lab	• Understand the different instructions of 8085 microprocessor assembly language			Learning Outcomes added.
		 Coding in assembly language. Solve different real time problems. 			No change in Experiment List.

11.	ELE 302, Communication Systems	 After completion of this course, students will be able to: Explain the working of communication system, Analog Modulation Techniques and their comparative analysis and 			No Change in course contents.
		 applications suitability. To analyse various methods of baseband/band pass Analogue transmission and detection. To evaluate the performance of analogue communications in the presence of noise. Explain the working of AM, FM transmitter and receiver. 	 Text Books : Kennedy George "Electronics communication system", TMH, 4th edition, 1999 TMH, New Delhi. Gulati R. R. "Monochrome & colour TV", 1986, Wiley Eastern, New Delhi. Reference Books : Shilling Taub, " Communication system", TMH, 2nd Edition Lathi BP, "Analog & Digital Communication", Oxford University Press Sharma S.P. "Basic radio & TV, TMH, New Delhi. 	 Recommended Books: 1. Kennedy, George. (2017) Electronics communication System. New Delhi:Mc-Graw Hill Publication. 2. Gulati, R. R. (2011) Monochrome and colour Television. New Delhi: New Age International Publication. 3. Shilling, Taub. (2013) Principles of Communication Systems. New Delhi: Mc-Graw Hill Publication. 4. Lathi,B.P., Ding, Zhi., & Gupta, Hari Mohan. (2017) Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press. 5. Sharma S.P. (2012). Basic Radio & Television. New Delhi: Mc-Graw Hill Publication. Suggested E-resources: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, IIT Kharagpur. https://nptel.ac.in/courses/117105143/ 2. Communication Engineering by Prof. Surendra Prasad, Dept. of Electrical Engineering, IIT, Delhi. https://nptel.ac.in/courses/117102059/ 	
12.	ELE 303L, Communication Systems Lab	 After completion of this laboratory course, students will be able to: Understand modulation, demodulation waveform and measure modulation index. Understand the operation of Pulse 	 To study the Amplitude Modulation & Demodulation and measure modulation Index. To study the Single sideband AM using Balanced Modulator. To study the PAM and its 	 Communication Systems: To study the Amplitude Modulation & Demodulation and measure modulation Index. To study the Single sideband AM using Balanced Modulator. 	Learning Outcomes added. No Change in Experiment List.
		modulation and demodulation.	Demodulation. 4. To study the PWM and its	3. To study the PAM and its Demodulation.	

Annexure- I B.Sc.(Mathematics) Disciplinary Course-Electronics

	• Familiarized with radio and TV receiver.	 Demodulation. 5. To study the PCM and its Demodulation. 6. To study the PPM and its Demodulation. 7. Familiarization with Radio Receiver - Block Diagram. 8. Familiarization with TV Receiver - Block Diagram. Project. 	 To study the PWM and its Demodulation. To study the PCM and its Demodulation. To study the PPM and its Demodulation. Familiarization with Radio Receiver - Block Diagram. Familiarization with TV Receiver - Block Diagram. 	
13. Antenna Theory and Wave Propagation	 After completion of this course, students will be able to: Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems. Examine the phenomena of wave propagation in different media and its interfaces and in applications of microwave engineering. Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain dipole antennas. Establish mathematical equations for various parameters of thin linear antenna. 		UNIT IReview of Electromagnetic theory: Cartesian coordinate system, Circular coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Maxwell's equations in differential and integral form, Boundary Conditions for Electrostatics and magnetostatics.UNIT IIWave equation and its solution, Poynting vector, General Transmission line equation, input impedance, characteristic impedance, Reflection coefficient, standing wave ratio, Practical problems in transmission lines.UNIT IIIIntroduction to antennas, network theorems, Antenna characteristics (Radiation pattern, Directivity, Gain, Polarization, Effective aperture, Friis transmission formula), Vector potentials for electric and magnetic current sources.UNIT IV Wire antennas: Hetzian and Marconi antenna, Half wave dipole, monopole and loop antenna, Antenna arrays: Linear array, Two element array, Uniform array, Binomial arrayUNIT V Practical antennas: Slot antenna, Horn	

			antenna, Yagi-uda antenna, folded dipole
			antenna, Helical antenna.
			Recommended Books:
			1. Hyat, W. H. &. Jr. John A. Buck.
			(2018). Engineering
			Electromagnetics, Student edition.
			McGraw Hill Education.
			2. Liao, S. Y. (1989). Microwave devices
			and circuits. Pearson Education India.
			5. Balanis, C. A. (2010). Antenna
			uilou & sons
			Wiley & Solis. 4 Sodiku M N & Kulkorni S V
			4. Sadiku, W. N., & Kulkalili, S. V. (2015) <i>Principles</i> of
			alactromagnetics Oxford University
			Press
			5 Kraus I D Marhefka R I & Khan
			A. S. (2006). Antennas and wave
			propagation. Tata McGraw-Hill
			Education.
			6. Collin, R. E. (2007). Foundations for
			microwave engineering. John Wiley
			& Sons.
14.	Antenna Theory	After completion of this laboratory	1. To design dipole antenna in HFSS
	and Wave	course, students will be able to:	2. Design monopole antenna in HFSS
	Propagation Lab	• Use HFSS tool to design and	3. Design horn antenna in HFSS
		analysis of antennas.	4. To measure radiation pattern of
		• Design various type of antennas	Horn Antenna
		Measure and analyse radiation	5. To measure radiation pattern of log
		pattern of antennas.	periodic Antenna
			6. To measure radiation pattern of
			micro strip patch Antenna
			/. To measure radiation pattern of
15	Introduction to	After completion of this course, students	I AGI-UDA Antenna.
13.	Photonics	will be able to:	UIIIU I Introduction Ray theory Optical fibers:
	1 notonics	• Evaluation the light propagation	multimode single mode step index
		through optical fibers	oraded index plastic & glass fibers
		• Explain the various light sources	Transmission Characteristics of Optical
		and optical detectors	Fibers: Attenuation. Material absorption
			loss, refractive index profile. Dispersion
I	1		,

Design fiber ontio transmitter and	(intermodal & intramodal) Dispersion	
• Design noer optic transmitter and	Shifted Fibers Dispersion Comparisating	
ieceivei system.	Ether	
	FIDEL.	
	Emission and absorption of radiation,	
	Einstein relation, Absorption of radiation,	
	Population inversion, Optical feedback,	
	Threshold condition. Population inversion	
	and threshold, Basic idea of solid state,	
	semiconductors, gas & liquid laser. Basic	
	concept of Q-switching and mode	
	locking.	
	Unit 3	
	Fiber Structure, Material, Characteristics,	
	Power & Efficiency of Light Emitting	
	Diode	
	Ontical detection principles quantum	
	efficiency Responsivity n-n and n-i-n	
	photo diode Avalanche photo diodes	
	Unit 4	
	Unit 4 Measurements of Eiber Attenuation	
	Dispussion Defension Index Dusfile Cut	
	Dispersion, Refractive index Profile, Cut	
	off Wave Length, Numerical Aperture &	
	Diameter.	
	Optical Time Domain Reflectometry	
	(OTDR) Field measurement through	
	optical time domain reflectometry, Laser	
	Unit 5	
	Laser based systems for measurement of	
	distance, velocity, liquid level. Fibre optic	
	gyroscope, Holography: basic principle	
	and applications.	
	Recommended Books:	
	1. Senior, John.M. (2009). Optical	
	Fiber Communication Principles &	
	Practice. New Delhi: PHI	
	Publication.	
	2. Keiser, Gerd. (1991). Optical Fiber	
	Communication. New Delhi:	
	McGraw Hill Publication.	
	3. Ghatak, A.K. & Thyagaraian, K.	
	3. Ghatak, A.K. & Thyagarajan, K.	

			(1981). Laser Theory and
			Applications, 1 edition. Springer
16.	Introduction to	After completion of this laboratory	1. To study Analog Link.
	Photonics Lab	course, students will be able to:	2. To study Digital link.
		• Understand the characteristics of an	3. To measure Numerical aperture.
		optical fiber and LED.	4. To study Propagation Loss.
		• Understand and measure the basic	5. To study Bending Loss.
		properties of propagation of light in	6. To study EYE Pattern.
		dielectric Optical fibre including	7. To calculate BER.
		losses, attenuation and coupling.	8. To study the characteristics of
		• Explain the working of optical	optical source.
		power meter and various sensors.	9. To study the characteristics of
		1	Optical detector.

Annexure II

Name of Programme: Bachelor of Technology (ECE)

Programme Educational Objectives: The B.Tech. (ECE) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for those engineers who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics engineers develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics and Communications. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematical and engineering fundamentals required to solve engineering problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- To develop an ability to integrate fundamental knowledge of basic science, mathematics and engineering to work on complex problems in the field of Electronics and Communication.
- To prepare engineers to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their engineering design, problem-solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.
- To prepare competent engineers at various national and international levels.

Programme Outcomes:

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and Electronics engineering to the solution of complex engineering problems.
- PO2. Problem analysis: Review, Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using principles of mathematics, natural sciences, and engineering sciences.
- **PO3.** Design/development of solutions: Develop solutions for complex engineering problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use scientific and engineering knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5.** Modern tool usage: Apply appropriate techniques, resources, and modern engineering tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- PO8. Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the engineering practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.
- **PO10.** Communication Skill: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

- 1. Highlighted with gray indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	С	Course Code	Course Name	L	Т	Р	С		
BVF 002/ BVF 003	Environment Studies/Indian Heritage	2	0	0	2		General English /सामान्य हिन्दी	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4		Core Foundation Course - I	2	0	0	2
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	3/4	1/0	0	4	CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4
ENGG 101L /ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2
						ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3
	Semester Wise Total	18/19	4/3	10	27		Semester Wise Total	21/20	3/4	10	29

B.Tech. (ECE) Semester - I (December, 2019)

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 003/ BVF 002	Indian Heritage/ Environment Studies	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4		Core Foundation Course – II	2	0	0	2
PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4
PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	4/3	0/1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4
EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
						ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	19/18	3/4	10	27		Semester Wise Total	20/21	4/3	10	29

B.Tech. (ECE) Semester - II (April/May, 2020)

	Existing Scheme		Proposed Scheme								
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 007R	Selected Writings for Self-Study – I	2	0	0	2		Core Foundation Course - III	2	0	0	2
MATH 207	Complex Variables/ Differential	3/4	0	0	3/4		Elective Foundation Course - I	2	0	0	2
/MATH 208	Equations										-
ENGG 201/	Structure and Properties of	4	0	0	4	MATH 208/	Differential Equations / Complex	3	1	0	4
ENGG 202	Materials/ Basic Electronics		0	Ŭ		MATH 207	Variables /	5	-	Ŭ	
MGMT 209/	Entrepreneurship/ Technical Report	2	Δ	0	2	ENGG 202 /	Basic Electronics/ Structure and	4	0	0	4
TSKL 203	Writing	3	0	0	3	ENGG 201	Properties of Materials	4	0	0	4
CS 209	Data Structures	4	0	0	4	CS 209	Data Structures	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	CS 209L	Data Structures Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201	Signals, Systems and Networks	4	0	0	4
ELE 201	Digital Electronics	4	0	0	4	ELE 201	Digital Electronics	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	ELE 201L	Digital Electronics Lab	0	0	2	1
	Total	24/25	0	6	27/28		Semester Wise Total	23	1	6	27

B.Tech. (ECE) Semester - III (December, 2020)

B.Tech. (ECE) Semester - IV (April/May, 2021)

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
BVF 008R	Selected Writings for Self-Study – II	2	0	0	2		Core Foundation Course - IV	2	0	0	2
MATH 208/ MATH 207	Differential Equations / Complex Variables	4/3	0	0	4/3		Elective Foundation Course - II	2	0	0	2
ENGG 202 / ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	MATH 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
TSKL 203/ MGMT 209	Technical Report Writing/ Entrepreneurship	3	0	0	3	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS 214	Object Oriented Programming	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4
CS 214L	Object Oriented Programming Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Seminar	0	0	2	1	ECE 201S	Seminar	0	0	2	1
ELE 202	Electrical and Electronics Measurements	3	1	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 202L	Electrical and Electronics Measurements Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1	ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Total	24/23	1	10	30/29		Semester Wise Total	23	1	10	29

	Existing Scheme				Proposed Scheme					
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	Principles of Management / Economics for Engineers	3	0	0		Vocational Course - I	2	0	0	2
	Analog Communication	3	1	2		Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2
	Microprocessor and Microcontrollers	3	1	2		Principles of Management/ Economics	3	0	0	3
	Analog integrated Circuits	4	0	2	ECE 301	Analog Communication	4	0	0	4
	Communication Networks	4	0	0	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
	Microwave Electronics	4	0	2		Analog Electronics	4	0	0	4
	Seminar	0	0	2	ELE 202	Electromagnetic field Theory	4	0	0	4
	Women in Indian Society (WIS) /ParenthoodandFamilyRelationship	3	0	0		Probability and Statistical Methods/ Numerical Methods	3	1	0	4
					ECE 301L	Analog Communication Lab	0	0	2	1
					ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1
						Analog Electronics Lab	0	0	2	1
	Total	24	2	10		Semester Wise Total	26	1	6	30
	Total Credits		31			Total Credits		30)	

B.Tech. (ECE) Semester - V (December, 2021)

	Existing Scheme				Proposed Scheme					
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	Economics for Engineers/ Principles of Management	3	0	0		Vocational Course - II	2	0	0	2
	Mathematics IV	4	0	0		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Power Electronics	3	1	2		Economics / Principles of Management	3	0	0	3
	Control Systems	3	1	2		Microwave Engineering	4	0	0	4
	Digital Communication	4	0	2	EIE 302	Control Systems	4	0	0	4
	Digital Signal Processing	4	0	2	ECE 304	Digital Communication	4	0	0	4
	Project	0	0	8		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Parenthood and Family Relationship / Women in Indian Society (WIS)	3	0	0		Microwave Engineering Lab	0	0	2	1
					EIE 302L	Control Systems Lab	0	0	2	1
					ECE 304L	Digital Communication Lab	0	0	2	1
						Project	0	0	4	2
	Total	24	2	16		Semester Wise Total	22	1	10	28
	Total Credit		34			Total Credit		28		

B.Tech. (ECE) Semester - VI (April/May, 2022)

B.Tech. (ECE) Semester - VII (December, 2022)

	Existing Scheme			Proposed Scheme						
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	UIL Project	20	0	0		Antenna Analysis	4	0	0	4
	Reading Elective	0	0	4	ECE 402	Fiber Optics and Communication	4	0	0	4
					VLSI 401	VLSI Design	4	0	0	4
					ECE 303	Communication Networks	4	0	0	4
						Discipline Elective	4	0	0	4
						Open Elective	4	0	0	4
						Antenna Analysis Lab	0	0	2	1
					VLSI 401L	VLSI Design Lab	0	0	2	1
					ECE 4021	Fiber Optics and				
					ECE 402L	Communication Lab	0	0	2	1
	Total			2		Semester Wise Total	24	0	6	27
		22			Total Credit		2	27		

	Existing Scheme				Proposed Scheme					
Course Code	Course Name	L	Т	Р	Course Code	Course Name	L	Т	Р	С
	Antenna & Radar	4	0	0	ECE 407P	UIL Project	0	0	48	24
	Fiber Optics Communication	4	0	2		Reading Elective	0	0	0	2
	VLSI Design	4	0	2						
	Elective I	4	0	0						
	Elective II	4	0	0						
	Total	20	0	2		Total	0	0	48	26
	Total Credits 22					Total Credits				26

B.Tech. (ECE) Semester - VIII (April/May 2023)

Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Reading Electives
	Biomedical Instrumentation		Geoinformatics		Electronic Packaging
ECE 404	Optical Network		Analytical Instrumentation		Multimedia Compression and Communication
ECE 406	Satellite Communication	ELE 402	Audio and Video Systems		Professional Ethics
ELE 403	Basics of Nano electronics		Robotics and Automation		Electromagnetic Compatibility
ECE 403	Mobile Communication	EEE 304	Power Electronics		Telecommunication Switching Systems and Networks
ECE 405	Radar Navigation		Mechatronics		Electric Vehicles
ELE 304	Digital Signal Processing				IoT Sensors and Devices

				(1	Year)						
Semester - I						Semester - II					
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Ρ	с
	General English /सामान्य हिन्दी	2	0	0	2		सामान्य हिन्दी /General English	2	0	0	2
	Core Foundation Course - I	2	0	0	2		Core Foundation Course – II	2	0	0	2
MATH 103/ MATH 107	Calculus/ Linear Algebra	3	1	0	4	MATH 107 / MATH 103	Linear Algebra/ Calculus	3	1	0	4
PHY 101/ PHY 106	Applied Optics/ Modern Physics	3	1	0	4	PHY 106 / PHY 101	Modern Physics / Applied Optics	3	1	0	4
CHEM 101/ BIO 101	Chemistry/ Biology	3	1	0	4	BIO 101/ CHEM 101	Biology / Chemistry	3	1	0	4
CHE 101/ PHY 105	Thermodynamics/ Engineering Mechanics	4/3	0/1	0	4	PHY 105 / CHE 101	Engineering Mechanics / Thermodynamics	3/4	1/0	0	4
CS 109/ EEE 101	Computer Fundamentals and Programming/ Electrical Engineering	4	0	0	4	EEE 101/ CS 109	Electrical Engineering / Computer Fundamentals and Programming	4	0	0	4
CS 109L/ EEE 101L	Computer Fundamentals and Programming Lab/ Electrical Engineering Lab	0	0	4	2	EEE 101L / CS 109L	Electrical Engineering Lab / Computer Fundamentals and Programming Lab	0	0	4	2
ENGG 101L / ENGG 102L	Engineering Drawing and Graphics Lab/ Measurement Techniques Lab	0	0	6	3	ENGG 102L / ENGG 101L	Measurement Techniques Lab / Engineering Drawing and Graphics Lab	0	0	6	3
	Semester Wise Total	21/20	3/4	10	29		Semester Wise Total	20/21	4/3	10	29
				()	ll Year)						
Semester - III						Semester - IV	1				
Course Code	Course Name	L	т	Р	С	Course Code	Course Name	L	т	Р	с
	Core Foundation Course - III	2	0	0	2		Core Foundation Course - IV	2	0	0	2
	Elective Foundation Course - I	2	0	0	2		Elective Foundation Course - II	2	0	0	2
MATH 208/ Math 207	Differential Equations / Complex Variables /	3	1	0	4	Math 207/ MATH 208	Complex Variables / Differential Equations	3	1	0	4
ENGG 202/ ENGG 201	Basic Electronics/ Structure and Properties of Materials	4	0	0	4	ENGG 201/ ENGG 202	Structure and Properties of Materials / Basic Electronics	4	0	0	4
CS209	Data Structures	4	0	0	4	CS 214	Object Oriented Programming	4	0	0	4

Curriculum Structure B. Tech. –Electronics & Communication

CS 209L	Data Structures Lab	0	0	4	2	CS 214L	Object Oriented Programming Lab	0	0	4	2
ECE 201	Signals, Systems and Networks	4	0	0	4	ECE 201S	Seminar	0	0	2	1
ELE 201	Digital Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	4	0	0	4
ELE 201L	Digital Electronics Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	2	1
						ELE 205	Semiconductor Devices and Circuits	4	0	0	4
						ELE 205L	Semiconductor Devices and Circuits Lab	0	0	2	1
	Semester Wise Total	23	1	6	27		Semester Wise Total	23	1	10	29
				(1	ll Year)						
Semester - V				1	[Semester - V	1		1		
Course Code	Course Name	L	т	Р	С	Course Code	Course Name	L	т	Р	С
	Vocational Course - I	2	0	0	2		Vocational Course - II	2	0	0	2
	Core Foundation Course-V / Elective Foundation Course - III	2	0	0	2		Elective Foundation Course - III/ Core Foundation Course - V	2	0	0	2
	Principles of Management/ Economics	3	0	0	3		Economics / Principles of Management	3	0	0	3
ECE 301	Analog Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ELE 306	Microprocessors and Microcontrollers	4	0	0	4	EIE 302	Control Systems	4	0	0	4
	Analog Electronics	4	0	0	4	ECE 304	Digital Communication	4	0	0	4
ELE 202	Electromagnetic field Theory	4	0	0	4		Numerical Methods/Probability and Statistical Methods	3	1	0	4
	Probability and Statistical Methods/ Numerical Methods	3	1	0	4		Microwave Engineering Lab	0	0	2	1
ECE 301L	Analog Communication Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	2	1
ELE 306L	Microprocessor and Microcontrollers lab	0	0	2	1	ECE 304L	Digital Communication Lab	0	0	2	1
	Analog Electronics Lab	0	0	2	1		Project	0	0	4	2
	Semester Wise Total	26	1	6	30		Semester Wise Total	22	1	10	28

				(I)	V Year)						
Semester – V	11					Semester -	VIII				
Course Code	Course Name	L	т	Р	С	Course Code	Course Name	L	т	Р	С
	Antenna Analysis	4	0	0	4	ECE 407P	UIL Project	0	0	48	24
ECE 402	Fiber Optics and Communication	4	0	0	4	Reading Elective 0		0	0	2	
VLSI 401	VLSI Design	4	0	0	4						
ECE 303	Communication Networks	4	0	0	4						
	Discipline Elective	4	0	0	4						
	Open Elective	4	0	0	4						
	Antenna Analysis Lab	0	0	2	1						
VLSI 401L	VLSI Design Lab	0	0	2	1						
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1						
	Semester Wise Total	24	0	6	27		Semester Wise Total	0	0	48	26
Course Code	Discipline Electives					Course Code	Reading Electives				
	Biomedical Instrumentation		Geoinf	ormatic	S		Electronic Packaging				
ECE 404	Optical Network		Analyt Instrur	ical nentatic	on		Multimedia Compression and Com	municat	ion		
ECE 406	Satellite Communication	ELE 402	Audio	and Vide	eo Systems		Professional Ethics				
ELE 403	Basics of Nano electronics		Robotics and Automation			Electromagnetic Compatibility					
ECE 403	Mobile Communication		Power	Electror	nics		Telecommunication Switching Syste	ems and	Netw	orks	
ECE 405	Radar Navigation		Mecha	tronics		Electric Vehicles					
ELE 304	Digital Signal Processing					loT Sensors and Devices					

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ECE 201, Signals, Systems and Networks	After the completion of course student will be able to:		_	No Change in course contents.
		 Analyze linear time invariant system in time and frequency domain Apply network theorem to analyze the electrical circuit. Explain two port parameters. 	 Suggested Books: 1. V. Oppenheim, A. V. Willsky, S. Hamid Nawab. Signal and Systems. Second Edition, Prentice Hall. 2. M.E. Van Valkenburg. Network Analysis. Third Edition, Prentice Hall India. 3. J. G. Proakis, D. G. Manolakis. Digital Signal Processing. Fourth Edition, Pearson. 4. F. F. Kuo. Network Analysis and Synthesis. Second Edition, John Wiley and Sons. 	 Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication Suggested E-resources: 1. Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ 2. Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100 	
2	ELE 201, Digital Electronics	After completion of this course, students will be able to:		_	No Change in course contents.
		 Students will be able to describe and minimize various digital systems. Students will understand design steps for combinational and sequential circuits. Students will understand basic 	 Suggested Books: M. Morris Mano. Digital Design. Third Edition. Prentice Hall. Charles H. Roth, Larrry N. Kiney. Fundamentals of Logic Design. Sixth Edition, Cengage Learning. D.P. Leach, A. P. Malvino, G. Saha. Digital Principles and Applications. Eighth Edition, McGraw Hill. John F. Wakerly. Digital Design: 	 Recommended Books: M. M. Morris R. & C. Michael D. (2013). Digital Design (5/e). Pearson Publication R. Charles H., JR. & K. Larrry N. (2010). Fundamentals of Logic Design (6/e). Stanford, USA: Cengage Learning Malvino, A. P., & Leach, D. P. & S. Goutam (2014). Digital Principles and Applications (8/e). New Delhi: Tata McGraw Hill Education Private limited. 	

		memory architectures and their functionality.	 Principles and Practice. Fourth Edition, Pearson. 5. T. C. Bartee. Digital Computer Fundamentals. Sixth Edition. McGraw-Hill. 6. J. P. Hayes. Computer Architecture and Organization. Third Edition, McGraw Hill. 	 W. John F. (2008). Digital Design: Principles and Practices (4/e). Pearson Publication B. Thomas C. (1981). Digital Computer Fundamentals (5/e).McGraw-Hill Publication Hayes, J. P. (2002). Computer architecture and organization. New York, USA: McGraw-Hill Publication Suggested E-resources: Digital Circuits by Prof.Santanu Chattopadhyay, Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc18_ee 33/preview Digital Electronic Circuitsby Prof.Goutam Saha, Dept. of Electronics and Electrical Communication Engineering at IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc19_ee 09/preview Digital Circuits and Systemsby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of Technology Madras. 	
3.	ELE 201L, Digital Electronics Lab	 After completion of this laboratory course, students will be able to: Understand the basic digital circuits and to verify their operation. Explain the elements of digital system 		https://nptel.ac.1n/courses/117/106086/	Learning Outcomes added No change in experiment list.
		abstractions such as digital representations of information, digital logic, Boolean algebra, state elements and finite state machine (FSMs).			

		Create a gate-level implementation of a combinational and sequential logic functions described by a truth table using and/or/inv gates, multiplexers.			
4.	ENGG 202, Basic Electronics	After completion of this course, students will be able to:		_	No Change in course contents.
		 Understand the fundamental of semiconductors and design semiconductor circuits Understand the different type of diode/ transistors with their responses. Analyze various types of oscillators available with their utilization. 	 Suggested Books: J. Millman, C. Halkias. Integrated Electronics. Second Edition, McGraw Hill. R. L. Boylested. Electronics Devices and Circuit Theory. Tenth Edition, Pearson. A. P. Malvino. Electronic Principles. Sixth Edition, McGraw Hill. N. B. Somanatha. Electronics Devices and Applications. First Edition, Prentice Hall India. A. S. Sedra, K. C. Smith. Microelectronics Circuits: Theory and Applications. Seventh Edition, Oxford University Press. B. G. Streetman, S. K. Banerjee. Solid State Electronic Devices. Sixth Edition, Prentice Hall India. 	 Recommended Books: Millman. J, Halkias. C, Parikh. C. (2017). <i>Integrated Electronics. (2/e).</i> New Delhi: TMH Publications. Boylestad.R. (2012). <i>Electronic</i> <i>Devices& Circuits Theory.(6/e).</i> New Delhi: Pearson Publications. Somanathan B. Nair. (2006). <i>Electronics</i> <i>Devices and Applications.</i> New Delhi: Prentice Hall India Learning Private Limited Smith. S.(2008). <i>Microelectronics</i> <i>Circuits. (5/e).</i> New Delhi: Oxford press, India. Streetman Ben. G. (2006). <i>Solid State</i> <i>Electronic Devices (6/e).</i> New Delhi: PHI Publications. Suggested E-resources: Basic Electronics by Prof. Pramod Agarwal, Department of Electrical Engineering, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107095/4 Circuits and Electronics by Anant Agarwal, Massachusetts Institute of Technology: MIT OpenCourseWare. https://ocw.mit.edu/courses/electrical- engineering-and-computer-science/6-002- circuits-and-electronics-spring- 2007/video-lectures/6002_116.pdf 	Deleted

5.	Electrical and	After completion of this			No Change
	Electronics	course, students will be			in course
	Measurements	able to:			contents
		Measure various electrical parameters	Suggested Books:	Recommended Books:	Deleted
		 electrical parameters with precision and accuracy. Select appropriate transducers for measurement of physical parameter. Use Signal Generator and CRO for appropriate measurement. Test and troubleshoot electronic circuits using various measuring instruments. 	Suggested Books:1.A. K. Sawhney. A Course inElectrical and Electronic Measurements andInstrumentation.Eleventh Dhanpat RaiPublication.2.R.K. Jain. Mechanical and IndustrialMeasurements.Twelfth Edition, KhannaPublishers.3.B.C.Nakra, K.K. Chaudhry.Instrumentation, Measurement and Analysis.Third Edition, McGraw Edition.4.E.O.Doebelin.MeasurementSystems:Applicationand Design. Fourth Edition. McGraw Hill.5.D.P.Eckmann, IndustrialInstrumentation.FirstPublications.6.H.S.6.H.S.Kalsi.ElectronicInstrumentation.Third Edition, Tata McGrawHill.7.S.K.Singh.IndustrialInstrumentation and Control.Third Edition,Tata McGraw Hill.8.C. S. Rangan, G. R. Sarma, V. S. V.Mani.Instrumentation: Devices and Systems.Second Edition, McGraw Hill.9.D. V. S. Murthy.9.D. V. S. Murthy.9.D. V. S. Murthy.9.D. V. S.9.D. V. S.9.P. V. S.9. <th> Recommended Books: 1. SawhneyA.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers 3. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof. Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064 </th> <th>Deleted</th>	 Recommended Books: 1. SawhneyA.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers 3. Nakra B.C. & Chaudhry K.K. (2013). Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof. Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064 	Deleted
6.	Electrical and	After completion of this	Hall India. 1. To study behavior of Inductive Sensors	1. To study Hall Effect.	Learning
	Electronics	laboratory course, students	and calculate its switching hysteresis.	2. To study principle of Thermocouple.	outcomes
	Measurements	will be able to:	2. To study behavior of Capacitive Sensors	3. To study principle of Load cell.	added.
	Lab	• Develop an	and calculate its Reduction factor.	4. To study principle of Thermistor.	
		understanding of	3. To study behavior of Magnetic Sensors	5. To study principle of strain guage.	Deleted
		construction and	and plot its response curve.	6. To study Principle of LVDT	
		working of different measuring instruments	4. To study behaviour of Ultrasonic Sensors and calculate its switching hysteresis.	7. To study De sauty bridge. 8. To study Wein AC bridge.	Added

		 Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement Select appropriate passive or active transducers for measurement of physical phenomenon. 	 5. To study behaviour of Photo electric sensors and calculate its switching frequency. 6. To detect level with the help of Ultrasonic, Photo electric and Capacitive sensors. 7. Logic linking of Sensors: OR gate and AND gate. 8. To study Wheatstone bridge and find the unknown resistance. 9. To calculate the frequency and phase with Lissajous figure pattern using DSO. 	9. To study CRO circuitry in detail.	
7.	ELE 205,	After completion of this			No Change
	Semiconductor	course, students will be			in course
	Circuits	• Explain the energy			contents.
		bands, temperature	Suggested Books:	Recommended Books:	Added
		effects, carrier	1. D. A. Neamen, Semiconductor	1. S. Simon. M.(2002), Semiconductor	
		transport of	Physics and Devices, fourth edition, McGraw	Devices Physics and Technology (2/e), New Jersey USA: JOHN WILEY &	Deleted
		semiconductor	Hill.	SONS Publication	
		devices	2. S. M. SZE. Semiconductor Devices Physics and Technology. Second Edition.	2. Millman. J, Halkias. C, Parikh. C. (2017).	
		• Explain the switching	Wiley Student Edition.	Integrated Electronics. (2nd ed). New	
		times, capacitance of	3. J. Millman, C. Halkias, C. D. Parikh.	Delhi: TMH Publications.	
		PN junction, bipolar	Integrated electronics. Second Edition,	<i>Electronic Devices (6th ed)</i> New Delhi:	
		and unipolar	McGraw Hill. 4 A Sedra K Smith Microelectronic	PHI Publications.	
		transistor behavior	Circuits Theory and Applications. Fifth	4. Smith. S.(2008). Microelectronics	
		and their differences	International Edition, Oxford University	Circuits. (5th ed). New Delhi: Oxford	
		• Analyze the various foodback circuits and	Press.	press. Suggested F-Resources:	
		design nower		1 Semiconductor Devices and Circuits by	
		amplifiers.		Prof.SanjivSambandan, Department of	
		umphiliersi		Instrumentation and Applied Physics,	
				Indian Institute of Science, Bangalore.	
				https://nptel.ac.in/courses/108108112/	
				2. Analog Electronic Circuits DyPtoi. S. C. Dutta Roy Department of Electrical	
				Engineering Indian Institute of	
				Technology Delhi.	
				https://nptel.ac.in/courses/108102095/	
8.	ELE 205L,	After completion of this	1. To study the half wave and full wave	1. To study the half wave and full wave	Learning

	Semiconductor Devices and Circuits Lab	 laboratory course, students will be able to: Develop understanding of current voltage characteristics of 	 rectifier circuit. Measurement of bipolar junction transistor (BJT) characteristics. Measurement of junction field effect transistors (JFET) characteristics. 	 rectifier circuit. 2. Measurement of bipolar junction transistor (BJT) characteristics. 3. Measurement of junction field effect transistors (JFET) characteristics. 	outcomes added. Added
		 various semiconductor devices. Design and analyze the various electronic circuits such as amplifiers and oscillators. Draw output waveforms of various clipper and clamper circuits. 	 To measure input and output characteristics and calculate gain of CE amplifier circuit. To measure input and output characteristics and calculate gain of CB amplifier circuit. To study the frequency response of RC coupled amplifier. To study Wien-bridge oscillator circuit. To study the effects of negative feedback on the amplifier characteristics. Study of class A push-pull amplifier. 	 To measure input and output characteristics and calculate gain of CE amplifier circuit. To measure input and output characteristics and calculate gain of CB amplifier circuit. To study the frequency response of RC coupled amplifier. To study Wien-bridge oscillator circuit. To study Hartley oscillator circuit. To study the effects of negative feedback on the amplifier characteristics. Study of class A push-pull amplifier. To study clipper and clamper circuits. 	
9.	ECE 201S, Seminar	 After the completion of course student will be able to: To identify promising new directions of various cutting edge technologies. Undertake a critical review of the literature. Deliver well-organized technical presentations and prepare a technical report. 			Learning Outcomes added.
10.	Analog Communication	 After completion of this course, students will be able to: Explain different blocks in communication system and how noise affects 	Section-A Introduction – Communication Process, Source of Information, Channels-Noise, System Noise Source, Noise & Feed-back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals,Modulation Process – Need,Bandwidth, Requirements- Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication,	Section-A Introduction to signals: Size of signals, Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison- correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals:	Added Shifted Deleted

•	communication using different parameters. Distinguish between different amplitude modulation schemes with their advantages, disadvantages and applications and	Continuous and Discrete Spectra, Band pass System, Section B	Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density, Signal power and power spectral density. Section- B	Added
•	analyse generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Identify different types of radio receiver circuits	Modulation: Amplitude Modulation : Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulation and Angle Modulation, Spectral Analysis of Different Modulation; Modulators: Amplitude Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulator, Balanced Modulator, SSB Modulators: Filter Method, Phase-shift Method & Third Method-ISB Modulators, Vestigial sideband Modulator; Frequency Modulator: Direct &Indirect Method, Narrow band FM, Phase Modulator, Spectral Analysis of these Modulators; Transmitters – AM Transmitter, Low Level and High Level SSB Transmitter, Pilot Carrier – FM Transmitter – Narrow band and Wide band, FM Stereo Transmitter;	Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Quadrature amplitude modulation, Vestigial sideband modulation, Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulation of FM, Interference in angle modulated systems, FM receiver	Shifted Deleted
		Section C Receiver: Sensitivity, Selectivity, Signal to Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector-Ratio Detector — Foster — Seelay Discriminator; AM Receiver — (Block Level Treatment) — TRFReceiver, Super-heterodyne Receiver, Double — Super-heterodyne Receiver, SSBReceiver, Communication Receiver, AGC Circuitry; FM Receiver – FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Section-C Random Signal and Noise: Gaussian Noise, Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise. Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum preemphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two- Port Networks, Free-Space Link Calculations	Shifted Deleted

			Text Books:1. GeorgeKennedy:ElectronicCommunications Systems:McGraw Hill.2. Taub and Schilling:Principles ofcommunication systems:McGraw Hill.3. Martin S Roden:Analog and digitalCommunication systems.4. SolLapatine:Electroniccommunication.5. DennisRoodyAndJhonCoolen:Electronic communication Prentice Hall.6.JJDunlop & DGSmith:Elecommunication Engineering.	 Recommended Books: I. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007).Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., &Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resources: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School of Telecommunications, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/ 	Added Deleted
11.	Analog Communication	After completion of this laboratory course, students			Learning outcomes
	Lab	will be able to:			added.
		• Demonstrate			
		Amplitude modulation			
		and demodulation			No change in
		techniques.			experiment
		• Demonstrate			list.
		frequency modulation			
		and demodulation			
		technique.			
		• Analyze generation			
		signal and comparison			
		between amplitude and			
		angle modulation			
		schemes.			
		• Compare different			
		modulations and			
		demodulations to			
		recognize the			
		advantages and			
		disadvantages of them.			
		• Identify different radio			
		receiver circuits and			

		role of AGC.			
12.	ELE 306,	After completion of this			No Change
	Microprocessor	course, students will be			in course
	s and	able to:			contents.
	Microcontroller	• Interface memory and	Test Books :	Recommended Books:	
	S	different peripherals	1. Kenneth J Ayala, "The 8051 Micro	1) Kenneth, J. Ayala.(2004). The 8051	
		with Microprocessor	Controller Architecture, Programming	Micro Controller Architecture,	
		and microcontroller	and Applications", Thomson Publishers, 2nd	Programming and Applications. New	
		• Design and develop	Edition.	Delhi: Cengage Learning Publication	
		the system for real	2. D.V.Hall, "Micro Processor and	2) Hall, D.V. (2017). Micro Processor and	
		time applications	Interfacing", Tata McGraw-Hill.	Interfacing. New Delhi: McGraw-Hill	
			Reference Book :	Publication.	
			1. Ajay V. Deshmukh,	3) Deshmukh, Ajay V. (2005).	
			"Microcontrollers - theory applications", Tata	Microcontrollers – Theory and	
			McGraw-Hill Companies-2005.	Applications. New Delhi: McGraw Hill	
			2. Ray and Bhurchandi. "Advanced Micro	Publication.	
			Processors", Tata McGraw Hill.	4) Ray, A.K., &Bhurchandi, B.H. (2017).	
			3. Kenneth J. Ayala, "The 8086 Micro	Advanced Micro Processors. New Delhi:	
			Processors Architecture, Programming and	McGraw-Hill Publication.	
			Applications", Thomson Publishers, 2005.	5) Kenneth, J. Ayala. (2011). The 8086	
			4. Microcomputer Systems: The 8086/8086	Micro Processors Architecture,	
			Family: Architecture, Programming and	Programming and Applications. New	
			Design, 2nd ed., Liu & Gibson.	Delhi: Prentice Hall India.	
				6) Liu, Yu Cheng., & Gibson, A. (1985).	
				Microcomputer Systems: The 8086/8086	
				Family: Architecture, Programming and	
				Design. New Delhi: Prentice Hall India.	
				Suggested E-Resources:	
				1. Microprocessors and Microcontrollers	
				by Prof.Santanu Chattopadhyay,	
				Department of E&EC Engineering, IIT	
				Kharagpur.	
				https://nptel.ac.in/courses/108105102/	
				2. Microprocessors and Microcontrollers	
				by Prof. Krishna Kumar, IISC Bangalore	
				https://nptel.ac.in/courses/106108100/	
13.	ELE 306L,	After completion of this			
	Microprocessor	laboratory course, students			
	s and	will be able to:			Learning
	Microcontroller	• Understand the			Outcomes
	s Lab	different instructions			added.
		of 8086			

		 microprocessor assembly language. Coding in assembly language. Solve different real time problems. 		No Change in Experiment List.
14.	Electromagnetic Field Theory	 After completion of this course, students will be able to: Apply vector calculus to static electric-magnetic fields in different engineering situations. Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems. Examine the phenomena of wave propagation in different media and its interfaces and in applications of 	Section A Elements of Vector calculus: Cartesian coordinate system, Circular-Cylindrical coordinate system, Spherical coordinate system (dot product, cross product, divergence & curl). Electrostatics: Electric Flux Density, Coulomb's law, Gauss's law and their applications, Energy in electrostatic fields, capacitance of parallel plate and coaxial cable, Fields in dielectrics, Boundary conditions, dipole, Laplace's and Poisson's equations and their applications. Section B Magnetostatics: Ampere's law, Bios wart's law and their applications, Stock's theorem, Energy in magnetic field, Boundary conditions. Maxwell's Equation: - Maxwell's equations in integral & differential form (Gauss's law in electric and magnetic field,	 Entire Course is shifted from 3 rd semester to 5 th semester No Change in course contents
		engineering.	Maxwell's equations for time varying field.	
			Section C Uniform Plane Waves: Wave equation and its solutions, Pointing vector, propagation through various media-free space, conductor & dielectric, Reflection and Refraction in conductors & Dielectrics with normal and oblique incidence, Phase & Group velocity, Skin depth. Transmission Lines: General equation, input impedance, characteristics impedance, Reflection and reflection coefficient, Standing wave ratio, resonant and resonant line impedance matching, Smith chart and its applications, practical problems in transmission lines.	

			 Suggested Book: William H. Hayt. Engineering Electromagnetics. Eighth Edition, McGraw Hill. E. C. Jordan, K. G. Balmain. Electromagnetic Waves and Radiating Systems. Second Edition, Prentice hall India. J.D. Kraus, D. A. Fleisch. Electromagnetics with Applications. Fifth Edition, McGraw Hill. 	 Recommended Books: 1. William, H. Hayt. (2017). Engineering Electromagnetics. New Delhi: McGraw- Hill Publication. 2. Sadiku, Matthew N. O. (2009). Principles of Electromagnetics. New Delhi: Oxford University Press. 3. Jordan, E. C., & Balmain, K. G. (2015). Electromagnetic Waves and Radiating Systems. New Delhi: Pearson Publication. 4. Kraus, J.D., &Fleisch, D. A. (1992) Electromagnetics with Applications, New Delhi: McGraw-Hill Publication. Suggested E- Resources: 1. Electromagnetic Fields by Prof.Harishankar Ramachandran, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/108106073/ 2. Electromagnetic Fields by Dr RatnajitBhattacharjee, Indian Institute of Technology, Guwahati. https://nptel.ac.in/courses/117103065/ 3. Electromagnetic Theory by Dr Pradeep Kumar K, Indian Institute of Technology, Kanpur. 	Added
15.	Analog	After completion of this	Analog Integrated Circuits	Analog Electronics	
	Integrated Circuits	 course, students will be able to: Explain the operation and properties of Opamp. Explain the design of differential amplifiers, active filters, oscillators, and other linear and nonlinear circuits using linear integrated circuits. Design and analysis 	Section A Feedback Amplifiers: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback. Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class-AB, Class C, power dissipation and efficiency calculations, amplifier distortion. Section B	Section A Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, design of integrator and differentiator, logarithmic and anti-logarithmic amplifiers, Active filters.	Added Deleted part is shifted to IV sem. Semiconduct or devices & Circuits paper Shifted Deleted Added

of single stage, multistage amplifiers and high frequency amplifiers.	High Frequency Amplifiers : Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers : frequency response, Effect of Cascading on bandwidth, RC Coupled amplifier, Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor, High frequency response of two cascaded CE transistor stages, Multistage CE amplifier cascaded at high frequencies.	Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP- AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Shifted Deleted		
	Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits : Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance, Hybrid –pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	Added Shifted Deleted		
	Text Books:1.Millman and Halkias : Integratedelectronics, TMH, 1991.2.Boylestad, Nashelshy, ElectronicDevices and Circuit Theory, Pearsonpublication, Tenth Edition, 2009.3.GayakwadRamakant A., "OP-AMP& Linear Integrated circuits", New Delhi(Prentice Hall) fourth Edition 2010.Reference Book :1.Adel Sedra& Kenneth Smith,Microelectronic Circuits Theory andapplications'' FIFTH edition Internationalversion: Oxford University Press, 2009.	 Recommended Books: 1. Gayakwad, Ramakant A. (2010). <i>OP-</i> <i>AMP & Linear Integrated Circuits</i>. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) <i>Operational</i> <i>Amplifiers and Linear ICs</i>. New Delhi: Oxford University Press. 3. Parikh, Millman&Halkias. (2010) <i>Integrated Electronics: Analog & Digital</i> <i>Circuits and Systems</i>. New Delhi: McGraw Hill Education. 4. Sedra, Adel.,& Smith, Kenneth. (2009).<i>Microelectronic Circuits Theory</i> <i>and Applications</i>. New Delhi: Oxford University Press. Suggested E-Resource: 			
				1. Analog Electronic Circuits by Prof. S.	
-----	--------------------------	--	---	---	--
				C. Dutta Roy, Indian Institute of	
				Technology Delhi.	
				https://nptel.ac.in/courses/108102095/	
16.	Analog	After completion of this	Analog Integrated Circuits Lab	Analog Electronics Lab	Learning
	Integrated	laboratory course, students	1. To design the Astable Multivibrator using	1. To design the Astable Multivibrator using	Outcomes
	Circuits Lab	will be able to:	555	555	added.
		• Design, construct, and	2. To design the Monostable Multivibrator	2. To design the Monostable Multivibrator	
		analyze the various	using 555	using 555	No Change
		analog circuits to	3. To design summer using 741 IC	3. To design summer using 741 IC	in
		compare experimental	4. To design Intergrator using 741 IC	4. To design Intergrator using 741 IC	Experiment
		results in the	5. To design Schmitt Trigger using 741/555	5. To design Schmitt Trigger using 741/555	List
		laboratory with			
		theoretical analysis.	6. To design Differentiator using 741 IC	6. To design Differentiator using 741 IC	
		• Observe the amplitude	7. To design peak detector using 741 IC	7. To design peak detector using 741 IC	
		and frequency	8. To design scalar using /41 IC	8. To design scalar using 741 IC	
		responses of common	9. To study active filters : LPF, HPF, BPF.	9. To study active filters: LPF, HPF, BPF.	
		amplification circuits	10. To design voltage to frequency converter.	10. To design vonage to frequency converter.	
		• Construct the desired	12 To study frequency shift keying using	12 12 To study frequency shift keying	
		Electronic design to	DL 565	12.12. To study nequency shift keying	
		meet specific	FLL 303.	using FLL 505.	
		requirements			
15	D: :/ 1				A 11.1
17.	Digital	After completion of this	Section A	Section A	Added
17.	Digital Communication	After completion of this course, students will be	Section A Random variables: Review of probability	Section A Introduction to Digital Communications, Sampling Theorem Pulse amplitude	Added Shifted
17.	Digital Communication	After completion of this course, students will be able to:	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability, Distribution, function	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation Pulse code modulation: Uniform	Added Shifted
17.	Digital Communication	After completion of this course, students will be able to: • Analyse and implement the	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function joint cumulative	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization T1 Carrier	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability. 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density. Average	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System Differential pulse code modulation	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory Pandom 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables Error 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function Gaussian probability density.	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem.	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling: Pulse shaping: Nyquist criteria for	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate,	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel-	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel,	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, Sampling, 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding, Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol coding: Rationale of coding and types of	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse Modulation and PCM 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol coding: Rationale of coding and types of codes, Discrete memory less charnel, some	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted
17.	Digital Communication	 After completion of this course, students will be able to: Analyse and implement the concept of Probability Theory, Random Variables, Error Control Theory and Information Theory in Digital Communication Systems Explain the concept of Analog to Digital Conversion, Sampling, Quantization, Pulse Modulation and PCM Describe and analyse 	Section A Random variables: Review of probability theory, communications examples, Random variable, Probability Distribution function, probability density function, joint cumulative distribution and probability density, Average value and variance of a random variable, the error function, Gaussian probability density, Rayleigh probability density, central limit theorem. Discrete massages, the concept of amount of information, Entropy, information rate, coding to increase average information per bit - Huffman coding, Lampel- Zivcoding,Shannon's theorem, Channel capacity, capacity of a Gaussian channel, Bandwidth S/N trade – off. Errorcontrol coding: Rationale of coding and types of codes, Discrete memory less charnel, some Algebraic concepts -Code efficiency and	Section A Introduction to Digital Communications, Sampling Theorem, Pulse amplitude modulation, Pulse code modulation: Uniform and Non- uniform quantization, T1 Carrier System, Differential pulse code modulation, Delta Modulation Line Coding: PSD of various line codes: polar signaling, on-off signaling, bipolar signaling; Pulse shaping: Nyquist criteria for zero ISI, signaling with controlled ISI, Duobinary pulse, Scrambling, Regenerative repeaters.	Added Shifted Deleted

mathematically the Digital Modulation	codes, Convolution codes, maximum likelihood decoding of convolution codes.		
Techniques-ASK.	Section B	Section B	
FSK. PSK	Pulse Modulation Systems: Sampling	Digital Modulation Techniques: Various	
	theorem. Generation and demodulation of	techniques of phase shift. BPSK modulation.	
	PAM. PWM. PPM. Ouantization of Signals.	spectrum. Bandwidth efficiency, geometrical	
	Quantization error, PCMCompanding and	representation of BPSK modulation,	
	Multiplexing of PCM Signals, Delta and	spectrum, Bandwidth efficiency, geometrical	
	adaptive delta modulation, Bit, Word and	representation of ASK, FSK& Minimum	
	Frame Synchronization, Matched filter	shift keying	
	detection.	Noise in digital Communication: PCM and	
		CompandedPCM SNR, Matched filter,	
		Calculation of error probability for ASK,	
		ASK, FSK.	
	Section C	Section C	
	Digital Modulation Techniques: Various	Information Theory: The concept of amount	
	techniques of phase shift, BPSK modulation,	of information, Entropy, Information rate,	
	spectrum, Bandwidth efficiency, geometrical	Huffman coding, Channel capacity of a	
	representation of BPSK modulation,	discrete memoriless channel, Shannon's	
	spectrum, Bandwidth efficiency, geometrical	Theorem, Channel capacity, capacity of a	
	representation of ASK, FSK& Minimum shift	Gaussian channel, Bandwidth-S/N trade –	
	keying, Calculation of error probability for	off.	
	PSK, ASK, FSK, Application of digital	Error control coding: Rationale of coding and	
	modulation techniques.	types of codes, Discrete memory less charnel,	
		some Algebraic concepts -Code efficiency	
		and Hamming bound, linear block codes,	
		Cyclic codes, Convolution codes, maximum	
		likelihood decoding of convolution codes.	
	Text Books:	Recommended Books:	
	1. Simon Haykin: Digital	1. Latni, B.P., Ding, Zni.,& Gupta, Hari	
	Communication: John whey and sons	Monalia. (1998). Modern Digital and	
	2. Taue and Schnnig: Frinciples Of Communication System: Tata McGray Hill	Delhi: Oxford University Press	
	Second edition	2 Havkin S & Moher M (2007)	
	3 IhonProakis Digital	Introduction to Analog and Digital	
	Communications: McGraw Hill	Communication New York United	
	4. BernadShlar: Dioital	States: John Wiley & Sons	
	Communication: Pearson Education.	3. Shilling, D.L., & Taub, H. (2008)	
	5. K Sam Shanmugam: Digital and	Principles of Communication systems.	
	Analog Communication Systems: Jhon	New Delhi: Mc-Graw Hill Publication.	
	Wiley and Sons.	Suggested E-Resources:	
	6. LathiB.P.: Modern Digital And	1. Digital Communicationby Prof.Bikash	
	Analog Communications Systems: PRISM	Kumar Dey, Department of Electrical	

			Indian <i>Edition</i> .	Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101051/	
18.	Digital Communication Lab	 After completion of this laboratory course, students will be able to: Understand the concept of Sampling and various Pulse Modulation techniques i.e. Pulse Amplitude Modulation and demodulation, Pulse Position Modulation and demodulation and pulse Width Modulation and demodulation. Analyze the behavior of Pulse Code Modulation and demodulation. Explain the working of Digital Modulation Techniques ie: Amplitude Shift Keying, Phase Shift Keying and Frequency Child Keying and Frequency 			Learning Outcomes added. No Change in Experiment List.
19.	Control Systems	 After completion of this course, students will be able to: Formulate mathematical model for physical systems and simplify representation of complex systems using reduction techniques. 	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback, servo- components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op-amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	Section A Open loop and closed loop systems, servomechanism, mathematical model of systems, differential equations and transfer functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	Added Shifted Deleted

		 Use standard test signals to identify performance characteristics of first and second-order systems. Apply root locus technique for stability analysis. Analyse performance characteristics of system using Frequency response methods. 	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
			Section C Correlation between time and frequency response specifications; Frequency domain plots, polar plots, Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant- M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant-M and constant- N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag. State Variable model and solution of state equation ofLTI systems.	Added Shifted Deleted
			 Text/ReferenceBooks: 1. I.J. Nagrath and M. Gopal: Control System & Engineering 2nd Ed.: Wiley Eastern Ltd.,1985. 2. Katsushiko Ogata: Modern Control Engineering 3rd Ed.: Printice Hall of India Pvt. Ltd., 2001 	 Recommended Books: 1. Nagrath, I. J. (2006). <i>Control systems</i> engineering. New Delhi: New Age International. 2. Ogata, K., & Yang, Y. (2002). Modern control engineering (Vol. 4). India: Prentice hall. Suggested e-resource: 1. Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/ 	
20. Contr Syster	rol ms Lab	After completion of this laboratory course, students will be able to: • Understand the	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and 	Learning Outcomes added.

		concept of time	find out the tachometer gain.	find out the tachometer gain.	Deleted
		response and		3. To determine time domain response of a	
		frequency response of		second order systems for step input and	Added
		any physical system.		obtain performance parameters.	
		 Mathematical 		4. To convert transfer function of a system	
		modeling of physical		into state space form and vice-versa.	
		system to find out of		5. To plot root locus diagram of an open	
		transfer system.		loop transfer function and determine	
		• Analyze the stability		range of gain 'k for stability.	
		of system with the help		6. To plot a Bode diagram of an open loop	
		of system response.		transfer function.	
				7. To draw a Nyquist plot of an open loop	
				transfers function and examine the	
				stability of the system.	
21.	Communication	After completion of this	Section A		Entire
	Networks	course, students will be	Introduction to communication systems and		Course is
		able to:	data communications. Introduction of		shifted from
		 Recognize and 	network, requirement of Internet. Data		5 th semester
		describe about the	Networking, Network history, Local area		to 6 th
		working of Computer	network topologies, WAN, MAN, VPN,		semester.
		Networks.	(Virtual Private Network). Bandwidth,		
		Illustrate reference	Bandwidth data rate. Multiplexing-TDM,		
		models with layers,	FDM, CDMA, data encoding. Network		No change in
		protocols and	model-layer structure of network model. OSI		course
		interfaces.	Model, OSI layers. TCP/IP Model layers.		contents.
		• Combine and	Arpanet, Peer to Peer communication.		
		distinguish	Communication Media and cable-structure-		
		functionalities of	through wire-copper cable-STP, UTP, co-		
		different Layers.	axial cable, optical fiber. Wireless media-		
		• Model the LAN and	wireless LAN, organization and standards.		
		WAN configuration	Wireless devices and topologies. Wireless		
		using different media	communication, wireless security.		
		C	Section B		
			Network layer devices-Modem, NIC, hub,		
			bridge, switch, router, firewall, gateway.		
			Switching Networks-circuit switching, Packet		
			Switching. Networks-Circuit Switching,		
			Packet Switching. Networks addressing		
			schemes-MAC Address, Subneting,		
			Superneting. Routing Concept, Routing		
			protocol (RIP), Routed protocols.		
			Introduction to IPV6 Principles of		
			Internetworking. Ethernet (CSMA/CD)		

	Token Ring and FDDI, Fast Ethernet.		
	Section C		
	Layer protocol Structure. Data link control –		
	Flow Control, Error Detection, Error Control.		
	HDLC. Network layer-ARP, RARP, ICMP.		
	Effect of Congestion and Congestion Control		
	in Network-(Back pressure, choke packet,		
	Implicit Congestion Signaling, Explicit		
	Congestion Signaling. Traffic Management-		
	Transport layer Protocols-connection oriented		
	and connectionless services, TCP, TCP		
	Congestion Control and Flow Control. UDP.		
	Application Layer Protocols - HTTP, FTP,		
	SMTP, SNMP, Telnet. Introduction to ISDN.		
	Narrow Band and Broad Band. Introduction		
	to WAN Technologies. ATM and Frame		
	relay.		
	Text Books:	Recommended Books:	
	1. E.C. Jordan: Electromagnetic wave	1. Jordan, E.C.(1986). <i>Electromagnetic</i>	
	& Radiating System: PHI, II edition 1986.	Wave & Radiating System. New Delhi:	
	2. A.S. Tannanbaum: Computer	PHI Publication.	
	Networks: Pearson Education 2003.	2. Tanenbaum, A.S. (1997). Computer	
	3. W.Stailling: Data & Computer	Networks. New Delhi: Pearson	
	Communication: PHI New Delhi, 5th	Publication.	
	edition 1997.	3. Stailling, W. (1997). Data & Computer	
	4. J. Martin: Computer Networks and	Communication. New Delhi: PHI	
	Distributed Processing: PHI, 1998.	Publication.	
		4. Martin, J. (1998). Computer Networks	
		and Distributed Processing Software,	
		Techniques, Architecture. New Delhi:	
		PHI Publication.	
		Suggested E-Resources:	
		1. Computer Networks and Internet	
		Protocol by Prof.SoumyaKanti Ghosh	
		Department of Computer Science and	
		Engineering Indian Institute of	
		Technology, Kharagpur.	
		https://nptel.ac.in/courses/106105183/	
		2. Computer Networks by Prof. Sujoy	
		Ghosh, Department of Computer Science	
		and Technology, IIT KG.	
		https://nptel.ac.in/courses/106105081/	
		3. Computer Networks by Prof. Hema A	

22.	Microwave Electronics	 After completion of this course, students will be able to: Understand various parameters of waveguide and use of component as per applications Design impedance matching network for any transmission line or system Analyse and find applications and limitations of microwave Semiconductor devices. Find various applications of microwave engineering in specific area 	Microwave Electronics Section A Introduction to Microwaves & its application, Transmission lines: General equation, input impedance, characteristic impedance, characteristic reflection and transmission coefficient, standing wave rational transmission coefficient, standing wave reflection and transmission coefficient, standing wave reflection and transmission coefficient, standing wave standing wave wave retion and chart and its applications, coaxial, twin, strip µstrip lines & baluns Section B Wave Guides: Wave propagation rectangular & circular wave guide, wave guide modes, Q of wave guide, Wave guide coupling, Microwave passive components: S- parameter parameter representation and analysis of microwave components such as Waveguide	Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/ 4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/2278 /data-communication Microwave Engineering Section A Introduction to Microwaves & its application. Microwave Electromagnetic spectrum, Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti- resonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer,baluns, coaxial transmission line, Planar transmission line: Strip line, Microstrip line, Slot line etc. Section B Wave Guides: Wave propagation in rectangular wave guide: solution of TE and TM modes, Power Transmission and Attenuation, Excitation of modes in Rectangular waveguide, Circular Waveguide: Basic idea of TE and TM modes, Rectangular and Circular cavity resonators, Rectangular cavity resonators, Q of cavity resonators, S parameters, Mitching technication with Z and Y parameters.	Added Shifted Deleted Shifted Deleted
		specific area	resonator, Isolators, Circulators. Section C Microwave Tube Devices: Conventional Vacuum tubes at microwave, O type device - Klystron (two cavity & reflex). M type device magnetron, Introduction to TWT (Traveling Wave Tubes). Microwave	parameters and its conversion with Z and Y parameters. Wave guide coupling, Microwave passive Components: S- parameter representation and analysis of microwave components such as Waveguide Tees, Two-hole directional coupler, attenuators, Phase shifters, Microwave propagation in ferrites: Faraday rotation, Isolators, Circulators. Section C Microwave Tubes: Limitations of Conventional vacuum tubes at microwave, Klystron: Construction and operation of two cavity and multi-cavity klystrons, Applegate Diagram and application of two	Added Shifted Deleted

			TRAPATT& Gunn Devices. TRAPATT& Gunn Devices. Text Books: 1. Sisodia-Raghuvanshi: Microwave Cinemical & Regulation Devices.	 Reflex klystron, Magnetron: Types of magnetron, Construction, Operation and Analysis of cavity or travelling wave magnetron, Traveling wave tubes (TWT): Construction, Operation and practical consideration of helical type TWT, Applications of TWT, Microwave Semiconductor Devices: Tunnel diodes, principle of operation and application of tunnel diodes, Transferred Electron devices: Gunn-Effect diodes, Two-valley theory, Mode of operations of Gunn diode, Avalanche Transit-Time devices: IMPATT, TRAPATT. Recommended Books: Liao, S.Y. (1995). Microwave devices & Cinetics and the provide the	
			 Circuits & Passive Devices: (Wiley-eastern).1st edition.1987 2. S.Y. Liao: Microwave Devices & Circuits, (Prentice Hall).1st Edition 1995, 3. Collins: Foundation Of Microwave Engineering, (Mc Graw Hill) 2nd Edition 1992 4. P.A. Rizzi: Microwave: (Prentice Hall). 1st Edition 1998 	 <i>Circuits.</i> New Delhi: Prentice Hall Publication. 2. Rizzi, P.A. (1998). <i>Microwave Engineering.</i> New Delhi: Prentice Hall Publication. 3. Collins, R. E. (1992). <i>Foundation of Microwave Engineering.</i> New Delhi:McGraw Hill Publication. 4. Pozar, David M. (2008). <i>Microwave Engineering.</i> New Delhi: Wiley Publication. Suggested E- Recourses: 1. Microwave Theory and Techniques by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101112/ 2. Basic Building Blocks of Microwave Engineering by Dr Amitabha Bhattacharya, Indian Institute of Technologi. 	
23.	Microwave	After completion of this	Microwave Electronics Lab	 https://nptel.ac.in/courses/117105130/ 3. Transmission Lines and E.M. Waves by Prof. R. K. Shivgaonkar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/117101056/ Microwave Engineering Lab 	Learning

24.	Electronics Lab Project	 laboratory course, students will be able to: Understand the concept and working of microwave bench and different components connected on a bench. Analyze the behaviour of various microwave components. Verify properties/ characteristic of microwave source, tees and directional coupler. After completion of this course, students will be able to: Demonstrate effective project execution and control techniques that result in successful projects. Ability to identify, formulates, and solves engineering problems. Use the techniques, skills and modern engineering tools necessary for engineering practice. 	 Determine the operating frequency of reflex klystron. Draw the V-I characteristics of Reflex klystron Draw the characteristics of attenuator To verify the wave-guide law To study the directivity and coupling coefficient of Directional Coupler. To study the properties of magic Tea and also determine isolation and coupling coefficient. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient 	 Determine the operating frequency of reflex klystron. Draw the V-I characteristics of Reflex klystron Draw the characteristics of attenuator To verify the wave-guide law To study the directivity and coupling coefficient of Directional Coupler. To study the properties of magic Tea and also determine isolation and coupling coefficient. To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient 	Outcomes added. No Change in Experiment List List Learning Outcomes Added and this course has no prescribed syllabus
25.	Antenna and Radar	 After completion of this course, students will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain 	Antenna and Radar Section A Introduction to antennas, network theorems, directional properties of dipole antennas,travelling wave antenna& effect of point of feed on standing wave antenna, two element array, linear array, multiplication of patterns, effect of earth on vertical patterns, binomial array, antenna gain, effective area, antenna terminal impedance, antenna as	Antenna Analysis Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input	Added Shifted Deleted

various parame Explain point sc antenna	antenna spread out transmission line, transmis ters. loss between antenna antenna as a surce. Design patterns for	sion impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation
differer • Explain antenna mathem equatio parame linear a • Explain patch ar antenna express parame and slot	At cases.Section BdipolePractical antennas: Hertz and Mariantenna, antenna losses, effect of antens. Establishantenna, antenna losses, effect of antennaticalheight, electrically short antennas, wantenna, Medium and high frequeantenna, Medium and high frequeantenna, half wave dipole or dipole antenharmonic, rhombic, V, inverted V, traveNoop, slot,ad horns. Deriveions for theters of loopantennas.	Section BconiRadiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Potential F for a Magnetic Current Source M, Electric and Magnetic Fields for Electric (J)Addeding and Magnetic (M) Current Sources, Solution oole, of the Inhomogeneous Vector Potential Wave shot, Equation, Far-field radiation, Duality theorem, Reciprocity and Reaction theorem, Image Theory Linear wire antennas: Infinitesimal dipole, Small dipole, Region separation, Finite length dipole, Half-wave dipole Loop Antennas: Small circular loop, SquareAdded
	Section C Radio-wave propagation, phenomena- problems encountered in practice: effec earth and atmosphere in radio waves. Phys principles & basic equations of radar, pul continuous wave and pulsed Doppler ra- antenna systems, transmitters, detect theory, waveform considerations inclus pulse compression, principle of synth aperture radar, propagation clutter, airborne radar References: 1. John D. Kraus: Electromagned Mc Graw Hill. 2. William, Hayt: Electromagned Engineering: Mc Graw Hill.	Section CandIntroduction to Arrays, two-element array, N- element linear array: uniform amplitude and spacing, directivity,N-element linear array: uniform spacing, non-uniform amplitude dar, Traveling wave antennas: Long wire antenna, tion V-antenna, Rhombic antenna Broadband antennas: Helical antenna, Folded detie dipole, Yagi-uda array of linear elements Log-periodic antenna, Introduction to Horn antenna: E-plane sectoral horn, H-plane sectoral horn, Pyramidal hornAddedRecommended Books: 1. Balanis, C. A. (2005). Antenna Theory Analysis and Design. New Delhi: John Wiley & Sons. 2. Eliott, Robert S. (2003). Antenna Theory and Design. New Delhi: Wiley-IEEEAdded
	3.Jordan& BalmElectromagneticFields& RadiaSystems:PHI.4.Sadiku:Elements	ain: Press. 3. Kraus, J. D., &Marhefka, R. H. (2001). Antennas for All Applications, Singapore: McGraw-Hill Publication.

					1
			Electromagnetic: Oxford University Press.	4. Harrington, R. F. (2001). <i>Time-Harmonic</i>	
			5. Merrill. I. Skolnik: Introduction to Radar	<i>Electromagnetic Fields.</i> New Delhi:	
			Systems, 3rd Ed., Mc-Graw-Hill.	Wiley-IEEE Press.	
			6. Merrill. I. Skolnik: Radar	Suggested E- resources:	
			Handbook: 2nd Ed., Mc-Graw-Hill, 1990.	1. Advanced Antenna Theory by Dr	
			7 K D Presed: Antenne and Wave	Amalendu Patnaik, Indian Institute of	
			Pronagation	Technology, Roorkee.	
			i i opagation.	https://nptel.ac.in/courses/117107035/	
				2. Analysis and Design Principles of	
				Microwave Antennas by Prof.Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/108105114/	
				3. Antennas by Prof. Girish Kumar, Indian	
				Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/108101092/	
26.	Antenna	After completion of this		1. To design dipole antenna in HFSS	Addition of
	Analysis Lab	laboratory course, students		2. Design monopole antenna in HFSS	new Lab.
		will be able to:		3. Design horn antenna in HFSS	
		• Use HFSS tool to		4. To measure radiation pattern of Horn	
		design and analysis of		Antenna	
		antennas.		5. To measure radiation pattern of log	
		• Design various type of		periodic Antenna	
		antennas		6. To measure radiation pattern of micro	
		• Measure and analyse		strip patch Antenna	
		radiation pattern of		7. To measure radiation pattern of YAGI-	
		antennas.		UDA Antenna.	
27.	VLSI Design	After completion of this	Section A		Course is
		course, students will be	Recapitulation of basics, semiconductor		shifted from
		able to:	devices, orientation effect, impurities, defects,		8 th semester
		• Explain the basic	Fabrication: Crystal growth & wafer		to 7 th
		theory of crystal	preparation, Epitaxial growth, oxidation,		semester.
		growth, wafer	photo-lithography, etching technology (wet &		
		fabrication and IC	dry), Diffusion Fick's law, chemical vapor		No change in
		fabrication	deposition, CVD reactors, ion implantation,		course
		technology.	metallization & patterning, photo resistive		contents.
		• Explain the different	material, packaging.		
		VLSI design styles.	Soution D		
		overview of ICs and	Seculi D		
		fabrication steps of	Overview of VLSI methodologies, VLSI		
		MOS. CMOS and	design flow, type of ICs (monolithic, thick		
		BJT.	film, thin film, hybrid), Fabrication steps		
		2011	involve in, different type of resisters,		

•	Design and analyse the output characteristics of different MOS inverters Design combinational and sequential circuit.	capacitor, diode, transistor (Darlington etc), JFET, MOSFET, isolation technique used in fabrication, fabrication of typical circuits. Section C Digital CMOs circuit, MOS devices, V-I characteristics, Design & detailed analysis of MOS inverters (resistive load, enhancement load, depletion load, CMOS), delay & power analysis, Design layout of simple CMOS gates. Circuit implementation of combinational circuit, circuit implementation of sequential circuits - FFs, SRAM, DRAM.	
		 Sze S.M.: VLSI Technology:TMH. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis &Design : Mc. Graw Hill. Reference Books: Botker B.R: Microelectronics. Gandhi S.K.: VLSI Fabrication Principle. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. Martin Ken: Digital Integrated Circuits: Oxford press. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design. 	 Recommended Books: 1. Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publications. 2. Kang, S.M., &Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. 3. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. 4. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. 5. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. 5. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. 7. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. 8. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. Suggested E-Resources: 1. VLSI Circuits by Prof. S. Srinivasan,

28.	VLSI Design Lab	 After completion of this laboratory course, students will be able to: Use VHDL for design of digital circuits Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. Develop and simulate register-level models of hierarchical digital systems 	 Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode. 	 Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ Write a program for the implementation of half adder and Full adder. Write a program for implementing half subtractor and full subtractor. Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program to implement gray code to binary code converter and vice versa. Write a program for the implement COMPARATOR. Write a program for the implement of S-R Flip flop and D Flip flop. Write a program to design JK Flip-flop and write design summary Write a program to design T Flip-flop and write design summary 	Learning Outcomes added. Added
29.	Fiber Optics and Communication	After completion of this course, students will be able to: • Explain the light			No change in course contents.
		 propagation through optical fibers. Explain the various light sources and optical detectors. Design fiber optic transmitter and receiver system. 	Text Books: 1. Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. 2. John M. Senior: Optical Fiber communication: PHI. References: 1. D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. 2. Gowar: Optical Fiber Communication:	 Recommended Books: Agarwal, Govind. P. (2007). Fiber-Optic Communication Systems. New Delhi: Wiley India. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw 	Deleted

			PHI, 1995. 3. Pallab Bhattacharya: Semiconductor	Hill Publication.
			2002.	
			4. Gerd Keiser: Optical Fiber	
			communication: McGraw Hill, 2nd ed., 1991.	
30.	Fiber Optics	After completion of this		Learning
	and	laboratory course, students		Outcomes
	Communication	will be able to:		added.
	Lab	• Understand the		
		characteristics of an		No change in
		• Understand and		experiment
		measure the basic		list.
		properties of		
		propagation of light in		
		dielectric optical fibre		
		including losses,		
		attenuation and		
		coupling.		
		• Explain the working of		
		optical power meter		
		and various sensors.		
31.	UIL Project	After completion of this		Learning
		course, students will be		Outcomes Added and
		able to:		Added and this course
		• Undertake problem		has no
		formulation and		prescribed
		solution		svllabus
		• Design engineering		
		solutions to complex		
		problems utilizing a		
		systems approach.		
		• Demonstrate the		
		knowledge, skills and		
		attitudes of a		
		professional engineer.		
		• Demonstrate effective		
		organizational		
		leadership and change		

		skills for managing projects, project teams, and stakeholders.			
32.	Biomedical Instrumentation	 After completion of this course, students will be able to: Describe the principle of interfacing of Electrode-electrolyte and different types of electrodes which are used in biomedical field. Explain different types of recorders and photometers. Describe the method of measurement of BP and blood flow. 	Text Book: 1. Leslie Cromwell: "Biomedical Instrumentation and measurement". Prentice hall of India, New Delhi, 1997. References : 2. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 1998. 3. KhandpurR.S, "Handbook of Biomedical Instrumentation", Tata McGraw- Hill, New Delhi, 1997. 4. Joseph J.carr and John M. Brown, "Introduction to Biomedical equipment Technology" John Wiley and sons, New	 Recommended Books: 1. Cromwell L. (2007). Biomedical Instrumentation and Measurement. New Delhi: PHI Publication 2. Webster J.G.(1998). Medical Instrumentation Application and Design. New York: John Wiley and Sons 3. KhandpurR.S. (1997). Handbook of Biomedical Instrumentation. New Delhi: Tata McGraw-Hill Publication 4. Carr J. J. & Brown J. M. (1997). Introduction to Biomedical Equipment Technology. New York: John Wiley and Sons 	No Change in course contents.
33.	Optical Network	 After completion of this course, students will be able to: Describe the important components such as multiplexer, filters. Explain the multiplexing technique Explain the signalling and routing of WDM network elements Describe the protection technique in SONET/SDH and IP network 	 York, 1970. Text Books: Ramaswami, Rajiv & Sivarajan, Kumar Optical Networks a Practical perspective: Morgan Kaufmann Publishers / 2nd Ed. Black, Uyless: Optical Networks Third Generation Transport Systems: Pearson Educations. Reference Books: Tanenbaum. Andrew S.: Computer Networks: Prentice Hall (India) Murthy, C. Siva Ram & Gurusamy, Mohan: WDM Optical Networks Concepts, Design & Algorithms: Prentice Hall (India) 	 Recommended Books: 1. Ramaswami, Rajiv.,&Sivarajan, Kumar. N.(2009). Optical Networks: A Practical Perspective. San Francisco, California: Morgan Kaufmann Publisher. 2. Uyless, Black. (2009). Optical Networks Third Generation Transport Systems: New Delhi: Pearson Publication. 3. Tanenbaum, Andrew. S. (2010). Computer Networks. New Delhi: Pearson Publication. 4. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: 1. Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of 	No Change in course contents.

24	Sectolita	After conclution of this		 Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminars/ OptNets.pdf 2. Optical networks and Switching Systems by Prof. Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021 	N. Change
54.	Communication	course, students will be		_	in course
		 able to: Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites. Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system. Understand the radio propagation channel for Earth station to satellite and satellite to satellite communications links, and the basics of designing antenna systems to accommodate the needs of a particular satellite system. Understand how analog and digital technologies are used for satellite communications networks and the topologies and the topologies are used to the needs of the topologies and topologies and the topologies and the topologies and the topologies and the topologies and topologies and the topologies and topologie	Text Books: 1. Pratt, Bostian, Allnutt: Satellite Communications: John Wiley & Sons. 2. Dennis Roddy: Satellite Communications: McGraw-Hill 3. Tri T. Ha: Digital Satellite Communications: McGraw-Hill.	 Recommended Books: Bostian, Charles.,Pratt, Timothy., & Allnutt, Jeremy. (2006). Satellite Communications. New Delhi: John Wiley & Sons. Maral G., Bousquet M., Sun Z. (2010) Satellite Communications Systems: Systems, techniques and technology, 5th edition., John Willy and sons. Roddy, Dennis. (2017). Satellite Communications. New Delhi:McGraw-Hill Publication Ha, Tri. T. (1990). Digital Satellite Communications. New Delhi: McGraw-Hill Publication Suggested e-resources: Satellite Communication Systems by Prof.Kalyan Kumar Bandyopadhyay Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. http://textofvideo.nptel.ac.in/117105131/1 ec1.pdf Satellite Link Design by Dr.Marwah Ahmed. https://net425site.files.wordpress.com/20 17/02/net-425-d-feb-2016-lec-5.pdf 	contents. Added

35	Basics of	applications of those networks, as well as the comparison to alternative communications systems.			No Chongo
	Basics of Nanoelectronics	 After completion of this course, students will be able to: Explain the fundamental science and quantum mechanics behind nanoelectronics. Explain the basic concepts behind the operation of nano scale MOSFET describe the various techniques and approaches for the fabrication of nano-scale devices 	 Text books: 1. G. W. Hanson: Fundamentals of Nanoelectronics, Pearson Education. 2. K. K. Chattopadhyay and A. N. Banerjee: Introduction to Nanoscience and Nanotechnology, PHI Learning. References: 1. Vlaadiniz U. Mitin: Introduction to Nanoelectronics, Cambridge University Press. 2. M. Dragman and D. Dragman: Nanoelectronics- Principles and devices, Artech House. 3. Karl Goser: Nanoelectronics and Nanosystems, Springer. 4. Daniel Minoli: Nanotechnology application to telecommunication and networking, Wiley Interscience. 5. John H. Davis: Physics of low dimension semiconductor, Cambridge Press. 6. Carl C. Cosh: Nanostructure materials processing property and applications, Noyes Publications 	 Recommended Books: Hanson, G. W. (2008). Fundamentals of Nanoelectronics. New Delhi: Pearson Publication. Chattopadhyay, K. K., & Banerjee, A. N. (2009). Introduction to Nanoscience and Nanotechnology. New Delhi: PHI Publication. Mitin, Vlaadiniz.U. (2009). Introduction to Nanoelectronics. New Delhi: Cambridge University Press. Dragman,M., &Dragman,D. (2008). Nanoelectronics- Principles and Devices (2/e): Artech House Publishers Goser, Karl. (2004). Nanoelectronics and Nanosystems. Berlin: Springer Publication Minoli, Daniel. (2005). Nanotechnology Application toTelecommunication and Networking. Hoboken, New Jersey: Wiley Publication. Davis John. H. (1997). Physics of Low Dimension Semiconductor. New Delhi: Cambridge University Press. Cosh, Carl.C. (1998). Nanostructure Materials 	No Change in course contents.
36.	Mobile Communication	After completion of this course, students will be able to:		New York: Noyes Publications	No Change in course contents
		• To understand the various generations of mobile communications and	Text Book:1. Rappaport Theodre S: WirelessCommunication: Pearson Education, second	 Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication. 	contents

		 basics of wireless communication To understand the concept of cellular communication Can test mobile communication equipment for the technical functionality Knowledge of GSM mobile communication standard, its architecture, logical channels, advantages and limitations 	 edition. 2. Pandya Raj: Mobile and Personal Communication System and Services: Prentice Hall of India. Additional Reading: David J. Goddman: Wireless Personal Communication System: Addision Wesley publication. Joachim Tesal: GSM cellular Radio: John Wiley publication. 	 Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication. Goddman, David.J. (1997). Wireless Personal Communication System:Addition Wesley Publication. Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication Suggested E-Resources: Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi. https://nptel.ac.in/courses/117102062/ 	
37.	Radar Navigation	 After completion of this course, students will be able to: Understand the basic concept of Radar and applications of various types. Understand the different Radar Performance factors. Explain the operation of CW& FM Radar. Understand the Satellite navigation system. 	Text Books: 1. Mark A Richards: Fundamentals Of Radar Signal Processing: TMH. 2. N. S. Nagraja: Elements of Electronics Navigation: TMH. 3. Peebles Jr. P. Z: Radar Principles: Wiley, NY.	 Recommended Books: 1. Richards, Mark. A (2014). Fundamentals of Radar Signal Processing. New Delhi:TMH Publication. 2. Nagraja, N. S. (2009). Elements of Electronics Navigation: New Delhi:TMH Publication. 3. Peebles Jr. P. Z. (1998). Radar Principles. New Delhi: Wiley Publication. Suggested E-Resources: 1. Introduction to Radar Systems by Dr. Robert O'Donnell, Massachusetts Institute of Technology. https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-spring-2007 	No Change in course contents.
38.	Analytical Instrumentation	 After completion of this course, students will be able to: Explain majorly pH conductivity & dissolved component 	Text Books: 1. Jones E.B: Instrumentation technology. 2. Jain R.K: Mechanical & Industrial	Recommended Books: 1. Willard., Merritt.Dean,& Settle. (2004). Instrumental Methods of Analysis. New	No Change in course contents.

		 analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement. Evaluate the performance of Spectro-photometers, FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometers, X-ray Spectrometers, and Mass Spectrophotometers with their applications. 	 Measurements: Khanna Publications. R.S. Khandpur, Handbook of Analytical Instruments, TMH, New Delhi Reference Books: D. A. Skoog, Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia H. H. Willard, L.L. Merrit, J. A, Dean and F. A. Settle, Instrumental methods of Analysis, CBS Publishers, Delhi D. Patranabis, Principles of Industrial Instrumentation, TMH, New Delhi 	 Delhi: CBS Publishers & Distributors. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company. Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd. Skoog. Holler.,&Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication. Suggested e-resources: Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Indian Institute of Science, Bangalore. https://pntel.ac.in/courses/103108100/ 	
39.	Geoinformatics	 After completion of this course, students will be able to: Describe spatial database, Co-ordinate and projection system Analyse vector and raster based analysis in Geographical Information Sciences Describe global cover based global position systems i.e. GPS, GLONASS Describes applications of remote sensing and GIS in natural resources management 	Text Books : 1. Chor Pang Lo and Albert K. W. Yeung. 2006. Concepts and Techniques-of Geographic Information Systems (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 2. Heywood, D.I. and Cornelius, S. and Carver, S. 2011. An Introduction to Geographical Information Systems. Pearson, Prentice-Hall, Inc. 3. Joseph, G. 2005. Fundamentals of remote sensing. Universities prc;s (India) Pvt Ltd., Hyderabad. 4. Jensen, John R. 2016. Introductory digital image processing: a remote sensing perspective. Upper Saddle River, N.I.: Prentice Hall. 5. Sabins, Floyd F. 1997. Remote	 Recommended Books: 1. Chor, Pang. Lo.,&Albert, K. W. Yeung (2006). Concepts and Techniques-of Geographic Information Systems. New Delhi: PHI Publication. 2. Heywood, D.I., Cornelius, S. & Carver, S. (2009). An Introduction to Geographical Information Systems. New Delhi: Pearson Publication. 3. Joseph, G. (2005). Fundamentals of remote sensing. Jaipur, Rajasthan: Universities Press. 4. Jensen, John. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective. New Delhi: Pearson Publication. 5. Sabins, Floyd F. (2007). Remote Sensing: Principles and Interpretation. Long 	No Change in course contents.

			sensing: principles and interpretation. San Francisco: W.H. Freeman	 Grove, Illinois: Waveland Press Suggested e-resources: Geoinformatics University Twente. https://www.itc.nl/ilwis/applications-guide/ Geographical Information System by Dr A. K. Gosain, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/105102015/1 	
	Video Systems	 course, students will be able to: Understand the fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards. Understand different colour television systems used worldwide and its compatibility. Principles of recording and reproduction of disc and video cassette recorders. 	Recommended Books: 1. S.P. Bail & R. Bali: Audio Video systems: Khanna Book Publishing Co. Delhi. 2. Ajay Sharma: Audio and Video Systems:Dhanpat Rai & Co. 3. R.G. Gupta: Audio and Video Systems: Tata Mc-Graw Hill.	 Recommended Books: Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc- Graw Hill Suggested e-resources: Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22 	No Change in course contents.
41.	Robotics and Automation	 After completion of this course, students will be able to: Develop skills of creating industrial and 		SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and	Addition of as Elective

 mobile robot projects Implement robots like KUKA, PUMA in real industrial world Create innovative robot designs using mathematical concepts of kinematics 	control system, Dynamic stabilization of Robotics. POWER SOURCES AND SENSORS- Hydraulic, Pneumatic and electric drivers – Determination HP of motor and gearing ratio, variable speed arrangements, Path Determination - Machinery Vision – Ranging – Laser – Acoustic, Magnetic Fiber Optic and Tactile Sensor.	
Develop autonomous mobile robots in surveillance, security, home and office services	SECTION B MANIPULATORS- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators. ACTUATORS AND GRIPPERS- Pneumatic, Hydraulic Actuators, Stepper Motor Control Circuits, End Effecter, Various types of Grippers, Design consideration. Differential transformation and manipulators, Jacobians – problems<.Dynamics: Lagrange – Euler and Newton – Euler formations – Problems. Construction Direction Constituent of the second of th	
	 SECTION C KINEMATICS- Forward and Inverse Kinematic Problems, Solutions of Inverse Kinematic problems, Multiple Solution, Jacobian Work Envelop – Hill Climbing Techniques. PATH PLANNING- Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages. CASE STUDY- Multiple Robots – Machine Interface – Robots in Manufacturing and Non-Manufacturing applications – Robot Cell Design Selection of a Robot. 	
	Recommended Books:1. Groover, M. P., Weiss, M., Nagel, R. N., & Odrey, N. G. (2017). Industrial Robotics: Technology, programming, and Applications (2/e). McGraw-Hill	

42.	Power Electronics	 After completion of this course, students will be able to: To explain various power semiconductor devices like Thyristor, GTO, MOSFET and IGBT Analyze the various rectifiers used in power circuits and DC to DC Converters Explain the inverter operation and how harmonics are reduced and explain the basic working principle of cycloconverters 	Section A Need of power electronics, Introduction to power electronics devices (static and dynamic characteristics) power diodes, power transistor, power MOSFETS, IGBT, MCT, GTOs, Triac. Thyristor SCR: Operational characteristics, Turn ON methods, switching characteristics, thyristor protection, over voltage protection, over current protection, gate protection, snubber circuit Firing circuits for Thyristors, heating, series and parallel combination of Thyristors. Section B Commutation, resonant- pulse commutation, complementary commutation, impulse commutation, line commutation, Phase controlled rectifier: Principal of phase control, single and three phase converters. Effect of source impedance on the performance of converters, dual converter (ideal and practical) DC choppers: Principle, control strategies, step-up and step-down choppers. Section C Inverters: Single-phase voltage source	 Education Publication 2. Niku, S. (2010). Introduction to robotics. John Wiley & Sons. 3. Fu, K. S., Gonzalez, R., & Lee, C. G. (1987). Robotics: Control Sensing. Vis. Tata McGraw-Hill Education. 4. Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control. Tata McGraw-Hill. 5. Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E. Pearson Education India. 6. Spong, M. W., & Vidyasagar, M. (2008). Robot dynamics and control. John Wiley & Sons. 7. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media. 	Shifted from 6 th semester to list of electives. No change in course contents.
-----	----------------------	---	--	---	---

			inverters 180 and 120 mode operation; Fourier analysis of single-phase inverter output voltage. Pulse width modulated inverters, Reduction of harmonics in the inverter output, single-phase current source inverters with ideal switch. Cyclo-converters: Step-up and step-down cyclo-converter, Single phase to single-phase cyclo-converters three-phase half wave cyclo-converters.		
			Text Books:1.RashidMuhammadH.:Power	Recommended Books: 1. Rashid, Mohammad. H. (2017) .Power	
			Electronics Circuits, Devices And Applications: PHI publication, 14th reprint Edition.	<i>Electronics Circuits, Devices And</i> <i>Applications</i> : New Delhi: PHI Publication.	
			2. Bimbhra P.S.: Power Electronics: Khanna Publication, 3rd Edition.	2. Bimbhra, P.S. (2012). <i>Power Electronics</i> : New Delhi: Khanna Publication.	
			Reference: 1. Rama Moorthy: An Introduction	3. Moorthy, Rama, (1991). <i>An Introduction</i> <i>ToThyristors and Their Application</i> : New	
			To Thyristors And Their Application: 2nd Edition ISBN-81-85336-67-9	Delhi: Affiliated East-West Press.	
			Lauon, 15517-01-05550-07-2.	1. Power Electronics by Prof.B.G.	
				Engineering, Indian Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/108101038/ 2. Power Electronics by Prof. D. Prasad,	
				Dr. D. Kastha, Prof.SabyasachiSengupta,	
				Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105066/	
43.	Digital Signal	After completion of this	Section A		
	Processing	course, students will be	Introduction of Signals, Systems and Signal		
		able to:	Processing, Classification of Signals and		Shifted from
		• Students will be familiar with the most	Systems, Advantages of digital over analog		6 th semester
		important methods in	Continuous Time versus		electives.
		DSP.	Discrete time signals, Periodic		
		• Students will be	and aperiodic Signals, Phasor		No change in
		familiar with design	Signals and Spectra, Energy and Power		course
		and functioning of digital filter design	superposition integral for Fixed and Linear		contents. No Change
		 Student will be able 	Systems, Impulse Response of a Fixed and		110 Change
		- Student will be able	Linear System - Fourier Series -		

	to transform-domain	Trigonometric Series- Exponential Fourier		
	processing.	Series-Symmetry Properties of the Fourier		
		Coefficients. Fourier Integral. Energy		
		Spectral Density, Fourier Transforms in		
		the Limit. Fourier Transform Theorems and		
		Pairs. System Analysis with Fourier		
		Transform Lan lace Transform		
		Theorems Network Analysis using the Lan		
		lace Transform		
		Section B		
		Discrete Time Signals and Systems		
		Review of Sampled Data Systems		
		Time Domain Representations of		
		Discrete Time Signals Frequency Domain		
		Representation of Discrete Time Signals		
		Discrete Time Signals obtained by sampling		
		Discrete Fourier Transform 7-Transform -		
		Definition and Examples Inverse 7-		
		Transform Properties of the 7-Transform		
		Introduction to Realization of		
		Digital Systems - Block Diagrams and Signal		
		Flow Graphs Introduction to Realization of		
		an IIR and FIR systems Discrete Fourier		
		Transforms (DET) and East Fourier		
		Transform (FFT)		
		Section C		
		Design of Digital Filters:		
		Introduction to Filters A		
		comparison of IIR and FIR Digital Filters		
		Design of IIP Digital Filters Impulse		
		Invariant Transformation Bilinear		
		Transformation Design of Digital Butter		
		worth and Chebyshey Filters Design of FIP		
		Digital Filters - Windowing and		
		Rectangular Window Filter Designs using		
		Windows Frequency Sampling Technique		
		DSP tools and DSP techniques in various		
		applications		
		Text Books	Recommended Books:	
		1 Johnson Johnny R · Introduction to	1 Johnson Johnny R (1008)	
		Signal Processin. Prantice Hall of India	Introduction to Signal Processing New	
		1998	Delhi: phi Publication	
		2 Oppenheim V Alan: Signal &	2 Oppenheim V Alan (1005) Signal &	
		$2.$ Oppendent v. Alan. Signal α	2. Oppennenn, v. Alan. (1995). Signal &	

			Systems: Prentice-Hall of India, 1995.	Systems. New Delhi: PHI Publication.	
			3. ProakisG.John: Digital Signal	3. Proakis, G.John. (2002). Digital Signal	
			Processing: Prentice-Hall of India, 3rd	Processing. New Delhi: PHI Publication.	
			edition, 2002.	Suggested E-resource:	
			,	1. Digital Signal Processing by Prof: S. C.	
				Dutta Roy. Department of Electrical	
				Engineering Indian Institute of	
				Technology. Delhi.	
				https://nptel.ac.in/courses/117102060/	
44.	Mechatronics	After successful		SECTION A	Addition of
	1,100,100,011,05	completion of the course.		Mechatronics and its scope: Basic Structure	new elective.
		student will be able to:		and Evolution	
		• Develop skills to		Introduction of Transducer & Sensor:	
		monitor and control real		Displacement, Pressure, Flow, Level and	
		world industrial systems		Temperature Measurements. Signal	
		• Implement projects for		conditioning amplification filtering	
		industrial and home		PC based Control: Smart Sensor Data	
		automations		Acquisition System PLC SCADA DCS and	
		• A polyzo and areato own		HMI System	
		• Analyze and create own		SECTION B	
		signal conditioning		Pneumatic and Hydraulic actuation	
		applications		systems: Directional control valves Pressure	
		Derform computer based		control valves and Process control valves and	
		• Perform computer based		cylinders	
		controlling of industries		Mechanical actuation system- Kinematic	
		USING PLC, SCADA and		chains cams gear-trains Ratchet & Pawl	
		ПИП		dampers Bearings	
				Electrical actuation system: Mechanical	
				switches- solenoid operated solid state	
				switches DC AC & stepper motors	
				Electrical Drives: Conventional and	
				Modern electrical drives Classifications and	
				Applications	
				Closed loop Controllers Performance	
				Specifications Delayed First and Second	
				order system PID Controller ZN Tuning	
				SECTION C	
				Case Studies of Mechatronics Systems	
				Industrial Robot Automobile Engine	
				Control Vehicle Suspension Control	
				MEMS CNC Machine Gyro system 3-D	
				Printer	
				Decommonded Rooks	
				Recommended Books:	

			1. Isermann, Rolf (2005). Mechatronics	
			Systems. Springer Publication	
			2. Bolton, W. (2003). Mechatronics:	
			and electrical engineering Deerson	
			Education	
			3 Sawhney A K (2015) A Course in	
			Electrical and Electronic Measurements	
			and Instrumentation Dhannat Rai & Co	
			Publication	
			4. Nakra B.C. & Chaudhry K.K. (2013).	
			Instrumentation, Measurement and	
			Analysis. Tata McGraw Hill Publication	
45.	Professional		The course is intended to provide participants	New reading
	Ethics		with the ability to analyze ethical situations,	elective
			such as how they interact and what can be	added
			expected from them as correct ethical	
			behaviour. In turn, any professional will	
			benefit from a critical scrutiny of their own	
			etnics by those from other professions. The	
			be examined as well as the distinctive	
			problems of the different fields. The	
			participant will also be expected to explain	
			the pertaining issues, such as professional	
			codes of ethics, confidentiality, obligations	
			and Moral Values in Professional Ethics, the	
			limits of predictability and responsibilities of	
			the engineering profession, research	
			misconduct, and work place rights &	
			responsibilities.	
			Suggested e-resources:	
			Institute of Technology	
			http://www.openculture.com/professional	
			-ethics-a-free-online-course.	
			2. Ethical Practice: Leading Through	
			Professionalism, Social	
			Responsibility, and System Design	
			by Prof. LeighHafrey, MIT, USA.	
			https://ocw.mit.edu/courses/sloan-school-	
			of-management/15-270-ethical-practice-	

			leading-through-professionalism-social- responsibility-and-system-design-spring- 2016.	
46.	IoT Sensors and Devices		 This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: I. IoT Sensors and Devices by Curtin University https://www.edx.org/course/sensors-and-devices-in-the-iot. Z. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-of-things-sensing-actuation. 	New reading elective added
47.	Electromagnetic Compatibility	9 9 11 11 11 11 11 11 11 11 11 11 11 11	This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to	New reading elective added

			other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden https://onlinecourses.nptel.ac.in/noc19_ee 17/preview.	
48.	Electric Vehicles		 Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure Suggested e-resources: 1. Electric Cars: Introduction by Delft University of Technology (TU Delft). https://www.edx.org/course/electric-cars-introduction-0. 	
49.	Electronic Packaging		This course is designed to provide a basic knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with	New reading elective added

		potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge-based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods.	
		I. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18_m e54. e54.	
50.	Multimedia Compression and Communication	The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication. The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur. https://nptel.ac.in/syllabus/117105083/.	New reading elective added
51.	Telecommunica tion switching systems and networks	 The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching	New reading elective added

systems, traffic management, time division
switching systems, data communication
Networks, routing, ISDN, voice data
integration and importance of telephone
traffic analysis and telephone networks.
Suggested e-resources:
1. Computer Networks by Department of
CSE, IIT Kharagpur
https://nptel.ac.in/courses/Webcoursecont
ents/IIT%20Kharagpur/Communication%
20network/New index1.html.
2. Data Communication by IIT Kharagpur.
https://nptel.ac.in/courses/106105082/19.

Annexure III

Name of Programme: Master of Science (Electronics)

Programme Educational Objectives: The M.Sc. (Electronics) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. Electronics now become the integral part of our lives. As the world continues to rely on Electronics technology, there is a great requirement for the technically skilled personnel who are able to design, create, and maintain the many products and systems that support electronics technology. Electronics professionals develop innovative technology solutions in a wide range of areas from handheld communications to solar panels; from cardiac pacemakers to autonomous robots; from wireless networks to bio-engineered sensors that detect dangerous pathogens; and intelligent surveillance systems that perform face and motion recognition.

The program aims to deepen the knowledge and skills of the students on the basic concepts and theories that will equip them in their professional work involving analysis, systems implementation, operation, production, and maintenance of the various applications in the field of Electronics. The curriculum is designed in a way that it will equip students with a solid grasp of mathematical, scientific, and engineering concepts, through classroom education and laboratory exercises. Graduates of the program are expected to develop and use professional skills that facilitate their continued carrier growth well beyond their graduation.

The main objectives of the program are:

- To provide students solid foundation in mathematics and electronics fundamentals required to solve subject related problems and also to pursue advanced studies. This serves them lifelong in their professional domain as well as higher education.
- To prepare professionals to work in inter-disciplinary environment, either independently or in a team, and demonstrate leadership qualities.
- Practice the ethics of their profession, consistent with a sense of social responsibility and develop their problem-solving skills and aptitude for innovations as they work individually and in multi-disciplinary teams.
- Inculcate a lifelong learning culture.
- To formulate problems and projects and to plan a process for solution.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- **PO1.** Knowledge: Apply the knowledge of mathematics, science and electronics fundamentals to the solution of related complex problems.
- PO2. Problem analysis: Interpret, compare and analyze following rules of scientific methodology to arrive at a defensible conclusion of a problem.
- **PO3. Design/development of solutions:** Develop solutions for complex electronics problems and design system components/processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use scientific knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5.** Modern tool usage: Apply appropriate techniques, resources, and modern electronics tools including MATLAB, LabView, Proteus, VHDL, Arduino and related hardware to complex electronics activities with an understanding of the limitations.
- **PO6.** The electronics professional and society: Apply reasoning gained by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional electronics practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional electronics solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics responsibilities and norms of the professional practice.
- PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary surroundings.

- **PO10.** Communication Skill: Communicate effectively on complex electronics activities with the electronics professional community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the professional and management principles and apply as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Sc. (Electronics) I Sem (December 2019)

- 1. Highlighted with gray shade indicates the changed subject/course/credit/modification in syllabus/ new course added.
- 2. Text in white color with black background indicates swapping of course.

	Existing Scheme					Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	C
CS-416	Computer Programming	4	0	0	4	CS 415	Computer Programming	4	0	0	4
CS-416L	Computer Programming Lab	0	0	8	4	CS 415L	Computer Programming Lab	0	0	8	4
ELE 301	Analog Integrated Circuits	4	0	0	4		Analog Electronics	4	0	0	4
ELE 301L	Analog Integrated Circuits Lab	0	0	2	1		Analog Electronics Lab	0	0	4	2
ELE 404	Electronics Devices	4	0	0	4	ELE 406	Principles of Digital Electronics	4	0	0	4
ELE 405	Network Theory	4	0	0	4	ELE 406L	Principles of Digital Electronics Lab	0	0	4	2
ELE 405L	Network Theory Lab	0	0	2	1	ECE 201	Signals, systems and Networks	4	0	0	4
ELE 406	Principles of Digital Electronics	4	0	0	4	ELE 205	Semiconductor Devices and Circuits	4	0	0	4
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2						
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	0	16	28

Existing Sch	eme					Proposed S	cheme				
Course Code	Course Name	L	Т	Р	C *	Course Code	Course Name	L	Т	Р	C *
ECE 402	Fiber Optics and Communication	4	0	0	4		Microwave Engineering	4	0	0	4
ECE 402L	Fiber Optics and Communication Lab	0	0	2	1		Microwave Engineering Lab	0	0	2	1
EIE 201	Electronics Measurement and Instrumentation	3	1	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4
EIE 201L	Electronics Measurement and Instrumentation Lab	0	0	2	1	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2
EIE 302	Control Systems	3	1	0	4	EIE 302	Control Systems	4	0	0	4
EIE 302L	Control Systems Lab	0	0	2	1	EIE 302L	Control Systems Lab	0	0	4	2
ELE 304	Digital Signal Processing	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3
ELE 304L	Digital Signal Processing Lab	0	0	2	1	TSKL 403	Communication Skills	2	0	0	2
TSKL 403	Communication Skills	2	0	0	2	ELE 508S	Seminar	0	0	2	1
VLSI 401	VLSI Design	4	0	0	4		Discipline Elective	4	0	0	4
VLSI 401L	VLSI Design Lab	0	0	4	2						
	Semester Wise Total	20	2	12	28		Semester Wise Total	20	1	12	27

M.Sc.(Electronics) II Sem (April/May 2020)

M.Sc. (Electronics) III Sem (December 2020)

Existing Scheme						Proposed Scheme					
Course Code	Course Name	L	Т	Р	C *	Course Code	urse de Course Name		Т	Р	С
ELE 307	Microwave Electronics	4	0	0	4	VLSI 401	VLSI Design	4	0	0	4
ELE 307L	Microwave Electronics Lab	0	0	2	1	VLSI 401L	VLSI Design Lab	0	0	2	1
ELE 306	Microprocessors and Microcontrollers	3	1	0	4	CS 209	Data Structures	4	0	0	4
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	2	1	CS 209L	Data Structures Lab	0	0	4	2
ECE 301	Analog Communication	4	0	0	4	ECE 301	Analog Communication	4	0	0	4
ECE 301L	Analog Communication Lab	0	0	2	1	ECE 301L	Analog Communication Lab	0	0	2	1
CS 209	Data Structures	4	0	0	4	ELE 306	Microprocessors and Microcontrollers	4	0	0	4
CS 209L	Data Structures Lab	0	0	4	2	ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2
ECE 303	Communication Networks	4	0	0	4		Open Elective	4	0	0	4
ELE 308P	Project			8	4		Project	0	0	4	2
ELE 508S	ELE 508S Seminar 2 1		1								
	Semester Wise Total	19	1	20	30		Semester Wise Total	20	0	16	28

M.Sc.(Electronics) IV Sem (April/ May 2021)

	Existing Scher	ne				Proposed Scheme					
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
	Reading Elective	0	0	4	2	ELE 507P	UIL Project	0	0	48	24
ELE 507P	Project	0	0	40	20		Reading Elective	0	0	0	2
	Semester Wis	se To	otal	44	22		Semester V	Vise T	otal	48	26

Reading Electives:

	Existing Scheme					Proposed Scheme					
Course CodeCourse NameLTPCCourse CodeCourse Code		Course Name	L	Т	Р	С					
IT 403R	Enterprise Resource planning	0	0	4	2		Professional Ethics	0	0	0	2
CS 509R	Client-Server Computing and Applications	0	0	4	2		Telecommunication switching systems and networks	0	0	0	2
IT 402R	Electronic commerce	0	0	4	2		Multimedia Compression and Communication	0	0	0	2
CS 427R	Parallel Computing	4	0	0	4		Electronic Packaging	0	0	0	2
							Electric Vehicles	0	0	0	2
							Electromagnetic Compatibility	0	0	0	2
							IoT Sensors and Devices	0	0	0	2

Discipline Elective	Discipline Electives													
Course Code	Discipline Electives	Course Code	Discipline Electives	Course Code	Discipline Electives									
ELE 403	Basics of Nanoelectronics		Biomedical Instrumentation	ECE 404	Optical Network									
	Mechatronics	ECE 402	Fiber Optics and Communication	ECE 406	Satellite Communication									
ELE 402	Audio and Video Systems		Analytical Instrumentation	ECE 403	Mobile Communication									
	Geoinformatics	ELE 304	Digital Signal Processing	ECE 405	Radar Navigation									
	Robotics and Automation	ECE 303	Communication Networks											
	Antenna Analysis	EEE 304	Power Electronics											

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

M.Sc. Electronics

Ist Year												
Semester-I						Semester-II						
Course Code	Course Name	L	т	Р	с	Course Code	Course Name	L	т	Р	С	
CS 415	Computer Programming	4	0	0	4	-	Microwave Engineering	4	0	0	4	
CS 415L	Computer Programming Lab	0	0	8	4		Microwave Engineering Lab	0	0	2	1	
	Analog Electronics	4	0	0	4	EIE 202	Electrical and Electronics Measurements	3	1	0	4	
	Analog Electronics Lab	0	0	4	2	EIE 202L	Electrical and Electronics Measurements Lab	0	0	4	2	
ELE 406	Principles of Digital Electronics	4	0	0	4	EIE 302	Control Systems	4	0	0	4	
ELE 406L	Principles of Digital Electronics Lab	0	0	4	2	EIE 302L	Control Systems Lab	0	0	4	2	
ECE 201	Signals, systems and Networks	4	0	0	4	MGMT 209	Entrepreneurship	3	0	0	3	
ELE 205	Semiconductor Devices and Circuits	4	0	0	4	TSKL 403	Communication Skills	2	0	0	2	
						ELE 508S	Seminar	0	0	2	1	
							Discipline Elective	4	0	0	4	
	Semester Wise Total	20	0	16	28		Semester Wise Total	20	1	12	27	

lind Year												
Semester-II	I				Semester-IV							
Course Code	Course Name	L	Т	Р	С	Course Code Course Name L T P C	-					
VLSI 401	VLSI Design	4	0	0	4	ELE 507P UIL Project 0 0 48 24						
VLSI 401L	VLSI Design Lab	0	0	2	1	Reading Elective002						
CS 209	Data Structures	4	0	0	4							
CS 209L	Data Structures Lab	0	0	4	2							
ECE 301	Analog Communication	4	0	0	4							
ECE 301L	Analog Communication Lab	0	0	2	1							
ELE 306	Microprocessors and Microcontrollers	4	0	0	4							
ELE 306L	Microprocessors and Microcontrollers Lab	0	0	4	2							
	Open Elective	4	0	0	4							
	Project	0	0	4	2							
	Semester Wise Total	20	0	16	28	Semester Wise Total 0 0 48 26						
Discipline Electives												
---------------------------	--------------------------------	-------------------------	--	--	--							
Basics of Nanoelectronics	Biomedical Instrumentation	Optical Network										
Mechatronics	Fiber Optics and Communication	Satellite Communication										
Audio and Video Systems	Analytical Instrumentation	Mobile Communication										
Geoinformatics	Digital Signal Processing	Radar Navigation										
Robotics and Automation	Communication Networks											
Antenna Analysis	Power Electronics											

Reading Electives		
Professional Ethics	Telecommunication switching systems and networks	Electric Vehicles
Electromagnetic Compatibility	Multimedia Compression and Communication	
IoT Sensors and Devices	Electronic Packaging	

Student can opt for at most 2 additional Open (Generic) audit/ credit Elective from other disciplines opting at most 1 per semester in Semesters II, & III with prior permission of respective heads, time table permitting.

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	CS-416, Computer Programming			CS 415, Computer Programming	Please refer from Department of Computer Science
2	Analog Integrated Circuits	 After the completion of course student will be able to: Explain the operation and properties of Opamp. Explain the design of differential amplifiers, active filters, oscillators, and other linear and nonlinear circuits using linear integrated circuits. Design and analysis of single stage, multistage amplifiers and high frequency amplifiers. 	Analog Integrated Circuits Section ASection AFeedback Amplifiers: classifications of amplifiers, general feedback, structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, input resistance, output resistance. Method of analysis, voltage series and current series feedback, current shunt and voltage shunt feedback.Power amplifiers: classification, operation, analysis and design of Class A, Class B, Class-AB, Class C, power dissipation and efficiency calculations, amplifier distortion.Section BHigh Frequency Amplifiers : Hybrid-pi CE transistor model, Hybrid-pi Conductance, Hybrid-pi Capacitances, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, gain-bandwidth product, Multistage Amplifiers : frequency response of an RC 	Analog Electronics Section A Operational Amplifier and its applications: BJT differential amplifier: DC and AC analysis, Transfer characteristics, Differential and Common mode gain, Ideal Op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, frequency response, slew rate, CMRR, summing amplifier, differential and instrumentation amplifier, design of integrator and differentiator, logarithmic and anti-logarithmic amplifiers, Active filters. Section B Op-amp RC oscillator circuits: Wien bridge, Phase shift; square wave & triangular wave generator, voltage controlled oscillator, Phase locked loops: performance factors, Integrated circuit PLL (565) and its applications, Precision rectifier, comparator, Schmitt trigger and 555 IC Timer, Voltage Regulators: Voltage regulator basics, OP-AMP series voltage regulators, adjustable voltage regulators, short circuit protection and fold back current limiting circuits, IC voltage regulators, switching regulators.	Added Shifted Deleted Shifted Deleted
			Section C Operational amplifier & its Applications: BJT Differential Amplifier: DC and AC	Section C High frequency amplifiers: Hybrid –pi CE transistor model, Hybrid –pi conductance,	Added Shifted Deleted

			analysis, transfer characteristics, differential and common modes gain. ideal op-amp, inverting and non-inverting amplifier, offset voltage, offset current, bias current, slew rate, CMMR, design of Integrator and differentiator, summing amplifiers, differential and instrumentation amplifiers, Active filters, OP-AMP RC Oscillator circuits : Wien-Bridge, Phase-Shift, Precision rectifier, comparator, Schmitt trigger, 555 IC timer.	Hybrid -pi capacitances, CE short circuit current gain, Current gain with resistive load, Single stage CE transistor amplifier response, Gain bandwidth product. Multistage Amplifier: Frequency response, Effect of cascading on bandwidth, RC coupled amplifier; Low frequency response of an RC coupled stage, Effect of emitter bypass capacitor.	
			Text Books:1.Millman and Halkias : Integratedelectronics, TMH, 1991.2.Boylestad, Nashelshy, ElectronicDevices and Circuit Theory, Pearsonpublication, Tenth Edition, 2009.3.Gayakwad Ramakant A., "OP-AMP& Linear Integrated circuits", New Delhi(Prentice Hall) fourth Edition 2010.Reference Book :1.Adel Sedra& Kenneth Smith,Microelectronic Circuits Theory andapplications'' FIFTH edition Internationalversion: Oxford University Press, 2009.	 Recommended Books: 1. Gayakwad, Ramakant A. (2010). <i>OP</i>- <i>AMP</i> & Linear Integrated Circuits. New Delhi: Prentice Hall Publication. 2. Bell, David A. (2011) <i>Operational</i> <i>Amplifiers and Linear ICs</i>. New Delhi: Oxford University Press. 3. Parikh, Millman & Halkias. (2010) Integrated Electronics: Analog & Digital Circuits and Systems. New Delhi: McGraw Hill Education. 4. Sedra, Adel. & Smith, Kenneth. (2009).Microelectronic Circuits Theory and Applications. New Delhi: Oxford University Press. Suggested E-Resources: 1. Analog Electronic Circuits by Prof. S. C. Dutta Roy, Indian Institute of Technology Delhi. https://prel.ac.in/courses/108102005/ 	Deleted
3.	Analog Integrated Circuits Lab	 After completion of this laboratory course, students will be able to: Design, construct, and analyze the various analog circuits to compare experimental 	 Analog Integrated Circuits Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC 4. To design Integrator using 741 IC 5. To design Integrator using 741 IC 	Analog Electronics Lab Analog Electronics Lab 1. To design the Astable Multivibrator using 555 2. To design the Monostable Multivibrator using 555 3. To design summer using 741 IC 4. To design Intergrator using 741 IC	Learning Outcomes added. No Change in Experiment

4	ELE 406, Principles of Digital Electronics	 laboratory with theoretical analysis. Observe the amplitude and frequency responses of common amplification circuits Construct the desired Electronic design to meet specific requirements. After the completion of course student will be able to: Describe and minimize various digital systems. Design steps for combinational and sequential circuits. Understand basic memory architectures and their functionality. 	IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters : LPF, HPF, BPF. 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. To study frequency shift keying using PLL 565. Text/Reference Books: 1 Digital Principles and Applications by Malvino C.P., Leach D.P.; Tata Mc-Graw Hill, 1985. 2. Digital Computer Fundamentals:Bartee, T.C. 3. Computer System Architecture: Mano, M.M., Prentice Hall, 1988 4. Digital Electronics: K M Bakwad ,Vardhan Publication, 2010 5. Computer Architecture and Organization : Hayes John P., Mc- Graw Hill 1988 (International Edition) 6. Introduction to Computer Architecture Stone s., Galgotia Publications 1986. 7. Microprocessors, Architecture,	 741/555 IC 6. To design Differentiator using 741 IC 7. To design peak detector using 741 IC 8. To design scalar using 741 IC 9. To study active filters: LPF, HPF, BPF, 10. To design Voltage to frequency converter. 11. To study phase locked loop. 12. 12. To study frequency shift keying using PLL 565. Recommended Books: Malvino C.P., Leach D.P. & SahaGoutam (2014). <i>Digital Principles and Applications</i>. New Delhi: Tata McGraw Hill Publication Bartee T.C. (1979). <i>Digital Computer Fundamentals</i>. New York: McGraw-Hill Publication Hayes John P. (1988). <i>Computer Architecture and Organization</i>. International edition: McGraw-Hill Publication Stone, Harold S. (1976). <i>Introduction to Computer Architecture</i>. Paris: SRA Publication 	No change in course contents Deleted
			Programming & Applications R. Gaonkar, Wiley Eastern - 1987.	Architecture, Programming & Applications with 8085/8080A, Wiley Eastern Publication	
5.	ELE 406L, Principles of Digital Electronics Lab	 After completion of this laboratory course, students will be able to: Understand the basic digital circuits and to 			Learning Outcomes added
		verify their operation.			No change in

		• Explain the elements		experiment list.
		of digital system		
		abstractions such as		
		digital representations		
		of information, digital		
		logic Boolean algebra		
		state elements and		
		finite state machine		
		(FSMs)		
		• Create a gate-level		
		implementation of a		
		combinational and		
		sequential logic		
		functions described by		
		a truth table using		
		a truth table using		
		multiplayors		
6	ECE 201 Signala	After the completion of	Section A	
0	ECE 201, Signals,	After the completion of	Section-A	
	Systems and	course student will be able	Introduction: Continuous and discrete time	
	INCLWOFKS		signals, Transformation of independent	
		• Analyze linear time	variables, Exponential and sinusoidal	
		invariant system in	signals, Unit impulse and unit step	
		time and frequency	functions, Continuous and discrete time	
		domain	systems, Basic system properties	
		• Apply network	Linear Time-Invariant System:	
		theorem to analyze	Convolution for continuous and discrete	
		the electrical simulit	 time LTI system, Properties of LTI system,	
		the electrical circuit.	Causal LTI systems described by	Introduced
		• Explain two port	differential and difference equations,	New Course
		parameters.	Singularity functions	
			Fourier Series: Fourier series	
			representation of continuous time periodic	
			signals, Convergence of Fourier series,	
			Properties of continuous time Fourier	
			series, Fourier series representation of	
			discrete time periodic signals, Properties of	
			discrete time Fourier series	
			Section-B	
			 Continuous Time Ermine Transformer	
			Continuous Time Fourier Transform:	

Representation of a	periodic signals,
Fourier transform for	periodic signals.
Properties of continu	ous time Fourier
Transform, Systems	characterized by
constant coefficient diff	erential equations
Laplace Transform: I	Laplace transform,
Region of converge	nce for Laplace
transform, Inverse L	aplace transform,
Geometrical evaluati	on of Fourier
Transform from pole-ze	ero plot, Properties
of Laplace transform	n, Analysis and
characterization of L'	ΓI systems using
Laplace transform	
Initial Conditions in Ne	tworks: First order
differential equations	- General and
Particular solutions, Tin	ne constants, Initial
conditions in eleme	ents, geometrical
interpretation of deriva	tives, A procedure
to evaluate initial condit	ions
Section	·C
Differential equation is	n circuits: Second
order equations-Inter	rnal excitations,
Networks excited by	external energy
sources, Response as re	lated to the s-plane
location of roots, Ge	neral solutions in
Terms of S, Q, n	
Impedance Functions	and Networks
Theorems: The cond	ept of complex
frequency, Transform	impedance and
transform circuits, Se	ries and parallel
combinations of eleme	nts, Superposition
and Reciprocity, Theve	nin's Theorem and
Norton's Theorem	
Two port Parameters: F	celationship of two
port variables, Short	circuit admittance
parameters, Open c	ircuit impedance
parameters, Transmis	sion parameters,
Hybrid parameters,	Relation between
parameter sets, Parallel	connection of two
port networks	

				 Recommended Books: 1. Oppenheim A. V., A. V. &Nawab S. H. (2015). Signal and Systems (2/e), Boston: Pearson Publication 2. Valkenburg M.E. Van (2015). Network Analysis (3/e). New Delhi: Pearson Publication 3. Proakis J. G. &Manolakis D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications (4/e). New Delhi: Pearson Publication 4. Kuo F. F. (2010). Network Analysis and Synthesis (2/e). New Delhi: John Wiley & Sons Publication 	
				 Circuit Theory by Prof. S.C. Dutta Roy, Department of Electrical Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/108102042/ Principles of Signals and Systems by Prof. Aditya K. Jagannatham, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104100 	
7	Microwave	After the completion of	Microwave Electronics	Microwave Engineering	Added
	Electronics	course student will be able	Section A Introduction to Microwayas & its application	Section A Introduction to Microwayas & its	Shifted
		 Understand various parameters of waveguide and use of component as per applications Design impedance matching network for any transmission line or system 	Transmission lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti resonant line impedance matching, smith chart and its applications, coaxial, twin, strip µstrip lines & baluns	application, Microwave Electromagnetic spectrum, Transmission Lines: General equation, input impedance, characteristic impedance, reflection and transmission coefficient, standing wave ratio, resonant and anti-resonant line impedance matching, Matching techniques: single stub, double stub using smith chart, quarter wave transformer, baluns, coaxial transmission line, Planar transmission line:	- Deleted

• Analyse and find		Strip line, Microstrip line, Slot line etc.	
applications and	Section B	Section B	Added
limitations of	Wave Guides: Wave propagation in	Wave Guides: Wave propagation in	Shifted
microwave tube	rectangular & circular wave guides, wave	rectangular wave guide: solution of TE and	Shirted
Generators and	guide modes, Q of wave guide, Wave guide	TM modes, Power Transmission and	Deleted
Amplifiers	coupling, Microwave passive components: S-	Attenuation, Excitation of modes in	
	parameter representation and analysis of	Rectangular waveguide, Circular	
	microwave components such as waveguide	Waveguide: Basic idea of TE and TM	
	ites, iwo-noie difectional coupler,	modes, Rectangular and Circular cavity	
	resonator Isolators Circulators	Ω of cavity resonators. S parameters and	
	resonator, isolators, circulators.	its conversion with Z and Y parameters	
		Wave guide coupling. Microwave passive	
		Components: S- parameter representation	
		and analysis of microwave components	
		such as Waveguide Tees, Two-hole	
		directional coupler, attenuators, Phase	
		shifters, Microwave propagation in	
		ferrites: Faraday rotation, Isolators,	
		Circulators.	
	Section C	Section C	Added
	Microwave Tube Devices: Conventional	Microwave Tubes: Limitations of	Shifted
	Vacuum tubes at microwave, U type device -	Conventional vacuum tubes at microwave,	Dalatad
	device magnetron Introduction to TWT	two cavity and multi cavity klystrone	Deleted
	(Traveling Wave Tubes) Microwave	Applegate Diagram and application of two	
	Semiconductor Devices IMPATT	cavity klystron Construction and working	
	TRAPATT& Gunn Devices.	of Reflex klystron. Magnetron: Types of	
		magnetron, Construction, Operation and	
		Analysis of cavity or travelling wave	
		magnetron, Traveling wave tubes (TWT):	
		Construction, Operation and practical	
		consideration of helical type TWT,	
		Applications of TWT, Microwave	
		Semiconductor Devices: Tunnel diodes,	
		principle of operation and application of	
		daviage Cump Effect dis des True all	
		theory Mode of operations of Gunn diede	
		meory, mode or operations of Guilli diode,	
		Avelenaba Transit Tima deviase	

				IMPATT, TRAPATT.	
			Text Books:	Recommended Books:	
			1. Sisodia-Raghuvanshi: Microwave	1. Liao, S.Y. (1995). Microwave devices	
			Circuits & Passive Devices: (Wiley-	& Circuits. New Delhi: Prentice Hall	
			eastern).1st edition.1987	Publication.	
			2. S.Y. Liao: Microwave Devices &	2. Rizzi, P.A. (1998). Microwave	
			Circuits , (Prentice Hall).1st Edition 1995,	Engineering. New Delhi: Prentice Hall	
			3. Collins: Foundation Of Microwave	Publication.	
			Engineering . (Mc Graw Hill) 2nd Edition	3. Collins, R. E. (1992). Foundation of	
			1992	Microwave Engineering. New Delhi:	
			4. P.A. Rizzi: Microwave: (Prentice	McGraw Hill Publication.	
			Hall). 1st Edition 1998	4. Pozar, David M. (2008), Microwave	
				Engineering. New Delhi: Wiley	
				Publication.	
				Suggested E- Recourses:	
				1. Microwave Theory and Techniques	
				by Prof. Girish Kumar, Indian Institute	
				of Technology, Bombay.	
				https://nptel.ac.in/courses/108101112/	
				2. Basic Building Blocks of Microwave	
				Engineering by Dr Amitabha	
				Bhattacharya, Indian Institute of	
				Technology, Kharagpur.	
				https://nptel.ac.in/courses/117105130	
				3. Transmission Lines and E.M. Waves	
				by Prof. R. K. Shivgaonkar, Indian	
				Institute of Technology, Bombay.	
				https://nptel.ac.in/courses/117101056/	
8	Microwave	After completion of this	Microwave Electronics Lab	Microwave Engineering Lab	Learning
	Electronics Lab	laboratory course, students	1. Determine the operating frequency of	1. Determine the operating frequency of	Outcomes
		will be able to:	reflex klystron.	reflex klystron.	added.
		• Understand the	2. Draw the V-I characteristics of Reflex	2. Draw the V-I characteristics of Reflex	
		concept and working	klystron	klystron	No Change in
		of microwave bench	3. Draw the characteristics of attenuator	3. Draw the characteristics of attenuator	Experiment
		and different	4. To verify the wave-guide law	4. To verify the wave-guide law	List.
		components connected	5. To study the directivity and coupling	5. To study the directivity and coupling	
		on a bench.	coefficient of Directional Coupler.	coefficient of Directional Coupler.	
		• Analyze the behaviour	6. To study the properties of magic Tea and	6. To study the properties of magic Tea	
		of various microwave	also determine isolation and coupling	and also determine isolation and	
		components.	coefficient.	coupling coefficient.	

		• Verify properties/ characteristic of microwave source, tees and directional coupler.	 To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H- plane Tea. Determine isolation and coupling coefficient 	 To Measure the VSWR of (i) Short circuit (ii) Open circuit (iii) Matched Load (iv) Unmatched Load. To study the properties of E-plane and H-plane Tea. Determine isolation and coupling coefficient 	
9	EIE 201, Electronics Measurement and Instrumentation	 After the completion of course student will be able to: Measure various electrical parameters with precision and accuracy. Select appropriate transducers for measurement of physical parameter. Use suitable AC Bridge for relevant parameter measurement. 	EIE 201, Electronics Measurement and Instrumentation Section A Measurements, Elements of Measurements, Mathematical Models of Measurements system, Performance Characteristics, Error in Measurement, True value, static error, static correction, scale range, scale spam, Reproducibility & drift, Repeatability, Noise- Signal to noise ratio, source of noise, Johnson noise, noise factor & noise figure. Accuracy & precision, Indication of precision, Significant figures, Range of doubt, static sensitivity, linearity, Hysteresis, Threshold, dead time, dead zone, resolution & discrimination, measurement error type & analysis, standard & calibration, curve fitting.	Electrical and Electronics MeasurementsSection AMeasurements:ElementsofMeasurements,Performancecharacteristics,Errorin measurements,True value,Static error,Static correction,Scale range,Scale span,Reproducibility,Drift,Repeatability,Accuracy andPrecision,Indication ofPrecision,Significant figures,Range of doubt,Staticsensitivity,Linearity,Hysteresis,Threshold,DeadTime,DeadZone,Resolution andDiscrimination.Measurement error:Types and analysis,Loading error due to series and shuntconnected instruments,Standards andCalibration,Curve fitting,Dynamiccharacteristics of measurement systems,Mathematical models of measurementsystem).Transducers:Classification andcharacteristics,Resistive,Capacitive,Inductive,Hall Effect.Measurement:LVDTLVDT,Strain	Added Shifted Deleted
			SECTION B	Gauges and its types. Measurement of Temperature: RTD, Thermistor and Thermocouples. Section B	Added
			Transducers: Classification, resistive, capacitive, inductive, Piezoelectric,	d'Arsonval Galvanometer- Construction, Torque Equation and Dynamic behavior of	Shifted

thermoelectric, photoelectric, Hall Effect.Measurements of displacement- linear & rotational (LVDT&RVDT), Strain gauge, Types of Strain gauge. Measurement of Velocity-Linear & Angular. Measurement of Temperature- RTD, Thermistor, thermocouple, Pyrometer-Radiation & optical, Platinum Resistance thermometer. Measurement of flow- Electromagnetic & ultrasonic type. Measurement of Liquid- Gamma rays, ultrasonic type. Measurement of PH- PH electrode, Measurement of Phase & & Frequency-Lissouge Pattern.	galvanometers, PMMC Instrument- Construction, Torque equation, Ammeter shunts, Voltmeter multipliers, Ohmmeter- Series and Shunt type, Moving Iron Instruments, Electrodynamometer Instrument. AC Bridges- Measurement of self-inductance (Maxwell's Bridge, Hay's Bridge, Owen's Bridge, Anderson's Bridge), capacitance (De Sauty's and Schering Bridge) and frequency (Wien's Bridge).	Deleted
SECTION C AC Bridges- Measurement of self-inductance, capacitance & Frequency, Measuring Instruments: Construction of Ballistic Galvanometer, PMMC instruments- Construction & Torque equation, Moving Iron- Construction & Torque equation, DC-& AC voltmeters, DC & AC ammeters, ohmmeters-series & Shunt type, Multimeter- Digital & Analog, Cathode Ray Oscilloscope- CRT, Electron Gun, Focusing, Deflection, Time base Generator, Types of CRO, Function generator, Q- meter, Energy meter.	Section C Measurement of low, medium and high resistance. Multimeter- Analog and Digital, Function generator, Wave Analyzer, Spectrum Analyzer, Q-meter and its applications, CRO- CRT, Time base generator, Measurement of Phase and Frequency (Lissajous Patterns), types of CRO (Dual Trace, Dual Beam, Sampling type and Storage CRO).	Added Shifted Deleted
Text Books:1. Sawhney, A.K.: A Text Book on Electrical and Electronics measurements and Instrumentation:Dhanpat Rai & Sons, 4 th edition 1968. Reprint 2004.2. Doeblin, Ernest O: Measurement system: Application and Design: Mc Graw Hill New York, 4 th edition 1990.	 Recommended Books: 1. Sawhney A.K. (2015). A Course in Electrical and Electronic Measurements and Instrumentation. New Delhi: Dhanpat Rai & Co Publication 2. Jain R.K. (2008). Mechanical and Industrial Measurement. New Delhi: Khanna Publishers 3. Nakra B.C. & Chaudhry K.K. (2013). 	Added Deleted

			Reference Books: 1. Jones, Barney E: Instrumentation measurement and Feedback:TMH, edition 1978, reprint 2004. 2. Cooper, W.D: Modern Electronics instrumentation and Measurements: PHI. 3. R.K Jain: Mechanical industrial Measurements: Khanna Publishers.	 Instrumentation, Measurement and Analysis. New Delhi: Tata McGraw Hill Publication 4. Kalsi H.S. (2017). Electronic Instrumentation. New Delhi: Tata McGraw Hill Publication 5. Singh S.K.(2010). Industrial Instrumentation and Control. New Delhi: Tata McGraw Hill Publication Suggested e-Resource: 1. Industrial Instrumentation by Prof.Alok Barua, Department of Electrical Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105064 	
10	Electrical and Electronics Measurements Lab	 After completion of this laboratory course, students will be able to: Develop an understanding of construction and working of different measuring instruments Develop an ability to use measuring instruments and AC and DC bridges for relevant measurement Select appropriate passive or active transducers for measurement of physical phenomenon. 		 To study Hall Effect. To study principle of Thermocouple. To study principle of Load cell. To study principle of Thermistor. To study principle of strain guage. To study Principle of LVDT To study De sauty bridge. To study Wein AC bridge. To study CRO circuitry in detail. 	Learning outcomes added.
11	EIE 302, Control Systems	After the completion of course student will be able	Section A Open loop and closed loop systems.	Section A Open loop and closed loop systems.	Added
		to:	servomechanism, mathematical model of systems differential equations and transfer	servomechanism, mathematical model of	Shifted
		mathematical model	functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback_effects of	functions, Block diagram algebra, signal flow graphs; +ve and -ve feedback effects	Deleted

for physical systems and simplify representation of complex systems using reduction techniques.	feedback, servo-components, DC and AC servomotors, Techogenerators, synchors, stepper motor, op-amp, potentiometer as an error detector; comparison of AC and DC servomechanism.	of feedback. Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems.	
 Use standard test signals to identify performance characteristics of first and second-order systems. Apply root locus technique for stability analysis. 	Section B Standard test signals, time response of first and second order systems, steady state errors and error constants, Design specifications of second order systems, effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique.	Section B Effects of derivative and integral error compensation, PID controller, Design considerations for higher order systems in brief, performance indices. Concept of stability, necessary conditions for stability, Routh Hurwitz stability criterion, relative stability criterion, relative stability in terms of Routh Hurwitz criterion; Root-locus technique. Correlation between time and frequency response specifications; Frequency domain plots, polar plots.	Added Shifted Deleted
	Section CCorrelation between time and frequency response specifications;Frequency domain plots,domain plots,polarplots,Bode plot, log magnitude versus phase plots;Gain-margin,Phase-margin,Phase-margin,Nyquist stability criterion;Constant-M and constant-N circles;closed loopfrequency response from these.PreliminaryPreliminaryconsiderationsofclassical design, cascade and feedback compensation, time-domainusinglag,	Section C Bode plot, log magnitude versus phase plots; Gain-margin, Phase-margin, Nyquist stability criterion; Constant- M and constant-N circles; closed loop frequency response from these. Preliminary considerations of classical design, cascade and feedback compensation, time-domain design using lag, lead and lag lead compensation, frequency domain design using lag.	Added Shifted Deleted
	lead and lag lead compensation, frequency domain design using lag.	State Variable model and solution of state	

			Ed.: Printice Hall of India Pvt. Ltd., 2001	Prentice hall. Suggested e-resource: 1. Control System by Prof. S. D. Agashe, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101037/	
12	Control Systems Lab	 After completion of this laboratory course, students will be able to: Understand the concept of time response and frequency response of any physical system. Mathematical modeling of physical system to find out of transfer system. Analyze the stability of system with the help of system response. 	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and find out the tachometer gain. 	 To study and controlling action using PID controller and calculate the first overshoot temperature and plot the graph. To study the DC position controller and find out the tachometer gain. To determine time domain response of a second order systems for step input and obtain performance parameters. To convert transfer function of a system into state space form and vice- versa. To plot root locus diagram of an open loop transfer function and determine range of gain 'k for stability. To plot a Bode diagram of an open loop transfer function. To draw a Nyquist plot of an open loop transfers function and examine the stability of the system. 	Learning Outcomes added. Deleted Added
13	MGMT 209, Entrepreneurship		_		Please refer from Department of Management
14	TSKL 403, Communication Skills				Please refer from Department of English
15	Seminar	 After the completion of course student will be able to: To identify promising new directions of various cutting edge 			Learning Outcomes added.

16	VLSI 401, VLSI Design	 technologies. Undertake a critical review of the literature. Deliver well-organized technical presentations and prepare a technical report. After the completion of course student will be able to: 			No change in course contents
		 Explain the basic theory of crystal growth, wafer fabrication and IC fabrication technology. Explain the different VLSI design styles, overview of ICs and fabrication steps of MOS, CMOS and BJT. Design and analyse the output characteristics of different MOS inverters 	 Text Books: Sze S.M.: VLSI Technology:TMH. Kang S.M., Leblebici Y: CMOS digital Integrated Circuits: Analysis & Design : Mc. Graw Hill. Reference Books: Botker B.R: Microelectronics. Gandhi S.K.: VLSI Fabrication Principle. Plummer J., Deal M., Griffin P.: Silicon VLSI Technology: Prentice Hall. Sarrafazadeh M. & Wong C.K.: An introduction to VLSI Physical Design: Mc Graw Hill. Martin Ken: Digital Integrated Circuits: Oxford press. Neil H.E. Weste& Kamran Eshraghian: Principle of CMOS VLSI Design. 	 Recommended Books: Sze, S.M.(2017). VLSI Technology. New Delhi: TMH Publication. Kang, S.M., & Leblebici, Y. (2002). CMOS digital Integrated Circuits Analysis & Design. New Delhi: McGraw Hill Publications. Botkar, K. R. (2004). Integrated Circuits. New Delhi: Khanna Publishers. Gandhi, S.K. (1994). VLSI Fabrication Principle Silicon and Gallium Arsenide. New Delhi: Willey Publications. Plummer, J., Deal, M., & Griffin, P. (2000). Silicon VLSI Technology: Fundamentals, Practice and Modeling. New Delhi: Pearson Publications. Sarrafazadeh, M.,& Wong, C.K. (1996). An introduction to VLSI Physical Design. New Delhi: McGraw Hill Publication. Ken, Martin. (1999). Digital Integrated Circuits Design. New York, United State: Oxford University Press. Neil, H.E., Weste, &Eshraghian, Kamran (1994). Principle of CMOS VLSI Design. Boston, New York: Addison Wesley Publication. 	

				Suggested E-Resources:	
				 VLSI Circuits by Prof. S. Srinivasan, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117106092/1 VLSI Technology by Dr. Nandita Das Gupta, Department of Electrical Engineering, IIT-Madras. https://nptel.ac.in/courses/117101058/ 	
17	VLSI Design Lab	 After completion of this laboratory course, students will be able to: Use VHDL for design of digital circuits Model complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping. Develop and simulate register-level models of hierarchical digital systems 	 Silvaco 1. Model the fabrication process flow of NMOS with I/V characteristics curve 2. Model the fabrication process flow of PMOS with I/V characteristics curve 3. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. 4. Model the fabrication process flow of pn junction diode. 	 Write a program for the implementation of half adder and Full adder. Write a program for implementing half subtractor and full subtractor. Write a program for implementing MUX 4x1 and DEMUX (1X4) Write a program for implementing Encoder and Decoder. Write a program to implement gray code to binary code converter and vice versa. Write a program to implement COMPARATOR. Write a program for the implementation of S-R Flip flop and D Flip flop. Write a program to design JK Flip-flop and write design summary Write a program to design T Flip-flop 	Learning Outcomes added. Added
18	CS 209, Data Structures			and write design summary	Please refer from Department
					of Computer Science
19	Analog Communication	After the completion of course student will be able	Section-A Introduction Communication Process,	Section-A Introduction to signals: Size of signals,	Added

to: Explain different blocks in communication system and how noise affects communication using different parameters. Distinguish between different amplitude modulation schemes with their advantages, disadvantages and applications and analyse generation and detection	Source of Information, Channels-Noise, System Noise Source, Noise & Feed-back, Noise Figure, Electromagnetic Spectra. Base band and pass band signals, Modulation Process – Need, Bandwidth, Requirements- Frequency Spectra of Non-sinusoidal Signals, Analogue vs Digital Communication, Continuous and Discrete Spectra, Band pass System,	Classification of signals, Some useful signal operations, Unit impulse function, Signals and vectors, Signal comparison- correlation, Signal representation by orthogonal signal set, Trigonometric Fourier series, Exponential Fourier series Analysis and Transmission of Signals: Fourier transform of some useful signals, Some properties of Fourier Transform, Signal Transmission through linear system, Ideal and practical filters, Signal distortion over a communication channel, Signal energy and energy spectral density, Signal power and power spectral density.	Shifted Deleted
of FM signal and comparison between amplitude and angle modulation schemes. • Identify different types of radio receiver circuits	Section B Modulation: Amplitude Modulation : Basic Principles, Mathematical Relationships, Frequency Modulation and Phase Modulation – Basic Principles, Mathematical Relationships, Comparison between Amplitude Modulation and Angle Modulation, Spectral Analysis of Different Modulation; Modulators: Amplitude Modulator, Suppressed Carrier DSB Modulator, Balanced Modulator, SSB Modulators: Filter Method, Phase-shift Method & Third Method-ISB Modulators, Vestigial sideband Modulator; Frequency Modulator: Direct &Indirect Method, Narrow band FM, Phase Modulator, Spectral Analysis of these Modulator; Transmitters – AM Transmitter, Low Level and High Level SSB Transmitter, Pilot Carrier – FM Transmitter – Narrow band and Wide band, EM Stereo Transmitter:	Section- B Amplitude Modulation: Baseband and carrier communication, Double sideband modulation, Single sideband modulation, Quadrature amplitude modulation, Vestigial sideband modulation, Carrier acquisition, Superheterodyne receiver Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated waves, Generation of FM waves, Demodulation of FM, Interference in angle modulated systems, FM receiver	Added Shifted Deleted
	Section C Receiver:- Sensitivity, Selectivity, Signal to Noise Ratio, Demodulators – Diode Detector; FM Detectors, Phase Detector- Ratio Detector - Foster - Seclar	Section-C Random Signal and Noise: Gaussian Noise, Bandpass noise and its representation, Noise power, SNR ratio, PSD of white noise.	Added Shifted Deleted

			Receiver (Block Level Treatment) TRFReceiver,Super-heterodyne Receiver,Double Super-heterodyne Receiver,SSBReceiver,Communication Receiver, AGC Circuitry; FM Receiver – FM Stereo Receiver (Block Level) Carrier Shareholding, Capture Effect.	Analog Systems in The Presence of Noise: Baseband system, Double sideband modulation- Suppressed carrier, Single sideband modulation- Suppressed carrier, Amplitude modulation, Angle modulated systems- Phase and Frequency modulation, Optimum pre-emphasis-deemphasis systems Systems and Noise Calculations: Electrical Noise, Noise Figure, Equivalent Noise Temperature, Cascade Connection of Two- Port Networks, Free-Space Link Calculations	
			Text Books: 1. George Kennedy: Electronic Communications Systems:McGraw Hill. 2. Taub and Schilling: Principles of communication systems:McGraw Hill. 2. Taub and Schilling: Principles of communication systems:McGraw Hill. 3. Martin S Roden: Analog and digital Communication systems. 3. Martin S Roden: Analog and digital Communication systems. 4. Sol Lapatine: Electronic communication. 5. Dennis Roody and JhonCoolen: Electronic communication Prentice Hall. 6. J Dunlop & D G Smith: Elecommunication Engineering. Smith: Elecommunication Engineering.	 Recommended Books: I. Lathi, B.P., Ding, Zhi.,& Gupta, Hari Mohan. (1998). Modern Digital and Analog Communication Systems. New Delhi: Oxford University Press 2. Haykin, S. & Moher, M. (2007).Introduction to Analog and Digital Communication. New York, United States: John Wiley & Sons. 3. Shilling, D.L., &Taub, H. (2008). Principles of Communication Systems. New Delhi: Mc Graw Hill Publication. Suggested E-Resource: 1. Analog Communication by Prof.Goutam Das, G S Sanyal School 	Added Deleted
				Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105143/	
20	Analog Communication Lab	 After completion of this laboratory course, students will be able to: Demonstrate Amplitude modulation and demodulation techniques 			Learning outcomes added. No change in
		 Demonstrate frequency modulation 			experiment list.

21	ELE 306.	 and demodulation technique. Analyze generation and detection of FM signal and comparison between amplitude and angle modulation schemes. Compare different modulations and demodulations to recognize the advantages and disadvantages of them. Identify different radio receiver circuits and role of AGC. 			No change in
	Microprocessors	course student will be able			course contents
	and	to:	Test Books :	Recommended Books:	
	Microcontrollers	 Interface memory and different peripherals with Microprocessor and microcontroller Design and develop the system for real time applications 	 Kenneth J Ayala, "The 8051 Micro Controller Architecture, Programming and Applications", Thomson Publishers, 2nd Edition. D.V.Hall, "Micro Processor and Interfacing", Tata McGraw-Hill. Reference Book : Ajay Deshmukh, "Microcontrollers - theory applications", Tata McGraw-Hill Companies-2005. Ray and Bhurchandi. "Advanced Micro Processors", Tata McGraw Hill. Kenneth J. Ayala, "The 8086 Micro Processors Architecture, Programming and Applications", Thomson Publishers, 2005. Microcomputer Systems: The 8086/8086 Family: Architecture, Programming and Design, 2nd ed., Liu & Gibson. 	 Kenneth, J. Ayala.(2004). The 8051 Micro Controller Architecture, Programming and Applications. New Delhi: Cengage Learning Publication Hall, D.V. (2017). Micro Processor and Interfacing. New Delhi: McGraw- Hill Publication. Deshmukh, Ajay V. (2005). Microcontrollers – Theory and Applications. New Delhi: McGraw Hill Publication. Ray, A.K., &Bhurchandi, B.H. (2017). Advanced Micro Processors. New Delhi: McGraw-Hill Publication. Kenneth, J. Ayala. (2011). The 8086 Micro Processors Architecture, Programming and Applications. New Delhi: Prentice Hall India. Liu, Yu Cheng., & Gibson, A. (1985). Microcomputer Systems: The 	

22	ELE 306L, Microprocessors	After completion of this laboratory course, students	 8086/8086 Family: Architecture, Programming and Design. New Delhi: Prentice Hall India. Suggested E-Resources: 1. Microprocessors and Microcontrollers by Prof.SantanuChattopadhyay, Department of E&EC Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105102/ 2. Microprocessors and Microcontrollers by Prof. Krishna Kumar, IISC Bangalore https://nptel.ac.in/courses/106108100/	
	and	will be able to:		Learning
	Microcontrollers	• Understand the		Outcomes
	Lab	different instructions		added.
		of 8086		
		microprocessor		No Change in
		assembly language.		Lxperiment
		Coding in assembly		List.
		 Solve different real 		
		time problems.		
23	Project	After completion of this	 	Learning
		course, students will be		Outcomes
		able to:		Added and this
		• Demonstrate effective		course has no
		project execution and		prescribed
		control techniques that		syllabus
		result in successful		
		Ability to identify		
		• Addity to Identify,		
		engineering problems		
		• Use the techniques		
		 Use the techniques, 		

		skills and modern		
		engineering tools		
		necessary for		
		engineering practice		
24	UII Project	After completion of this	 	Learning
24	OILTIGEt	course students will be		Outcomes
		able to:		Added and this
		 Undertake problem 		course has no
		identification		nrescribed
		formulation and		syllabus
		solution		synabus
		 Design ongineering 		
		• Design engineering		
		problems utilizing a		
		problems utilizing a		
		• Demonstrate the		
		• Demonstrate the		
		strictudes of a		
		attitudes of a		
		professional engineer.		
		• Demonstrate effective		
		organizational		
		leadership and change		
		skills for managing		
		projects, project teams,		
25	D ¹ 1 1	and stakenoiders.		A 1 1*4* P
25	Biomedical	After the completion of	Section A	Addition of
	Instrumentation	course student will be able	Electrode electrolyte interface, half-cell	New Course as
			potential, polarization and non-polarisable	Elective
		• Describe the principle	electrode, calomel electrode, needle and	
		OI Interfacing of	wire electrode, microelectrode-metal	
		electrode-electrolyte	 micropipette. Ag/AgCl electrodes	
		and uniferent types of	Microelectrodes, skin surface electrode,	
		electrodes which are	and lead for EG, ECG, EMG. Transducer	
		used in biomedical	for biomedical applications, factors	
			governing the selection of transducer,	
		• Explain different	pressure, temperature, flow, biomedical	
		types of recorders and	ultrasonic transducer.	
		pnotometers.	Section B	
		• Describe the method	 	
		of measurement of BP	Low-Noise preamplifier, main amplifier	

		and blood flow	and driver amplifier inkiet recorder	
		und brood now.	thermal array recorder photographic	
			recorder magnetic tape recorder X-Y	
			recorder, magnetic ape recorder, ri r recorder medical oscilloscope pH PO2	
			PCO2 pHCO3 Electrophoresis	
			colorimeter spectro photometer flame	
			photometer, auto analyzer	
			Section C	
			Section C	
			Respiration, heart rate, temperature, pulse	
			blood pressure, cardiac output, O2, CO2	
			measurements. Measurement of blood	
			 pressure, blood flow, and heart sound,	
			cardiograph: Phonocardiography, vector	
			cardiograph, Echocardiography	
			pacemaker, defibrillators, Ventilator,	
			Computer patient monitoring system.	
			Recommended Books:	
			1. Cromwell L. (2007). Biomedical	
			Instrumentation and Measurement.	
			New Delhi: PHI Publication	
			2. Webster J.G.(1998). Medical	
			Instrumentation Application and	
			Design. New York: John Wiley and	
			 Sons	
			3. KhandpurR.S. (1997). Handbook of	
			Biomedical Instrumentation. New	
			Delhi: Tata McGraw-Hill Publication	
			4. Carr J. J. & Brown J. M. (1997).	
			Introduction to Biomedical Equipment	
			Technology. New York: John Wiley	
			and Sons	
26	Optical Network	After the completion of	Section A	Addition of
		course student will be able	Introduction to Optical Networks,	New Course as
		to:	Characteristics of Optical Fiber (Emphasis	Elective
		• Describe the	 on Non Linear Characteristics) Timing &	
		important components	Synchronization, Components: Couplers,	
		such as multiplexer,	Isolators & Circulators, Multiplexers &	
		filters.	Filters, Optical Amplifiers, Tunable	
		• Explain the	Lasers, Switches, Wavelength Converters,	

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	multiplexing technique	Networks SONET/SDH, Multiplexing, SONET/ SDH Layers, Frame, Structure, Enoug Structure, Physical Layer, Elementa	
	• Describe the protection technique	of a SONET/SDH Infrastructure	
	in SONET/SDH and	Section B	
	IP network	ATM : Functions of ATM, Adaptation Layers, Quality of Service, Flow Control, Signaling and Routing, WDM Network Elements, Optical Line Terminals, Optical Line Amplifiers,	
		Optical Add/ Drop Multiplexers, Optical Cross Connects, WDM Network Design, Cost Trade-offs, Light path Topology Design, and Routing and wavelength assignment problems, Dimensioning Wavelength Routing Networks,	
		Section CNetwork Survivability Basic Concepts, Protection in SONET/SDH, Protection in IP networks, Optical Layer Protection, Different Schemes, Interworking between LayersAccess Networks, Network Architecture Overview, Enhanced HFC, FTTC, Optical Switching, OTDM, Synchronization, Header Processing, Buffering, Burst Switching.Deployment Considerations	
		Recommended Books: 1. Ramaswami, Rajiv.,&Sivarajan, Kumar. N.(2009). Optical Networks: A Practical Perspective. San Francisco, California: Morgan Kaufmann Publisher. 2. Uyless, Black. (2009). Optical Networks Third Generation Transport Systems: New Delhi: Pearson Publication. 3. Tanenbaum, Andrew, S. (2010).	

27	Satellite	After the completion of	 <i>Computer Networks.</i> New Delhi: Pearson Publication. Murthy, C. Siva Ram.,&Gurusamy Mohan. (2001). WDM, Optical Networks Concepts, Design & Algorithms. New Delhi: Pearson Publication. Suggested e-resources: Introduction to Optical Networks by YatindraNath Singh, Department of Electrical Engineering, Indian Institute of Technology, Kanpur. http://home.iitk.ac.in/~ynsingh/seminar s/OptNets.pdf Optical networks and Switching Systems by Prof.Yatindra N Singh, Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/syllabus/117104021 	Addition of
	Communication	 inter the completion of course student will be able to: Identify the fundamentals of orbital mechanics, the characteristics of common orbits used by communications and other satellites, and be able to discuss launch methods and technologies. Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a 	 Elements of Satellite Communication, Orbital mechanics, look angle and orbit determination, launches & launch vehicle, orbital effects, Geostationary Orbit, Satellite subsystems, attitude and orbit control systems, TTC&M, communication subsystem, satellite antenna, satellite link design: basic transmission theory, system noise temperature and G/T ratio, downlink design, uplink design, satellite systems using small earth station, design for specified C/N. Section B Modulation and multiplexing techniques for satellite links: FM, pre-emphasis and de-emphasis, S/N ratios for FM video transmission, digital transmission, digital modulation and demodulation, TDM. Multiple access: FDMA_TDMA_DAMA	New Course as Elective

	communications satellite	and CDMA.	
	system.	Section C	
•	• Understand different	Error control for digital satellite links:	
	Networks topologies and	error detection and correction, channel	
	applications of	capacity, error control coding,	
	networks, as well as the	convolutional codes, linear and cyclic	
	comparison to	block codes. Propagation effects and their	
	alternative	impact on satellite-earth links: attenuation	
	communications	 and depolarization, atmospheric	
	systems.	absorption, rain, cloud and ice effects etc.	
		Introduction of various satellite systems:	
		VSAT, low earth orbit and non-	
		geostationary, direct broadcast satellite	
		television and radio, satellite navigation	
		and the global positioning systems.	
		Recommended Books:	
		1. Bostian, Charles., Pratt, Timothy.,	
		& Allnutt, Jeremy. (2006). Satellite	
		Communications. New Delhi: John	
		Wiley & Sons.	
		2 Roddy Dennis (2017) Satellite	
		Communications. New Delhi:	
		McGraw-Hill Publication	
		3 Ha Tri T (1990) Digital Satellite	
		Communications New Delhi:	
		McGraw-Hill Publication	
		 Suggested e-resources:	
		1. Satellite Communication Systems by	
		Prof.Kalyan Kumar Bandyopadhyay	
		Department of Electronics and	
		Electrical Communication Engineering	
		Indian Institute of Technology,	
		Kharagpur.	
		http://textofvideo.nptel.ac.in/11710513	
		1/lec1.pdf	
		2. Satellite Link Design by Dr. Marwah	
		Ahmed.	
		https://net425site.files.wordpress.com/	
		2017/02/net-425-d-feb-2016-lec-5.pdf	

28	Basics of	After the completion of	Section A	Addition of
	Nanoelectronics	course student will be able	The 'Top down' and 'Bottom up'	New Course as
		to:	approach, Nanotechnology potential,	Elective
		• Explain the	introductory quantum mechanics for	
		fundamental science and	Nanoscience: size effect in smaller	
		quantum mechanics	 systems, quantum behavior of nanometric	
		behind nanoelectronics.	world, Band structure and density of states	
		• Explain the basic	at Nanoscale: energy bands, density of	
		concepts behind the	states at low dimensional structure.	
		operation of nano scale	Semiconductor heterostructure quantum	
		MOSFET	wells, quantum wires, and quantum dots.	
		• describe the	Section B	
		various techniques and	MOS band structure, CMOS Scaling, The	
		approaches for the	nanoscale MOSFET, Finfets, Vertical	
		fabrication of nano-scale	MOSFETs, limits to scaling, Tunnel	
		devices	junction and application of tunneling:	
			 Tunneling through a potential barrier,	
			 potential energy profiles of material	
			interfaces, Classical and semi-classical	
			transport, ballistic transport, carbon	
			nanotubes, Single electron transistor,	
			Coulomb Blockade, Resonant Tunneling	
			diodes and transistors.	
			Section C	
			Buck minsterfullerence, Nanodiomond,	
			Molecular Machine, Nanobiometrics.	
			Fabrication technology: Top-down vs.	
			bottom-up technology. Lithographic	
			process: Lithography, Nanolithography,	
			 split gate technology, self-assembly,	
			limitation of lithographic process. Non-	
			lithographic techniques: Plasma arc	
			discharge, sputtering, evaporation,	
			chemical vapour deposition, pulsed laser	
			deposition, molecular beam epitaxy, sol-	
			get technique, electro deposition and other	
			process.	
			 Recommended Books:	
			1. Hanson, G. W. (2008). Fundamentals	

			of Nanoalactronics Now Dalhi	
			Of Nanoelectronics. New Denn.	
			Chattenedbyey, K. K. & Denemice, A.	
			2. Chanopadhyay ,K. K.,& Daherjee, A. N. (2000). Lytra hystica to Nanopsianos	
			N. (2009). Introduction to Nanoscience	
			and Nanotechnology. New Delhi: PHI	
			Publication.	
			3. Mitin, Vlaadiniz.U. (2009).	
			Introduction to Nanoelectronics. New	
			Delhi: Cambridge University Press.	
			4. Dragman, M., & Dragman, D. (2008).	
			Nanoelectronics- Principles and	
			<i>Devices (2/e)</i> : Artech House Publishers	
			5. Goser, Karl. (2004). Nanoelectronics	
			and Nanosystems. Berlin: Springer	
			Publication	
			6. Minoli, Daniel. (2005).	
			Nanotechnology Application to	
			Telecommunication and Networking.	
			Hoboken New Jersev Wiley	
			Publication	
			7 Davis John H (1997) Physics of Low	
			Dimension Semiconductor New Delhi:	
			Combridge University Press	
			Californing Oniversity riess.	
			8. Cosii, Call.C. (1998). Ivanosituciare Matariala Ducassaina Ducasati, and	
			Materials Flocessing Flopenty and	
			Applications. Norwich, New York:	
• •			Noyes Publications	
29	Mobile	After the completion of	Section A	Addition of
	Communication	course student will be able	Introduction to Wireless Communication	New Course as
		to:	System: Evolution of mobile radio	Elective
		• To understand the	communication, Mobile radiotelephony in	
		various generations of	U.S Mobile radio system around the world,	
		mobile communications	second generation (2G) cellular network,	
		and basics of wireless	evolution to 2 5G wireless network	
		communication	evolution for 2.5G TDMA standards, third	
		• To understand the	generation (3G) wireless network. The	
		concept of cellular	Cellular concept- System design	
		communication	fundamentals, frequency reuse channel.	
		• Can conduct field	assignment strategies. Hand off strategies	
			Interference and system canacity.	
			Interference and system capacity,	

1			
	experiments and measurements	improving coverage and capacity in cellular system.	
		Section B	
		Propagation model and Spread Spectrum Modulation Techniques: Longley rice model, kumara model hata model pcs extension to hata model, wolfish and betony model, Pseudo Noise (PN) sequence,. Direct sequence spread spectrum (DSSS), frequency hopped spread spectrum (FHSS). Multiple Access Techniques for Wireless Communication, Introduction to multiple access. Frequency division multiple access (FDMA) Time division Multiple access (TDMA).	
		Section C	
		Spread spectrum multiple access. Packet Radio. Global System for Mobile Communication, channel types, Example of a GSM cell. Frame structure of GSM, Data over low power wireless Re-cordless Network.	
		Recommended Books: 1. Rappaport, Theodre. S. (2014) Wireless Communication. New Delhi: Pearson Publication. 2. Pandya, Raj. (1999). Mobile and Personal Communication System and Services: New Delhi: PHI Publication. 3. Goddman, David.J. (1997). Wireless Personal Communication System: Addition Wesley Publication. 4. Tesal, Joachim. (1997). GSM cellular Radio: New Delhi: John Wiley Publication Suggested E-Resources: 1.Wireless Communications by Prof.Dr.Ranjan Bose, Department of Electrical Engineering, IIT Delhi.	

			https://nptel.ac.in/courses/117102062/	
30	Radar Navigation	After the completion of course student will be able	Section A	Addition of
		to:	RADAR SIGNAL MODELS: Amplitude	Elective
		• Understand the basic	equation radar cross section statistical	
		concept of Radar and	description of radar cross section. Swerling	
		applications of various	model, Clutter, signal to clutter ratio,	
		types.	temporal and spatial correlation of clutter,	
		• Understand the different	noise model and signal to noise ratio,	
		Radar Performance	frequency models, Doppler shift,	
		factors.	simplifies approach to Doppler shift, stop	
		• Explain the operation of	and hop assumption, spatial model,	
		CW& FM Radar.	variation with angle, variation with range,	
			projections, multipath, spectral models.	
			RADAR WAVE FORMS: Waveform	
			matched filter of moving targets,	
			the simple matched pulse filter for the	
			nulse hurst nulse by nulse processing	
			range ambiguity. Doppler response and	
			ambiguity function of the pulse burst.	
			Section B	_
			DETECTION FUNDAMENTALS: Radar	
			detection as hypothesis testing, Neyman-	
			Pearson detection rule, likelihood ratio	
			test, threshold detection of radar signals,	
			non-coherent integration of nonfluctuating	
			targets, Albersheim and Shnidaman	
			equations, Binary integration.	
			RADIO DIRECTION FINDING: loop	
			direction finder, goniometer, errors in	
			direction finding, adcock and automatic	
			direction finders, commutated aerial	
			LECTOR Indet. RADIO RANOES.	
			ground equipment & receiver. VOR errors.	
			HYBERBOLIC SYSTEM OF	
			NAVIGATION: LORAN Decca & Omega	
			system.DME&TECAN.	
L				

Section C AIDS TO APPROACH AND LANDING: ILS, GCA& MLS DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers doppler			Section C	
AIDS TO APPROACH AND LANDING: ILS, GCA& MLS DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers doppler				
ILS, GCA& MLS DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers doppler			AIDS TO APPROACH AND LANDING:	
DOPPLER NAVIGATION: Beam configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW			ILS, GCA& MLS	
configuration, doppler frequency equation, track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers, doppler			DOPPLER NAVIGATION: Beam	
track stabilisation and doppler spectrum, components of doppler navigation system, doppler radar equipment, CW &FMCW			configuration, doppler frequency equation.	
Components of doppler navigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers doppler			track stabilisation and doppler spectrum	
Components of dopplet havigation system, doppler radar equipment, CW &FMCW Doppler radar frequency trackers doppler			components of doppler pavigation system	
Doppler radar equipment, ev er me w			doppler radar equipment CW &FMCW	
			Doppler radar frequency trackers doppler	
ange constion			Doppier radar, inequency trackers, doppier	
range equation.			range equation.	
SATALLITE NAVIGATION SYSTEM:			SATALLITE NAVIGATION SYSTEM:	
transit system, NAVSTAR, GPS, basic			transit system, NAVSTAR, GPS, basic	
principles of operation, signal structure of			principles of operation, signal structure of	
NAVSTAR broadcasts, data message,			NAVSTAR broadcasts, data message,	
velocity determination, accuracy of GPS &			velocity determination, accuracy of GPS &	
differential navigation, NAVSTAR			differential navigation, NAVSTAR	
receiver.			receiver.	
Recommended Books:			Recommended Books:	
1. Richards, Mark. A (2014).			1. Richards, Mark. A (2014).	
Fundamentals of Radar Signal			Fundamentals of Radar Signal	
Processing. New Delhi:TMH			Processing. New Delhi:TMH	
Publication.			Publication.	
2. Nagraia, N. S. (2009), Elements of			2. Nagraia, N. S. (2009), Elements of	
Electronics Navigation: New			Flectronics Navioation: New	
Delhi TMH Publication			Delhi TMH Publication	
2 Dophlog Ir D 7 (1008) $Padar$			2 Dephlos Jr D 7 (1009) Padar	
J. Feedles JI. F. Z. (1996). Kuuur			J. Feebles JI. F. Z. (1996). Radal	
Dublication			Publication	
Publication.			Publication.	
Suggested E-Resources:			Suggested E-Resources:	
1. Introduction to Radar Systems by			1. Introduction to Radar Systems by	
Dr. Robert O'Donnell, Massachusetts			Dr. Robert O'Donnell, Massachusetts	
Institute of Technology.			Institute of Technology.	
https://ocw.mit.edu/resources/res-ll-			https://ocw.mit.edu/resources/res-ll-	
001-introduction-to-radar-systems-			001-introduction-to-radar-systems-	
spring-2007			spring-2007	
31 Mechatronics After successful SECTION A Addition of	31 Mechatronics	After successful	SECTION A	Addition of
completion of the course, Mechatronics and its scope: Basic new elective.		completion of the course,	Mechatronics and its scope: Basic	new elective.
student will be able to: Structure and Evolution		student will be able to:	Structure and Evolution	

 Develop skills to monitor and control real world industrial systems Implement projects for industrial and home automations Analyze and create own 	Introduction of Transducer & Sensor: Displacement, Pressure, Flow, Level and Temperature Measurements. Signal conditioning: amplification, filtering PC based Control: Smart Sensor, Data Acquisition System, PLC, SCADA, DCS and HMI System.	
innovative filters and	SECTION B	
signal conditioning	Pneumatic and Hydraulic actuation	
applications	systems: Directional control valves,	
 Perform computer based 	Pressure control valves and Process control	
controlling of industries	valves and cylinders.	
using PLC, SCADA and	abaing come goor traing Databat & Davil	
HMI	dampers Bearings	
	Flectrical actuation system: Mechanical	
	switches- solenoid operated solid state	
	switches, DC, AC & stepper motors.	
	Electrical Drives: Conventional and	
	Modern electrical drives, Classifications	
	and Applications	
	Closed loop Controllers: Performance	
	Specifications, Delayed First and Second	
	order system, PID Controller, ZN Tuning.	
	SECTION C	
	Case Studies of Mechatronics Systems:	
	Industrial Robot, Automobile Engine	
	Control, Vehicle Suspension Control,	
	MEMS, CNC Machine, Gyro system, 3-D	
	Printer.	
	Recommended Books:	
	1. Isermann, Rolf (2005). Mechatronics	
	Systems. Springer Publication	
	2. Bolton, W. (2005). Mechatronics:	
	electronic control systems in machanical and clostwical engineering	
	mechanical and electrical engineering. Dearson Education	
	3 Sawhney A K (2015) A Course in	
	5. Sawincy A.K. (2015). A Course in Electrical and Electronic	
	Electrical and Electronic	

				MeasurementsandInstrumentation.Dhanpat Rai & Co Publication4.Nakra B.C. & Chaudhry K.K. (2013).Instrumentation,MeasurementandAnalysis.TataMcGrawHillPublication	
32	Fiber Optics and Communication	 After the completion of course student will be able to: Explain the light propagation through optical fibers. Explain the various light sources and optical detectors. 	Section A Fiber optics: Introduction, optical fibers - geometrical Optics description, wave propagation, fiber modes, step index, graded index single and multimode fibers, dispersion, limitation on bit rate, fiber bandwidth, fiber loss, fiber manufacturing: design issue, fabrication methods, cables and connectors, fiber splicing and fiber couplers.		Move this course from 2 nd semester to list of Elective No change in course contents.
		• Design fiber optic transmitter and receiver system.	Section B Optical Sources and detectors: Light- Emitting diodes: LED characteristics, modulation response, LED structures. Semiconductor Lasers: structures, Laser characteristics, single longitude mode operation, DFB and VCSEL laser, Receivers: photo detector design: P-N, PIN, Schottky barrier and Avalanche photodiode, Phototransistor, receiver noise: noise mechanisms in PIN and APD receivers, Receiver structures.		
			Section C Optical Fiber Systems: optical transmitter circuit: source limitations, LED and Laser drive circuits, Optical receiver circuit, system design considerations, Digital systems, Digital optical receiver, BER, Optical power budgeting, rise time budget, line coding, analog systems: Direct intensity modulation, subcarrier intensity modulation, coherent systems, computer, sensor and military applications.		

			 Text Books: Govind P. Agarwal: Fiber-Optic Communication Systems: Wiley India, 3rd Ed.2007. John M. Senior: Optical Fiber communication: PHI. References: D.C. Agrawal: Fiber Optic Communication: Wheeler Pub.2nd ed., 1993. Gowar: Optical Fiber Communication: PHI, 1995. Pallab Bhattacharya: Semiconductor Optoelectronics Devices: PHI 2nd ed., 2002. Gerd Keiser: Optical Fiber communication: McGraw Hill, 2nd ed., 1991. 	 Recommended Books: Agarwal, Govind. P. (2007). Fiber- Optic Communication Systems. New Delhi: Wiley India. Senior, John.M. (2009). Optical Fiber Communication Principles & Practice. New Delhi: PHI Publication. Bhattacharya, Pallab. (2002). Semiconductor Optoelectronics Devices. New Delhi: PHI Publication. Keiser, Gerd. (1991). Optical Fiber Communication. New Delhi: McGraw Hill Publication. 	
33	Analytical Instrumentation	 After the completion of course student will be able to: Explain majorly pH conductivity & dissolved component analyzer, dissolved oxygen analyzer, sodium analyzer, silica analyzer and moisture measurement. Evaluate the performance of Spectrophotometers, 		Section A PH conductivity & dissolved component analyzer Sampling systems – ion selective electrodes – conductivity meters – pH meters - dissolved oxygen analyzer – sodium analyzer – silica analyzer – moisture measurement. GAS ANALYSER Oxygen analyzer – CO monitor, CO2, O2, dust and smoke measurement, thermal conductivity type– thermal analyzer–industrial analyzers. Section B Spectrophotometers: Spectral methods of analyzia – Daze'a law, LW – wigible	Addition of New Course as Elective
		 FTIR Spectrometers and their applications. Describe modern trends in NMR Spectrometers, X-ray Spectrometry, and Mass 		analysis – Beer's law UV – visible spectrophotometers – single beam and double beam instruments – source and detectors – IR spectrophotometers – sources and detectors – FTIR spectrometers – atomic absorption spectrophotometer – flame emission	

Spectrophotometers with their applications.	spectrophotometers – sources of flame photometry – applications. Section C Nuclear magnetic resolance and radiation techniques	
	NMR – basic principle – NMR spectrometers – applications – introduction to mass spectrophotometers – nuclear radiation detectors – GM counter – proportional counter – solid state detectors, X-ray spectrometry: Instrumentation for X-ray spectrometry, X-ray diffractometer.	
	 Recommended Books: Willard., Merritt., Dean., & Settle. (2004). Instrumental Methods of Analysis. New Delhi: CBS Publishers & Distributors. Ewing, Galen.W. (1985). Instrumental Methods of Chemical Analysis. New Delhi: McGraw-Hill Publication. Liptak, B.G. (1995). Process Measurement and Analysis. Philadelphia: Chilton Book Company. Settle,Frank.A. (1997). Handbook of Instrumental Techniques for Analytical Chemistry. New Delhi: PHI Publication. Braun, Robert.D. (2012). Introduction to Instrumental Analysis. Hyderabad, Karnataka:BSP Books Pvt.Ltd. Skoog., Holler.,&Crouch. (2017). Principles of Instrumental Analysis. New Delhi: Cengage Learning Publication. Suggested e-resources: Modern Instrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Modern Enstrumental Methods of Analysisby Prof. J. R. Mudakavi, Department of Chemical Engineering, Resources: Widakavi, Department of Chemical Engineering. Modern Engineering, Resources Resources	
	Indian Institute of Science, Bangalore.	

		https://nptel.ac.in/courses/103108100/	
34 Audio and Video Systems	 After the completion of course student will be able to: Understand the fundamental concepts of television transmitter, receiver systems and the transmission of video signals and importance of television standards. Understand different colour television systems used worldwide and its compatibility. 	Section A Audio Systems: Types of microphones and speakers, Monophonic, stereophonic and quadraphonic audio systems. Disc and Magnetic Recording and Reproduction : Monophonic and stereophonic disc recording and reproducing systems, Magnetic recording , playback, Biasing & equalization, Recording medium, Magnetic heads-replay & eraser heads, Audio cassettes, Tape speed, Maximum usable frequency, Tape transport mechanism, Distortion & noise aspects, Hi-Fi stereo system.	Addition of New Course as Elective
	• Principles of recording and reproduction of disc and video cassete recorders.	Section B Video Cassette Recorders: Video recording requirements, Video tape formats. Modulation-up conversion and down conversion of video signal, Servo systems, Functional Block diagram of VCR: video recording and Reproduction: advantages of Compact disc, & its Specifications, CD player, optical recording, CD technology & manufacturing, CDROM, CD video.	
		Section C Video Cameras: Image conversion principle, Plumbicon, Sidicon camera tubes, three tubes colored camera, Block diagram of color camera tube. TV Engineering: Scanning process, Interlaced scanning, Composite video signals, Principle of black & white TV, color TV, Primary colours, Chrominance & luminance signals.	

				 Bali, S.P.,&Bali, R. (2014). Audio Video Systems Principles, Practices, and Troubleshooting. New Delhi: Khanna Book Publishing Co. Sharma, Ajay. (1998). Audio and Video Systems. New Delhi: Dhanpat Rai & Co. Gupta, R.G. (2010). Audio and Video Systems: Principles, Maintenance and Troubleshooting. New Delhi: Tata Mc-Graw Hill 	
				Suggested e-resources:	
				1. Digital Video Signal Processing by Prof.Sumana Gupta, Department of Electrical Engineering, IIT Kanpur. https://nptel.ac.in/courses/117104020/1 2. Audio System Engineering by Prof.Shyamal Kumar Das Mandal, Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105133/22	
35	Digital Signal Processing	 After the completion of course student will be able to: Students will be familiar with the most important methods in DSP. Students will be familiar with design and functioning of digital filter design Student will be able to transform-domain processing. 	Section A Introduction of Signals, Systems and Signal Processing, Classification of Signals and Systems, Advantages of digital over analog Signal processing, Signal Models - Continuous Time versus Discrete time signals, Periodic and aperiodic Signals, Phasor Signals and Spectra, Energy and Power Signals, System Modeling Concepts, The superposition integral for Fixed and Linear Systems, Impulse Response of a Fixed and Linear System - Fourier Series - Trigonometric Series- Exponential Fourier Series-Symmetry Properties of the Fourier Coefficients. Fourier Integral, Energy Spectral Density, Fourier Transforms in		Move this course from 2 nd semester to list of Elective No change in course contents.
the Limit, Fourier Transform Theorems and Pairs, System Analysis with Fourier Transform, Lap lace Transform Theorems, Network Analysis using the Lap lace Transform.					
---	--	--			
Section B Discrete Time Signals and Systems - Review of Sampled Data Systems, Time Domain Representations of Discrete Time Signals, Frequency Domain Representation of Discrete Time Signals, Discrete Time Signals obtained by sampling, Discrete Fourier Transform. Z-Transform - Definition and Examples, Inverse Z- Transform, Properties of the Z-Transform, Introduction to Realization of Digital Systems - Block Diagrams and Signal Flow Graphs. Introduction to Realization of an IIR and FIR systems, Discrete Fourier Transforms (DFT) and Fast Fourier Transform (FFT).					
Section C Design of Digital Filters: Introduction to Filters, A comparison of IIR and FIR Digital Filters. Design of IIR Digital Filters –Impulse Invariant Transformation, Bilinear Transformation, Design of Digital Butter worth and Chebyshev Filters. Design of FIR Digital Filters - Windowing and Rectangular Window, Filter Designs using Windows, Frequency Sampling Technique. DSP tools and DSP techniques in various applications.					
Text Books:1. Johnson Johnny R.: Introduction toSignal Processin: Prentice-Hall of India,1998.2. Oppenheim V. Alan: Signal &Systems: Prentice-Hall of India, 1995.	 Recommended Books: 1. Johnson, Johnny. R. (1998). Introduction to Signal Processing. New Delhi: phi Publication. 2. Oppenheim, V. Alan. (1995). Signal & Systems. New Delhi: PHI Publication. 				

			3. ProakisG.John: Digital Signal Processing: Prentice-Hall of India, 3rd edition, 2002.	 Proakis, G.John. (2002). Digital Signal Processing. New Delhi: PHI Publication. Suggested E-resource: Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/ 	
36	Geoinformatics	 After the completion of course student will be able to: Describe spatial database, Co-ordinate and projection system Analyse vector and raster based analysis in Geographical Information Sciences Describe different types of satellite system and digital image processing 		Section A Geographical Information System: Definition, Components of GIS, Hardware and software requirements for GIS, Coordinate system and projections, Database structure and formats, Spatial data models - raster and vector. Data inputting, Data base design - editing and topology creation. Linkage between spatial and Non spatial data, Query (Attribute/Spatial), Vector based analysis. Raster based analysis. Errors, Digital Elevation Model, Network analysis, Open source and WebGIS.	Addition of New Course as Elective
				Section B Remote Sensing: Definition - components of remote sensing - energy sensor, interacting body; Type - active and passive remote sensing. Satellite System - meteorological, communication and remote sensing. Platforms - aerial and space, synoptivity and repeativity. Electromagnetic Radiation (EMR) - EMR spectrum- visible, infrared [IR) middle IR, thermal IR and microwave. EMR interaction with earth surface material, radiance, irradiance, incident, reflected, absorbed and transmitted energy, spectral	

	response pattern - spectral signature curves	
	(water, son and vegetation].	
	Digital Image Processing: Digital Image,	
	Satellite Image - characteristics and	
	formats. Resolution - spatial, spectral,	
	radiometric and temporal; Introduction to	
	rectification, enhancement; Classification -	
	Unsupervised and Supervised	
	classification.	
	Section C	
	Global Positioning System: Global	
	Navigation Satellite System (GNSS), GPS,	
	GLONASS, GALILEO, Segments - space,	
	control, user, GPS Satellite signals,	
	sources of errors and corrections.	
	Applications of Remote Sensing and GIS:	
	Applications of GIS and Remote Sensing	
	in resource management (forestry,	
	agriculture, urban telecommunication,	
	transportation, water resources and	
	environment).	
	Recommended Books:	
	1. Chor, Pang. Lo.,&Albert, K. W. Yeung	
	(2006). Concepts and Techniques-of	
	Geographic Information Systems. New	
	Delhi: PHI Publication.	
	2. Heywood, D.I., Cornelius, S. & Carver,	
	S. (2009). An Introduction to	
	Geographical Information Systems.	
	New Delhi: Pearson Publication.	
	3. Joseph, G. (2005). Fundamentals of	
	remote sensing. Jaipur, Rajasthan:	
	Universities Press.	
	4. Jensen, John. R. (2015). Introductory	
	Digital Image Processing: A Remote	
	Sensing Perspective. New Delhi:	
	Pearson Publication.	
	5. Sabins, Floyd F. (2007). Remote	
	Sensing: Principles and Interpretation.	
1	o	

			Long Grove, Illinois: Waveland Press	
			Suggested e-resources:	
			1. Geoinformatics by University of	
			Twente.	
			https://www.itc.nl/ilwis/applications-	
			guide/	
			2. Geographical Information System by	
			Dr A. K. Gosain, Indian Institute of	
			Technology, Delhi.	
			 https://nptel.ac.in/courses/105102015/1	
37	Power Electronics	After the completion of	Section A	Addition of
		course student will be able	Need of power electronics, Introduction to	New Course as
		to:	power electronics devices (static and	Elective
		• To explain various	dynamic characteristics) power diodes,	
		power semiconductor	power transistor, power MOSFETS, IGBT,	
		devices like Thyristor,	MCI, GIOs, Triac. Thyristor SCR:	
		GTO, MOSFET and	 Operational characteristics, 1 urn ON	
		IGBT	methods, switching characteristics,	
		• Analyze the various	thyristor protection, over voltage	
		rectifiers used in power	protection, over current protection, gate	
		circuits and DC to DC	for Themisters, heating, carries and nerralled	
		Converters	combination of Thuristors	
		• Explain the inverter	Combination of Thylistols.	
		operation and how	Section Dechniques: Load	
		narmonics are reduced	commutation resonant pulse	
		and explain the basic	commutation, resonant- pulse	
		working principle of	commutation, impulse commutation line	
		cyclo-converters	commutation, Phase controlled rectifier	
			 Principal of phase control single and three	
			 phase converters Effect of source	
			impedance on the performance of	
			converters, dual converter (ideal and	
			practical) DC choppers: Principle, control	
			strategies step-up and step-down	
			choppers.	
			Section C	
			Inverters: Single-phase voltage source	
			 inverters 180 and 120 mode operation	
			Fourier analysis of single-phase inverter	
L	.[router unarysis or single plase inverter	

			output voltage. Pulse width modulated inverters, Reduction of harmonics in the inverter output, single-phase current source inverters with ideal switch. Cyclo- converters: Step-up and step-down cyclo- converter, Single phase to single-phase cyclo-converters three-phase half wave cyclo-converters.	
			 Recommended Books: 1. Rashid, Mohammad. H. (2017). Power Electronics Circuits, Devices and Applications: New Delhi: PHI Publication. 2. Bimbhra, P.S. (2012). Power Electronics: New Delhi: Khanna Publication. 3. Moorthy, Rama, (1991). An Introduction ToThyristors and Their Application: New Delhi: Affiliated East-West Press. Suggested E-Resources: 1. Power Electronics by Prof.B.G. Fernandes, Department of Electrical Engineering, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101038/ 2. Power Electronics by Prof. D. Prasad, Dr. D. Kastha, Prof.Sabyasachi Sengupta, Prof. N. K. De, Dept of Electrical Engineering, IIT Kharagpur. https://nptel.ac.in/courses/108105066/ 	
38	Robotics and Automation	 After completion of this course, students will be able to: Develop skills of creating industrial and mobile robot projects Implement robots like KUKA, PUMA in real industrial world 	 SECTION A BASIC CONCEPTS- Automation and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and control system, Dynamic stabilization of Robotics. POWER SOURCES AND SENSORS- Hydraulic, Pneumatic and electric drivers	Addition of New Course as Elective

 Create innovative robot designs using mathematical concepts of kinematics Develop autonomous mobile robots in surveillance, security, home and office services 	 Determination HP of motor and gearing ratio, variable speed arrangements, Path Determination - Machinery Vision – Ranging – Laser – Acoustic, Magnetic Fiber Optic and Tactile Sensor. SECTION B MANIPULATORS- Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators. ACTUATORS AND GRIPPERS- Pneumatic, Hydraulic Actuators, Stepper Motor Control Circuits, End Effecter, Various types of Grippers, Design consideration. Differential transformation and manipulators, Jacobians – problems .Dynamics: Lagrange – Euler and Newton – Euler formations – Problems.
	 SECTION C KINEMATICS- Forward and Inverse Kinematic Problems, Solutions of Inverse Kinematic problems, Multiple Solution, Jacobian Work Envelop – Hill Climbing Techniques. PATH PLANNING- Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages. CASE STUDY- Multiple Robots – Machine Interface – Robots in Manufacturing and Non-Manufacturing applications – Robot Cell Design Selection of a Robot.
	 Recommended Books: 1. Groover, M. P., Weiss, M., Nagel, R. N., & Odrey, N. G. (2017). Industrial Robotics: Technology, programming,

			and Applications (2/a) McGraw Hill	
			Education Dublication	
			2 Nilm S (2010) Later dusting to	
			2. INIKU, S. (2010). Introduction to L_{1}	
			<i>robotics</i> . John wiley & Sons.	
			3. Fu, K. S., Gonzalez, R., & Lee, C. G.	
			(1987). Robotics: Control Sensing. Vis.	
			Tata McGraw-Hill Education.	
			4. Mittal, R. K., & Nagrath, I. J. (2003).	
			Robotics and control. Tata McGraw-	
			Hill.	
			5. Craig, J. J. (2009). Introduction to	
			robotics: mechanics and control, 3/E.	
			Pearson Education India.	
			6. Spong, M. W., & Vidyasagar, M.	
			(2008). Robot dynamics and control.	
			John Wiley & Sons.	
			7. Siciliano, B., Sciavicco, L., Villani, L.,	
			& Oriolo, G. (2010). Robotics:	
			modelling, planning and control.	
			Springer Science & Business Media	
			opringer berenee & Dubinebb media.	
39	Antenna Analysis	After the completion of	Section A	Addition of
39	Antenna Analysis	After the completion of course student will be able	Section A Introduction to antenna. Radiation	Addition of New Course as
39	Antenna Analysis	After the completion of course student will be able to:	Section A Introduction to antenna, Radiation Mechanism.Current Distribution on a Thin	Addition of New Course as Elective
39	Antenna Analysis	After the completion of course student will be able to: • Recall electromagnetic	Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna	Addition of New Course as Elective
39	Antenna Analysis	After the completion of course student will be able to: • Recall electromagnetic plane wayes Apply	Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna:	Addition of New Course as Elective
39	Antenna Analysis	After the completion of course student will be able to: • Recall electromagnetic plane waves. Apply principles of	Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation power	Addition of New Course as Elective
39	Antenna Analysis	After the completion of course student will be able to:• Recall electromagnetic plane waves. Apply principles of electromagnetic to	Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth.	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna 	 Section A Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity Antenna efficiency Gain	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain 	 Section A Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization.	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain yarious antenna 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance. Antenna radiation	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. 	 Section A Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency. Antenna vector effective	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length Maximum directivity and	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source Design 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area Friss	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases 	 Section A Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical 	 Section A Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical equations for various 	 Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical equations for various parameters of this linear. 	 Springer Betenet & Damess media: Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Electric, Current Source, L. The Vector	Addition of New Course as Elective
39	Antenna Analysis	 After the completion of course student will be able to: Recall electromagnetic plane waves. Apply principles of electromagnetic to explain antenna radiation. Explain various antenna parameters. Explain antenna as a point source. Design antenna patterns for different cases. Explain dipole antennas. Establish mathematical equations for various parameters of thin linear 	 Springer Betenet & Damess media: Section A Introduction to antenna, Radiation Mechanism,Current Distribution on a Thin Wire Antenna Fundamental parameters of antenna: Radiation pattern, Radiation power density, Radiation intensity, Beamwidth, Directivity,Antenna efficiency, Gain, Beam efficiency, Bandwidth, Polarization, Input impedance, Antenna radiation efficiency, Antenna vector effective length, Maximum directivity and Maximum effective area, Friss transmission equation and radar range equation Section B Radiation Integrals and Auxiliary Potential Functions: The Vector Potential A for an Electric Current Source J, The Vector	Addition of New Course as Elective

antenna.	M, Electric and Magnetic Fields for
	Electric (J) and Magnetic (M) Current
	Sources. Solution of the Inhomogeneous
	Vector Potential Wave Equation, Far-field
	radiation. Duality theorem. Reciprocity
	and Reaction theorem. Image Theory
	Linear wire antennas: Infinitesimal dipole.
	Small dipole Region separation Finite
	length dipole. Half-wave dipole
	Loop Antennas: Small circular loop
	Square loop
	Section C
	Introduction to Arrays two-element array
	N-element linear array: uniform amplitude
	and spacing directivity N-element linear
	and spacing, uncervity, vereinent inteal
	amplitude
	Traveling wave antennas: Long wire
	antenna V-antenna Rhombic antenna
	Broadband antennas: Helical antenna
	Folded dipole Vagi-uda array of linear
	elements
	Log-periodic antenna Introduction to Horn
	antenna: E-plane sectoral horn H-plane
	sectoral horn Pyramidal horn
	Becommended Books
	1 Balanis C A (2005) Antenna Theory
	1. Datanis, C. A. (2003). Antenna Theory Analysis and Dasian New Delhi: John
	Wiley & Sons
	2 Eliott Pohert S (2003) Antenna
	2. Ellou, Robert S. (2005). Antenna Theory and Design New Delhi: Wiley
	IFEE Dross
	$\frac{12EE \Gamma 1055}{2 Kraus I D & Marbafka P H (2001)}$
	J. Klaus, J. D., & Wallerka, K. H. (2001).
	Amennus Jor An Application
	Singapore. McOraw-fill rubication. $4 \text{ Harrington } \mathbf{P} \in (2001) \text{ Time}$
	4. Hannigun, K. F. (2001). 10me- Hannonia Electromegnetia Eiclda
	narmonic Electromagnetic Fletas.
	New Definit whiley-IEEE Press.
	Suggested E- resources:
	1. Advanced Antenna Theory by Dr

40	Communication	After the completion of course student will be able	Section A	 Amalendu Patnaik, Indian Institute of Technology, Roorkee. https://nptel.ac.in/courses/117107035/ 2. Analysis and Design Principles of Microwave Antennas by Prof.Amitabha Bhattacharya, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105114/ 3. Antennas by Prof. Girish Kumar, Indian Institute of Technology, Bombay. https://nptel.ac.in/courses/108101092/ 	Move this course from 3 rd
		 Recognize and describe about the working of Computer Networks. Illustrate reference models with layers, protocols and interfaces. Summarize functionalities of different Layers. 	data communication of optimization systems and data communications. Introduction of network, requirement of Internet. Data Networking, Network history, Local area network topologies, WAN, MAN, VPN, (Virtual Private Network). Bandwidth, Bandwidth data rate. Multiplexing-TDM, FDM, CDMA, data encoding. Network model-layer structure of network model. OSI Model, OSI layers. TCP/IP Model layers. Arpanet, Peer to Peer communication. Communication Media and cable-structure- through wire-copper cable-STP, UTP, co- axial cable, optical fiber. Wireless media- wireless LAN, organization and standards. Wireless devices and topologies. Wireless communication, wireless security.		semester to list of Elective No change in course contents.
			Section B Network layer devices-Modem, NIC, hub, bridge, switch, router, firewall, gateway. Switching Networks-circuit switching, Packet Switching. Networks-Circuit Switching, Packet Switching. Networks addressing schemes-MAC Address, Subneting, Superneting. Routing Concept, Routing protocol (RIP), Routed protocols. Introduction to IPV6 Principles of		

Internetworking. Ethernet (CSMA/CD) Token Ring and FDDI, Fast Ethernet.		
Section C Layer protocol Structure. Data link control – Flow Control, Error Detection, Error Control. HDLC. Network layer-ARP, RARP, ICMP. Effect of Congestion and Congestion Control in Network-(Back pressure, choke packet, Implicit Congestion Signaling, Explicit Congestion Signaling. Traffic Management- Transport layer Protocols-connection oriented and connectionless services, TCP, TCP Congestion Control and Flow Control. UDP. Application Layer Protocols – HTTP, FTP, SMTP, SNMP, Telnet. Introduction to ISDN. Narrow Band and Broad Band. Introduction to WAN Technologies. ATM and Frame relay.		
 Text Books: 1. E.C. Jordan: Electromagnetic wave & Radiating System: PHI, II edition 1986. 2. A.S. Tannanbaum: Computer Networks: Pearson Education 2003. 3. W.Stailling: Data & Computer Communication: PHI New Delhi, 5th edition 1997. 4. J. Martin: Computer Networks and Distributed Processing: PHI, 1998. 	 Recommended Books: 1. Jordan, E.C.(1986). Electromagnetic Wave & Radiating System. New Delhi: PHI Publication. 2. Tanenbaum, A.S. (1997). Computer Networks. New Delhi: Pearson Publication. 4. Stailling, W. (1997). Data & Computer Communication. New Delhi: PHI Publication. 5. Martin, J. (1998). Computer Networks and Distributed Processing Software, Techniques, Architecture. New Delhi: PHI Publication. Suggested E-Resources: 1. Computer Networks and Internet Protocol by Prof.SoumyaKanti Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/106105183/ 2. Computer Networks by Prof. Sujoy 	

		Ghosh, Department of Computer Science and Technology, IIT KG. https://nptel.ac.in/courses/106105081/3. Computer Networks by Prof. Hema A Murthy, IIT Madras. https://nptel.ac.in/courses/106106091/4. Data Communication by Prof.Ajit Pal, IIT KG. https://freevideolectures.com/course/22 78/data-communication	
41	Professional Ethics	 The course is intended to provide participants with the ability to analyze ethical situations, such as how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields. The participant will also be expected to explain the pertaining issues, such as professional codes of ethics, confidentiality, obligations and Moral Values in Professional Ethics, the limits of predictability and responsibilities of the engineering profession, research misconduct, and work place rights & responsibilities. Suggested e-resources: Professional Ethics by Rochester Institute of Technology, http://www.openculture.com/profession al-ethics-a-free-online-course. Ethical Practice: Leading Through Professionalism, Social Responsibility, and System Design by Prof. Leigh Hafrey, MIT, USA, https://ocw.mit.edu/courses/sloan- 	Addition of New Course as Reading Elective

		school-of-management/15-270-ethical- practice-leading-through- professionalism-social-responsibility- and-system-design-spring-2016.	
42	IoT Sensors and Devices	This course is for practical learners who want to explore and interact with the IoT bridge between the cyber- and physical world. Student will learn about the 'things' that get connected in the Internet of Things to sense and interact with the real world environment – from something as simple as a smoke detector to a robotic arm in manufacturing. This course is about the devices that feel and the devices that respond. The course also describe about IoT sensors, actuators and intermediary devices that connect things to the internet, as well as electronics and systems, both of which underpin how the Internet of Things works and what it is designed to do. Suggested e-resources: IoT Sensors and Devices by Curtin University. https://www.edx.org/course/sensors-and-devices-in-the-iot. Internet of Things: Sensing and Actuation by University of California San Diego https://www.coursera.org/learn/internet-of-things-sensing-actuation. 	Addition of New Course as Reading Elective
43	Electromagnetic Compatibility	 This course describe the systems that generate or consume electrical energy can produce electromagnetic noise that may interfere with the operation of the system itself and/or other systems. The course will enable students to understand how the principles of electricity and magnetism can be applied to design electrical and electronic systems that can co-exist	Addition of New Course as Reading Elective

		harmoniously, that is, to design systems that are electromagnetically compatible with each other. The students will also be expected to explain how electromagnetic disturbances are generated in systems, how they couple to other systems, and how systems can be protected. Suggested e-resource: 1. Electromagnetic Compatibility by Daniel Mansson, KTH Royal Institute of Technology, Sweden https://onlinecourses.nptel.ac.in/noc19_ ee17/preview.	
44	Electric Vehicles	 Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. This course prepare the students for product development positions in the automotive, communications, solar, wind turbine, and smart grid industries and service positions in the automotive industry. This course will be a first level course on electric vehicle. Students will be able to understand the operation of battery driven electric vehicle. The course will focus on areas that come under the umbrella of electric vehicles, such as vehicle dynamics, Motors, Power Electronics, Batteries, Charging and etc. Students will explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure Suggested e-resources: Electric Vehicles Part 1 by IIT Delhi. https://onlinecourses.nptel.ac.in/noc19_ 	Addition of New Course as Reading Elective

		ee18/preview. 2. Electric Cars: Introduction by Delft University of Technology (TU Delft). https://www.edx.org/course/electric- cars-introduction-0.	
45	Electronic Packaging	This course is designed to provide a basic knowledge of the technologies and processes required for the packaging of electronic products. The focus of the course will be on the mechanical, and materials aspects which are often neglected in the design phase with potentially catastrophic consequences. Students will be expected to explore the underlying scientific and technological knowledge- based needed to become proficient builders and users of electronic systems. The students will also be able to explain the fundamental principles for packaging active and passive electronic devices; design of components, circuit boards, connectors, and assemblies; electromagnetic interference and its impact on packaging, thermal and mechanical design; and reliability assessment methods. Suggested e-resource: 1. Electronics Packaging and Manufacturing by IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18_ me54.	Addition of New Course as Reading Elective
46	Multimedia Compression and Communication	 The purpose of this course is to understand the multimedia communication and compression. In this course students will be expected to explore various multimedia components and their characteristics, such as hardware, animation and graphics and able to explain the various audio and video compression techniques and apply these techniques in multimedia communication.	Addition of New Course as Reading Elective

			The student will also be able to develop the understanding of network architecture, protocols, resource management, multimedia operating systems, scheduling and policing mechanisms. Suggested e-resource: 1. Multimedia Processing by IIT Kharagpur. https://nptel.ac.in/syllabus/117105083/.	
47	Telecommunicatio n switching systems and networks		The course is intended to develop the good understanding of the fundamentals and application of telecommunication networks i.e. PSTN, PDN and ISDN, modern digital telecommunication switching and networks. The participants will be expected to explain the recent terminology, like switching systems, traffic management, time division switching systems, data communication Networks, routing, ISDN, voice data integration and importance of telephone traffic analysis and telephone networks. Suggested e-resources: 1. Computer Networks by Department of CSE, IIT Kharagpur https://nptel.ac.in/courses/Webcoursec ontents/IIT% 20Kharagpur/Communica tion% 20network/New_index1.html. 2. Data Communication by IIT Kharagpur. https://nptel.ac.in/courses/106105082/1 9.	Addition of New Course as Reading Elective
48	ELE 205, Semiconductor Devices and Circuits	 After completion of this course, students will be able to: Explain the energy bands, temperature effects, carrier transport of semiconductor devices 	Section A P-N junction: thermal equilibrium condition, under forward and reverse bias, space charge region, junction capacitance, p-n junction current, small signal model, diode current equation, junction breakdown, charge storage and transient behavior metal corrigon duster investion	

 Explain the switching times, capacitance of PN junction, bipolar and unipolar transistor behavior and their differences Analyze the various feedback circuits and design power amplifiers. 	Schottky Barriers and Ohmic Contacts, heterojuntion: energy band diagramsSection BBipolar Junction Transistor: the transistor action, minority carrier distribution, low frequency common-base current gain, MOSFET: The MOS diode, Energy band diagrams, MOSFET fundamentals, MOS Transistor current, Threshold Voltage. FET biasing: fixed-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain amplifiers.Section C	
amplifiers.	FET biasing: fixed-Bias configuration, self-Bias configuration, Voltage-divider Bias configuration, FET small signal model, common source and common drain	
	amplifiers.	
	Feedback amplifier: classifications of amplifiers, general feedback structure, properties of negative feedback, feedback topologies, Transfer gain with feedback, General Characteristics of negative feedback amplifiers, Input resistance, output resistance, Voltage series and current series feedback, Current shunt and voltage shunt feedback, Power amplifiers: Classification, operation, Analysis and design of Class A, Class B, Class-AB, Class C, Power dissipation and efficiency calculations, amplifier distortion.	
	 Recommended Books: 1. S. Simon. M.(2002), Semiconductor Devices Physics and Technology (2/e), New Jersey, USA: JOHN WILEY & SONS Publication 2. Millman. J, Halkias. C, Parikh. C. (2017). Integrated Electronics. (2nd ed). New Delhi: TMH Publications. 3. Streetman Ben. G. (2006). Solid State Electronic Devices (6th ed) New Delhi: PHI Publications. 	

4. Smith. S.(2008). Microelectronics Circuits (5th ed) New Delhi: Oxford	
Dress	
pices.	
Suggested E-Resources:	
1. Semiconductor Devices and Circuits	
by Prof.SanjivSambandan, Department	
of Instrumentation and Applied	
Physics, Indian Institute of Science,	
Bangalore.	
https://nptel.ac.in/courses/108108112/	
2. Analog Electronic Circuits byProf. S.	
C. Dutta Roy, Department of Electrical	
Engineering Indian Institute of	
Technology Delhi.	
https://nptel.ac.in/courses/108102095/	

Annexure IV

Name of Programme: Master of Technology (VLSI Design)

Programme Educational Objectives: The M.Tech. (VLSI Design) programme aims for the holistic development of students through the unique and innovative fivefold educational ideology of Banasthali Vidyapith. State-of-the-art VLSI technology requires research in physical devices as well as novel design and development of integrated circuits. The M. Tech. (VLSI Design) programme at Department of Electronics aims to impart knowledge of VLSI system design covering algorithms, hardware description languages, system architectures, physical designs, verification techniques, simulation & synthesis, low power design techniques and etc. The programme offersfoundational subjects like semiconductor devices, digital, analog and RFIC design, embedded system, electronic system packaging etc. Many courses have prominent lab component, offering hands-on training and exercises on numerous practical aspects of crucial importance. The students also get an opportunity to participate in projects related to design and optimization of VLSI circuits and systems.

The main objectives of M.Tech. (VLSI Design) programme are:

- To provide in-depth knowledge of device fundamentals and modern circuits design to gain an ability to analyze, design, and implement VLSI Systems circuits and systems.
- To enrich students to excel in research leading to cutting edge technology in VLSI design to create competent, innovative and productive professionals.
- To train them to understand the various recent issues and find the solutions with good scientific and engineering knowledge, so as to comprehend, analyze, design, and create novel products and develop the capability to prepare the scientist report in lucid and articulate form.
- To provide students with an academic environment to develop scientific awareness, leadership, ethical conduct, positive attitude, societal responsibilities and the lifelong learning needed for a successful professional career.
- To develop entrepreneurial skills in starting industries using VLSI technology.
- Practice the ethics of their profession and inculcate a lifelong learning culture.
- Communicate effectively and manage resources skilfully as members and leaders of the profession.

Programme Outcomes:

- **PO1.** Scholarship of Knowledge: Acquire in-depth knowledge of VLSI technology in wider and global perspective, with an ability to discriminate, evaluate, analyze, synthesize and integrate for enhancement of knowledge. Graduates will be able to apply the knowledge of computing, mathematics, science and electronic engineering for designing VLSI circuits.
- PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using basic principles of mathematics, science and engineering.
- **PO3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Graduates will have an ability to design and conduct experiments, perform analysis and interpret the problems of VLSI design.

- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern VLSI tools including modeling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. Engineering Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. Leadership Skills: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Programme Scheme:

M.Tech. (VLSI Design) Semester - I (December, 2019)

		Existing Scheme					Proposed Scheme						
Course	Code	Course Name	L	Т	Р	С	Course	Code	Course Name	L	Т	Р	С
VLSI	507	Digital CMOS IC design	4	0	0	4	VLSI	507	Digital CMOS IC design	4	0	0	4
VLSI	507L	Digital CMOS IC design Lab	0	0	2	1	VLSI	507L	Digital CMOS IC design Lab	0	0	2	1
VLSI	512	HDL Based System Design	4	0	0	4	VLSI	512	HDL Based System Design	4	0	0	4
VLSI	512L	HDL Based System Design Lab	0	0	6	3	VLSI	512L	HDL Based System Design Lab	0	0	6	3
VLSI	516	IC Fabrication Technology	4	0	0	4	VLSI	516	IC Fabrication Technology	4	0	0	4
VLSI	516L	IC Fabrication Technology Lab	0	0	2	1	VLSI	516L	IC Fabrication Technology Lab	0	0	2	1
VLSI	521P	Minor Project (Part - I)	0	0	2	1	VLSI	521P	Minor Project (Part - I)	0	0	2	1
VLSI	525	SolidStatesDeviceModeling and Simulation	4	0	0	4	VLSI	525	SolidStatesDeviceModeling and Simulation	4	0	0	4
		Elective-I	4	0	0	4			Discipline Elective	4	0	0	4
	Semester wise total				12	26			Semester wise total	20	0	12	26

M.Tech. (VLSI Design) Semester - II (April/May, 2020)

		Existing Scheme			Proposed Scheme								
Course	Code	Course Name	L	Т	Р	С	Course	e Code	Course Name	L	Т	Р	C
VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4	VLSI	503	Analog and Mixed Signal IC Design	4	0	0	4
VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2	VLSI	503L	Analog and Mixed Signal IC Design Lab	0	0	4	2
VLSI	504	ASIC Design	4	0	0	4	VLSI	504	ASIC Design	4	0	0	4
VLSI	505	CAD for IC Design	4	0	0	4	VLSI	505	CAD for IC Design	4	0	0	4
VLSI	505L	CAD for IC Design Lab	0	0	4	2	VLSI	505L	CAD for IC Design Lab	0	0	4	2
VLSI	522P	Minor Project (Part - II)	0	0	4	2	VLSI	522P	Minor Project (Part - II)	0	0	4	2
VLSI	524	RF IC Design	4	0	0	4	VLSI	524	RF IC Design	4	0	0	4
		Elective - II	4	0	0	4			Open Elective	4	0	0	4
	Semester wise total				12	26			Semester wise total	20	0	12	26

List of Discipline Electives:

Course	Code	Course Name	L	Т	Р	С
CS	429	Pattern Recognition and Image Processing	4	0	0	4
CS	431	Real Time Systems	4	0	0	4
ELE	502	Discrete Time Signal Processing	4	0	0	4
VLSI	501	Advanced Digital Signal Processing	4	0	0	4
VLSI	502	Advanced Digital System Design	4	0	0	4
VLSI	506	Design of Semiconductor Memory	4	0	0	4
VLSI	510	Embedded System Design	4	0	0	4
VLSI	511	Fault Tolerance in VLSI	4	0	0	4
VLSI	513	High Level System Design and Modeling	4	0	0	4
VLSI	514	High Power Semiconductor Devices	4	0	0	4
VLSI	515	High Speed VLSI Design	4	0	0	4
VLSI	517	Integrated Electronic System Design	4	0	0	4
VLSI	518	Introduction to MEMS	4	0	0	4
VLSI	519	Low Power VLSI Design	4	0	0	4
VLSI	520	Nanoelectronics	4	0	0	4
VLSI	523	Representation and Analysis of Random Signals	4	0	0	4
VLSI	526	Speech Signal Processing	4	0	0	4
		Photonics Integrated Circuits	4	0	0	4

M.Tech. (VLSI Design) Semester - III (December, 2020)

	Existing Scheme								Proposed Scheme					
Course Code Course Name			L	Т	Р	С	Course	Code	Course Name	L	Т	Р	С	
		Reading Elective - I	0	0	4	2			Reading Elective - I	0	0	0	2	
VLSI	602P	Project (Part - I)	0	0	48	24	VLSI	602P	Project (Part - I)	0	0	48	24	
		Semester wise Total	0	0	52	26			Semester wise Total	0	0	48	26	

M.Tech. (VLSI Design) Semester - IV (April/May, 2021)

	Existing Scheme			Proposed Scheme							
Course Code	Course Name	L	Т	Р	C	Course Code	Course Name	L	Т	Р	C
	Reading Elective - II	0	0	4	2		Reading Elective - II	0	0	0	2
VLSI 603P	Project (Part - II)	0	0	48	24	VLSI 603P	Project (Part - II)	0	0	48	24
	Semester wise total			52	26		Semester wise total	0	0	48	26

* L - Lecture hrs/week; T - Tutorial hrs/week;

P - Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C - Credit Points of the Course

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters I, & II with prior permission of respective heads, time table permitting.

List of Reading Electives:

S. No.	Course Code	Reading Elective
1.	VLSI 601R	High Level Synthesis
2.		Advanced Electronics Packaging
3.		Digital Image Processing
4.	VLSI 604R	VLSI Testing and Design for Testability
5.		Compound Semiconductor Technology
6.		Organic Electronic Devices

S. No.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	VLSI 507, Digital CMOS IC	After completion of this course, students will be able to:			No Change in course contents.
	Design	 Gain in-depth understanding of designing and analysis of CMOS inverters Explain the fabrication process and layout design of CMOS digital IC To describe the operation of semiconductor memories and low power circuits. 	 Text Books: N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Co., 2nd Edition, 1993. Nell H. E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design", 2nd Edition, Addision Wesley,1998. Jacob Backer, Harry W. Li and David E. Boyce, " CMOS Circuit Design, Layout and Simulation ", Prentice Hall of India, 1999 Sung-Mo Kang, Yusuf Leblebici,, "CMOS Digital Integrated Circuits" - Analysis and design, Tata McGraw- Hill - third edition. Douglas a. Pucknell and K.Eshragian., "Basic VLSI Design" 3rd Edition. PHI, 2000. 	 Recommended Books: 1. Weste, Neil. H. E.,& Eshraghian, K. (1993). Principles of CMOS VLSI Design.Boston, New York: Addison Wesley Publication. 2. Weste, Neil. H. E., & Eshraghian, K. (1998). Principles of CMOS VLSI Design.Boston, New York: Addison Wesley Publication. 3. Backer, Jacob., Harry, W. Li., & Boyce, David. E. (1999). CMOS Circuit Design, Layout and Simulation.New Delhi: PHI Publication. 4. Kang, Sung-Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated Circuits- Analysis and design. New Delhi: Tata McGraw-Hill Publication. 5. Pucknell, Douglas. A.,& Eshragian, K.(2000). Basic VLSI Design. New Delhi: PHI Publication. 5. Pucknell, Douglas. A.,& Eshragian, K.(2000). Basic VLSI Design. New Delhi: PHI Publication. Suggested E-resources: 1. Computation Structures - Part 1: Digital Circuits by Chris Terman https://www.edx.org/course/computati on-structures-part-1-digital-mitx-6-004-1x-0 2. CMOS Digital VLSI Design by Prof. S. Dasgupta https://onlinecourses.nptel.ac.in/noc19_ee25/preview 	
				 Digital Circuits by Chris Terman https://www.edx.org/course/computati on-structures-part-1-digital-mitx-6-004-1x-0 CMOS Digital VLSI Design by Prof. S. Dasgupta https://onlinecourses.nptel.ac.in/noc19 _ee25/preview 	

2.	VLSI 507L,	After completion of this		Learning
	Digital	laboratory course, students		Outcomes
	CMO5 IC Design I ab	• Understand of Cadence		added.
	Design Lab	circuit design tool		
		• Understand procedure to		No change in
		analyse DC and		Experiment
		Transient behaviour of		List
		circuits		
		• Understand procedure to		
		dimension variation on		
		circuit performance		
3.	VLSI 512,	After completion of this		No Change
	HDL Based	course, students will be able		in course
	System	to: • Analysis and Design of	Trad and D. Course Dealers	contents.
	Design	Synchronous and	Text and Reference Books: Recommended Books: 1 Navabi Z. (1997) VHDL: Analysis	Deleted
		Asynchronous	1. Z. Navabi, VHDL: Analysis and A. Huwabi, Z. (1997) VHDL: Analysis Modeling of Digital Systems McGraw and Modelling of Digital Systems.	
		sequential machines	Hill. New Delhi: McGraw Hill Publication.	
		• Draw a FSM chart for	2. J. Bhaskar, A VHDL Primer, Prentice 2. Bhaskar, J. (2015). A VHDL Primer.	
		digital designs and describe it using HDI	Hall. New Delhi: Pearson Publication.	
		• Detect and diagnosis	3. R. Lipsett, C. Schaefer and C. Ussery, 3. Lipsett, R., Schaefer, C.,&Ussery, C.	
		different errors in digital	VHDL: Hardware Description and (1993) VHDL Hardware Description	
		circuit descriptions.	Design, Kluwer. <i>and Design</i> . Menio Park, California: Kluwer Academic Publishers	
		• Design the digital	4. J. Pick, VHDL: Techniques,	
		systems through VHDL	Experiments and Coveats, McGraw 4. Pick, J. (1996) VHDL: Techniques,	
		and vernog HDL.	5 D. F. Ott. and J. J. Wildenster. McGraw Hill Publication.	
			Designer's Guide to VHDI, Synthesis 5. Ott, Douglas E., & Wilderotter, J.	
			Kluwer. (1994). A Designer's Guide to VHDL	
			6. S. Palnitkar, "Verilog HDL: A Guide Synthesis. Berlin: Springer.	
			to Digital Design and Synthesis", 6. Palnitkar, S. (2003). Verilog HDL: A	
			Prentice Hall NJ, USA), 1996. <i>Guide to Digital Design and Synthesis.</i>	
			7. J. Bhaskar, "Verilog HDL Synthesis - New Delni: PHI Publication.	
			A Practical Primer", Star Galaxy 7. Smith, M.J.S. (1997). Application-	

			 Publishing,(Allentown, PA) 1998. 8. M.J.S .Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Longman Inc., 1997 	Specific Integrated Circuits.Boston, New York: Addison Wesley Publication.Suggested E-resource:1. Hardware Modeling using Verilog by Prof. Indranil Sengupta, Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 	
4.	VLSI 512L, HDL Based System Design Lab	 After completion of this laboratory course, students will be able to: describe the IEEE Standard 1076 Hardware Description Language (VHDL) Model complex digital systems at several levels of abstractions; behavioral and structural, synthesis and rapid system prototyping. Develop and simulate register-level models of hierarchical digital systems Develop a formal test bench from informal system requirements 	This lab targets to develop an understanding of VLSI design using HDL languages among the students. Different objectives are given to the different group of students to develop a design using Hardware description languages and simulate it using EDA tools.	 Design all gates using VHDL, and verify functionality through simulation outcomes Write VHDL program for Half adder circuit, and verify functionality through simulation outcomes Write VHDL program for Full adder circuit, and verify functionality through simulation outcomes Write VHDL program for Multiplexer circuit, and verify functionality through simulation outcomes Write VHDL program for Demultiplexer circuit, and verify functionality through simulation outcomes Write VHDL program for Demultiplexer circuit, and verify functionality through simulation outcomes Write VHDL program for encoder circuit, and verify functionality through simulation outcomes Write VHDL program for decoder circuit, and verify functionality through simulation outcomes Write VHDL program for D Flip Flop, and verify functionality through simulation outcomes Write VHDL program for D Flip Flop, and verify functionality through simulation outcomes Write VHDL program for T Flip Flop, and verify functionality through simulation outcomes Write VHDL program for T Flip Flop, and verify functionality through simulation outcomes 	Learning Outcomes added Deleted Added

			 Write VHDL program for SR Flip Flop, and verify functionality through simulation outcomes Write VHDL program for JK Flip Flop, and verify functionality through simulation outcomes Write VHDL program for modulo 8 up Asynchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for modulo 8 down Asynchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for modulo 8 down Asynchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for modulo 8 up synchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for modulo 8 down synchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for modulo 8 down synchronous counter circuit, and verify functionality through simulation outcomes Write VHDL program for shift and add multiplier circuit, and verify functionality through simulation outcomes Write VHDL program for shift and add multiplier circuit, and verify functionality through simulation outcomes Write VHDL program for 4 bit ALU, and 	
			 synchronous counter circuit, and verify functionality through simulation outcomes 16. Write VHDL program for shift and add multiplier circuit, and verify functionality 	
			 17. Write VHDL program for 4 bit ALU, and verify functionality through simulation outcomes 18. Write VHDL program for parallel adder circuit, and verify functionality through 	
			 simulation outcomes 19. Write VHDL program for sequence detector circuit, and verify functionality through simulation outcomes 20. Write VHDL program for serial adder circuit, and verify functionality through inclusion outcomes 	
			sinulation outcomes	
5.	VLSI 516,	After completion of this		No Change
	IC	course, students will be able		in course
			•	

	Fabrication	to:		contents.
	Fabrication Technology	 to: Understand thin film deposition and vacuum evaporation process. Differentiate dry and wet oxidation process and printing methods. Perform measurement techniques for extracting electrical properties of devices. Understand diffusion and ion implantation process. 	 Text Book: S. M. Sze, VLSI Technology, McGraw Hill. Reference Books: S. K. Gandhi, The Theory and Practice of Microelectronics, John Wiley. D. Nagchoudhuri. Microelectronics technology, Pearson. C. Y. Yang and S. M. Sze, VLSI Technology, Tata McGraw Hill. S. M. Sze, Semiconductor Technology. S. M. Sze, Semiconductor Technology. Introduction to IC fabrication by Prof. Hardik J Pandya S, Department of Electronic Systems Engineering, IISC, Bangalore. https://nptel.ac.in/courses/108108111/3. MOSFET Fabrication for IC by Dr. Nandita Dasgupta Department of Electrical Engineering, Indian Institute of Technology, Madras. https://uptel.ac.in/courses/108108111/3. 	contents. Deleted
6.	VLSI 516L, IC Fabrication Technology Lab	 After completion of this laboratory course, students will be able to: Understand fabrication process flow Understand Silvaco TCAD tool. understand the procedure to modeling devises and analysing their characteristics 	 Silvaco Model the fabrication process flow of NMOS with I/V characteristics curve Model the fabrication process flow of PMOS with I/V characteristics curve Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of PMOS with I/V characteristics curve. Model the fabrication process flow of NPN/PNP mos based transistor with input/output characteristics curve. Model the fabrication process flow of PN junction diode. 	Added
7.	Minor Project (Part-I)	After completion of this course, students will be able to:		Learning Outcomes Added and

		 Formulate the project objectives and deliverables. Estimate the physical resources required, and make plans to obtain the necessary resources. Develop plans with relevant people to achieve the project's goals. 		this course has no prescribed syllabus.
8.	VLSI 525, Solid State Device Modeling	After completion of this course, students will be able to:Explain the carrier		No Change in course contents.
	and Simulation	 densities, charge transport, band diagrams and their relations to the device characteristics. Describe the SPICE device models and apply the basic governing model equations to analyze BJT and MOSFET. Explain and analyze the operation of optical, microwave and quantum effect devices. 	 Text Books: S. M. SZE "Semiconductor Devices Physics and Technology" 2nd Edition WILEY student edition Ben G. Streetman and Sanjay Kumar Banerjee "Solid State Electronics devices" Pearson Education Sung - MO kang, Yusuf Leblebice "CMOS Digital Integrated Circuits Analysis & Design, Tata McGrawhill Sedra/Smith" Microelectronics Circuits" forth edition OXFORD PSpice Manuals Recommended Books: Sze, S. M. (1985). Semiconductor Devices Physics and Technology. York: Wiley Publication. Streetman, Ben. G.,&B Sanjay.Kumar.(2019). Solid Electronics Devices. New Delhi: Publication. Kang, Sung-Mo., & Leblebici, (2002). CMOS Digital Integrated Circuits. Analysis and Design Delhi: Tata McGraw-Hill Publicati Semiconductor Urpress. Suggested E-resources: Solid State Devices Prises. Solid State Devices Prises. 	Deleted New anerjee, State Pearson Yusuf. tegrated v. New ion. ctronics niversity Dr. S. ctronics g, Indian Madras. 06091/ of. Dr.

9	VISI 503	After completion of this	Electronics & Communication Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102061/	No Change
	Analog and Mixed	course, students will be able to:		in course contents.
	Signal IC Design	 Design basic cells like current sources, current mirrors and reference circuit. Explain stability issues and design compensated IC operational amplifiers. Design and analyze comparators and sample-and-hold circuits. Illustrate the operation of commonly used data conversion circuits. 	 Text Books: Phillip E. Allen and Douglas R. Holberg, CMOS analog circuit design, oxford university press, 2nd edition. D. A. Johns and Martin, Analog Integrated Circuit Design, John Wiley, 1997. R.J.Baker, CMOS Mixed Signal Circuit Design, Wiley/IEEE,2002 Reference Books: R Gregorian and G C Temes, Analog MOS Integrated Circuits for Signal Processing, John Wiley, 1986. Paul B Gray and Robert G Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley. R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, MGraw Hill, 1990 Reference Iooks: R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, MGraw Hill, 1990 Reference Iooks: R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, MGraw Hill, 1990 R L Geiger, P E Allen and N R Strader, VLSI Design Techniques for Analog & Digital Circuits, MGraw Hill Publication. Suggested E-resource: Analog Integrated Circuit Design by Prof. Nagendra Krishnapura, Department of Electrical Engineering, Indian Institute of Technology, Madras. 	
10.	VLSI 503L, Analog and	After completion of this laboratory course, students will be able to:	1. Simulate simple current mirror and determine small signal output resistance. 1. Design NMOS simple current mirror for channel length of 1 μm and 180 nm and study DC analysis. Compare the results at	

Mixed Signal IC Design Lab	 Analyse and interpret the waveform, comparison of simulation results with the theoretical analysis. Ability to use the simulation software for performing the 	 determine small signal output resistance. 3. Design differential amplifier and study its DC and transient response. 4. Study of AC response and bandwidth calculation of differential amplifier. 5. Study of AC and transient response of differential amplifier. 	 two different channel lengths. Analyze AC characteristics of the simple current mirror and determine small signal output resistance. Comparison of small signal resistance at different channel lengths. Discuss the results. Draw the schematic of NMOS 	Learning Outcomes Added
	 Ability to design and test various amplifier circuits, which meets the desired specifications. 	 Design Common Source (CS) amplifier and study its DC and Transient response. Study of frequency response of CS amplifier. Design source follower and study its DC and Transient and AC response. Design two stage Op-Amp and study of its DC and Transient characteristics and determine Slew rate. AC characteristics, UGB and Phase Margin estimation of two stage Op-Amp 	 CASCODE current mirror for channel length of 1 m and analyze DC response. Do the same for 180 nm channel length. Compare and discuss the results. 4. Analyze AC characteristics of the CASCODE current mirror and determine small signal output resistance. Comparison the small signal resistance with simple current mirror. Discuss the results. 5. Design CMOS differential amplifier for a given channel length and draw the schematic cell view of differential amplifier. 6. Create the symbol for the differential amplifier and build the differential amplifier test design. 7. Set up and run simulations (AC, DC and Transient) on the Differential Amplifier Test design. 8. Calculate the gain, bandwidth and CMRR of Differential pair. Discuss the results. 9. Design of current source loaded common source amplifier. create a new cell view and build Common Source Amplifier. Create a symbol for the Common Source Amplifier 10. Build cs_amplifier_test circuit using your cs_amplifier, set up and run simulations(AC, DC and Transient) on the cs_amplifier_test design. 11. Determine the gain, bandwidth and 	Added

				 voltage swing of CS amplifier. Comment on the results. 12. Create a new cell view and build Common Drain (CD) Amplifier. Build CD amplifier test circuit using your CD amplifier. Set up and run simulations(AC, DC and Transient) on the CD amplifier test design. 13. Determine the gain, bandwidth and voltage swing, output resistance of CS amplifier. Comment on the results. 14. Build schematic capture of two stage operational amplifier (OP-AMP) using the previously created symbols of CS amplifier and CD amplifier. Thereafter Create a symbol for the OP-AMP. 15. To build op-amp_test circuit using your op-amp. Set up and run simulations(AC, DC and Transient) of op-amp_test circuit. 16. Determine voltage gain, slew rate, UGB and Phase Margin of two stage Op-Amp and compare with the design consistent. 	
11.	VLSI 504, ASIC Design	 After completion of this course, students will be able to: Analyze the concept of Full Custom ASIC and 	Text Books:	Text Books:	No Change in course contents. Deleted
		 Semi-Custom ASIC and Semi-Custom ASIC, Cell Libraries, Data Logic Cells, Low-level Design Entry and Low Level Design Languages Explain ASIC I/O Cell : DC Output, AC Output, DC Input, AC Input, Clock Input, Power 	 Mohammed Ismail, Terri Fiez, "Analog VLSI signal and Information processing", McGraw-Hill International Editions, 1994. M.J.S. Smith, - "Application - Specific Integrated Circuits" - Addison -Wesley Long man Inc., 1997 Wayne Wolf, FPGA based system design, Pearson education, 2005. Reference Books: 	 Smith M. J. S. (2006). Application Specific Integrated Circuits USA:Pearson Publication Ismail, Mohammed. &Terri, Fiez. (1994). Analog VLSI signal and Information processing. New York: McGraw-Hill Publication. Wolf,Wayne. (2005). FPGA based System Design. New Delhi: PHI Publication. Brown, Andrew. (1991). VLSI Circuits 	

		 Input and PLA Tools. Describe Programmable ASIC Logic Cell, FPGA Logic Cells, and Programmable Interconnects to Solve the RC delay of routing resources for each ASIC. 	1. 2. 3. 4. 5. 6. 7.	 Malcom R.Haskard, Lan C.May, "Analog VLSI Design - NMOS and CMOS" Prentice Hall, 1998. Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", Mc Graw Hill International Company, 1990. Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal processing", Prentice Hall, 1994. Andrew Brown, - "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991. S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays"- Kluwer Academic Publishers, 1992. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing", Prentice Hall, 1994. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985. 	 5. 6. 7. 8. Su 1. 	 and Systems in Silicon. New York: McGraw-Hill Publication. Haskard, Malcom. R., & May, Lan C. (1998). Analog VLSI Design - NMOS and CMOS. New Delhi: PHI Publication. Geiger, Randall. L., Allen, Phillip E., & Strader, Noel.K. (1990). VLSI Design Techniques for Analog and Digital Circuits. New Delhi: PHI Publication. France, Jose.E.,& Tsividis, Yannis. (1994). Design of Analog-Digital VLSI Circuits for Telecommunication and Signal Processing. New Delhi: PHI Publication. Brown, S.D., Francis, R.J., Rox, J., &Uranesic, Z.G. (1992). Field Programmable Gate Arrays. Menlo Park, California: Kluwer Academic Publishers. ggested E-resource: Digital VLSI Systems Designby Prof. S. Srinivasan, Department of Electrical Engineering, Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106092/ 	
12.	VLSI 505, CAD for IC Design	After completion of this course, students will be able to:					No Change in course contents.
	-	 Student will understand Basic concept of describing VLSI design problems Student will understand graph 	Text 1. 2.	Books: S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2002. N.A. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwar	Re 1. 2.	Commended Books: Gerez, S.H. (2002). Algorithms for VLSI Design Automation. New York: John Wiley Publication. Sherwani, N.A. (2002). Algorithms for VLSI Physical Design Automation. Boston, New York: Kluwar Academic	Deleted

		 theory and its utilization in finding solution for VLSI design problems. To understand algorithms to solve various VLSI design problem like floorplaning, scheduling, placement, routing etc. 	 Academic Publishers, 2002. Drechsler, R., "Evolutionary Algorithms for VLSI CAD, Kluwer Academic Publishers, Boston, 1998. Hill, D., D. Shugard, J. Fishburn and K. Keutzer, Algorithms and Techniques for VLSI Layout Synthesis, Kluwer Academic Publishers, Boston, 1989. Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits" TMH. 	 Publishers. 3. Drechsler, R. (1998). Evolutionary Algorithms for VLSI CAD. Boston, New York: Kluwer Academic Publishers. 4. Hill, D., Shugard, D., Fishburn, J.,& Keutzer, K. (1989). Algorithms and Techniques for VLSI Layout Synthesis. Boston, New York: Kluwer Academic Publishers. 5. Micheli, Giovanni.De.(2003). Synthesis and Optimization of Digital Circuits. New Delhi: TMH Publication. Suggested E-resource: 1. CAD for VLSI Design L by Prof. Prof. 	
13.	VLSI 505L, CAD	After completion of this laboratory course, students	6. Sadiq M. Sait and Habib Youssel, "VLSI PHYSICAL DESIGN AUTOMATION Theory and Practice" IEEE PRESS. This lab targets to develop an understanding of design automation among the students.	 CAD for VLSI Design I by Prof. Prof. V. Kamakoti and Prof Shankar Balachandran, Department of Computer Science and Engineering, Indian Institute of Technology, Madras https://nptel.ac.in/courses/106106088/ NETLIST generation and analysis of Half Adder 	Learning Outcomes
	for IC Design Lab	 abbratory course, students will be able to: Understand the VLSI design automation. Understand the process to develop and analyse synthesis outcomes. Demonstrate knowledge of computational and optimization algorithms and tools, applicable to solving CAD related problems. 	Different objectives are given to the different group of students to develop a design, simulate and synthesize it using EDA tools.	 NETLIST generation and analysis of Full Adder NETLIST generation and analysis of Half Subtractor NETLIST generation and analysis of Full Subtractor NETLIST generation and analysis of Multiplexer NETLIST generation and analysis of Demultiplexer NETLIST generation and analysis of D Flip Flop NETLIST generation and analysis of T Flip Flop NETLIST generation and analysis of T Flip Flop NETLIST generation and analysis of JK Flip Flop NETLIST generation and analysis of JK Flip Flop NETLIST generation and analysis of SR 	Added

				 Flip Flop 11. NETLIST generation and analysis of Four bit Binary Counter 12. NETLIST generation and analysis of Serial in Serial Out Shift Register 13. NETLIST generation and analysis of Parallel in Serial Out Shift Register 14. NETLIST generation and analysis of Serial in Parallel Out Shift Register 15. NETLIST generation and analysis of Ripple Carry Adder 	
14.	Minor Project (Part-II)	 After completion of this course, students will be able to: Identify, formulate, and solve VLSI design problems using advanced level manufacturing and design techniques Apply advanced level knowledge, techniques, skills and modern tools of VLSI Design. Understand the complexities and design methodologies of current and advanced VLSI design technologies. 			Learning Outcomes Added and this course has no prescribed syllabus.
15.	VLSI 524, RF IC Design	After completion of this course, students will be able to:		_	No Change in course contents.
		 Understand basics concepts of radio frequency integrated systems and their performance parameters. Identify design trade-off 	 Texts/Reference Books: B.Razavi, RF Microelectronics, Prentice-Hall PTR,1998 T.H.Lee, The Design of CMOS Radio- Frequency Integrated Circuits", Cambridge University Press, 1998. 	 Recommended Books: Razavi, B. (2011). <i>RF Microelectronics</i>. New Delhi: PHI Publication. Lee, T.H. (1998). <i>The Design of CMOS Radio-Frequency Integrated Circuits</i>. New York: Cambridge University Press. Baker, R.Jacob., Li, H.W., & Boyce, D.E. 	

		used in various transmitters and receivers architecture with wireless standards. • Perform VLSI implementation of oscillators, Mixers and Power amplifiers.	 R.Jacob Baker,H.W.Li, and D.E. Boyce, CMOS Circuit Design ,Layout and Simulation, Prentice-Hall of India,1998. Y.P. Tsividis Mixed Analog and Digital VLSI Devices and Technology, McGraw Hill, 1996. Tsividis, Y.P. (1996). Mixed Analog and Digital VLSI Devices and Technology. New York: McGraw Hill Publication. Suggested E-resources: RF System - Basic Architectures by Prof. Dr. S. Chatterjee, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102012/. RF integrated Circuits by S. Aniruddhan, Department of Electrical Engineering, IIT Madras.http://www.ee.iitm.ac.in/~ani/20 11/ee6240/pdf/ee6240_lec32.pdf. 	
16.	Project (Part-I)	 After completion of this course, students will be able to: Recognize the need to engage in lifelong learning through continuing education and research. Formulate the project objectives and deliverables. Estimate the physical resources required, and make plans to obtain the necessary resources. Develop plans with relevant people to achieve the project's goals. 		Learning Outcomes Added and this course has no prescribed syllabus.
1/.	Project	Alter completion of this		Learning
	(Part-II)	 course, students will be able to: Demonstrate knowledge of contemporary issues in the area of VLSI design. Manage projects related to VLSI design in multidisciplinary environments. Understanding the Functioning with multidisciplinary teams, working cooperatively, respectfully, creatively and responsibly as a member of a team. 		Outcomes Added and this course has no prescribed syllabus.
-----	------------------------	--	---	---
18.	CS 429,	After completion of this		No Change
	Pattern Recognition	course, students will be able		in course
	and Image	• Explain the concept of	Taxt Books	contents.
	Processing	Image Processing.	Let Let A K Fundamentals of distal 1. Jain A, K. (2015). Fundamentals of	
	8	Mathematical	image Processing, PHI Publications.	
		preliminary of Image	2. Gozalez Rafel, Woods Richard, Digital	
		Image Representations	Image Processing, Pearson Education. (2016) Digital Image Processing New	
		 Analyze the methods of 	Reference Books: Delhi: Pearson Publication.	
		Image Enhancement and	1. Rosenfield, A and Kak A. C, Picture 3. Rosenfield, A., & Kak, A. C.(1982).	
		Image Filtering,	Processing, Academic Press N.Y. 1982 <i>Picture Processing</i> . Orlando, Florida:	
		Identify different image analysis and pattern recognition methods and	 Pratt, W. K., Digital Image Processing, John Willey and sons, New York. Pratt, W. K. (2007). Digital Image Processing, Hoboken, New Jersey: John 	
		apply them in problem	3. Duda R., Hart Peter, Stork D., Pattern Willey and sons, Publication.	
		areas also develop an	Classification, Willey Interscience 5. Friedman, Manahem.,& Kandel, Publication (1990) Interduction to Pattorn	
		Processing applications	Automation. Abroham Kandel Recognition. Singapore: World Scientific	
		that can serve mankind	Introduction to Pattern Recognition. 6. Charniak, E.,& Mcdermott, D. (1985).	
		with the available and	World Scientific	

	00.404	anticipated technology in the near future.	 5. E. Charniak, D. Mcdermott, Introduction to Artificial Intelligence, Addison Wesley. 5. E. Charniak, D. Mcdermott, Introduction to Artificial Intelligence, Addison Wesley. 6. Suggested E-resources: 1. Pattern Recognition and Application by Prof. P. K. Biswas, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105101/ 	
19	CS 451, Real Time Systems	 After completion of this course, students will be able to: To present the methametical model of 	Text Book: Recommended Books: 1 Krichers	in course contents. Deleted
		 Analyse multi task scheduling algorithms To explain Reliability Evaluation techniques and Real time communication algorithms 	 Krishna C.M, Shen K.G, Real Time Systems, Mc. Graw Hill, References Books: Lawrence P.D, Mauch, K, Real Time Microcomputer Design: An Introduction, Mc. Graw Hill, Joseph Mathai, Real Time systems : Specification, verification & analysis ,Prentice Hall Inc. Bennet Stuart, Real Time computer control, Prentice Hall Inc., Young S. J., Real time languages, John willey & sons. Krishna, C.M., & Sheh, K.G. (2008). <i>Real Time Systems</i>. New Delhi: McGraw Hill Publication. Lawrence, P.D., & Mauch, K.(1998). <i>Real Time Microcomputer Design: An Introduction</i>. New York: McGraw Hill Publication. Mathai, Joseph.(1996). <i>Real Time systems: Specification, Verification & Analysis</i>. London, PHI Publication. Stuart, Bennet.(1994). <i>Real Time Computer Control</i>. ,New Jersey: PHI Publication. 	
20	ELE 502, Discrete Time Signal	After completion of this course, students will be able to:		No Change in course contents.
	Processing	 Apply discrete-time signal processing techniques analysis to perform various signal operations. Apply the principles of Fourier transform 	Text Books:Recommended Books:1.J.G.Proakis and D.G.Manolakis, Digital Signal Processing : Principles, Algorithms and Applications, Third Edition, PH, 1996.1. Proakis, J.G.& Manolakis, D.G. (2014). Digital Signal Processing: Principles, Algorithms and Applications.New Jersey: Pearson Publication.2.I.J.Nagarath, S.N.Sharan, R.Ranjan2. (2009). Signals and Systems,	Deleted

Annexure IV (M.Tech. VLSI Design)

		 analysis to describe the frequency, and characteristics of discrete-time signals and systems. Understand the design techniques of various digital and analog filters. 	 and S.Kumar, Signals and Systems, TMH, 2001. 3. A.V.Oppenheim, R.W.Schafer and J.R.Buck, Discrete-Time Signal Processing, Second Edition, PH, 1998. 4. S.K.Mitra, Digital signal processing : A computer Based Approach, Second Edition,MH,2000. 	 New Delhi: TMH Publication. Oppenheim, A.V., Schafer, R.W., & Buck, J.R. (1998). <i>Discrete-Time Signal Processing</i>. New Jersey: PHI Publication. Suggested E-resources: Discrete Time Signal Processing by Prof. Mrityunjoy Chakraborty, Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105134/. Digital Signal Processing by Prof: S. C. Dutta Roy, Department of Electrical Engineering Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/117102060/. 	
21	VLSI 501, Advanced Digital Signals Processing	 After completion of this course, students will be able to: Modelling of random filter and identification of different parameters. Realization of Kalman filters and concept of spatial smoothing. Adaptive implementation of wiener filter and Adaptive noise cancelling. 	 Text Books: S.J.Orfanids, Optimum Signal Processing: An Introduction, Second edition, MacMillian/MH, 1988. (Out of Print) J.G.Proakis, C.M.Rader,F.Ling and C.I.Nikias, Advanced Digital Signal Processing,MacMillian,1992.(Out of Print) References Books: D.G.Manolakis, V.Ingle and S.Kogon, Statically and Adaptive Signal Processing, MH, 2000. J.G.Proakis, C.M.Rader, F.Ling, M.Moonen, I.K.Proudler and C.I.Nikias, Algorithms for Statistical 	 Recommended Books: 1. Orfanids, S.J. (1988). Optimum Signal Processing: An Introduction. New York: Collier Macmillan Publication. Suggested E-resource: 1. State space Models by Professor Anna Mikusheva Paul Schrimpf. https://ocw.mit.edu/courses//14/MI T14_384F13_lec21.pdf 2. Adaptive signal Processing by Prof. Mrityunjoy Chakraborty, Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105075/5 	No Change in course contents. Deleted

			Signal Processing, PH/Pearson, 2002.		
			3. J.V.Candy, Signal Processing, MH,1986.(Out of Print)		
			4. B.Mulgrew and C.F.Cowan,Adaptive Filters and Equalizers, Kulwer,1998.(Out of print)		
22	VLSI 502, Advanced Digital	After completion of this course, students will be able to:			No Change in course contents.
	System	• Formulate and solve	Text Books:	Recommended Books:	Deleted
	Design	problems in Digital Systems design.	1. Brian Holdworth & Clive Wood, "Digital logic Design" - Elsevier-2005.	1. Biswas, Nripendra.N. (2001) Logic Design theory. New Delhi: PHI Publication	
		• Knowledge about the properties of symmetric networks and apply	2. Nripendra N. Biswas, "Logic Design theory, "PHI, 2005.	 Kohavi, ZVI. (2010) Switching and Finite Automata theory. New York: Cambridge 	
		threshold logic on digital circuits.Analyze digital system	3. ZVI Kohavi, "Switching and Finite Automata theory", second edition, Tata Mcgraw Hill, 2001.	University Press. 3. Fletcher, William. I. (1997) An Engineering Approach to Digital Design.	
		design using PLD.	4. William I. Fletcher, "An Engineering Approach to Digital Design, PHI, 2003.	 New Delhi: PHI Publication. 4. Geiger, Randall. L., Phillip E. Allen., & Strader, Noel. R. (1989) VLSI Design 	
			5. Randall L. Geiger, Phillip E. Allen, Noel k strader, "VLSI Design	<i>Circuits</i> . Boston, Massachusetts: McGraw Hill Publication.	
			Techniques for Analog Digital circuits, "McGraw hill 1990	Suggested E-resources:	
			6 John E Warkerly "Digital Design	Roychoudhury Department of Computer	
			Principles & practices, III editions,	Science and Engineering Indian Institute	
			Pearson, education, 2005.	of Technology, Kharagpur.	
				2. Digital Systems Design with PLDs and	
				FPGAs Kuruvilla Varghese Department	
				of Electronic Systems Engineering Indian Institute of Science Bangalore	
				https://nptel.ac.in/courses/117108040/.	
23	VLSI 506,	After completion of this			No Change
	Design of	course, students will be able			in course
	Semiconduc	to:			contents.

tor Memory	 Know about architecture of semiconductor memories and methodologies adopted in data storage. Analyze the difference in volatile and non-volatile memory, and their building blocks. Know memory fault tolerance and testing methodology. 		 Recommended Books: 1. Betty, Prince. (1996). Semiconductor Memories: A Handbook of Design, Manufacture and Application. New York: Willey Publication. Suggested E-resources: 1. Design of memory circuits by Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105080/31. 	Added
24 VLSI 510, Embedded System	After completion of this course, students will be able to:	_		No Change in course contents.
Design	 Explain the challenges in the design of embedded system Describe the Hardware and Software Tools for Embedded System Describe the Features of OS and language for Embedded System 	 Text Books: W. Wolf, Computers as Components: Principles of Embedded Computer System Design, Morgan Kaufmann, 2000. F.Vahid and T.D Givargis, Embedded System Design : A unified Hardware/ software Introduction ,Wiley.2002. Reference Books: S.Health, Embedded System Design, Second Edition Butterworth- Heinemann, 2002 D. Patterson and J. Hennessy .Computer Organization and Design: The Hardware/software Interface, Second Edition ,Morgan Kauffman ,1997 A.S.Berger, Embedded System Design : An Introduction to Processes ,Tools	 Recommended Books: 1. Wolf, M. (2012). Computers as components: principles of embedded computing system design. Elsevier. 2. Vahid, F., & Givargis, T.D.(2002) Embedded System Design:A unified Hardware/ software Introduction. New Jersey: Wiley Publication. 3. Gannsle, J. (2008) The Art of Designing Embedded System. New Delhi: Newnes Publication. 4. Staunstrup, J.,& Wolf,W. (1997) Hardware /software Codesign: Principles and Practice. Boston, Massachusetts: Springer Publications. 5. Gajski, D.D., Vahid, F., Narayan, S., & Gong, j. (2007). Specification design of Embedded System. New Delhi: Pearson Education India. Suggested E-resources: 1. Embedded Systems - Shape The World: Microcontroller Input/Output by The University of Texas at Austin 	Deleted

			 4. 5. 6. 7. 8. 9. 10. 	 and technique. CMP Books, 2001. J. Gannsle, The art of Designing Embedded System ,Newnes. 1999. L. Edwards, Embedded System Design on a Shestring ,Newnes .2003 J. Catsoulis. Designing embedded Hardware, ORA,2002 J. Labrosse, Embedded System Building Blocks .CMP Books ,1999. J. Staunstrup and W.Wolf, Hardware /software Codesign: Peinciples and Practice, Kluwer 1997. D.D.Gajski.F.Vahid ,S.Narayan and j.gong ,specification and Design of Embedded System ,PH/Pearson, 1994. G.de Micheli, R.Ernst and W.Wolf ,Reading in Hareware/software 	2.	(UTAustinX), https://www.edx.org/course/embedded- systems-shape-the-world-microcontroller- inputoutput Embedded Systems by Georgia Tech as CS, 8803 https://in.udacity.com/course/embedded- systemsud169 Embedded System Design with ARM by Dr. Kamalika Datta Indian Institute of Technology, Kharagpur, https://onlinecourses.nptel.ac.in/noc19_cs 22/preview	
25	VLSI 511, Fault Tolerance in VLSI	 After completion of this course, students will be able to: Diagnose and measure different type of Faults. Explain the detection, correction techniques and fault-tolerant networks Analyze fault tolerance strategies and enhance capabilities about applications of fault tolerant designs in arithmetic units and systems. 	Refer 1. 2. 3.	rence Books: Victor P. Nelson and Bill D. Carroll, Tutorial: Fault-Tolerant Computing, IEEE Computer Society Press, 1987, ISBN: 0-8186-06770 D.K. Pradhan (ed.), Fault Tolerant Computer System Design, Prentice- Hall, 1996. D.P. Siewiorek and R.S. Swarz, A.K. Peters, Reliable Computer Systems: Design and Evaluation, 1998.	R (1). 2. 3.	 Commended Books: Nelson, Victor. P.,&Carroll, Bill. D. (1987). <i>Tutorial: Fault-Tolerant Computing</i>, Maryland: IEEE Computer Society Press. Pradhan, D.K. (1996). <i>Fault Tolerant Computer System Design</i>. New Jersey: PHI Publication. Johnson, B.W. (1989) <i>Design and Analysis of Fault-Tolerant Digital Systems</i>. Boston, Massachusetts: Addison-Wesley. 	No Change in course contents. Deleted

		• Explain the basic mechanisms of fault- tolerance methods and fault tolerant computer systems.	 B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems, Addison-Wesley, 1989 	 Suggested E-resources: 1. VLSI Design Verification and Test by Prof. Jatindra Kumar Deka and Dr. Santosh Biswas, Department of CSE, IIT Guwahati.https://nptel.ac.in/courses/106 103016/ 	
26	VLSI 513, High Level System Design and Modeling	 After completion of this course, students will be able to: Understand describing a system Understand about information system and models Understand system analysis and system design 	 Books:- Embedded System Design- Modeling, Synthesis, Verification by Dainel D.Gajaski, Samer Abdi Springer. Specification and Design of Embedded Systems by Daniel D. Gajski, PTR Prentice Hall Englewood New Jersey 	 Recommended Books: 1. Dainel D.Gajaski., & Abdi, Samer. (2009). Embedded System Design- Modeling, Synthesis. New York: Springer Publication. 2. Daniel D. Gajski. (1994). Specification and Design of Embedded Systems. New Jersey: PHI Publication. 	No Change in course contents.
27	VLSI 514, High Power Semiconduc tor Devices	 After completion of this course, students will be able to: Get knowledge of power semiconductor devices under extreme operation conditions like high voltage, high current and high temperature which are encountered under typical power electronic environment. Understand knowledge developed from this, will help in designing power devices with desired specifications. Get knowledge of VMOS, CMOS, DMOS Devices. 	 Texts/References Book: S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 1981 	 Recommended Books: 1. Sze, S.M. (1981). Physics of Semiconductor Devices. New York: Wiley Publication. Suggested E-resources: 1. Basic Device models by Prof. Roshan Bhosh Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105084/. 2. Semiconductor Device Modeling by Prof. Shreepad Karmalkar Department of Electrical Engineering Indian Institute of Technology-Madras, https://nptel.ac.in/courses/117106033/. 	No Change in course contents.

28	VLSI 515, High Speed VLSI	After completion of this course, students will be able to:			No Change in course contents.
	Design	 Design Clocked logic styles non clocked logic styles. Understand knowledge of circuit designing margining. Get knowledge of Clock generation and distribution. 	 Kerrence Books: Kerry Bernstein & et. al., High Speed CMOS Design Styles, Kluwer, 1999. Evan Sutherland, Bob stroll, David Harris, Logical Efforts, Designing Fast CMOS Circuits, Kluwer, 1999. David Harris, Skew Tolerant Domino Design. 	 Recommended Books: Bernstein, Kerry. (1999). High Speed CMOS Design Styles. New Jersey: Kluwer Academic Publishers. Sutherland, Evan., Stroll,Bob.,& Harris, David.(1999) Logical Efforts, Designing Fast CMOS Circuits. Boston, Massachusetts: Kluwer Academic Publishers. Harris, David.(2000). Skew Tolerant Domino Design. New Delhi: Elsevier. High Speed Devices and Circuits by Prof. K. N. Bhat Department of Electrical Engineering Indian Institute of Technology, Madras. https://nptel.ac.in/courses/117106089/ CMOS VLSI Circuit by Prof. A. N. Chandorkar Department of Electrical Engineering Indian Institute of Technology, Bombay. 	
29	VLSI 517, Integrated Electronic	After completion of this course, students will be able to:	_		No Change in course contents.
	System Design	 Understanding, gathering and processing of electronics system through basic Motherboard, PCB and IC technologies. Design their own circuits based on the knowledge learnt from class. Get the opportunity to become proficient in using 	 Text Books: 1. W.J.Dally and J.W.Poulton, Digital System Engineering, CUP, 1998. 2. N.Storey, Electronics: A System Approach, AW/Pearson, 1998/2000. 3. S.D.Burd, System Architectures, Thomson, 2001. Reference Books: 	 Text Books: Burd, S.D. (2001). System Architectures. New Delhi: Thomson learning Publication. Cady, F.M. (2009) Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering. New York: Oxford University Press. Predko, M. (1998) Handbook of Microcontrollers. New York: McGraw- 	Deleted

		the 8051 microcontroller for circuit modeling and analysis.	 G.Lipovski, Introduction to Micro- Controllers (MC 68HC12), AP, 1999. G.Lipovski, Single and Multi-Chip Micro-Controller Interfacing (MC 68HC12), AP, 1999. F.M.Cady, Microcontrollers and Microcomputers: Principles of Software and Hardware Engineering, OUP, 1997. M.Predko, Handbook of Microcontrollers, MH, 1998. 	 Hill. Suggested E-resources: 1. Microprocessors and Microcontrollers by Prof. Santanu Chattopadhyay Department of E & EC Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/108105102/23 2. Principles of Communication Systems - Part II by Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/108104098/7 	
30	VLSI 518, Introductio n to MEMS	 After completion of this course, students will be able to: Be familiar with the important concepts applicable to MEMS, their fabrication. Be fluent with the design, analysis and testing of MEMS. Get knowledge of micro fabrication, micro actuators and surface micromachining and applications. 	 Text & References Books: Stephen D. Senturia, "Microsystem Design" by, Kluwer Academic Publishers, 2001. Marc Madou, "Fundamentals of Microfabrication" by, CRC Press, 1997. Gregory Kovacs, "Micromachined Transducers Sourcebook" WCB McGraw-Hill, Boston, 1998. MH. Bao, "Micromechanical Transducers: Pressure sensors, accelrometers, and gyroscopes" by Elsevier, New York, 2000. 	 Recommended Books: Senturia, Stephen. D. (2001) Microsystem Design. Norwell, Massachusetts:Kluwer Academic Publishers. Madou, Marc.(1997). Fundamentals of Microfabrication. California: CRC Press. Kovacs, Gregory. (1998) Micromachined Transducers Sourcebook. Boston, Massachusetts: WCB McGraw- Hill Publication. Bao, MH. (2000). Micromechanical Transducers: Pressure Sensors, Accelerometers, and Gyroscopes. New York: Elsevier Publication Suggested E-resources: MEMS and Microsystems Prof. Santiram Kal Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur. https://nptel.ac.in/courses/117105082/4 	No Change in course contents.

31	VLSI 519,	After completion of this		2. Microsensors by Prof. G.K. Ananthasuresh, Department of Mechanical Engineering Indian Institute of Science Bangalore. https://nptel.ac.in/courses/112108092/mo dule1/lec03.pdf	No Change
	Low Power	course, students will be able			in course
	VLSI	to:			contents.
	Design	 Learn the design techniques low voltage and low power CMOS circuits for various applications. Design and implementation of various design structures of flip flop for low power applications. Design the different types of memory circuits and various CMOS static and dynamic logic circuits Understand the mechanisms of power estimation and datapath width adjustment 	 Text and Reference Books: M. Pedramand J. Rabaey (Editors), Power Aware Design Methodologies, Kluwer Academic Publishers, Boston, 2002 Sung - Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated circuits- Analysis and Design", TMH, 3rd Edition. 	 Recommended Books: Roy, Kaushik. & Prasad, Sharat. C. (2009). Low Power CMOS VLSI Circuit Design. Dublin: Willey Publications. Pal, Ajit. (2015). Low Power VLSI Circuits and Systems. New Delhi: Springer Publications. Pedramand, M.,& Rabaey, J.M.(2002) Power Aware Design Methodologies. Boston, Massachusetts: Kluwer Academic Publishers. Kang, Sung – Mo., & Leblebici, Yusuf. (2002). CMOS Digital Integrated circuits- Analysis and Design. New Delhi: TMH Publications. Suggested E-Resources: Low Power VLSI Circuits and Systems by Prof. Ajit Pal, Department of Computer Science and Engineering, IIT Kharagpur. https://nptel.ac.in/syllabus/106105034/ 	Added
32	VLSI 520,	After completion of this			No Change
	Nanoelectro	course, students will be able	—		in course
	mes	• Get knowledge in	Reference Books:	Recommended Books:	Deleted
		 electronics has been driven by miniaturization. Understand CMOS and MOSFET scaling, 	 Introduction to Nanotechnology, C.P. Poole Jr., F.J. Owens, Wiley (2003). Nanoelectronics and Information Technology (Advanced Electronic 	 Poole , C.P., & Owens, F.J. (2003). Introduction to Nanotechnology. New York: Wiley Publications. Waser, R. (Ed.). (2012). Nanoelectronics 	

		• Understand the electronic properties of molecules, carbon nanotubes and crystals.	 Materials and Novel Devices), Waser Ranier, Wiley-VCH (2003) 3. Nanosystems, K.E. Drexler, Wiley (1992) 4. The Physics of Low-Dimensional Semiconductors, John H. Davies, Cambridge University Press, 1998 5. Research Papers 	 and information technology. John Wiley & Sons. 3. Drexler, K.E. (1992). Nanosystems. New York: Wiley Publications. 4. Davies, John. H. (1998). The Physics of Low-Dimensional Semiconductors. New York: Cambridge University Press. Suggested E-resources: 1. Nanostructures and Nanomaterials: Characterization and Properties by Prof. Anandh Subramaniam and Prof. Kantesh Balani Department of Materials Science & Engineering Indian Institute of Technology, Kanpur. https://nptel.ac.in/courses/118104008/ 2. Nanoelectronics: Devices and Materials by Prof. Navakanta Bhat Centre for Nano Science and Engineering Indian Institute of Science, Bangalore. http://textofvideo.nptel.ac.in/117108047/l ec1.pdf 	
33	VLSI 523, Representat ion and Analysis of Random Signals	After completion of this course, students will be able to: • understand the theory and application of probability, random variables and random processes • understand to study and analyze analytical expression	 Text Book: Michel .K Ochi, Applied Probability and Stochastic Processes in Engineering and Physical Sciences, Wiley, 1992. Reference Books: A. Papoulis, Probability, Random Variables and Stochastic Processes, MH, 1985. K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Application, PH, 1982. 	 Recommended Books: 1. Ochi, Michel .K. (1990) Applied Probability and Stochastic Processes in Engineering and Physical Sciences. New York: Wiley Publications. 2. Papoulis, A. (2002). Probability, Random Variables and Stochastic Processes. New York: TMH Publications. 3. 2. Trivedi ,K.S. (2001). Probability and Statistics with Reliability, Queuing and Computer Science Application. New York: Wiley Publications. 	No Change in course contents.

34	VLSI 526, Speech Signal	After completion of this course, students will be able to:	_		No Change in course contents.
	Processing	 Describe the fundamentals of digital speech processing and digital model for speech signal process. Illustrate and analyze the time domain model and Fourier representation for speech processing. Explain basic principles of LPC equations and solutions. 	 L.R.Rabiner and R.W.Schafer, Digital Processing of Speech Signals, PH, 1978. C.Plett, J.W.M.Rogers and M.A.Copeland, Radio Frequency Integrated Circuit Design,Artech,2003 R.E.Best, Phase-Locked Loops: Design, Simulation and Application , Fifth Edition,MH,2003 D.H.Wolaver, Phase-locked Loop 	 Recommended Books: Rabiner, L.R., & Schafer, R.W. (1978). Digital Processing of Speech Signals. New Delhi: PHI Publications. Plett, C.,Rogers, J.W.M., &Copeland, M.A. (2003). Radio Frequency Integrated Circuit. New Jersey: Design Artech House Publishers. Best, R.E. (2003). Phase-Locked Loops: Design, Simulation and Application. New York: TMH Publication. Deller, J.R., HansenJ.H.L., & Proakis, J.G. (1999). Discrete-time processing of Sneech Signals. New York: Wiley-IEEE 	Deleted
			Circuit Design, PH, 1991. Reference Books: 1. J.R. Deller ,J.H.L .Hansen and J.G. Proakis, Discrete-time Processing of Speech signals,Wiley/IEEE,2000.	 Press. 5. Quatieri, T.F. (2001). Discrete-Time Speech Processing: Principles and Practices. Massachusetts: PHI Publications. Suggested E-resource: 	
			2. T.F. Quatieri, Discrete-Time Speech Processing: Principles and Practices, PH, 2001.	 Digital Speech Processing by Prof. S. K. Das Mandal Centre for Educational Technology Indian Institute of Technology, Kharagpur .https://nptel.ac.in/courses/117105145/19 	
35	Photonics Integrated Circuits	 After completion of this course, students will be able to: Describe the optical waveguides and optical couplers with the help of coupled mode theory 		Section A Optical Waveguide Modes, Planar Waveguides, Symmetric and Asymmetric, Slab and channel waveguides, Optical Couplers: Prism Couplers, Gräting Couplers, Tapered Couplers, Fiber to Waveguide Couplers, Multilayer Planar Waveguide Couplers, Dual-Channel Directional	New Course Added as elective.

• Explain the basic operating	Couplers, Coupled-Mode Theory.	
mechanisms of optical	Section B	
switches and modulators		
• Identify the performance	Electro-Optic Modulators: Basic Operating	
limiting factors and	Characteristics of Switches and Modulators.	
applications of integrated	The Electro-Optic Effect, Single-Waveguide	
optics	Electro-Optic Modulators. Dual-Channel	
	Waveguide Electro-Optic Modulators.	
	Acousto-Optic Modulators: Acousto-Optic	
	Effect, Raman-Nath-and Bragg Type	
	Modulators, Acousto-Optic Frequency	
	Shifters.	
	Section C	
	Distributed-Feedback Lasers: Theoretical	
	Considerations and performance	
	characteristics. Integrated Optical Detectors:	
	Depletion Laver Photodiodes. Specialized	
	Photodiode Structures, Techniques for	
	Modifying Spectral Response, performance	
	limiting factors. Applications of Integrated	
	Optics and Current Trends: Opto-Electronic	
	Integrated Circuits and future projections.	
	Recommended Books:	
	1. Hunsperger, Robert. G. (1995).	
	Integrated Optics Theory and	
	Technology. Berlin, New York: Springer.	
	2. Nishihara, Hiroshi. Haruna,	
	Masamitsu., & Suhara, Toshiaki. (1989).	
	Optical integrated circuits. New York:	
	McGraw-Hill Publication.	
	3. Reed, Graham. T., & Knights, Andrew. P.	
	(2004). Silicon photonics: An	
	Introduction. New York: John Wiley &	
	Sons.	
	4. Tamir, T.(1990). Guided wave Opto-	
	electronics. Berlin, Heidelberg: Springer.	
	Suggested E- resource:	

			1. Photonic Integrated Circuits by Dr.	
			Srinivas Talabatulla, Department of	
			Electronics & Communication	
			Engineering, IISc, Bangalore.	
36	VLSI 601R.	Section A	This course expose students to the advanced	
	High Level	Introduction: Level of Abstraction Need for	HDL design techniques, methodology and	
	Synthesis	Design Automation on Higher Abstraction	industrial standard EDA tools in electronic	
		Levels, Essential issues in Synthesis.	design. This course also discusses the new	
		Architectural Models in Synthesis.	ideas and techniques in high level synthesis,	
		Combinational Logic, Finite State Machines.	model, and guidelines for HDL design.	
		Quality Measures: Area and Performance	Students will be expected to explore design	
		measures. Other Measures.	methodology for high level synthesis, chip	
		Section B	synthesis and physical design methodology.	
		Design Description Language: HDLs,		
		Hardware Specific Features, Formats, HDLs		
		for DSP,		
		Simulation Based HDLs, Modeling Guidelines for HDLs		
		Design Representation and Transformations: Partitioning Scheduling Allocation		
		Section C		
		Design Mathedalagus fan High Laurel		
		Synthesis: Generic Synthesis System		
		Synthesis, Chip Synthesis, Logic and		
		Sequential Synthesis, Physical-Design		
		Methodology, System and component		
		Databases, Conceptualization Environment.		
		High Level Synthesis of ASICs.		
		High-Level Synthesis for Real-Time Digital		
		Signal Processing.		
		Text and Reference Books:	Suggested E- resources:	
		1. Daniel D. Gajski, Nikil D. Dutt, Alien	1. High level Synthesis by IIT Guwahati.	
		C-H Wu, Steve Y-L Lin And High-	2. Synthesis of Digital Systems byDr.	
<u> </u>		Level Synthesis: Introduction to Chip		

	 and System Design, Kluwer Academic Publishers. Wayne Wolf, High-Level VLSI Synthesis, Raul Camposano, Kluwer Academic Publishers. David C. Ku, Giovanni de Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints, Kluwer Academic Publishers Jan Vanhoof, Karl Van Rompaey, Ivo Bolsens, Gert Goossens, Hugo De Man, High-Level Synthesis for Real- Time Digital Signal Processing, The CATHEDRAL-11 Silicon Compiler, Kluwer Academic Publishers. 	Preethi Ranjan Panda, Department of Computer Science & Engineering, Indian Institute of Technology, Delhi. https://nptel.ac.in/courses/106102181/7	
37 VLSI 604R, VLSI Testing and Design for Testability	SECTION-A Physical defects and their modeling; stuck at faults; Bridging Faults; Fault collapsing Fault Simulation Deductive, Parallel and Concurrent; Critical Path Tracing; Test Generation for Combinational Circuits : D- Algorithm, Boolean Difference, PODEM Random, Exhaustive and Weighted Random Test Pattern Generations Aliasing and its effect on Fault coverage SECTION-B PLA Testing: cross-point Fault Model, Test Generation, easily testable design, Memory testing: Permanent Intermittent and Pattern Sensitive Faults; Delay Faults and Hazards; Test Generation Techniques	The course attempts to expose the students to the most recent, yet fundamental, VLSI test principles in an effort to help them design better quality products that can be reliably manufactured in large quantity. The course explores the issue related to the physical defects, test generation technique for combinational and sequential circuits, controllability and obeservability and redundancy.	

		SECTION-C		
		Test Generation for Sequential Circuits: Time Frame Expansion;		
		Controllability and Obeservability Scan Design.Scan path and LSSD, boundary Scan, BILBO, Bounday Scan For Board Level Diagnosis.		
		Concept of Redundancy, spatial redundancy. Time redundancy.		
		 References: M. Abramovici, M.A. Breuer and R.D. Friedman, Digital Systems Testing and Testable Design, Revised Edition, IEEE Press, 1995. V. Agarwal and S. C. Seth, Test Generation for VLSI Chips, IEEE CS Press, 1989. E. J. McCluskey, Logic Design Principles, Prentice Hall, 1986. 	 Suggested E- resources: 1. Digital VLSI Testing by Prof. Santanu Chattopadhyay Department of Electronics and Electrical Communication Engineering, IIT Kharagpur. https://onlinecourses.nptel.ac.in/noc17_ec 02/preview. 2. Testing and Verification of VLSI Circuits by Prof. Virendra Singh IIT Mumbai. https://www.ee.iitb.ac.in/~viren/Courses/ 2012/EE709.htm 	
38	Advanced Electronic Packaging		This course is designed to equip students with the required knowledge and concepts in mechanical, thermal, and reliability concern of modern electronic packaging. Emphasis is on IC packaging performance and its achievement through the proper material selection. The course will explore the multichip module, electrical autonomy IC assembly, challenges in the electronic packaging, and can recognize the various methods available and selection of appropriate packaging solution for particular applications. Suggested e-resource: 1. An Introduction to Electronics Systems	

		Packaging by IISC Bangalore.
39	Compound	This course provides students with the basic
	Semiconduc	understanding of Non-Silicon MOSFET
	tor	technology. The students should be able to
	Technology	use properties and trade-offs of compound
		semiconductors (GaAs, InAs, InP and InSb)
		for design of high performance MOSFETs.
		The students will be able to explain the
		challenges and power performance of
		dielectric based MOSFETS, students should
		also be able to discuss the Future Scaled
		CMOS and hybrid CMOS technology.
		Suggested e-resources:
		1. Nanoelectronics: Devicesand
		Materialsby Prof. K. N. Bhat Centre for
		Nano Science and Engineering.
		https://nptel.ac.in/courses/11/10804//28.
		2. Compound Semiconductor Devices by Prof C G Fonstad MIT USA
		https://ocw.mit.edu/courses/electrical-
		engineering-and-computer-science/6-772-
		compound-semiconductor-devices-
		spring-2003/lecture-notes/.
40	Digital	This course provides an introduction to basic
	Image	concepts, methodologies and algorithms of
	Processing	digital image processing focusing on image
		analysis and image enhancement and
		The course provides overview of digital
		image processing including visual perception.
		Image Digitization, Basic Transformations,
		Interpolation and Resampling, Image
		Interpolation, Image Transformation, Image
		Enhancement, Image Segmentation,
		Morphology, Object Representation and
		Description, object Recognition etc. The
		course focuses on to create an ability in

	students to analyze a problem in this domain and identify the computing requirements appropriate for its solution; an ability to design, implement and evaluate a computer- based system, process, component or program to meet desired needs. Suggested e-resource: 1. Digital Image Processing by Prof .P. K. Biswas, IIT Kharagpur. https://nptel.ac.in/courses/117105079/	
Organic lectronic Devices	Organicelectronicdevicesarequicklymaking their way into the commercial world, with innovative thin mobile devices, high- resolution displays, and photovoltaic cells. Purpose of the course is to learn about this highly promising technology, which is based on small molecules and polymers, and to discuss how these materials can be implemented successfully in established organic electronic modules. In this course students will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well- prepared to analyse troubleshoot, and design the next generation of organic electronic materials and devices.Suggested e-resources: I. Organic Electronic Devices by Dr. Bryan W. Boudouris, Purdue University. https://www.edx.org/course/organic- electronic-devices-purduex-nano515x	

Annexure V

Name of Programme: B.Sc.

Disciplinary Course-Physics

Programme Educational Objectives:

- > To provide necessary knowledge and leadership skills for a successful professional career.
- > To enhance learning and to adapt in a world of constantly evolving and innovative electronics technology.
- > To develop the ability to collaborate with others to solve problems with creative thinking and effective communication.

Programme Outcomes: On completion of the B.Sc. the student will be able to

- > Apply knowledge of mathematics and science.
- > Understood the basic concepts, fundamental principles, and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
- > Acquire the skills in handling scientific instruments, planning and performing in laboratory experiments.
- Think creatively (divergently and convergent) to propose novel ideas in explaining facts and figures or providing new solution to the problems. Realized how developments in any science subject helps in the development of other science subjects and vice-versa and how interdisciplinary approach helps in providing better solutions and new ideas for the sustainable developments.
- > Realized that knowledge of subjects in other faculties such as humanities, performing arts, social sciences etc. can have greatly and effectively influence which inspires in evolving new scientific theories and inventions.
- > Imbibed ethical, moral and social values in personal and social life leading to highly cultured and civilized personality. Developed various communication skills such as reading, listening, speaking, etc.
- > Function with multidisciplinary teams.

Programme Scheme:

B.Sc. (Mathematics) Semester - I (December, 2019) Disciplinary Course-Physics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
PHY 103	Electricity and Electronics	6	0	0	6	PHY 103	Electricity and Electronics	6	0	0	6
PHY 104L	Electronics Lab	0	0	4	2	PHY 104L	Electronics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - II (April/May, 2020)

Disciplinary Course-Physics

	Existing Scheme						Proposed Scheme				
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
PHY 107	Optics	6	0	0	6	PHY 107	Optics	6	0	0	6
PHY 107L	Optics Lab	0	0	4	2	PHY 107L	Optics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - III (December, 2020) Disciplinary Course-Physics

	Existing Scheme					Proposed Scheme				
Course Code	Course Name	L	Т	Р	C Course Code	Course Name	L	Т	Р	С
PHY 201	Mechanics	6	0	0	6 PHY 201	Mechanics	6	0	0	6
PHY 201L	Mechanics Lab	0	0	4	2 PHY 201L	Mechanics Lab	0	0	4	2
	Total	6	0	4	8	Total	6	0	4	8

B.Sc. (Mathematics) Semester - IV (April/May, 2021) Disciplinary Course-Physics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
РНҮ 203	Statistical and Mathematical Physics	6	0	0	6		Thermodynamics, Statistical and Mathematical Physics	6	0	0	6
PHY 202L	Physics Lab	0	0	4	2		Physics Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - V (December, 2021)

Disciplinary Course-Physics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
5.1	Quantum Atomic Molecular Physics						[*] Discipline Elective-I	6	0	0	6
	Atomic Physics Lab						* Discipline Elective-I Lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

B.Sc. (Mathematics) Semester - VI (April/May, 2022) Disciplinary Course-Physics

	Existing Scheme	Proposed Scheme									
Course Code	Course Name	L	Т	Р	С	Course Code	Course Name	L	Т	Р	С
6.1	Nuclear and Solid State Physics						*Discipline Elective-II	6	0	0	6
	Nuclear and Solid State Physics Lab						* Discipline Elective-II lab	0	0	4	2
	Total	6	0	4	8		Total	6	0	4	8

Discipline Electives

S. No.	Course code	Name of Course	L	Т	Р	С
1.		Quantum Mechanics and Spectroscopy	6	0	0	6
2.		Quantum Mechanics and Spectroscopy Lab	0	0	4	2
3.		Advance Quantum Mechanics	6	0	0	6
4.		Advance Quantum Mechanics Lab	0	0	4	2
5.		Nuclear and Solid State Physics	6	0	0	6
6.		Nuclear and Solid State Physics Lab	0	0	4	2
7.		Advanced Semiconductor Devices	6	0	0	6
8.		Advanced Semiconductor Devices lab	0	0	4	2

Note: Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, V or VI with prior permission of respective heads, time table permitting.

L - Lecture hrs/week; T - Tutorial hrs/week; P-Project/Practical/Lab/All other non-classroom academic activities, etc. hrs/week; C- Credit Points of the Course

Course Details:

S. N.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
<u>S. N.</u> 1.	Course List PHY103 Electricity and Electronics	 Learning Outcome After completion of this course, dthe students will be able to- learn fundamentals and concepts of electricity and electronics learn about the basic concepts of electronic and electrical circuit analysis techniques apply the above motioned concept to design a range of electronic devices and circuit configurations. 	Existing SyllabusRecommended Books:1.Tayal D C (2005) Electricity and Magnetism2.Saxena M. P. (1997) Electricity and Magnet3.Bhargava N N (2000), Basic Electronic, Tata4.Mehta V.K.(2002), Principles of Electronics,References Books:1.Sadiku Mathew N.O.(2005) Elements of Electronics2.Purcell, E. M. (1963). Berkeley physics cour3.Millman, J., & Halkias, C. C. (1972). IntegMcGraw-Hill.Suggested web-resources:https://www.coursera.org/browse/physical-schttps://www.edx.org/learn/electronics	Suggested Syllabus , Himalaya Publishing House. ism, College Book House. McGraw Hill. S. Chand publisher. ctromagnetics, New Delhi, Oxford Univ. Press se. Electricity and magnetism. prated electronics: analog and digital circuits and systems.	Remarks No change in the entire course Update e-Resources

2.	PHY 104L	After completion of this course, 1. Determine the energy gap using junction diode	1. Determine the energy gap using junction diode	50 % of the syllabus deals with
		the students will be able to- 2. Study the characteristics of junction diode and	2. Study the characteristics of junction diode and zener	electricity and electromagnetism so
		• demonstrate laboratory zener diode	diode	experiment no. 11 and 12 is removed
		skills in physics 3. Study the voltage regulation and ripple factor of	3. Study the voltage regulation and ripple factor of half and	from the existing list and 4 new
		laboratory and analyzehalf and full wave rectifier	full wave rectifier	experiment is introduced in proposed
		the measurements to 4. Study the bridge rectifier with filters	4. Study the bridge rectifier with filters	list.
		draw valid conclusions. 5. Study the characteristics of PNP/NPN junction	5. Study the characteristics of PNP/NPN junction transistor	
		• have oral and written transistor	6. Study the characteristics of FET	
		scientific communication, 6. Study the characteristics of FET	7. Study a voltage multiplier circuit to generate high voltage	
		and to think critically and 7. Study a voltage multiplier circuit to generate	DC from AC	
		work independently. high voltage DC from AC	8. Study the characteristics of optoelectronic devices (LED,	
		• to understand principles 8. Study the characteristics of optoelectronic	Photodiode and Phototransistor)	
		of law of electricity devices (LED, Photodiode and Phototransistor)	9. Study the OPAMP in (i) inverting mod (ii) noninverting	
		9. Study the OPAMP in (i) inverting mod (ii)	mod (iii) integrator (iv) differentiator	
		noninverting mod (iii) integrator (iv) differentiator	10. Study AND, OR, NOT, NOR and NAND logic gates and	
		10. Study AND, OR, NOT, NOR and NAND logic	verify the truth tables	
		gates and verify the truth tables	11. Study of electromagnetic induction by oscillation of bar	
		11. Study the voltage gain and frequency response	magnet.	
		of a double stage RC coupled transistor amplifier	12. Mutual induction by direct method.	
		12. Study the characteristics of a thermistor	13. Verification of Faraday's law and Lenz's law.	
			14. B-H Curve using Magnetometer.	
			15. To determine Self Inductance of a Coil by Anderson's	
			Bridge using AC	
			16. To determine Self Inductance of a Coil by Rayleigh's	
			Method.	
			17. Determination of mutual inductance of a pair of coils	
			using BG.	

3.	PHY 107	After completion of this course, Re	ecommended Books:	No
	Optics	the students will be able to-		change in the entire course
		• appreciate the efficacy of 1.	Khandelwal D.P. (1973), Text book of optics and Atomic Physics, Pub. Shivlal Darwal, Agra.	
		Fourier transforms and 2 .	Lal B. & Subramanium (2006), Optics by Brij Lal and Subrahmanium, S. Chand Publication.	Update e-Resources
		physical systems. 3.	Ghatak, A., & Thyagarajan, K. (1998). An introduction to fiber optics. Cambridge university press.	
		• understand the role of the ⁴ . wave equation and	Ghatak, A. K. (1971). An introduction to modern optics. An introduction to modern optics., by Ghatak, AK. New York, NY (USA): McGraw-Hill.	
		appreciate the universal \mathbf{Re}	eference Books:	
		nature of wave motion in a range of physical ¹ .	Ghatak, A. K. (2012). Contemporary optics. Springer Science & Business Media.	
		systems 2.	Hecht, J., & Long, L. (1993). Understanding fiber optics (Vol. 3). Prentice Hall.	
		• understand dispersion in _{3.}	Cherin, A. H., & Short, L. (1983). An introduction to optical fibers (p. 135). New York: McGraw-Hill.	
		dispersion using Fourier ⁴ .	Hecht E (2006) Optics, Pearson Education.	
		theory. 5.	Ghatak, A. K., & Thyagarajan, K. (1989). Optical electronics. Cambridge University Press.	
		• understand diffraction and		
		imaging in terms of Su	iggested web-resources:	
		Fourier optics and gainhtt	tps://www.coursera.org/courses?query=optics	
		insight in a range of	tps://swayam.gov.in/courses/4906-july-2018-modern-optics	
		physics via the spatial		
		Fourier Transform.		

4.	PHY 107 L	After completion of this course,	No
	Optics Lab	the students will be able to-	change in the entire course
		• demonstrate laboratory	
		skills in physics	
		laboratory and analyze	
		the measurements to	
		draw valid conclusions.	
		• have oral and written	
		scientific communication,	
		and to think critically and	
		work independently.	
		• to understand principles	
		of Optics and wave nature	
		of light.	

5.	PHY 201	After completion of this course	,Recon	umended Books:	No
	Mechanics	the students will be able to-	1.	Saxena M. P. Rawat S S (2000) Mechanics, College Book House.	change in the entire course
		demonstrate proficiency	2.	Saxena M. P. Rawat S S (1997) Oscillations and Waves, College Book House.	
		in mathematics and the	e 3.	Mathur D. S. (2005) Mechanics, S. Chand publishing.	Update e-Resources
		needed for a proper	s 4.	Satya Prakash (2007) Waves & Oscillations, Kedar Nath Ram Nath publishing.	
		understanding of physics.	Refere	ence Books:	
		• show that they have	e 1.	Srivasatava P. K. (2006) Mechanics New Age International Publisher, Delhi.	
		learned laboratory skills enabling them to take measurements in a	2.	Alonso, M., & Finn, E. J. (1967). Fundamental university physics (Vol. 2). Reading, MA: Addison-Wesley.	
		physics laboratory and	3 .	Purcell, E. M. (1963). Berkeley physics course. <i>Electricity and magnetism, UC Berkeley</i> .	
		analyze the	e 4.	French, A. P. (1971). Vibrations and waves. CRC press.	
		 measurements to draw valid conclusions. have oral and writter scientific communication and think critically and work independently. 	v Sugge : <u>https://</u> <u>https://</u> <u>https://</u>	sted web-resources: /ocw.mit.edu/courses/physics/ /academicearth.org/physics/ /www.khanacademy.org/science/physics	

6.	PHY 201L	After completion of this course,		No
	Mechanics Lab	the students will be able to-		change in the entire course
		demonstrate laboratory	7	
		skills in physics	3	
		laboratory and analyze		
		the measurements to		
		draw valid conclusions.		
		• have oral and written		
		scientific communication,		
		and to think critically and		
		work independently.		
		• to understand principles		
		of Newtonian mechanics,		
		friction, and motion of		
		bodies.		

7.	PHY 203	After	completion of this course,	Recommended Books:	No change in the entire course
	Statistical and	the stu	dents will be able to-		contents, but the title of the
	Mathematical	•	understand the laws of	1. Zeemansky M.W. (1968) Heat and Thermodynamics, McGraw Hill, 5th ed.	course has been changed
	Physics		thermodynamics in their	2. Singhal, Agrawal Prakash (2007) Heat and Thermodynamics, Pragati Prakashan.	Undete e Deseuroes
			their physical	 Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre Jaipur. 	,
	New Proposed	•	state the thermodynamic	4. Rajput B S. (2005), Mathematical Physics, Pragati Prakashan.	
	Title-		potentials and recognize	Reference Books:	
	s, Statistical and		potential for application	1. Reif, F. (2009). Fundamentals of statistical and thermal physics. Waveland Press.	
	Mathematical		to a particular problem.	2. Holman, J. P. (1974). Thermodynamics McGraw-Hill. New York.	
	Physics	•	derive and state the	3. Lokanathan, S., & Gambhir, R. S. (1991). Statistical and Thermal Physics: an Introduction. Prentice Hall.	
			and Bose-Einstein	4. French, A. P. (2017). Special relativity. CRC Press.	
			distributions.	5. Arfken, G. B., & Weber, H. J. (1999). Mathematical methods for physicists, Elsevier.	
		•	know the key links	Suggested web-resources:	
			between thermodynamics	https://cosmolearning.org/courses/thermal-statistical-physics/	
			and statistical physics and	https://ocw.mit.edu/courses/physics/8-333-statistical-mechanics-i-statistical-mechanics-of-particles-fall-2013/video-	
			appry these to problems.	lectures/lecture-1-thermodynamics-part-1/	
				nups://programsandcourses.anu.edu.au/course/PHYS2020	

8.	PHY 202L	After completion of this course, I. the students will be able to-	Determine the mechanical equivalent of heat (J) 1. by using Calendar and Barn's constant flow	Determine the mechanical equivalent of heat (J) by using Experiment Ne Calendar and Barn's constant flow meter.	o. 6, 10, 11, 12 and proposed to
		demonstrate laboratory skills in physics ² . laboratory and analyze	To Determine the thermal conductivity of bad conductor (samples may be Glass or Ply Wood	To Determine the thermal conductivity of bad conductorstrengthen the (samples may be Glass or Ply Wood or Cardboard) using practices. Exp Lee's disc method	laboratory t. No. 9 and 10 in e have been
		the measurements to draw valid conclusions. 3.	or Cardboard) using Lee's disc method. Determine the melting point of given material	Determine the melting point of given material using removed due t platinum resistance thermometer.	o unmatched with
		• have oral and written scientific communication, ⁴ . and to think critically and	Plot thermo emf Vs temperature graph and find the inversion temperature and neutral5.	Plot thermo emit Vs temperature graph and find the inversion temperature and neutral temperature To determine the thermodynamic constant (C_p/C_v) using	
		 work independently. to understand principles⁵. of thermodynamic laws 	temperature To determine the thermodynamic constant5. (C_r/C_r) using Clement and Desorme's method 7	Clement and Desorme's method. To verify the Stefan's law by electrical method. To determine the value of stefan's constant	
		experimentally	Study of the variation of total thermal radiation. with temperature and verify the stefan's law.	Verify certain laws of probability. To determine the resistance per unit length of Carey Fosters	
		/. 3. 9 .	To determine the value of stefan's constant.Verify certain laws of probability.To study the RC transmission line.10.	resistance). Determination of the coefficient of linear thermal expansion	
		10	. To study the LC transmission line. . To determine the resistance per unit length of	() of the given sample. Compare and verification of (_{copper})<(_{brass})<(_{aluminum}).	
			a given wire (Unknown resistance).	constant by electrical method. Determine the resistance per unit length of bridge wire and	
			13.	then determine the temperature coefficient of Platinum resistance thermometer (PTR). To demonstrate Seebeck Effect with the help of	
				Thermocouple module.	

9.	5.1	After completion of this course, Ree	commended Books:	No change in the entire course
	Quantum Atomic	the students will be able to- 1.	Kakani S. L., Hemrajni C. (1995) Elementary Quantum Mechanics and Spectroscopy, College Book Centre Jaipur.	contents, but the title of the course has been changed
	Molecular Physics Quantum	 solve the Schrödinger equation for model systems of relevance within chemistry 2. 3. 	Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand. Raj Kumar (1997), Atomic and Molecular Spectera, Kedar Nath Ram Nath publisher.	Update e-Resources
	Mechanics and	and physics 4.	Rawat S. S. Singh Sardar (2000) Prarambhik Quantum Yantriki avam Spectroscopy, CBH publisher.	
	Spectroscopy	• describe many-electron atoms with the independent particle model 5.	Kakani S. L. Hemraj C (1994) Mathematical Physics and Special Theory of Relativity College Book Centre Jaipur.	,
		• describe the structure of the Ref	ference Books:	
		connections between the 1.	Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan.	
		properties of the elements and 2. their electron configurations	Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill.	a l
		• describe the bases bennid interaction between light and 3. matter and account for the	White, H. E. (1934). Atomic Spectra. New York-London: McGraw-Hill, 15, 132.	
		most common spectroscopic methods for studies of molecules in the IR and UV/Vis areas	ggested web-resources: ps://swayam.gov.in/course/4250-quantum-chemistry-spectroscopy-photochemistry ps://www.edx.org/course/quantum-mechanics-molecular-structures-utokyox-utokyo003x-1	
10.	5.2 Atomic Physics Lab	 After completion of this course,1 the students will be able to- demonstrate measurements skills in a physics laboratory analyze the measurement⁴ results to draw valid conclusions. have oral and written scientific communication,6 and think critically and work independently. 	Determine the value of Planck constant using1.Determine the value of Planck constant using Photo cell.Photo cell.2.Determine the value of Planck constant using solar cell.Determine the value of Planck constant using solar cell.3.Study the absorption spectrum of Iodine Molecule.Cell.3.Study the absorption spectrum of Iodine Molecule.Study the absorption spectrum of Iodine Molecule.4.Study the Franck Hertz experiment and determine the ionization potential of inert gas.Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method5.Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation methodMillikan's oil drop method.7.Determine the specific charge (e/m) using Millikan's oil drop method.Determine the specific charge (e/m) using Photo cell.9.To study the hydrogen spectrum and determination of Rydberg's constant.Determine the specific charge (e/m) using helical10. Verify the inverse square law using photocell.	Experiment Nos. 9 to 14 have been proposed to strengthen the laboratory practices. Experiment Nos. 9 to 12 in existing course have been removed from the existing experiments list due to unmatched with the theory course in the relevant semester.

			method.11. Determine the value of Planck constant using LED.9 Determine ballistic constant using constant12. To determine the unknown inductance of the coil (L)deflection method.using Anderson's bridge.10 Determine ballistic constant using condenser method.13. To determine the unknown capacitance using Desauty's bridge11 Determine unknown high resistance by leakage method.14. To obtain lande-g factor by ESR method.12 Determine the magnetic field using ballistic Galvanometer and search coil.To determine the workfunction of given metal by suitable method.
11.	Advanced Quantum Mechanics	 After completion of this course, the students will be able to- solve the Schrödinger equation for complex systems describe the structure of the periodic system and the connections between the properties of the elements and their electron configurations understand the effect of external parameters on the quantum systems 	Unit-1 Postulates of Quantum Mechanics, Planck's Quantum theory, Einstein's explanation, Compton Effect, Wave Particle Duality, de-Broglie waves, Electron Diffraction Experiment, Uncertainty Principle: Formulation and its applications, Bohr's principle of complementarity, Time dependent and time independent forms of Schrodinger's equation: need and justification Unit-2 Wave Function, its physical significance and properties, Schrodinger and Born interpretation, Probability Current Density, eigenvalues and eigenfunctions, degeneracy, parity and orthogonality of eigenfunctions, expectation values of dynamical variables-position, momentum, energy, Ehrenfest Theorem, Time independent schrodinger equation and stationary state solution, particle in one dimensional box: eigenfunctions and eigenvalues Unit-3 Discrete energy levels, generalization to three dimensions and degeneracy of levels, Potential step and rectangular potential barrier, Calculation of reflection and transmission coefficients, Alpha Decay, Square Well Potential Problem(attractive), Calculation of

transmission and reflection coefficients, Applications of Schrodinger Equation in Spherically symmetric systems: Rigid Rotator and Hydrogen Atom <u>Unit-4</u> Operators in quantum mechanics: Definition, Orthogonal	
Sets, Completeness, Eigen values and Eigenfunction, Operator Formalism, Commutation Algebra, Linear and Hermitian Operators, Commutativity and simultaneous	
eigenfunctions, Hilbert Space, Operators as matrix, Matrix form of wave equation, Schrodinger, Heisenberg and Interaction matrix representation, Dirac's Bra and Ket vectors, Direct Sum and product of Hilbert space,	
Co-ordinate and momentum representation <u>Unit-5</u> Approximation Methods: perturbation theory, motivation of approximation methods, Variational methods, WKB Approximation, Applications of Variational and WKB methods. Time dependent perturbation theory, Harmonic perturbation.	
 Recommended Books: 1. Singh K., Singh S. P. (2005) Elements of Quantum Mechanics, S. Chand. 2. Ghatak, A. & Lokanathan S. (2001) Quantum Mechanics (McMillan India Ltd.) 	
3. Sakurai J. J. (2005) Modern Quantum Mechanics (Pearson Education)	
 4. Griffiths D. (2006) Introduction to Quantum Mechanics (Pearson Education) 5. Bjorken J. D. and S. D. Drell (1997) Relativistic Quantum Mechanics (McGraw Hill) 6. Greiner, W and Bromley D. A. (2003) Relativistic Quantum Mechanics (Springer) 	

	Reference Books:	
	1. Ghatak, A. K., & Lokanathan, S. (2004). Quantum mechanics: theory and applications. Macmillan.	
	 Beiser, A. (1969). Perspectives of modern physics. McGraw-Hill series in fundamentals of physics, Tata McGraw-Hill. 	
	3. White, H. E. (1934). Atomic Spectra. New York- London: McGraw-Hill, 15, 132.	
	Suggested web-resources: https://swayam.gov.in/course/4250-quantum-chemistry- spectroscopy-photochemistry https://www.edx.org/course/quantum-mechanics-molecular- structures-utokyox-utokyo003x-1	
 12. 5.2 Advanced After completion of this course Quantum Mechanics Lab the students will be able to- demonstrate measurements skills in a physics laboratory analyze the measuremen results to draw valia conclusions. have oral and written scientific communication and think critically and work independently. 	 Determine the specific charge (e/m) using Thomson method. Determine the specific charge (e/m) using helical method. Study the hyperfine structure of spectral lines and Zeeman effect by constant deviation method Determine the electrical charge (e/m) using Millikan's oil drop method. To study the hydrogen spectrum and determination of Rydberg's constant. Verify the inverse square law using photocell. Determine the value of Planck constant using Solar cell. Study the Franck Hertz experiment and determine the ionization potential of inert gas. Determine the value of Planck constant using LED. To determine the workfunction of given metal by 	

13.	6.1		After	No		
	Nuclear Solid Physics	and State	the students will be able to- 1. Tayal D C (1992) N		1. Tayal D C (1992) Nuclear physics, Himalya Pub. House, Bombay.	change in the entire course
			e •	adents will be able to- account for interatomic forces and bonds have a basic knowledge of crystal systems and spatial symmetries account for how crystalline materials are studied using diffraction, including concepts like form factor, structure factor, and scattering	 Tayal D C (1992) Nuclear physics, Himalya Pub. House, Bombay. Kaplan, I. (1963). Nuclear physics, Oxford & IBH Pub. Pillai S O. (2005), Solid State Physics, New Age International. Singhal R. L. Alvi P. A. (2015) Solid State Physics, Kedarnath Ramnath, Meerut. eference Books: Singru, R. M. (1974). Introduction to experimental nuclear physics, Wiley Eastern Pvt. Ltd. Ghoshal S. N. (2006) Nuclear Physics by S. N., S. Chand. Kittel, C. (1976). Introduction to solid state physics (Vol. 8). New York: Wiley. Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics, Cornell University Saunders College	change in the entire course Update e-Resources
			•	understand the concepts Su of nuclear physics htt understand the elementaryht particles and theirht interactions	aggested web-resources: tps://swayam.gov.in/course/3817-solid-state-physics tps://nptel.ac.in/courses/115105099/ tps://ocw.mit.edu/courses/nuclear-engineering/	

14.	6.2 After completion of this course,						
	Nuclear and the students will be able to-						
	Solid State	•	demonstrate				
	Physics Lab		measurements skills in a				
			physics laboratory				
		•	analyze the measurement				
			results to draw valid				
			conclusions.				
		٠	have oral and written				
			scientific communication,				
			and think critically and				
			work independently.				
		٠	to understand the laws of				
			nuclear and solid state				
			physics				
15.	Advanced course, the students will	ve Unit-1					
-----	------------------------------------	--	--				
	Semiconductor able to-	Energy Bands, direct and indirect semiconductors,					
	Devices • understand t	effective mass, Intrinsic and Extrinsic semiconductors,					
	mechanism	of Occupation Probability and carrier concentration,					
	semiconductor devices	Temperature Dependence of carrier concentration, Fermi					
	• understand t	Level, Quasi Fermi Level, mobility and conductivity, Hall					
	applications	effect, four probe method of resistivity measurement					
	semiconductor devices	n <u>Unit-2</u>					
	routine life	Generation and Recombination of Charges, Diffusion,					
	• make advancement	n Continuity Equation, Injected Minority charge carriers,					
	these devices	potential variation within a graded semiconductor,					
		Schottky Junction and Ohmic Contact, pn junction diode,					
		Zener diode, Zener and avalanche breakdown, Tunnel					
		diode, Semiconductor Photodiode and Light Emitting					
		Diode					
		Unit-3					
		Avalanche Photodiode: Structure, Materials,					
		Characteristics and device performance					
		Bipolar Junction Transistor: Types, Current components,					
		CB,CC,CE configuration, Ebers-Moll model of transistors.					
		Concept of Load Line and Operating Point, Thermal					
		stability of transistor, Fixed Bias, Emitter Bias, Voltage					
		Divider Bias, Collector Feedback Configuration					
		Unit-4					
		Junction Field Effect transistor, depletion and					
		enhancement type MOSFET, V-I characteristic, operation					
		methods, FET biasing: Fixed, self and Voltage Divider					
		Bias					
		Four Layer Diode (p-n-p-n), SCR, Principle of operation,					
		transistor analogy, methods of turning on and turning off					
		(only reference), Gate characteristic, DIAC, TRIAC, light					
		activated thyristor					
		Unit-5					
		Operational Amplifier and its applications, inverting and					
		non-inverting amplifiers, adder, integrator, differentiator,					

wave-form generator, comparator, Schmitt trigger. Recommended Books:
I. Millaman J. and Halkias C. (1972) Integrated Electronics (McGraw Hill, New York),
2. Malvino L. (1999) Electronic Devices and circuits
 Sterectman B. G. (1995) Solid State Electronic Devices and Integrated Circuits (Prentice Hall Inc.).
 Sze S.M. (1999) Physics of Semiconductors Devices by (John Wiley & Sons).
Suggested e-resources: 1. <u>https://nptel.ac.in/courses/115102014/</u> 2. https://nptel.ac.in/courses/113106062/
3. https://nptel.ac.in/courses/117106091/

16. Advanced After completion of this	1 To study the V-I characteristics of FET using discrete
Semiconductor course, the students will be	components on bread board.
Devices able to-	2 To study the V-I characteristics of UJT.
LAB	3 To study the output and transfer characteristics of FET.
• assess the validity of	4 To study the input and output characteristics of BJT.
physical theories	5 To study the V-I characteristics of DIAC.
through the design and	6 To study the V-I characteristics of TRIAC.
execution of an	7 To study the V-I characteristics of SCR.
experiment, the analysis	8 To study the characteristics of optocoupler and draw its
of uncertainties	frequency response.
associated with the	9 To study the V-I characteristics of Photodiode.
measurement of data	10 To study the V-I characteristics of p-n junction diode
and the interpretation of	using discrete components on bread board.
the data to draw valid	11 To study the V-I characteristics of pnp or npn transistor
scientific conclusions	using discrete components on bread board.
(lab skills).	
• connect a digital	
oscilloscope to a	
computer and record a	
signal with an	
appropriate sampling	
rate;	
• generate and interpret	
the power spectrum of	
the recorded data, use	
the tools,	
methodologies,	
language and	
conventions of physics	
to test and	
communicate ideas and	
explanations	

Name of Programme: M. Sc. (Physics)

Programme Educational Objectives

Among various science subjects, Physics is a natural science which deals with the behavior of matter, energy and the natural laws. The core theories of Physics are: Classical Mechanics, Electromagnetism, Thermodynamics and Statistical Mechanics, Quantum Mechanics and Relativity. There are many more branches of Physics like including astronomy, biophysics, atmospheric physics, nuclear physics etc. Therefore, Physics plays a key role in the future progress of humankind either in education or research in the world because of its characteristics features.

Keeping in views the entire scientific development of the student through covering almost all the courses, the M.Sc. (Physics) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in Physics through learning the designed studies with high quality and significance. However, the main objectives of the programmes are as follows:

- To provide the fundamental concepts of nature in terms of physics with their utilizations
- To produce MSc students who are very knowledgeable and theoretically sound and are able to apply these for the analysis and solution of problems where these leads to new or substantially improved insights and performances.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent physicists at national and international level
- To produce MSc students with high integrity having social values and who are ethically professional
- To produce MSc students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To produce MSc students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To produce MSc students who can adapt to changes in environment and practice lifelong learning
- To provide the ideas about pollution control and environment sustainability through exemplary education

Programme Outcomes

PO1: Physics Knowledge: Possess fundamental knowledge of various core courses of physics to solve complex scientific problems of the society. Also, the students will be able to apply theoretical knowledge of principles and concepts of Physics to practical problems

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills.

PO3: Expert of Advanced Tool: Expertise in new and advanced techniques like photo-sepectrometer, XRD, FESEM, Raman, DSC etc. through project component of the programme.

PO4: Problem analysis ability-Ability to apply physics principles alongwith other scientific conceptual attitude to analyze the problems related to society and to show the caliber for finding the solution.

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through learning of time management and team work skill.

PO6: Professional Identity- Possess ability to prove professional identity in any institution and industry at national and international level

PO9 7: Physics and society-Ability to explain the understanding of impact of physics study on the society including pollution, environment, health and ecosystem. In addition, the students will be able to propagate their knowledge to address problems of social relevance such as energy, and environment through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate the role of physics to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through project and laboratory practices

PO10: Life-long learning- Possess the knowledge of current issues and ability to engage in life-long learning

Master of Science (Physics)

Programme Scheme: Semester (I):

Existing													
Course	L	Т	Р	С									
Code													
CS 416	Computer Programming	4	0	0	4								
	Principle of Digital												
ELE 406	Electronics	4	0	0	4								
PHY 403	Classical Mechanics	4	0	0	4								
PHY 404	Mathematical Physics	4	0	0	4								
PHY 406	Quantum Mechanics-I	4	0	0	4								
CS 416L	Computer Programming Lab	0	0	8	4								
ELE	Principle of Digital												
406L	Electronics Lab	0	0	4	2								
	Total:	20	0	12	26								

	Proposed								
Course	Course Name	L	Т	Р	С				
Code	Code								
CS 416	Computer Programming	4	0	0	4				
	Principle of Digital								
ELE 406	Electronics	4	0	0	4				
	Classical Mechanics	4	0	0	4				
	Mathematical Physics	4	0	0	4				
PHY 406	Quantum Mechanics-I	4	0	0	4				
CS 416L	Computer Programming Lab	0	0	8	4				
ELE	Principle of Digital								
406L	Electronics Lab	0	0	4	2				
	Total:	20	0	12	26				

Semester (II):

		Existing					Proposed						
Cour	se	Course Name	L	Т	P	С	Course	Course Name	L	Т	P	С	
Cod	e						Code						
CS 414	4	Computer oriented numerical and statistical methods	4	0	0	4	CS 414	Computer oriented numerical and statistical methods	4	0	0	4	
PHY 4	01	Atomic and Molecular Physics	4	0	0	4	PHY 401	Atomic and Molecular Physics	4	0	0	4	
PHY 4	02	Classical Electrodynamics-I	4	0	0	4	-	Classical Electrodynamics-I	4	0	0	4	
PHY 4	07	Quantum Mechanics-II	4	0	0	4	-	Quantum Mechanics-II	4	0	0	4	
PHY 4	08	Statistical Mechanics	4	0	0	4	PHY 408	Statistical Mechanics	4	0	0	4	
TSKL	403	Communication Skills	2	0	0	2		Communication Skills	2	0	0	2	
CS 414	4L	Computer oriented numerical and statistical methods Lab	0	0	4	2	CS 414L	Computer oriented numerical and statistical methods Lab	0	0	4	2	
PHY 40	05L	Physics Lab-I	0	0	8	4	PHY 4051	Physics Lab-I	0	0	8	4	
		Total:	22	0	12	28		Total:	22	0	12	28	

Semester (III):

	Existing				Proposed						
Course						Semester - III					
Code	Course Name	L	Т	Р	С	Course Name	1	т	D	C	
PHY						Code	•	•	•	C	
530	Solid State Physics	4	0	0	4	РНҮ					
PHY	Classical Electrodynamics-					530 Solid State Physics	4	0	0	4	
504	II	4	0	0	4						
						PHY Classical					
PHY						504 Electrodynamics-II	4	0	0	4	
516	Nuclear Physics-I	4	0	0	4						
								0	0		
РНҮ	Physics of Laser and Laser		-			516 Nuclear Physics-I	4	0	0	4	
520	Applications	4	0	0	4	Physics of Laser and					
РНҮ						Laser Applications	4	0	0	4	
5181	Physics Lab-II	0	0	8	4			Ũ	Ŭ	•	
0101		ľ	Ũ	Ũ		Physics Lab-II	0	0	8	4	
	Elective-I	4	0	0	4						
						Discipline Elective	4	0	0	4	
PHY											
527S	Seminar	0	0	2	1	Reading Elective	0	0	0	2	
	Total:	20	0	14	27	РНҮ					
						527S Seminar	0	0	2	1	
						Semester Wise Total	20	0	10	27	
						Semester Wise Potal.		v	10	2,	

Semester (IV):

	Existing						Proposed								
Course	Course Name	L	Т	P	C	Seme	Semester - IV								
Code						Cour: Cod	e Course Name	L	т	Р	с				
PHY 529	Solid State Electronics Devices	4	0	0	4	PHY 529	Solid State Electronics Devices	4	0	0	4				
ELE 307	Microwave Electronics	4	0	0	4	FLF									
PHY 517	Nuclear Physics-II	4	0	0	4	307	Microwave Electronics	4	0	0	4				
PHY 519L	Physics Lab-III	0	0	8	4	PHY 517	Nuclear Physics-II	4	0	0	4				
	Elective-II	4	0	0	4	PHY 525P	Project	0	0	8	4				
PHY 525P	Project	0	0	8	4		Physics Lab-III	0	0	8	4				
							Open Elective	4	0	0	4				
	Total:	16	0	16	24	Semes	ster Wise Total:	16	0	16	24				

Discipline Electives					Reading Electives				
Fibre Optics Communication	4	0	0	4	Optical materials and Devices	0	0	0	2
Physics of Nano-structure & Nanotechnology-I	4	0	0	4	Solar Energy: photovoltaic systems	0	0	0	2
Plasma Physics-I	4	0	0	4	Introduction to photonics	0	0	0	2
High Energy Physics-I	4	0	0	4					
Nonlinear Physics-I	4	0	0	4					
Condensed Matter Physics-I	4	0	0	4					
Science and Technology of Solar Hydrogen and other Renewable Energies	4	0	0	4					
Bio Physics-I	4	0	0	4					
Analog and Digital Communication	4	0	0	4					
Physics of Nano-structure & Nanotechnology-II	4	0	0	4					
Plasma Physics-II	4	0	0	4					
High Energy Physics-II	4	0	0	4					
Nonlinear Physics-II	4	0	0	4					
Condensed Matter Physics-II	4	0	0	4					
Solar Energy: Principles of Solar Thermal Devices	4	0	0	4					
Bio Physics-II	4	0	0	4					

Annexure-VIIIA

Name of Programme: M. Tech. (Nanotechnology)

Programme Educational Objectives

Banasthali Vidyapith has made a significant contribution in the technology education by introducing the M.Tech. (Nanotechnology) programme. Nanotechnology is not being considered simply a technology like other technologies which are confined almost in a limited area. In fact, the nanotechnology leads to a mission through which the whole country can be promoted in terms of sciences and technology. Keeping in view such a mission, The M. Tech. (Nanotechnology) programme has been designed by the department of Physics. Actually, M. Tech. (Nanotechnology) is an umbrella programme for capacity building which envisages the overall development of this field of research in the country and to tap some of its applied potential for nation's development.

Keeping in views the entire scientific and technological development of the student through covering almost all the courses, the M. Tech. (Nanotechnology) programme has been designed. The present programme aims to train the students to acquire high level theoretical and experimental knowledge in the direction of technology through learning the designed courses with high quality and significance. However, the main objectives of the programmes are as follows:

- To prepare the students to outshine in academics and research in different motifs of Nanoscience and Nanotechnology.
- To train the students with good theoretical and practical knowledge so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- To provide the knowledge of various new techniques by which the students can lead the cutting edge technologies
- To encourage research and development activities
- To prepare the competent technologists at national and international level
- To provide students with an academic environment aware of excellence, leadership, written ethical codes and guidelines, and the life-long learning needed for a successful professional career
- To produce the students who can think critically and creatively thus capable of generating and developing new knowledge, products, materials or methods for the benefits of mankind.
- To prepare the students with excellent communication skills, capable of communicating effectively in various context, thus sharing new knowledge with other researchers from other institutions, universities and also industrialists
- To develop gender –neutral attitudes and practices; respect for all races, nations, religions, culture, languages and traditions
- To coach students in professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.
- To provide the ideas about environment sustainability and pollution control through exemplary and practical educations

Programme Outcomes

PO1: Knowledge about Technology: Able to apply knowledge and skills to solve complex technical problems which calls for insight into the latest technologies and best engineering practices including behavioral, social, and manufacturing practices.

PO2: Planning Abilities-Ability to demonstrate efficient planning including time management, resource management and organization skills

PO3: Problem analysis ability-Ability to apply scientific attitude to analyze the society problems and to apply information systematically for the solution

PO4: Modern Tool usage: Ability to handle new techniques and advanced tools like XRD, FESEM etc, which derive the nanosciences and nanotechnology

PO5: Leadership Skills- ability to have leadership skills with high regard for ethical values and social responsivities through the management related courses.

PO6: Professional Identity- able to show professional identity as competent technologists at national and international level

PO9 7: Technology and society-Ability to show the understanding of impact of nanomaterials on the society including environment, health and ecosystem. On the other side, the Graduates will be able to propagate their knowledge to address problems of social relevance such as energy, environment and medicine through their specific electives.

PO8: Communication-Possess effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate nanotechnology to address environmental issues.

PO9: environment and sustainability- Understanding about environment sustainability and pollution control through laboratory practices

PO10: Life-long learning- Possess the knowledge of contemporary issues and ability to engage in life-long learning

M.Tech (Nanotechnology)

Programme Scheme:

Semester (I):

	Existing						Proposed								
Course	Course Name	L	Т	P	1	С	Course	Course Name	L	Т	P	С			
Code	Code						Code								
ELE 506	Nano-Photonics & Optoelectronics	4	0	0	4	Ļ		Nano-Photonics & Optoelectronics	4	0	0	4			
PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4	Ļ	PHY 502	Advanced Synthesis Processes and Devices	4	0	0	4			
PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4	Ļ	PHY 508	Fundamentals of Nano-sciences and Nano-technology	4	0	0	4			
PHY 511	Introduction to Materials Science	4	0	0	4	Ļ	PHY 511	Introduction to Materials Science	4	0	0	4			
PHY 531	Surface, Interface and Thin films	4	0	0	4	ļ	PHY 531	Surface, Interface and Thin films	4	0	0	4			
NANO 502L	Simulation Lab-I	0	0	6	3	3		Simulation Lab-I	0	0	6	3			
PHY 512L	Nano Fabrication and PHY 512L Characterization Lab-I		0	6	3	3	PHY 512L	Nano Fabrication and Characterization Lab-I	0	0	6	3			
	Total:	20	0	12	2	26		Total:	20	0	12	26			

Semester (II):

	Existing					Proposed							
Course	Course Name	L	Т	Р	С	Course	Course Name	L	Т	Р	С		
Code						Code							
ELE 501	Advanced Nano-electronics	4	0	0	4	ELE 501	Advanced Nano-electronics	4	0	0	4		
MATH 514	Mathematical Modeling and Simulation	4	0	0	4	MATH 514	Mathematical Modeling and Simulation	4	0	0	4		
NANO 501	Quantum Computations and Information Processing	4	0	0	4	NANO 501	Quantum Computations and Information Processing	4	0	0	4		
PHY 501	Advanced Characterization Techniques	4	0	0	4	PHY 501	Advanced Characterization Techniques	4	0	0	4		
NANO 503L	Simulation Lab-II	0	0	6	3		Simulation Lab-II	0	0	6	3		
PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3	PHY 513L	Nano Fabrication and Characterization Lab-II	0	0	6	3		
	Elective	4	0	0	4		Discipline Elective	4	0	0	4		
	Total:	20	0	12	26			20	Ű	12	20		

Discipline Electives	L	Τ	Ρ	С
Nano-Engineering of Biological Systems	4	0	0	4
Organic and Polymer Technology	4	0	0	4
MEMS and NEMS Technology	4	0	0	4

Semester (III):

	Existing	Proposed										
Course Course Name			T P C Course Course Name	Course Name	L	Т	Р	С				
Code	Code						Code					
	Reading Elective-I	0	0	4	2	_	PHY 601P	Project (Part-I)	0	0	48	24
PHY 601P	Project (Part-I)	0	0	48	24	1		Reading Elective-I	0	0	4	2
	Total:	0	0	52	26	5		Total:	0	0	52	26

Semester (IV):

	Existing	Proposed									
Course Course Name			T P C Course Name		Course Name	L	Т	Р	С		
Code	P Project (Part-I)					Code					
PHY 601P			0	48	24	PHY 601P	Project (Part-I)	0	0	48	24
	Reading Elective-II	0	0	4	2		Reading Elective-II	0	0	4	2
	Total:	0	0	52	26		Total:	0	0	52	26

Reading Electives				
Nanotechnology in Healthcare and Environment	0	0	4	2
Development of Nanotechnology: A Global Aspect	0	0	4	2
Nanotechnology and Society	0	0	4	2
Tissue Engineering	0	0	4	2
Nano-Catalysis	0	0	4	2
RF and MMIC Design Reading	0	0	4	2

Student can opt for at most 2 additional Open (Generic) audit/credit Elective from other disciplines opting at most 1 per semester in Semesters III, IV, with prior permission of respective heads, time table permiting.

Name of Programme: M.Tech. (Nanotechnology)

Course Details:

S. N.	Course List	Learning Outcome	Existing Syllabus	Suggested Syllabus	Remarks
1.	ELE 506	After completion of this	isSECTION-A	SECTION-A	Defining the topics to be studied
	Nano-	course, the student will be able	eIII-V semiconductor quantum wells, Quantum		in a clear form.
	Photonics &	to-	Dots, Nonlinear Optical Properties, Quantum	III-V semiconductors;	
	Optoelectronic	• understand the fundamenta	alConfined Stark effect, Dielectric confinement	Absorption in Semiconductors: Indirect Intrinsic	Updating the course:
	S	operating principles o	ofeffect, Superlattices, Core shell Quantum	transitions, Exciton absorption, Donor acceptor and	Photonic Crystals moved to
		photodevices	Dots, Quantum Dot Quantum wells, Quantum confined	Impurity Band Absorption;	Section-C
		• analyse LED and	distructures as lasing media	Effect of electric field on absorption: Franz Keldysh	
		heterojunction lase	er Photomic Crystals, 1D,2D,3D photomic	and Stark effect;	
		materials selection and	d Microcavity offact Matheds of Fabrication	Quantum confinement; Quantum Dots; Quantum wells;	
		design	Photonic crystal optical circuitry Nonlinear	Absorption in Quantum Wells and Quantum Confined	
		• understand fundamentals of	Photonic crystal optical circuity Noninear	Stark effect; Radiation in Semiconductors: Relation	
		organic electronics and	Photonic Crystal Sensor	Bandgan radiative transitions. Deep level transitions	
		liquid crystal displays		Auger recombination: Dielectric confinement effect:	
		• get an overview of	DI SECTION-B	Superlattices: Core shell Quantum Dots: Quantum	
		photonic systems	Introduction to Lasers, Guided Waves, Gain in	confined structures as lasing media	
			two level lasing medium, Lasing Condition and		
			Gain in semiconductors, Selective	SECTION-B	
			Amplification and Coherence, Threshold	Introduction to Lasers; Gain in two level lasing	
			condition for lasing, Lineshape function and	medium; Lasing Condition and Gain in	Defining the topics to be studied
			line broadening mechanisms, Lasing threshold	semiconductors; Selective Amplification and	in a clear form
			in two level system, LED: Basics, Choice of	Coherence; Threshold condition for lasing; Lineshape	
			Materials, Light Output from LED,	function:Line broadening mechanisms: Natural	Updating the course: portion on
			Semiconductor Lasers: Basic principles,	Broadening, Collision Broadening, Doppler	LED is deleted as not relevant.
			Heterojunction Lasers: Energy Band diagram	Broadening; Semiconductor Lasers: Basic principles;	
			and Power output, Quantum Well and	Heterojunction Lasers: Energy Band diagram and	
			Quantum Dot lasers, Surface emitting lasers,	Power output; Quantum Well and Quantum Dot lasers;	
			Unipolar Devices, Quantum Cascade laser:	Multiple Quantum Well laser; Quantum Cascade laser:	

Structure and Principle of Operation	Structure and Principle of Operation	
SECTION-C Photodiodes, Avalanche Photodiodes, Structure, Materials, Characteristics, Device performance, Infrared Quantum detectors, QWIPs, Operation Principles, design and material choices, Quantum dot Infrared Photodetectors, Extending QWIPs into shorter and longer wavelengths	SECTION-C Photonic Crystals: 1D,2D,3D Photonic crystals, Photonic Bandgap and defects in photonic crystals, Features of photonic crystals, Optical microcavites, Methods of Fabrication, Nonlinear Photonic crystals, Photonic Crystal Fibre, Photonic Crystal Sensor; Surface Plasmons: Drude–Sommerfeld theory,Surface plasmon polaritons at plane interfaces, Properties of surface plasmon polaritons, Surface plasmon sensors, Surface plasmons in nano-optics, Plasmons supported by wires and particles	 Photonic Crystals moved from Section A to Section C. Added topic on surface plasmons. Deleted section on photodetectors as not relevant.
	 Recommended Books Bhattacharya P. (2002) Semiconductor Optoelectronic Devices (Prentice Hall India, IInd edition) Prasad P. N. (2004) Nanophotonics (Wiley Interscience, USA). Silvfast W.T. (1998) Laser Fundamentals by, (Cambridge University Press, UK) Ghatak A, Thyagarajan, K (2010) Lasers, Fundamentals and applications (Springer Science+Business Media, USA) Novotny L., Hecht B. (2006) Principles of Nano-Optics (Cambridge University Press, UK) 	
	Suggested e-Resources: NPTEL : Semiconductor optoelectronics https://nptel.ac.in/courses/115102103/ NPTEL : Nanophotonics https://nptel.ac.in/courses/118106021/1	

2.	PHY 502	Af	er completion of this	No change in entire course
	Advanced	co	urse, the students will be	
	Synthesis	ab	e to- Recommended Books	Update e-resources
	Processes	and.		
	Devices		• have a firm foundation in 1. Gabor L. Hornyak, Dutta J. Tibbals H.F., Rao A .(2008) Introduction to Nanoscience (CRC Press)	
			the fundamentals and 2. Vajtai, R. (Ed.). (2013). Springer handbook of nanomaterials. Springer Science & Business Media.	
			application of current chemical and scientific ³ . Henini, M. (Ed.). (2012). Molecular beam epitaxy: from research to mass production. Newnes.	
			theories including those 4. Jackson, M. J. (Ed.). (2005). Microfabrication and nanomanufacturing. CRC press	
			in Analytical, Inorganic, 5. Neamen, D. A. (2012). Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill,.	
			synthesis processes. 6. Manasreh, O. (2011). Introduction to nanomaterials and devices. John Wiley & Sons.	
			• have skills in problem	
			solving, critical thinking Suggested –e-resources	
			and analytical reasoning https://nptel.ac.in/courses/117106109/1	
			as applied to scientific https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-152j-micro-nano-processing-technology-fall-	
			problems. 2005/lecture-notes/cvd.pdf	
			• communicate the results	
			of scientific work in oral,	
			written and electronic	
			formats to both scientists	
			and the public at large.	
			• explore new areas of	
			research in both	
			chemistry and allied	
			fields of science and	
			technology.	
3.	PHY 508	Af	er completion of this	No change in entire course
	Fundament	als co	urse, the students will be	Update e-resources
	of N	ano-ab	e to-	
	sciences	and	• have knowledge of the 1. Sulabha, K., & Kulkarni, K. (2007). Nanotechnology: principles and practices.	
	Nano-		general principles of a second by the second	
	technology		physics. chemistry. 2. Guozhong, C. (2004). Nanostructures and Nanomaterials: synthesis, properties and applications	·•
			electronics and biology World scientific	

	1			
		that play a role on the nanometer scale	 Köhler, M., & Fritzsche, W. (2008). Nanotechnology: an introduction to nanostructuring techniques. John Wiley & Sons 	
	•	have insight into the materials, fabrication	4. Roduner, E. (2015). <i>Nanoscopic materials: Size-dependent phenomena and growth principles</i> . Royal Society of Chemistry.	
		and other experimental		
		techniques that can be	Suggested –e- resources	
		used on the nanoscale,	https://ocw.init.edu/search/ocwsearch.ntm?g=quantum%20uots	
		as well as their	<u>https://hptchdc.in/codiscs/105105020/0</u>	
		minitations		
	•	understand of the		
		formation of complex		
		macro systems which		
		are unique in their		
		new functionalities		
		have in-depth		
		knowledge of at least		
		one specialisation area		
		within the field of		
		nanoscience and		
		nanotechnology		
4.	PHY 511 After	completion of this	Recommended Books	No change in entire course
	Introduction to course	e, the students will be		2
	Materials able to)-	1. Callister, W. D., & Rethwisch, D. G. (2007). Materials science and engineering: an	Update e-resources
	Science •	apply knowledge of	introduction (Vol. 7, pp. 665-715). New York: John wiley & sons.	
		mathematics, science,	2. Jones, D. R., & Ashby, M. F. (2012). Engineering materials 2: an introduction to microstructures	
		and engineering to	and processing. Butterworth-Heinemann.	
		solve problems related		
		to materials science and	Suggested a resources	
		engineering.	https://ocw.mit.edu/courses/materials-science-and-engineering/3-012-fundamentals-of-materials-science-fall-	
		design new	2005/lecture-notes/lec17b.pdf	
		nanomaterials, as well	https://nptel.ac.in/courses/112104039/53	
		as characterize the new		
		material.		

	collaborate effectively		
	on multidisciplinary		
	teams.		
	• communicate		
	effectively in written		
_	and oral formats.		
5.	PHY 531 After completion of this		No change in entire course
	Surface, course, the students will be	Recommended Books	Update e-resources
	Interface andable to-	$1 \qquad \text{Desting } \mathbf{M} (1004) \text{ Let us desting a second second side of University Descents}$	
	• understand and describe	1. Prution M. (1994) Introduction to surface science, (Cambridge University Press)	
	properties of free liquid	2. Daillant, J., & Gibaud, A. (Eds.). (2008). X-ray and neutron reflectivity: principles and	1
	surfaces, such as	applications (Vol. 770). Springer	
	capillarity wetting and	3. Delchar, T. A. (1993). Vacuum physics and techniques. Chapman and Hall	
	spreading		
	sprouding.	Suggested –e resources	
	• understand and describe	https://nptel.ac.in/courses/112101004/downloads/(36-8-1)%20NPTEL%20-%20Vacuum%20Technology.pdf	
	electrical phenomena at	https://ocw.mit.edu/search/ocwsearch.htm?q=stm	
	surfaces, such as		
	surface charge, surface		
	potential, the electrical		
	double layer, and basic		
	electrochemical		
	concepts.		
	• describe the phase		
	behaviour and		
	aggregation of		
	ampliphies in solution		
	and at interfaces.		
	• desribe intermolecular		
	forces. forces acting		
	between molecules and		

		surfaces, and surface forces.	
6.	NANO 502L Simulation Lab-I	Increase. Introduction of this Toperform various experiments Atomistix Toolkit, rer completion of this Toperform various experiments Atomistix Toolkit, Introduction to Programming, Impolem analysis and Arkowledge of Software is used. ATK VNL produces very fast and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets and reliable for various 1.2 and 3 dimensional and sets an	Ig Dn ce of rn an
7.	PHY 512L Aft	ter completion of this	

	Nano	course	, the students will be		
	Fabrication and	able to)-		No change in entire course
	Characterizatio	٠	synthesize the nano-		
	n Lab-I		materials		
		•	characterize the		
			synthesized materials		
			using several advanced		
			characterizing tools		
		٠	seek potential of the		
			materials for several		
			industrial technological		
			applications.		
8.	ELE 501	After	completion of this		No change in entire course
	Advanced	course	, the students will be		Update e-resources
	Nano-	able to	- Re	ecommended Books	
	electronics	٠	cope up with certain ¹ .	Hu, C. C. (2011). Modern Semiconductor Devices for Integrated Circuits. Part I: Electrons and	
			nanoelectronic systems	holes in a semiconductor.	
			and building blocks 2 .	Taur, Y., & Ning, T. H. (2013). Fundamentals of modern VLSI devices. Cambridge university press.	
			dimensional dimensional 3.	Heinzel, T. (2008). Mesoscopic electronics in solid state nanostructures. John Wiley & Sons.	
			semiconductors, 4.	Waser, R. (Ed.). (2012). Nanoelectronics and information technology. John Wiley & Sons	
			heterostructures, carbon $_{5.}$	Lundstrom, M., & Guo, J. (2006). Nanoscale transistors: device physics, modeling and simulation.	
			nanotubes, quantum dots, nanowires etc.	Springer Science & Business Media.	
		•	set up and solve the ⁶ .	Hanson, G. W. (2008). Fundamentals of nanoelectronics. Upper Saddle River: Pearson/Prentice	
			Schrödinger equation	Hall.	
			for diferent types of Re	ference Books:	
			potentials in one _{1.} dimension as well as in	Heikkilä, T. T. (2013). The physics of nanoelectronics: transport and fluctuation phenomena at low temperatures (Vol. 21). Oxford University Press.	
			2 or 3 dimensions for 2_{2} .	Park, B. G., Hwang, S. W., & Park, Y. J. (2012). Nanoelectronic devices. CRC Press.	
		•	specific cases. 3. use matrix methods for	Mitin, V. V., Kochelap, V. A., & Stroscio, M. A. (2008). Introduction to nanoelectronics. Science, Nanotechnology, Engineering, and Applications (Cambridge Univ. press, Cambridge, 2008).	
			solving transport _{4.}	Chang, C. Y. (2000). ULSI devices. John Wiley & Sons.	
			problems such as ₅	Datta, S. (1997). Electronic transport in mesoscopic systems. Cambridge university press.	

			tunneling, resonant	
			tunneling and know the Suggested –e resources	
			concept of quantized https://nptel.ac.in/courses/113104004/	
			conductance. https://nptel.ac.in/courses/113104004/29	
		•	familiarize with	
			searching for scientific	
			information in their	
			subject area, practice	
			report writing and	
			presenting their project	
			in a seminar	
9.	MATH 514	After	completion of this	No change in entire course
	Mathematical	course	, the students will be Recommended Books	-
	Modeling and	lable to)-	Update e-resources
	Simulation	•	characterize	
			engineering systems in 1. Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. Boston: McGraw-Hill	
			terms of their essential Higher Education,.	
			elements, purpose, 2. parameters, constraints, performance Frenkel, D., & Smit, B. (2001). Understanding molecular simulation: from algorithms to applications (Vol. 1). Elsevier.	
			requirements, sub-3. Ohno, K., Esfarjani, K., & Kawazoe, Y. (2018). <i>Computational materials science: from ab initio to Monte Carlo methods</i> . Springer	
			interconnections and environmental context. Suggested –e resources	
		•	model and solve the https://nptel.ac.in/courses/103106119/ relationship between https://ocw.mit.edu/search/ocwsearch.htm?g=ab%20initio	
			theoretical,	
			mathematical, and	
			computational	
			modelling for	
			predicting and	
			optimizing performance	
			and objective.	
		•	develop solutions and	

	 extract results from the information generated in the context of the engineering domain to assist engineering decision making. interpret the model and apply the results to resolve critical issues in a real world environment. 	
10.	PHY 501 After completion of this davanced course, the students will be course, the students will be characterizatio able to- No change in ent will be course, the students will be course, the students will be course, the student should understand basic principles of the techniques No change in ent will be course, the student should understand the student should understand the student should understand the sources the student should understand the sources will be for each techniques No change in ent will be course, the student should understand the sources the student should understand the sources will be for each techniques with the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should understand the sources will be course in the student should will be courses in the student should will be co	re course
11.	NANO 503L Simulation Lab-IAfter completion of this students will be will be to perform various experiments Atomistix Toolkit- be Virtual NanoLab (ATK-VNL) simulation package is used. ATK-VNL produces very fast and reliableLearning coding programs in any one of the languages like Python, C++, Fortran, Mathematica programming tools and etc.Learning coding programs in any one of the languages like Python, C++, Fortran, Mathematica language is necessary of etc.	programming

• write computer code	Simulation results for various 1,2 and 3 dimensional	S	cientific training today.
for scientific real problem	snano structures and nano devices which will rather	Write the Computer program to:	
using various numeric.	drequires a very large and expansive laboratory at the	1. Find the roots of a polynomial or transcendental	Vithout writing codes for all the
and simulation methods.	experimental level. ATK-VNL helps students to	equation using Bisection, Iteration, Newton-n	umerical methods studied in the
have command over the	understand the electronic, optical, thermal, mechanical	Raphson, Ramanujan's, Quotient-difference ^c	ourse will be useless. Students will
numerical analysis	and other properties of various nano-structures and	methods.	e required to write their own coded
numerical analysis	materials at the atomic level.	2. Interpolate data using forward, backward anda	nd test all the techniques studied in
		central difference, Newton's general and ^t	ie class.
	Simulation Lab-11	Lagrange interpolation methods.	
	1 To study transport properties of armshair graphene	3. Find the least square fit using Straight line and	
	nano ribbon devices	polynomial. 1 Differentiate and integrate functions using Cubic	
	2. To study transport properties of zigzag graphene	4. Differentiate and integrate functions using Cubic spline Tropozoidal Simpson's Coussion	
	nano-ribbon devices.	integration To calculate double integral	
	3. To analyse chlorine sensing properties of zigzag	5 Simple Linear Algebra manipulations and	
	boron phosphide nano-ribbons through electronic	calculating inverse and eigenvalue problems using	
	properties.	inbuilt libraries.	
	4. To analyse chlorine sensing properties of zigzag	6. Solve single and couple ordinary differential	
	boron phosphide nano-ribbons through transport	equations using Euler's and Runge-Kutta	
	properties.	method.	
	5. To calculate binding energy of boron nitride nano-	7. Solving Partial differential equations.	
	ribbons.		
	6. To calculate ionization energy and affine energy of	8. One dimensional single orbital tight-bonding	
	boron doped benzene molecule in isolated (gas	model, with random onsite energies. Calculate the	
	phase) and in SET environment.	eigenvalues, density of states and site dependent	
	7. To calculate and analyse transmission spectra of a	electronic occupation for given electron density.	
	molecule based nano-device.		
	8. To calculate magnetic moment of a molecular	9. Compare results for different strength of disorder.	
	0 To study I V characteristic for a molecular		
	Junction	10. Setup a metropolis algorithm based Monte Carlo	
	To investigate spin-dependent L-V curve of singl	simulation of 1d ferromagnetic ising model. Calculate	
	molecule junction.	temperature dependence of total energy, specific	
12 PHV 5131 After completion of th		neat, magnetization and magnetic susceptionity.	
Nano course the students will k			No change in entire source
Entrication and able to			no change in chure course
Characterizatio			
Understand bas	C		

	n Lab-II	prir pres thei lim the und requ suit • rou exp	aciples of the techniques sented in the course, r advantages and itations. Furthermore, student should erstand the uirements for samples able for each technique. perform simple and tine operations on the erimental setups.		
13.	BT 518 Nono	After	completion of this		No change in entire course
	Inalio- Engineering of	foble to	the students will be	Decommonded Decks	Undete e Resources
	Eligineering of		······	Recommended books	Opuale e-Resources
	Biological	•	explain the concepts of	1. Enderie, J., & Bionzino, J. (2012). <i>Introduction to biomedical engineering</i> . Academic press.	
	Systems		nanotechnology and nanoscience and	2. Bronzino, J. D., & Peterson, D. R. (2014). <i>Biomedical engineering fundamentals</i> . CRC press.	
			account for the	Supplementary Reading :	
			importance of which in	1. Bronzino, J. D., & Peterson, D. R. (2014). <i>Biomedical engineering fundamentals</i> . CRC press.	
			the development of	2 Crommell I Weihell E I θ Dfeiffer E A (2019) Binnedical instrumentation and	
			biomedical surface	5. Cromwell, L., Weldell, F. J., & Pleiner, E. A. (2018). Biomedical instrumentation and measurements (Vol 1) Pearson	
			science,		
		•	explain the		
			interdisciplinary nature	Suggested –web resources	
			of nanotechnology,		
			using examples from	https://ocw.mit.edu/search/ocwsearch.htm?q=ph%20sensorss	
			obomistry and physics	https://ocw.mit.edu/search/ocwsearch.htm?q=cell%20structure	
			chemistry and physics,		
		•	technologies used in the		
			exection of an analysis		
			synthesis and analysis		
			or nanostructures, and		

		also the phenomena that	t	
		determine the		
		interactions betweer		
		nano objects and		
		biological and artificial		
		interfaces		
14	CHEM 508	After completion of this		No change in antine course
14.	CHEWI 506	After completion of the		No change in entire course
	Organic and	course, the students will be	Recommended Books	
	Polymer	able to-		
	Technology	• isolate the key design	1. Nicolais, L., & Carotenuto, G. (Eds.). (2004). Metal-polymer nanocomposites. John Wiley &	
		features of a product which	n Sons	
		relate directly to the	2. Strobl, G. R., & Strobl, G. R. (1997). <i>The physics of polymers</i> (Vol. 2). Berlin: Springer	Update e-Resources
		construction	3. Fried, J. R. (2014). <i>Polymer science and technology</i> . Pearson Education	
		• describe the role of	Suggested –web resources	
		rubber-toughening ir	h	
		improving the mechanical	https://nptel.ac.in/courses/113105028/	
		properties of polymers	https://ocw.mit.edu/search/ocwsearch.htm?g=metal%20containing%20polymers	
		 identify the repeat units 		
		of particular polymers and		
		specify the isomeric		
		specify the isometric		
		structures which can exis		
		for those repeat units		
		• estimate the number	-	
		and weight-average		
		molecular masses of	f	
		polymer samples given the		
		degree of polymerisation		
		and mass fraction of chains		
		present.		
15.	ELE 504	After completion of this		No change in entire course
	MEMS and	course the students will be	Recommended Books	
	NEMS	able to-	1 Senturia S D (2007) Microsystem design Springer Science & Business Media	
	Technology	• understand the	1. Sentaria, S. D. (2007). Interosystem design. Springer Selence & Business Media.	Undate e-Resources
	reennoiogy		2. Alvi, P. A. (2014). MEMS Pressure Sensors: Fabrication and Process Optimization.	opulate e-resources

	operation of micro3	B. Gad-el-Hak, M. (2001). <i>The MEMS handbook</i> . CRC press.	
	devices, micro systems ₄	Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons.	
	and their applications	Suggested –web resources	
	• gain a knowledge of _h	ittps://ocw.mit.edu/search/ocwsearch.htm?g=mems	
	basic approaches for	https://nptel.ac.in/courses/105105108/24	
	various sensor design		
	• gain a knowledge of		
	basic approaches for		
	various actuator design		
	• gain the technical		
	knowledge required for		
	computer-aided design.		
	fabrication. analysis		
	and characterization of		
	nano-structured		
	materials, micro- and		
	nano-scale devices.		
	Reading Elective-I*		1
16.	BT 601R After completion of this		No change in entire course
	Nanotechnolog course, the students will be	Recommended Books	
	y in Healthcareable to-	. Rao, C. N. R., Muller, A., & Cheetham, A. K. (2004). The chemistry of nanoparticles: synthesis,	Update e-Resources
	and • describe how the	properties and applications.	
	Environment environment and human health interact	2. Challa, K. (2006). Tissue, cell and organ engineering.	
	at different levels.	B. Challa, R. K., & Kumar, R. (2007). Nanomaterials for medical diagnosis and therapy. Mass	
	• demonstrate the	Spectrometry, 1, 2.	
	knowledge and skills	Supplementary Deading	
	needed to improve the	Supplementary Reading.	
	environmental 1	. Goddard III, W. A., Brenner, D., Lyshevski, S. E., & Iafrate, G. J. (Eds.). (2007). Handbook of	
	sustainability of health	nanoscience, engineering, and technology. CRC press.	
	systems.	Bhushan B (Ed.) (2017) Springer handbook of nanotechnology Springer	
	• discuss how the duty of	. Drushun, D. (Du.). (2017). Springer numubook of numbleennoibgy. Springer.	
	a doctor to protect and		

		promote health is Suggested – web resources	
		shaped by the https://www.futurelearn.com/courses/nanotechnology-health	
		dependence of human https://elearninguoa.org/course/health-nanotechnology-nanomedicine/nanotechnology-and-nanomedicine	
		health on the local and https://www.edx.org/learn/nanotechnology	
		global environment.	
17.	MGMT 601R	After completion of this course	No change in entire course
	Development	the student will be able to: Recommended Books	C
	of	• understand the 1. Maclurcan, D., & Radywyl, N. (Eds.). (2011). Nanotechnology and global sustainability. CRC	Update e-Resources
	Nanotechnolog	role of Press	•
	y: A Global	nanotechnology 2 Fulekar M H Pathak B R K Kale (2013) Environment and Sustainable Development (Springer	
	Aspect	in various Press)	
	1	aspects globally 2 DI DA GAU D D (EL) (2012) C E : TILL: MI	
		• cope up the processing to be the second se	
		advancement in Grande de ante and ante and a sector de la constante de la constant	
		new	
		technologies	
		using	
		nanotechnology	
		nttps://www.coursera.org/learn/nanotechnology	
18	MGMT 602R	After completion of this course Recommended Books	No change in entire course
10.	Nanotechnolog	the student will be able to: $1 = \text{Fritz S} & \text{Recurses M I} (2002) Understanding nanotechnology: from the editors of Scientific$	No change in entire course
	v and Society	and student will be able to. 1. Thiz, S., & Roukes, M. L. (2002). Onderstanding handlechnology. from the earlors of Scientific	Undate e-Resources
	y and society	• understand the impact American. Warner Dooks of papotochnology in 2 Patner M A & Patner D (2003) Nanotochnology: A gentle introduction to the next big idea	opuate e-Resources
		routing life Prentice Hall Professional	
		• understand the impact 3 Jasanoff S Markle G E Peterson I C & Pinch T (Eds.) (2001) Handbook of science and	
		• understand the impacts. Jasanon, S., Markie, G. E., receisin, J. C., & Finch, T. (Eds.). (2001). Humbook of science and	
		of nanotechnology of technology studies. Sage publications	
		society 4. MacKelzic, D., & Wajeman, J. (1999). The social shaping of technology (No. 21d). Open	
		5 Pickering A (Ed.) (1992) Science as practice and culture University of Chicago Press	
		5. Trekening, M. (Ed.). (1992). Science as practice and canare. Oniversity of Chicago Hess.	
		Suggested –web resources	
		https://www.mrs.org/docs/default-source/programs-and-outreach/strange-matter.green-earth/nanotechnology-and-	
		society-a-practical-guide-to-engaging-museum-visitors-in-conversations.pdf?sfvrsn=bf66fa11 0	
		http://www.cns.ucsb.edu/about/nanotechnology-society.html	

	Reading Elective-II*			
19.	BIO 604R	After completion of this course Recommended Books	No change in entire course	
	Tissue	the student will be able to- 1. Palsson, B. O., Bhatia, S. N., & Prentice, P. (2004). Reviewed by Kam W. Leong. <i>Molecular</i>		
	Engineering	• understand the basic <i>Therapy</i> , $9(4)$.	Update e-Resources	
		mechanism of biological systems using nano-science and 2. Vunjak-Novakovic, G., & Freshney, R. I. (Eds.). (2006). <i>Culture of cells for tissue</i> <i>engineering</i> (Vol. 7). John Wiley & Sons.		
		technology. Supplementary Readings:		
		• understand concept of tissue engineering 1. Joseph D., Bronzino (2006) The Biomedical Engineering –Handbook, (CRC; 3rd edition)		
		Suggested –web resources		
		https://nptel.ac.in/courses/102106036/		
20		https://ocw.mit.edu/search/ocwsearch.htm?q=bio%20materials	N N N	
20.	CHEM 601R After completion of this course Recommended Books		No change in entire course	
	Nano-Catalysis	• understand the basic research, 38(11), 4140-4143	Update e-Resources	
		mechanism of chemical ₂ . Carberry, J. J. (2001). <i>Chemical and catalytic reaction engineering</i> . Courier Corporation.		
		reaction 3. Satterfield, C. N. (1970). <i>Mass transfer in heterogeneous catalysis</i> . The MIT Press.		
		• understand the role of Suggested – web resources		
		nano-catalysis. <u>https://ocw.mit.edu/search/ocwsearch.htm?q=%20nano%20catalysis</u>		
		https://nptel.ac.in/courses/103108097/28		
21		After completion of this course Decommended Decks	Na change in artine correct	
21.	ELE OUIK	After completion of this course Recommended Books	No change in entire course	
	RF and wivit	ine student win be able to- 1. Robertson, 1. D., & Lucyszyn, S. (Eds.). (2001). <i>RFTC and MMIC Design and Technology</i> (No. 15).	Undata a Dagourgas	
	Design	• Understand radiouci.	Opuale e-Resources	
		design the new https://ocw mit edu/search/ocwsearch htm?g=mesfet		
		• design the new https://dew.intec.ud/scaren/ocwscaren/new-		
1				

Offg. Secretary Banasthali Vidyapith P.O. Banasthali Vidyapith Distt. Tonk (Raj.)-304022